14,851 research outputs found

    Approximate Hamming distance in a stream

    Get PDF
    We consider the problem of computing a (1+ϵ)(1+\epsilon)-approximation of the Hamming distance between a pattern of length nn and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem, giving Alice the first half of the stream and Bob the second half. We show the following: (1) If Alice and Bob both share the pattern then there is an O(ϵ4log2n)O(\epsilon^{-4} \log^2 n) bit randomised one-way communication protocol. (2) If only Alice has the pattern then there is an O(ϵ2nlogn)O(\epsilon^{-2}\sqrt{n}\log n) bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for (1+ϵ)(1+\epsilon)-approximate Hamming distance which give worst case running time guarantees per arriving symbol. (1) For binary input alphabets there is an O(ϵ3nlog2n)O(\epsilon^{-3} \sqrt{n} \log^{2} n) space and O(ϵ2logn)O(\epsilon^{-2} \log{n}) time streaming (1+ϵ)(1+\epsilon)-approximate Hamming distance algorithm. (2) For general input alphabets there is an O(ϵ5nlog4n)O(\epsilon^{-5} \sqrt{n} \log^{4} n) space and O(ϵ4log3n)O(\epsilon^{-4} \log^3 {n}) time streaming (1+ϵ)(1+\epsilon)-approximate Hamming distance algorithm.Comment: Submitted to ICALP' 201

    Approximate Hamming Distance in a Stream

    Get PDF
    We consider the problem of computing a (1+epsilon)-approximation of the Hamming distance between a pattern of length n and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem. We show the following: - If Alice and Bob both share the pattern and Alice has the first half of the stream and Bob the second half, then there is an O(epsilon^{-4}*log^2(n)) bit randomised one-way communication protocol. - If Alice has the pattern, Bob the first half of the stream and Charlie the second half, then there is an O(epsilon^{-2}*sqrt(n)*log(n)) bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for (1 + epsilon)-approximate Hamming distance which give worst case running time guarantees per arriving symbol. - For binary input alphabets there is an O(epsilon^{-3}*sqrt(n)*log^2(n)) space and O(epsilon^{-2}*log(n)) time streaming (1 + epsilon)-approximate Hamming distance algorithm. - For general input alphabets there is an O(epsilon^{-5}*sqrt(n)*log^4(n)) space and O(epsilon^{-4}*log^3(n)) time streaming (1 + epsilon)-approximate Hamming distance algorithm

    Communication Complexity of Permutation-Invariant Functions

    Full text link
    Motivated by the quest for a broader understanding of communication complexity of simple functions, we introduce the class of "permutation-invariant" functions. A partial function f:{0,1}n×{0,1}n{0,1,?}f:\{0,1\}^n \times \{0,1\}^n\to \{0,1,?\} is permutation-invariant if for every bijection π:{1,,n}{1,,n}\pi:\{1,\ldots,n\} \to \{1,\ldots,n\} and every x,y{0,1}n\mathbf{x}, \mathbf{y} \in \{0,1\}^n, it is the case that f(x,y)=f(xπ,yπ)f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}^{\pi}, \mathbf{y}^{\pi}). Most of the commonly studied functions in communication complexity are permutation-invariant. For such functions, we present a simple complexity measure (computable in time polynomial in nn given an implicit description of ff) that describes their communication complexity up to polynomial factors and up to an additive error that is logarithmic in the input size. This gives a coarse taxonomy of the communication complexity of simple functions. Our work highlights the role of the well-known lower bounds of functions such as 'Set-Disjointness' and 'Indexing', while complementing them with the relatively lesser-known upper bounds for 'Gap-Inner-Product' (from the sketching literature) and 'Sparse-Gap-Inner-Product' (from the recent work of Canonne et al. [ITCS 2015]). We also present consequences to the study of communication complexity with imperfectly shared randomness where we show that for total permutation-invariant functions, imperfectly shared randomness results in only a polynomial blow-up in communication complexity after an additive O(loglogn)O(\log \log n) overhead

    An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

    Get PDF
    We prove an optimal Ω(n)\Omega(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive nn-bit strings xx and yy, respectively. They are promised that the Hamming distance between xx and yy is either at least n/2+nn/2+\sqrt{n} or at most n/2nn/2-\sqrt{n}, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses nn bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables

    Quantum Communication Cannot Simulate a Public Coin

    Full text link
    We study the simultaneous message passing model of communication complexity. Building on the quantum fingerprinting protocol of Buhrman et al., Yao recently showed that a large class of efficient classical public-coin protocols can be turned into efficient quantum protocols without public coin. This raises the question whether this can be done always, i.e. whether quantum communication can always replace a public coin in the SMP model. We answer this question in the negative, exhibiting a communication problem where classical communication with public coin is exponentially more efficient than quantum communication. Together with a separation in the other direction due to Bar-Yossef et al., this shows that the quantum SMP model is incomparable with the classical public-coin SMP model. In addition we give a characterization of the power of quantum fingerprinting by means of a connection to geometrical tools from machine learning, a quadratic improvement of Yao's simulation, and a nearly tight analysis of the Hamming distance problem from Yao's paper.Comment: 12 pages LaTe

    The Communication Complexity of the Hamming Distance Problem

    Full text link
    We investigate the randomized and quantum communication complexity of the Hamming Distance problem, which is to determine if the Hamming distance between two n-bit strings is no less than a threshold d. We prove a quantum lower bound of \Omega(d) qubits in the general interactive model with shared prior entanglement. We also construct a classical protocol of O(d \log d) bits in the restricted Simultaneous Message Passing model, improving previous protocols of O(d^2) bits (A. C.-C. Yao, Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 77-81, 2003), and O(d\log n) bits (D. Gavinsky, J. Kempe, and R. de Wolf, quant-ph/0411051, 2004).Comment: 8 pages, v3, updated reference. to appear in Information Processing Letters, 200

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]
    corecore