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AN OPTIMAL LOWER BOUND ON THE COMMUNICATION
COMPLEXITY OF GAP-HAMMING-DISTANCE∗

AMIT CHAKRABARTI† AND ODED REGEV‡

Abstract. We prove an optimal Ω(n) lower bound on the randomized communication complex-
ity of the much-studied gap-hamming-distance problem. As a consequence, we obtain essentially
optimal multipass space lower bounds in the data stream model for a number of fundamental prob-
lems, including the estimation of frequency moments. The gap-hamming-distance problem is a
communication problem, wherein Alice and Bob receive n-bit strings x and y, respectively. They
are promised that the Hamming distance between x and y is either at least n/2 +

√
n or at most

n/2−√
n, and their goal is to decide which of these is the case. Since the formal presentation of the

problem by Indyk and Woodruff [Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003, pp. 283–289], it had been conjectured that the näıve protocol, which
uses n bits of communication, is asymptotically optimal. The conjecture was shown to be true in
several special cases, e.g., when the communication is deterministic or when the number of rounds
of communication is limited. The proof of our aforementioned result, which settles this conjecture
fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a
result of Borell [Z. Wahrsch. Verw. Gebiete, 70 (1985), pp. 1–13]. To prove this geometric statement,
we show that random projections of not-too-small sets in Gaussian space are close to a mixture of
translated normal variables.

Key words. communication complexity, corruption, data streams, gap-hamming-distance, gaus-
sian noise correlation, lower bounds

AMS subject classifications. 68Q25, 68Q87

DOI. 10.1137/120861072

1. Introduction. Communication complexity is a much-studied topic in com-
putational complexity, deriving its importance both from the basic nature of the
questions it asks and the wide range of applications of its results, covering, for in-
stance, lower bounds on circuit depth (see, e.g., [20]) and on query times for static
data structures (see, e.g., [28, 30]). In the basic setup, which is all that concerns us
here, each of two players, Alice and Bob, receives a binary string as input. Their
goal is to compute some function of the two strings using a protocol that involves
exchanging a small number of bits. Since communication complexity is often applied
as a lower bound technique, much of the work in the area attempts to rule out the
existence of a nontrivial protocol. For many functions, this amounts to proving an
Ω(n) lower bound on the number of bits any successful protocol must exchange, n
being the common length of Alice’s and Bob’s input strings. Proofs tend to be consid-
erably more challenging, and more broadly applicable, when the protocol is allowed
to be randomized and err with some small constant probability (such as 1/3) on each
input.
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1300 AMIT CHAKRABARTI AND ODED REGEV

For a detailed coverage of the basics of the field as well as a number of applications
we refer the reader to the textbook of Kushilevitz and Nisan [25]. For the reader’s
convenience, we review the most basic notions in section 2.

In this paper, we focus specifically on the gap-hamming-distance problem
(ghd), which was first formally studied by Indyk and Woodruff [16] in the context of
proving space lower bounds for the distinct elements problem in the data stream
model. We also consider some closely related variants of ghd.

The problem and the main result. In the gap-hamming-distance problem
ghdn,t,g, Alice and Bob receive binary strings x ∈ {0, 1}n and y ∈ {0, 1}n, respec-
tively. They wish to decide whether x and y are “close” or “far” in the Hamming
sense with a certain gap separating the definitions of close and far. Specifically, the
players must output 0 if Δ(x, y) ≤ t − g and 1 if Δ(x, y) > t + g, where Δ denotes
Hamming distance; if neither of these holds, they may output either 0 or 1. Clearly,
this problem becomes easier as the gap g increases. Of special interest is the case
when t = n/2 and g = Θ(

√
n); these parameters are natural, and as we shall show

later using elementary reductions, understanding the complexity of the problem with
these parameters leads to a complete understanding of the problem for essentially all
other gap sizes and threshold locations. Furthermore, applications of ghd, such as
the ones considered by Indyk and Woodruff [16], need precisely this natural setting
of parameters. Henceforth, we shall simply write ghd to denote ghdn,n/2,

√
n.

Our main result states, simply, that this problem does not have a nontrivial
protocol. A somewhat informal statement follows; a fully formal version appears as
Theorem 2.6.

Theorem 1.1 (main theorem, informal). If a randomized protocol solves ghd,
then it must communicate a total of Ω(n) bits.

In fact, the technique we use to prove this theorem yields the stronger result that
the same Ω(n) hardness holds even if Alice and Bob are given uniformly random and
independent inputs in {0, 1}n. The cleanness of this “hard distribution” is potentially
important in applications. We state this result formally in Theorem 2.7.

Relation to prior work. Theorem 1.1 is the logical conclusion of a moderately
long line of research. This was begun in the aforementioned work of Indyk and
Woodruff [16], who showed a linear lower bound on the communication complex-
ity of a somewhat artificial variant of ghd in the one-way model, i.e., in the model
where the communication is required to consist of just one message from Alice to Bob.
Woodruff [39] soon followed up with an Ω(n) bound for ghd itself, still in the one-way
model; the proof used rather intricate combinatorial constructions and computations.
Jayram, Kumar, and Sivakumar [18] later provided a rather different and much sim-
pler proof by a reduction from the index problem. Their reduction was geometric in
the sense that they exploited a natural correspondence between Hamming space and
Euclidean space; this correspondence has proved fruitful in further work on the prob-
lem, including this work. Recently, Woodruff [41] and Brody and Chakrabarti [10]
gave direct combinatorial proofs of the Ω(n) one-way bound.

All of this work left open an important question: what can be said about the com-
plexity of ghd when two-way communication is allowed? It has been conjectured at
least since the formalization of the problem in 2003 that Ω(n) is still the right answer,
i.e., that ghd has no nontrivial protocol, irrespective of the communication pattern.

Until 2009, our understanding of this matter was limited to two “folklore” results.
Firstly, the deterministic communication complexity of ghdn,n/2,g can be shown to be
Ω(n), even allowing two-way communication and a gap as large as g = cn for a small
enough constant c. This follows by directly demonstrating that its communication
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AN OPTIMAL LOWER BOUND FOR GAP-HAMMING-DISTANCE 1301

matrix contains no large monochromatic rectangles (see, e.g., [40]). Secondly, a simple
reduction from disjointness to ghdn,n/2,g shows that its randomized (two-way)
communication complexity is Ω(n/g); notice that the corresponding bound for ghd

(where g =
√
n) is Ω(

√
n). Meanwhile, we have an upper bound of O(n2/g2) via the

simple (and one-way) protocol that samples sufficiently many coordinates of x and y
to give the right answer with high probability. It remained a significant challenge to
improve upon either tradeoff, even for just two rounds of communication.

Recently, Brody and Chakrabarti [10] made progress on the conjecture, proving
it for randomized protocols with two-way communication but only a constant number
of rounds of communication. In fact, they showed that in a k-round protocol, at least
one message must have length n/2O(k2). They achieved this via a round elimination
argument. At a high level, they showed that if the first message in a ghd protocol is
too short, the work done by the rest of the messages can be used to solve a “smaller”
instance of ghd by exploiting some combinatorial properties of Hamming space. More
recently, Brody et al. [9] improved the bound to Ω(n/(k2 log k)), still using a round
elimination argument but exploiting geometric properties of Hamming and Euclidean
space instead. We refer the reader to the discussion in [9] for details, including a
comparison of the two arguments.

Our main theorem completes this picture, confirming the main outstanding con-
jecture about ghd. Moreover, a straightforward reduction (Proposition 4.4) yields the
more general result that the randomized complexity of ghdn,n/2,g is Θ(min{n, n2/g2}).
Our lower bound proof is significantly different in approach from all of the aforemen-
tioned ones. We now give a high-level overview.

The technique. Part of the difficulty in establishing our result is that many of the
known techniques for proving communication complexity lower bounds seem unable
to prove bounds better than Ω̃(

√
n). These include the classic rectangle-based meth-

ods of discrepancy and corruption1 for reasons described below. They also include
certain linear algebraic approaches, such as the factorization norms method of Linial
and Shraibman [26] and the pattern matrix method of Sherstov [34], because these
methods lower bound quantum communication complexity. The trouble is that ghd
does have a constant-error O(

√
n logn) quantum communication protocol, as can be

seen by combining a query complexity upper bound due to Nayak and Wu [29] with
a communication-to-query reduction, as in Buhrman, Cleve, and Wigderson [11] or
Razborov [31].

Instead, what does work is a suitable generalization of the corruption method.
Recall that the standard corruption method proceeds as follows. First, one observes
that every protocol that communicates c bits induces a partition of the communication
matrix into 2c disjoint near-monochromatic rectangles. In order to show a lower bound
of c, one then needs to prove that any rectangle containing at least a 2−c fraction of
the 1-inputs must also contain (or be “corrupted” by) a not-much-smaller fraction of
the 0-inputs (or vice versa). In other words, one shows that large near-monochromatic
rectangles do not exist, from which the desired lower bound follows. It should be noted
that proving such a property could be a challenging task. Indeed, this is the main
technical contribution of Razborov’s proof of the Ω(n) lower bound on the randomized
communication complexity of the disjointness problem [32].

1We assume that the reader has some familiarity with these basic techniques in communication
complexity, which are discussed in detail in the textbook of Kushilevitz and Nisan [25]. Some authors
use terms like “one-sided discrepancy” and “rectangle bound” when describing the technique that
we (following Beame et al. [5]) have termed “corruption.”
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1302 AMIT CHAKRABARTI AND ODED REGEV

This idea appears not to give a lower bound better than Ω(
√
n) on the randomized

communication complexity of ghd because its communication matrix does contain
“annoying” rectangles that are both large and near-monochromatic. This can be seen,
e.g., by considering all inputs (x, y) with xi = 0, yi = 1 for i ∈ {1, 2, . . . , 100√n}; the
resulting rectangle contains a 2−Θ(

√
n) fraction of all 1-inputs (it is large) but a much

smaller fraction of 0-inputs (it is nearly monochromatic).
Our generalization considers not just 0-inputs and 1-inputs but also a carefully

selected set of “joker” inputs, whose corresponding outputs are immaterial. Loosely
speaking, we show that if a large rectangle contains many more 1-inputs than 0-inputs,
then the fraction of joker inputs it contains must be even larger than the fraction of
1-inputs it contains (by some constant factor, say 3/2). This property—call it the
“joker property”—implies that even though annoying rectangles exist, their union
cannot contain more than a constant fraction of the 1-inputs (say, 2/3). In particular,
there is no way to partition the 1-inputs into 2c near-monochromatic rectangles, and
a lower bound of c follows.

This simple-sounding idea seems to have considerable power. Indeed, the method
we have presented above can be seen as a special case of the ideas behind the “smooth
rectangle bound” recently introduced by Klauck [23] and systematized by Jain and
Klauck [17]. Formally, when we prove a communication lower bound using corruption-
with-jokers as above, we are essentially lower bounding the smooth rectangle bound
of the underlying function. For a careful understanding of this matter, based on linear
programming duality, we refer the reader to Jain and Klauck [17].

Of course, there remains the task of proving the joker property referred to above.
It turns out that the statement we need boils down to roughly the following: for
arbitrary sets A,B ⊆ {0, 1}n that are not too small (say, of size at least 20.99n), if x ∈R

A and y ∈R B, then Δ(x, y) is not too concentrated around n/2; a precise statement
appears as Corollary 3.8. The proof uses a Gaussian noise correlation inequality
(Theorem 3.5, proved using analytic methods); this inequality and its proof are the
main technical contributions of the paper and should be of independent interest.

Data stream and other consequences. The original motivation for studying ghd

was a specific application to the distinct elements problem on data streams. Specif-
ically, given a stream (sequence) ofm elements, each from [n] := {1, 2, . . . , n}, we wish
to estimate to within a 1± ε factor the number of distinct elements in it while using
space sublinear in m and n. A long line of research has culminated in a randomized
algorithm [19] that computes such an estimate (failing with probability at most 1

3 ,
say) in one pass over the stream, using O(ε−2 + log(mn)) bits of space. A space
lower bound of Ω(logn) has been known for a while [1] and is easily seen to apply to
multipass algorithms. But the dependence of the lower bound on ε is a longer story.

An easy reduction (implicit in Indyk and Woodruff [16]) shows that a lower bound
of Ω(φ(n, k)) on the maximum message length of a (2k − 1)-round protocol for ghd
would imply a Ω(φ(ε−2, k)) space lower bound on k-pass algorithms for the distinct

elements problem. Thus, the one-way Ω(n) lower bound for ghd implied a tight
Ω(ε−2) lower bound for one-pass streaming algorithms. The results of Brody and
Chakrabarti [10] and Brody et al. [9] extended this to p-pass algorithms, giving lower

bounds of Ω(ε−2/2O(p2)) and Ω(ε−2/(p2 log p)), respectively.
Our main result improves this pass/space tradeoff, giving a space lower bound

of Ω(ε−2/p). As is easy to see, this is tight up to factors logarithmic in m and n.
Further, since the communication lower bound for ghd can be shown to hold under
a uniform input distribution, this space lower bound can be shown to hold even for
rather benign models of random uncorrelated data [41].
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AN OPTIMAL LOWER BOUND FOR GAP-HAMMING-DISTANCE 1303

Suitable reductions from ghd imply similar space lower bounds for several other
data stream problems, such as estimating frequency moments [39] and empirical en-
tropy [12]. One can also derive appropriate lower bounds for a certain class of dis-
tributed computing problems known as functional monitoring [2]. We note that the
second frequency moment (equivalently, the Euclidean norm) can be interpreted as the
self-join size of a table in a database and is an especially important primitive needed
in many numerical streaming tasks such as regression and low-rank approximation.

Subsequent developments. Since the preliminary announcement of our results [13],
there has been much additional research related to ghd. One line of research has
provided alternative proofs of our main result. Vidick [37] gave a proof that followed
the same overall outline as ours but had an alternative proof of the joker property
based on matrix-analytic and second moment methods. More recently, Sherstov [35]
gave a proof that changed the outline itself, working with a closely related problem
called gap-orthogonality that has the advantage of being amenable to the basic
corruption method. Further, by using an inequality due to Talagrand, Sherstov was
able to work with the discrete problem directly rather than passing to Gaussian space.

Other lines of research have applied the optimal Ω(n) bound on the communi-
cation complexity of ghd to obtain results on a diverse array of topics, including
differential privacy [27], distributed functional monitoring [38], property testing [6],
and data aggregation in networks [24]. Furthermore, Woodruff and Zhang [38] have
given a new proof of optimal multipass space lower bounds for distinct elements

without appealing to our lower bound for ghd.

2. Corruption, a generalization, and the main theorem.

2.1. Preliminaries. Consider a communication problem given by a (possibly
partial) function f : X×Y → {0, 1, �}; we let f take the value “�” at inputs for which
we do not care about the output given. For a communication protocol, P , involving
two players, Alice and Bob, we write P (x, y) to denote the output of P when Alice
receives x ∈ X and Bob receives y ∈ Y . If P is randomized, this is a random variable.
We say that P computes f with error at most ε if

∀ (x, y) ∈ X × Y : f(x, y) �= � ⇒ Pr[P (x, y) �= f(x, y)] ≤ ε .

When the function f is understood from the context, we use err(P ) to denote inf{ε : P
computes f with error at most ε}. For a deterministic protocol P and a distribution
μ on X × Y , we define

errμ(P ) := Pr
(x,y)∼μ

[f(x, y) �= � ∧ P (x, y) �= f(x, y)] .

For a protocol P , let cost(P ) denote the worst-case number of bits communi-
cated by P . We let Rε(f) and Dμ,ε(f) denote the ε-error randomized and ε-error
μ-distributional communication complexities of f , respectively; i.e.,

Rε(f) = min{cost(P ) : P is a randomized protocol for f with err(P ) ≤ ε} ,
Dμ,ε(f) = min{cost(P ) : P is a deterministic protocol for f with errμ(P ) ≤ ε} .

We also put R(f) = R1/3(f) and Dμ(f) = Dμ,1/3(f).

2.2. Rectangles and corruption. Consider a two-player communication prob-
lem given by a function f : X × Y → Z. A set R ⊆ X × Y is said to be a rectangle if
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1304 AMIT CHAKRABARTI AND ODED REGEV

R = X × Y for some X ⊆ X and Y ⊆ Y . A fundamental property of communication
protocols is the following.

Fact 2.1 (rectangle property; see, e.g., [25]). Let P be a deterministic communi-
cation protocol that takes inputs in X×Y , produces an output in Z, and communicates
c bits. Then, for all z ∈ Z, there exist 2c pairwise disjoint rectangles R1,z, . . . , R2c,z

such that

∀ (x, y) ∈ X × Y : P (x, y) = z ⇐⇒ (x, y) ∈ ⋃2c

i=1 Ri,z .

The rectangles R1,z, . . . , R2c,z are called the z-rectangles of P .
Let us focus on problems with Boolean output, i.e., Z = {0, 1}. The discrepancy

method for proving lower bounds on R(f) consists of choosing a suitable distribution
μ on X × Y and showing that for every rectangle R, the quantity |μ(R ∩ f−1(0)) −
μ(R ∩ f−1(1))| is “exponentially” small. For several functions, this method is unable
to prove a strong enough lower bound; the canonical example is disj. A generalization
that handles disj and several other functions is the corruption method [32, 22, 5] which
consists of showing, instead, that for every “large” rectangle R, we have αμ1(R) ≤
μ0(R) for a constant α > 0, where μi is a probability distribution on R ∩ f−1(i), for
i ∈ {0, 1}. Intuitively, we are arguing that any large rectangle that contains many 1s
must be corrupted by the presence of many 0s. The largeness of R is often enforced
indirectly by writing the inequality in the following manner, where m typically grows
with |X | and |Y |:

(2.1) ∃α0, α1 > 0 ∀R rectangular : α1μ1(R) ≤ α0μ0(R) + 2−m .

An inequality of this form allows us to conclude an Ω(m) lower bound on Dν,ε(f) for
a suitable distribution ν and sufficiently small error ε > 0. (Rather than present a
full proof, we note that this follows as a special case of Theorem 2.2, below.) By the
easy direction of Yao’s lemma, this implies Rε(f) = Ω(m).

2.3. Corruption with jokers, and the smooth rectangle bound. We now
introduce a suitable generalization of the corruption method, which, as we shall soon
see, implies that Dμ,ε(ghd) = Ω(n) for suitable μ and ε. The corresponding technical
challenge is met using a new Gaussian noise correlation inequality that we prove in
section 3. Our generalization can be captured within the very recent smooth rectangle
bound framework [23, 17]. However, we believe that there is merit in singling out the
method we use because it appears wieldier than the smooth rectangle bound, which
is more technically involved.

The key idea is that in addition to the distributions μ0 and μ1 on the 0-inputs
and 1-inputs to f , we consider an auxiliary distribution μ+ on “joker” inputs. Strictly
speaking, we just have a “joker distribution” μ+,

2 and it does not matter how μ+

relates to μ0 and μ1, but it is crucial that the inequality below gives a negative weight
to μ+ and is therefore a weakening of (2.1).

(2.2) α1μ1(R)− α+μ+(R) ≤ α0μ0(R) + 2−m .

We shall in fact allow a little flexibility in our choice of μ0 and μ1 by requiring only
that these be supported “mostly” on 0-inputs and 1-inputs. Also, we shall extend our

2In what follows, when we apply the technique to ghd, µ0, µ1, and µ+ will be sharply con-
centrated on pairwise disjoint sets of inputs, which we can think of as the interesting 0-inputs, the
interesting 1-inputs, and the joker inputs, respectively.
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AN OPTIMAL LOWER BOUND FOR GAP-HAMMING-DISTANCE 1305

theory to partial functions, since ghd is one. The next theorem captures our lower
bound technique.

Theorem 2.2. For all α0, α1, α+, ε > 0 such that ε < (α1 − α+)/(α0 + α1),
there exist β ∈ R and ε′ > 0 such that the following holds. Let f : X × Y → {0, 1, �}
be a partial function. Let A0 = f−1(0) and A1 = f−1(1). Suppose that there exist
distributions μ0, μ1, μ+ on X × Y and a real number m > 0 such that

(1) for i ∈ {0, 1}, μi is mostly supported on Ai, i.e., μi(Ai) ≥ 1− ε, and
(2) inequality (2.2) holds for all rectangles R ⊆ X × Y .

Then, for the distribution ν := (α0μ0 + α1μ1)/(α0 + α1), we have Dν,ε′ (f) ≥ m+ β.
In particular, we have Rε′(f) ≥ m+ β.

Proof. Consider a deterministic protocol P that computes f with some error ε′

(to be fixed later) under ν and uses c bits of communication. Let R1, . . . , R2c ⊆ X×Y

be the disjoint 1-rectangles of P , as given by Fact 2.1. Let S1 =
⋃2c

i=1 Ri and S0 =
X × Y \ S1. Notice that Si is exactly the set of inputs on which P outputs i. Thus,
for i ∈ {0, 1}, we have

errμi(P ) = μi(Si ∩ A1−i) + μi(S1−i ∩Ai)

≥ μi(S1−i ∩ Ai)

≥ μi(S1−i)− ε ,(2.3)

where the last step uses condition (1).
Instantiating inequality (2.2) with eachRi and summing the resulting inequalities,

we get

(2.4) α1μ1(S1)− α+μ+(S1) ≤ α0μ0(S1) + 2c · 2−m .

Noting that μ1(S1) = 1− μ1(S0) and applying (2.3) to the μ0 and μ1 terms in (2.4),
we obtain

α1(1− errμ1(P )− ε)− α+μ+(S1) ≤ α0(errμ0(P ) + ε) + 2c−m .

Further, noting that μ+(S1) ≤ 1 and rearranging terms, we obtain

α1 − α+ ≤ (α0 + α1)ε+ (α0 · errμ0(P ) + α1 · errμ1(P )) + 2c−m

= (α0 + α1)ε+ (α0 + α1) errν(P ) + 2c−m .

Using errν(P ) ≤ ε′ and rearranging further, we get

2c−m ≥ α1 − α+ − (α0 + α1)(ε+ ε′) .

By virtue of the upper bound on ε, we may choose ε′ small enough to make the right-
hand side of the above inequality positive and equal to 2β, say. Doing so gives us
c ≥ m+ β, as desired.

Notice that the “hard distribution” ν is explicitly specified once the distributions
involved in condition (2) are made explicit.

We could, alternately, have proved Theorem 2.2 by demonstrating that the given
conditions imply that the smooth rectangle bound of f is Ω(m). We have chosen to
give the above proof instead because it is more elementary, avoiding the technical
details of the latter bound, and because it was discovered independently by the first
named author.
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1306 AMIT CHAKRABARTI AND ODED REGEV

2.4. Application to GHD: The main theorem. The ghd problem is formal-
ized as the computation of the partial function ghdn,t,g : {0, 1}n×{0, 1}n → {0, 1, �}
defined as follows:

ghdn,t,g(x, y) =

⎧⎪⎨
⎪⎩
0 if Δ(x, y) ≤ t− g ,

1 if Δ(x, y) > t+ g ,

� otherwise.

It will be useful to have some flexibility in the choice of the location of the threshold,
t, and the size of the gap, g. It is not hard to see that all settings with t ∈ Ω(n) ∩
(n−Ω(n)) and g = Θ(

√
n) lead to “equally hard” problems, asymptotically; we prove

this formally in Lemma 4.2.
Rather than working with ghdn,n/2,

√
n directly, it proves convenient to consider

the partial function fb = ghdn,n/2−b
√
n,

√
2n for some large enough constant b to be

determined later. We shall now come up with distributions and constants that satisfy
the conditions of Theorem 2.2: condition (1) turns out to be easy to verify, and
verifying condition (2), as mentioned above, is a significant technical challenge that
we deal with in section 3.

Definition 2.3. For p ∈ [−1, 1], let ξp denote the distribution of (x, y) ∈
{0, 1}n × {0, 1}n defined by the following randomized procedure: pick x ∈R {0, 1}n
uniformly at random and then pick y by independently flipping each bit of x with
probability (1− p)/2. Notice that ξ0 is the uniform distribution on {0, 1}n × {0, 1}n.

We shall need the following two lemmas. The first of these follows easily from stan-
dard tail estimates for the binomial distribution or even just the Chebyshev bound;
we omit its proof. The second is formally proved at the end of section 3.

Lemma 2.4. For all ε > 0 there exists b > 0 such that for large enough n we have

ξ4b/
√
n(A0) = Pr

(x,y)∼ξ4b/√n

[
Δ(x, y) ≤ n

2
− (b+

√
2)
√
n
]

≥ 1− ε and

ξ0(A1) = Pr
(x,y)∼ξ0

[
Δ(x, y) ≥ n

2
− (b−

√
2)
√
n
]

≥ 1− ε ,

where A0 = f−1
b (0) and A1 = f−1

b (1).
Lemma 2.5. For all b > 0 there exists δ > 0 such that for large enough n and for

all R ⊆ {0, 1}n × {0, 1}n rectangular, we have

1
2

(
ξ−4b/

√
n(R) + ξ4b/

√
n(R)

) ≥ 2
3ξ0(R)− 2−δn .

To derive the lower bound on R(ghd), we put m = δn, μ0 = ξ4b/
√
n, μ1 = ξ0,

μ+ = ξ−4b/
√
n, ε = 1

8 , α1 = 2
3 , and α0 = α+ = 1

2 . Note that this choice of constants
satisfies ε < (α1 −α+)/(α0 +α1). By Lemmas 2.4 and 2.5, we see that conditions (1)
and (2), respectively, of Theorem 2.2 are met; the inequality in Lemma 2.5 is easily
seen to be the corresponding instantiation of (2.2).

Thus, applying Theorem 2.2, we conclude that there exist absolute constants
ε′, δ, b > 0, and β ∈ R such that for large enough n we have Rε′(fb) ≥ δn+ β. Com-
bining this with Lemma 4.2 (proved in section 4) to adjust for the slightly off-center
threshold and the size of the gap and applying standard error reduction techniques,
we obtain the following asymptotically optimal lower bound for ghd.

Theorem 2.6 (main theorem). R(ghdn,n/2,
√
n) = Ω(n).

In applications of a communication lower bound, it is often helpful to have a good
understanding of the “hard input distribution” that achieves the lower bound. One
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slightly unsatisfactory aspect of our proof above is that the hard distribution for ghd
that it implies is not too clean. With a little additional work, however, we can show
that the uniform input distribution is hard for ghd once we require a small enough
error bound. This is stated in the following theorem, whose proof appears in section 4.

Theorem 2.7 (hardness under uniform distribution). There exists an absolute
constant ε > 0 for which Dξ0,ε(ghdn,n/2,

√
n) = Ω(n).

3. An inequality on correlation under Gaussian noise. We now turn to
the proof of Lemma 2.5 for which we need some technical machinery that we now
develop. We begin with some preliminaries.

Some probability distributions. Let μ denote the uniform (Haar) distribution on
S
n−1, the unit sphere in R

n. Let γ denote the standard Gaussian distribution on R

with density function (2π)−1/2e−x2/2, and let γn denote the n-dimensional standard

Gaussian distribution with density (2π)−n/2e−‖x‖2/2. For a set A ⊆ R
n, when we

write, e.g., γn(A), we tacitly assume that A is measurable. For a set A ⊆ R
n we

denote by γn|A the distribution γn conditioned on being in A. We say that a pair
(x, y) is an η-correlated Gaussian pair if its distribution is that obtained by choosing

x from γn and then setting y = ηx +
√
1− η2z, where z is an independent sample

from γn. It is easy to verify that if (x, y) is an η-correlated Gaussian pair, then so is
(y, x); in particular, y is distributed as γn.

Relative entropy. We recall some basic information theory for continuous proba-
bility distributions. For clarity, we eschew a fully rigorous treatment—which would
introduce a considerable amount of extra complexity through its formalism—and in-
stead refer the interested reader to the textbook of Gray [15]. Given two probability
distributions P and Q, we define the relative entropy of P with respect to Q as

D(P ‖Q) =

∫
P (x) ln(P (x)/Q(x)) dx .

It is well known (and not difficult to show) that the relative entropy is always non-
negative and is zero iff the two distributions are essentially equal. We will also need
Pinsker’s inequality, which says that the statistical distance between two distributions
P and Q is at most

√
D(P ‖Q)/2 (see, e.g., [15, Lemma 5.2.8]). Since we will only

consider the relative entropy with respect to the Gaussian distribution, we introduce
the notation

Dγ(X) := D(P ‖ γ),
where X is a real-valued random variable with distribution P . We define Dγn simi-
larly. These quantities can be thought of as measuring the “distance from Gaussian-
ity.” They can be seen in some precise sense as additive inverses of entropy and as
such satisfy many of the familiar properties of entropy. For instance, it is easy to
verify that for any sequence of random variables X1, . . . , Xn we have the chain rule

Dγn(X1, . . . , Xn) =

n∑
k=1

Dγ(Xk|X1, . . . , Xk−1) ,

where for random variables X and Y we use the notation Dγ(X |Y ) to denote the
expectation over Y of the distance from Gaussianity of X |Y .

3.1. Projections of sets in Gaussian space. Our main technical result is a
statement about the projections of sets in Gaussian space. More precisely, let A ⊆ R

n
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1308 AMIT CHAKRABARTI AND ODED REGEV

be any set of not too small measure, say, γn(A) ≥ exp(−δn) for some constant δ > 0.
What can we say about the projections (or one-dimensional marginals) of γn|A, i.e.,
the set of distributions of 〈γn|A, y〉 as the (fixed) vector y ranges over the unit sphere
S
n−1?

Related questions have appeared in the literature. The first is in work by Su-
dakov [36] and Diaconis and Freedman [14] (see also [7] for a more recent exposition)
who showed that for any random variable in R

n with zero mean and identity covari-
ance matrix whose norm is concentrated around

√
n, almost all its projections are

close to the standard normal distribution. A second related result is by Klartag [21]
who, building on the previous result but with considerable additional work, showed
that almost all projections of the uniform distribution over a (properly normalized)
convex body are close to the standard normal distribution. (For the special case of
the cube [−1, 1]n, this essentially follows from the central limit theorem.)

Our setting is different as we do not put any restrictions on the set A (such as
convexity) apart from its measure not being too small. (And clearly without any
requirement on the measure one cannot say anything about its projections.) Another
important difference is that in our setting the projections are not necessarily normal.
To see why, take A = {x : |x1| > t} for t ≈ √

δn, a set with Gaussian measure roughly
exp(−δn), half of which is on vectors with x1 ≈ t and the other half on vectors with
x1 ≈ −t. It follows that the projection of γn|A on a unit vector y is distributed more
or less like the mixture of two normal variables, one centered around ty1 and the other
centered around −ty1, both with variance 1. For unit vectors y with |y1| ≥ 1/

√
δn

(a set of measure about exp(−1/δ)), this distribution is very far from any normal
distribution.

Our main theorem below shows that the general situation is similar: for any set A
of not too small measure almost all projections of γn|A are close to being mixtures of
translated normal variables of variance 1. One implication of this (which is essentially
all we will use later) is that for any A ⊆ R

n of not too small measure and B ⊆ S
n−1

whose measure is also not too small, the inner product 〈x, y〉 for x chosen from γn|A
and y chosen uniformly from B is not too concentrated around 0; in fact, it must be
at least as “spread out” as γ (and possibly much more).

Theorem 3.1. For all ε, δ > 0 and large enough n, the following holds. Let
A ⊆ R

n be such that γn(A) ≥ e−ε2n. Then, for all but an e−δn/36 measure of unit
vectors y ∈ S

n−1, the distribution of 〈x, y〉 where x ∼ γn|A is equal to the distribution
of αX + Y for some 1− δ ≤ α ≤ 1 and random variables X and Y satisfying

Dγ(X |Y ) ≤ ε .

The proof is based on the following two lemmas. The first one below shows that
for any set A whose measure is not too small, and any orthonormal basis, most of the
projections of γn|A on the basis vectors are close to normal. In fact, the statement is
somewhat stronger, as it allows us to condition on previous projections (and this will
be crucially used).

Lemma 3.2. For all ε > 0 and large enough n the following holds. For all sets
A ⊆ R

n with γn(A) ≥ e−ε2n and all orthonormal bases y1, . . . , yn, at least a 1 − ε
fraction of the indices k ∈ [n] satisfy

Dγ(Pk|P1, . . . , Pk−1) ≤ ε ,

where Pi = 〈u, yi〉 with u ∼ γn|A.
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Proof. By definition, Dγn(γn|A) = − ln γn(A) ≤ ε2n. Thus, since (P1, . . . , Pn)
is the vector u written in the orthonormal basis y1, . . . , yn, using the chain rule for
relative entropy, we have

ε2n ≥ Dγn(γn|A) = Dγn(P1, . . . , Pn) =

n∑
k=1

Dγ(Pk|P1, . . . , Pk−1) .

Hence, for at least a 1 − ε fraction of indices k, we have Dγ(Pk|P1, . . . , Pk−1) ≤
ε.

The second lemma is due to Raz [33] and shows that any not-too-small subset B
of the sphere contains n/2 “nearly orthogonal” vectors. The idea of Raz’s proof is
the following. First, a simple averaging argument shows that there is a not-too-small
measure of vectors y′ ∈ S

n−1 satisfying the property that the measure of B inside
the unit sphere formed by the intersection of Sn−1 and the subspace orthogonal to
y′ is not much smaller than μ(B). Second, by the isoperimetric inequality, almost
all vectors in S

n−1 are within distance δ of B. Together, we obtain a vector y′ as
above that is within distance δ of B. We take yn/2 to be the closest vector in B to
y′ and repeat the argument recursively with the intersection of B and the subspace
orthogonal to y′.

Definition 3.3. A sequence of unit vectors y1, . . . , yk ∈ S
n−1 is called δ-

orthogonal if for all i ∈ [k], the squared norm of the projection of yi on span(y1, . . . , yi−1)
is at most δ.

Lemma 3.4 (see [33, Lemma 4.4]). For all δ > 0 and large enough n, the following
holds. Every B ⊆ S

n−1 of Haar measure μ(B) ≥ e−δn/36 contains a δ-orthogonal
sequence y1, . . . , yn/2 ∈ B.

Proof of Theorem 3.1. Let B ⊆ S
n−1 be an arbitrary set of unit vectors of measure

at least e−δn/36. We will prove the theorem by showing that at least one vector y ∈ B
satisfies the condition stated in the theorem.

By Lemma 3.4, there is a sequence of n/2 vectors y1, . . . , yn/2 ∈ B that is δ-
orthogonal. Let y∗1 , . . . , y

∗
n/2 be their Gram–Schmidt orthogonalization, i.e., each y∗k

is defined to be the projection of yk on the space orthogonal to span(y1, . . . , yk−1).
Notice that by definition we can write each yk as

yk = y∗k +

k−1∑
i=1

αk,iy
∗
i

for some real coefficients αk,i. Moreover, by assumption, ‖y∗k‖2 ≥ 1− δ.
Let P1, . . . , Pn/2 be the random variables representing

〈x, y∗1/‖y∗1‖〉, . . . ,
〈
x, y∗n/2/‖y∗n/2‖

〉
when x is chosen from γn|A. By applying Lemma 3.2 to any completion of y∗1/‖y∗1‖, . . . ,
y∗n/2/‖y∗n/2‖ to an orthonormal basis, we see that there exists an index k ∈ [n/2] for
which

Dγ(Pk|P1, . . . , Pk−1) ≤ ε .

(In fact, at least 1− 2ε of the indices k satisfy this.) It remains to notice that we can
write 〈x, yk〉 as

‖y∗k‖Pk +

k−1∑
i=1

αk,i‖y∗i ‖Pi ,
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1310 AMIT CHAKRABARTI AND ODED REGEV

which satisfies the condition in the theorem with X taken to be Pk and Y taken to be
the above sum. Here we are using the fact that Y is a function of P1, . . . , Pk−1, which
implies that Dγ(X |Y ) ≤ Dγ(Pk|P1, . . . , Pk−1) since conditioning cannot decrease rel-
ative entropy.

3.2. The correlation inequality. We now turn to our main technical result,
which is given by the following theorem.

Theorem 3.5. For all c, ε > 0 there exists a δ > 0 such that for all large
enough n and 0 ≤ η ≤ c/

√
n the following holds. For all sets A,B ⊆ R

n with
γn(A), γn(B) ≥ e−δn we have that

1

2

(
Pr

(x,y) is η-correlated
[x ∈ A ∧ y ∈ B] + Pr

(x,y) is −η-correlated
[x ∈ A ∧ y ∈ B]

)
≥ (1− ε)γn(A)γn(B).

As will become evident in the proof, pairs (x, y) ∈ A × B for which |〈x, y〉| is
small contribute much less to the left-hand side than to the right-hand side. Hence
the theorem essentially amounts to showing that 〈x, y〉 is not too concentrated around
zero, and precisely such an anticoncentration statement is given by Theorem 3.1.

We point out the following easy corollary (which is in fact equivalent to Theo-
rem 3.5).

Corollary 3.6. For all c, ε > 0 there exists a δ > 0 such that for all large
enough n and 0 ≤ η ≤ c/

√
n the following holds. For any sets A,B ⊆ R

n with
γn(A), γn(B) ≥ e−δn, where A (or B) is centrally symmetric (i.e., A = −A), we have
that

Pr
(x,y) is η-correlated

[x ∈ A ∧ y ∈ B] ≥ (1− ε)γn(A)γn(B) .

Remark 1. Without the symmetry assumption, this probability can be consid-
erably smaller. For instance, take A and B to be two opposing half-spaces, i.e.,
A = {x : x1 < −t} and B = {x : x1 > t} for t ≈ √

δn. Then for η = c/
√
n, the

probability above can be seen to be e−Θ(
√
n)γn(A)γn(B). In fact, Borell [8] showed

that for any given γn(A), γn(B) and any 0 ≤ η ≤ 1, two opposing half-spaces A,B
of the corresponding measures exactly achieve the minimum of the probability above.
It would be interesting to obtain a strengthening of Corollary 3.6 of a similar tight
nature. See [4] for a short related discussion.

Recall that cosh(x) := 1
2 (e

x + e−x). The following technical claim shows that if
the distribution of x is close to the normal distribution (in relative entropy), then

the expectation of cosh(αx + z) is at least eα
2/2 − ε. Notice that if x is normal, this

expectation is

Ex∼γ [ cosh(αx+ z) ] = cosh(z)Ex∼γ [ cosh(αx) ] = cosh(z) eα
2/2 ≥ eα

2/2,

where in the first equality we used the symmetry of γ and the second follows from an
easy direct calculation of the integral (just complete the square in the exponent).

Claim 3.7. For all ε, α0 > 0 there exists a δ > 0 such that for any probability
distribution P on the reals satisfying Dγ(P ) < δ, any z ∈ R, and any 0 < α ≤ α0, we
have

Ex∼P [ cosh(αx + z) ] ≥ eα
2/2 − ε.
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Proof. Set M = Ex∼γ [ (1 + cosh(2α0x))/ε ] so that for all z and all α ≤ α0,

Ex∼γ [ min(cosh(αx + z), 2M) ]

=
1

2
Ex∼γ [ min(cosh(αx+ z), 2M) + min(cosh(αx − z), 2M) ]

≥ Ex∼γ

[
min

(
1

2
(cosh(αx + z) + cosh(αx − z)),M

)]
= Ex∼γ [ min(cosh(z) cosh(αx),M) ]

≥ Ex∼γ [ min(cosh(αx),M) ]

≥ Ex∼γ [ cosh(αx) ]− 1

M
Ex∼γ [ cosh(αx)

2 ]

= eα
2/2 − 1

M
Ex∼γ

[
1

2
(1 + cosh(2αx))

]
≥ eα

2/2 − ε/2 ,

where in the third inequality we use the fact that min(u, v) ≥ u−u2/v for all u, v > 0.
Next, since the statistical distance between P and γ is at most

√
2Dγ(P ) <

√
2δ, we

have that

Ex∼P [ cosh(αx + z) ] ≥ Ex∼P [ min(cosh(αx + z), 2M) ]

≥ eα
2/2 − ε/2− 2M

√
2δ ≥ eα

2/2 − ε

for small enough δ > 0.
Proof of Theorem 3.5. Let β1, β2, β3, β4 > 0 be small enough constants (depending

only on c and ε) to be determined later. By choosing a small enough δ and using the
concentration of the Gaussian measure around the sphere of radius

√
n (see, e.g., [3,

Lecture 8]), we can guarantee that A′, defined as

A′ = {x ∈ A : (1− β1)n ≤ ‖x‖2 ≤ (1 + β1)n} ,
satisfies γn(A′) ≥ γn(A)−β2e

−δn ≥ (1−β2)γ
n(A) and similarly for B′. We can write

Pr
(x,y) is η-correlated

[x ∈ A ∧ y ∈ B]

≥ Pr
(x,y) is η-correlated

[x ∈ A′ ∧ y ∈ B′]

= (2π)−n/2(2π(1− η2))−n/2

∫
1A′(x)1B′(y)e−‖x‖2/2e−‖y−ηx‖2/2(1−η2)dxdy

= (1− η2)−n/2
Ex,y∼γn

[
1A′(x)1B′(y)e−η2‖x‖2/2(1−η2)e−η2‖y‖2/2(1−η2)eη〈x,y〉/(1−η2)

]
= (1− η2)−n/2

Ex∼γn|A′ ,y∼γn|B′
[
e−η2‖x‖2/2(1−η2)e−η2‖y‖2/2(1−η2)eη〈x,y〉/(1−η2)

]
γn(A′)γn(B′)

≥ (1− η2)−n/2 e−η2(1+β1)n/(1−η2)
Ex∼γn|A′ ,y∼γn|B′

[
eη〈x,y〉/(1−η2)

]
γn(A′)γn(B′) .

By averaging this inequality with the analogous one for −η and recalling the definition
of cosh, we obtain that the expression we wish to bound is at least

(1− η2)−n/2 e−η2(1+β1)n/(1−η2)
Ex∼γn|A′ ,y∼γn|B′ [ cosh(η〈x, y〉/(1− η2)) ]γn(A′)γn(B′).
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Let B′′ ⊆ B′ be the set of all y ∈ B′ for which

Ex∼γn|A′ [ cosh(η〈x, y〉/(1− η2)) ] ≤ (1 − β3)e
(η/(1−η2))2(1−β1)n/2 .

We can now complete the proof by showing that γn(B′′) ≤ β4γ
n(B′), since this would

imply that (3.1) is at least

(1− η2)−n/2 e−η2(1+β1)n/(1−η2)(1− β4)(1− β3)e
(η/(1−η2))2(1−β1)n/2γn(A′)γn(B′)

≥ enη
2/2 e−η2(1+β1)n/(1−η2)(1− β4)(1 − β3) e

(η/(1−η2))2(1−β1)n/2 (1− β2)
2γn(A)γn(B)

≥ (1− ε)γn(A)γn(B) ,

assuming β1, β2, β3, and β4 are chosen to be sufficiently small and n is large enough.
In order to complete the proof assume to the contrary that γn(B′′) > β4γ

n(B′) ≥
β4(1− β2)e

−δn. Let β5, β6, β7 > 0 be small enough constants to be determined later.
Let

√
(1− β1)n ≤ r ≤ √

(1 + β1)n be such that the Haar measure μ((r Sn−1∩B′′)/r)
of points in B′′ of norm r is at least γn(B′′). (The existence of such an r follows from
the fact that the Gaussian distribution, being spherically symmetric, can be seen as
the product of a certain distribution on radii r and the Haar measure on the sphere.
Since B′′ ⊆ B′, the r maximizing the intersection with the sphere must be in the
claimed range.) We now apply Theorem 3.1 with ε taken to be β5, δ taken to be β6,
and A taken to be A′. By taking (our) δ to be small enough, we obtain a vector y ∈ B′′

for which the distribution of 〈x, y〉, where x ∼ γn|A′ , is given by the distribution of
αrX + rY for some 1− β6 ≤ α ≤ 1 and random variables X and Y satisfying

Dγ(X |Y ) ≤ β5 .

In particular, we have

Pr
Y
[Dγ(X |Y ) ≤

√
β5 ] ≥ 1−

√
β5 .

Claim 3.7 now implies that

Ex∼γn|A′ [ cosh(η〈x, y〉/(1− η2)) ] = E[ cosh(η/(1 − η2)(αrX + rY )) ]

≥ (1−
√
β5)(e

(η/(1−η2)αr)2/2 − β7)

≥ (1−
√
β5)(e

(η/(1−η2))2(1−β6)
2(1−β1)n/2 − β7)

> (1− β3) e
(η/(1−η2))2(1−β1)n/2 ,

assuming β5, β6, and β7 are sufficiently small. This contradicts the assumption that
y ∈ B′′.

3.3. Corollary for the Boolean cube. The Gaussian noise correlation in-
equality we have just proved implies a similar statement for the Boolean cube, from
which Lemma 2.5 follows easily. The statement involves the distribution ξp from
Definition 2.3.

Corollary 3.8 (stronger variant of Lemma 2.5). For all c, ε > 0 there exists a
δ > 0 such that for all large enough n and 0 ≤ p ≤ c/

√
n the following holds. For all

sets A,B ⊆ {0, 1}n with |A|, |B| ≥ 2(1−δ)n, we have that

1
2 (ξ−p(A×B) + ξp(A×B)) ≥ (1− ε) ξ0(A×B) .
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To derive Lemma 2.5, take R = A×B, ε = 1
3 , and observe that if min{|A|, |B|} <

2(1−δ)n, then ξ0(R) < 2−δn and the inequality in that lemma holds trivially because
its right-hand side is negative.

A short calculation shows that the inequality in Corollary 3.8 is equivalent to

(1− p2)n/2 Ex∈A,y∈B

[
cosh

(
ln

(
1 + p

1− p

)
· (Δ(x, y) − n/2)

)]
≥ 1− ε .

Hence the corollary can be interpreted as an anticoncentration statement, saying that
for sets A,B that are not too small, the Hamming distance Δ(x, y) between x ∈R A
and y ∈R B cannot be too concentrated around n/2. The quantification is delicate.
Notice that already for sets of size 2n/2 this is no longer the case: take, for instance,
the sets A = {0n/2x : x ∈ {0, 1}n/2 and |x| = n/4} and B = {x0n/2 : x ∈ {0, 1}n/2
and |x| = n/4}.

Proof. Given any A,B ⊆ {0, 1}n, define
A′ = {x ∈ R

n : sign(x) ∈ A},
where sign(x) ∈ {0, 1}n is the vector indicating the sign of each coordinate of x, and
define B′ similarly. Then it is easy to check that γn(A′) = |A|/2n and γn(B′) =
|B|/2n, so that γn(A′)γn(B′) = ξ0(A×B) and that for all η,

Pr
(x,y) is η-correlated

[x ∈ A′ ∧ y ∈ B′] = ξp(A×B)

for p = 1− 2
π arccosη (since the probability that sign(x) �= sign(y) when x, y ∈ R are

η-correlated can be computed to be 1
π arccosη). For small p, we get p ≈ 2

πη, and the
corollary follows from Theorem 3.5.

4. Reductions, related results, and generalizations. Recall that our argu-
ment in section 2.4 gave an Ω(n) lower bound on R(ghdn,n/2−b

√
n,

√
2n) for a certain

constant b. To obtain an Ω(n) bound for ghd itself (which, we remind the reader, is
shorthand for ghdn,n/2,

√
n), we use a toolkit of simple reductions given in the next

lemma. Furthermore, using the toolkit, we can generalize the ghd bound to cover
most parameter settings, and using similarly simple reductions, we can obtain optimal
lower bounds for related problems.

Lemma 4.1. For all integers n, k, 
,m and reals t, g, g′ ∈ [0, n] with n, k > 0 and
g′ ≥ g, the following relations hold:

(1) R(ghdn,t,g′) ≤ R(ghdn,t,g).
(2) R(ghdn,t,g) ≤ R(ghdkn,kt,kg).
(3) R(ghdn,t,g) ≤ R(ghdn+�+m,t+�,g).
(4) R(ghdn,t,g) = R(ghdn,n−t,g).
Proof. We give brief sketches of the proofs of these statements.
(1) A correct protocol for ghdn,t,g is also one for ghdn,t,g′ .
(2) We can solve ghdn,t,g by having Alice and Bob “repeat” their n-bit input

strings k times each—which has the effect of also amplifying the gap by a
factor of k—and then simulating a protocol for ghdkn,kt,kg .

(3) We can solve ghdn,t,g by having Alice pad her input by appending the string
0�+m to it, having Bob pad his by appending 1�0m to it, and then simulating
a protocol for ghdn+�+m,t+�,g.

(4) Alice flips each bit of her input, and the parties then simulate a protocol for
ghdn,n−t,g.
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As promised, using parts of the above lemma, we establish the following lemma,
which formally completes the proof of the main theorem.

Lemma 4.2. For all integers n > 0 and reals b > 0 with n/2 ≥ b
√
n, we have

R(ghdn,n/2−b
√
n,

√
2n) ≤ R(ghd2n,n,

√
2n).

Proof. Apply part (3) of Lemma 4.1 with 
 = n/2 + b
√
n and m = n/2 −

b
√
n.
The previous lemma can in fact be generalized by invoking the remaining parts

of Lemma 4.1 to obtain a lower bound that handles all thresholds t that are not too
close to either end of the interval [0, n]. We omit the details, which are routine, if
somewhat tedious.

Proposition 4.3. For all reals a ∈ (0, 1
2 ] and b > 0 and all large enough integers

n, the following holds. Let t, g be reals with t ∈ [an, (1 − a)n] and g ≤ b
√
n. Then

R(ghdn,t,g) = Ω(n).
The next result resolves the randomized complexity of ghdn,n/2,g for a general

gap size, g.
Proposition 4.4. For integers n and g with 1 ≤ g ≤ n, we have R(ghdn,n/2,g) =

Θ(min{n, n2/g2}).
Proof. For the upper bound, consider the protocol where Alice and Bob, on input

(x, y) ∈ {0, 1}n × {0, 1}n, use public randomness to select a subset S ⊆ [n] uniformly
at random from among all subsets of a certain size, k, compute d = |{i ∈ S : xi �= yi}|
by brute force (say, with Alice sending Bob the bits xi for i ∈ S), and output 0 if
d ≤ k/2 and 1 if d > k/2. This protocol clearly communicates k bits, and an easy
application of the Chernoff bound shows that this gives a 1

3 -error protocol if we choose
k = O(n2/g2).

For the lower bound, we may assume that g >
√
n, for otherwise the claim is

obviously true. Applying part (2) of Lemma 4.1 with k = g2/n (for simplicity, we
ignore divisibility issues), we obtain R(ghdn2/g2,n2/2g2,n/g) ≤ R(ghdn,n/2,g). The
result follows by applying Theorem 2.6 to the left-hand side of this inequality.

4.1. Hardness under uniform distribution. We now turn to proving Theo-
rem 2.7, which extends the Ω(n) lower bound for ghd to the specific input distribution
ξ0, the uniform distribution on {0, 1}n × {0, 1}n.

Proof of Theorem 2.7. For an integer n and real p ∈ [−1, 1], let μn,p denote
the binomial distribution with parameters n and (1 − p)/2; notice that μn,0 is the
symmetric binomial distribution. Let P be a deterministic protocol for ghd2n,n,

√
2n

such that errμ2n,0(P ) = δ. Our goal is to show that if δ is small enough then cost(P ) =
Ω(n). For d ∈ {0, 1, . . . , 2n}, let δd be the error probability of P on uniform inputs at
distance d, i.e.,

δd := Pr
(x,y)∼ξ0

[
ghd2n,n,

√
2n(x, y) �= � ∧ P (x, y) �= ghd2n,n,

√
2n(x, y) | Δ(x, y) = d

]
.

Then, we have

δ =

2n∑
d=0

μ2n,0(d)δd .

Let Q be the following protocol for ghdn,n/2−b
√
n,

√
2n. On input (x, y), Alice and

Bob first pad their inputs as in Lemma 4.2. Then, using public randomness, they
choose z ∈R {0, 1}2n and a random permutation σ ∈R S2n, and then each player
adds z bitwise to their padded input and permutes the coordinates of the result
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according to σ. Let x′, y′ ∈ {0, 1}2n be the parties’ respective inputs after these
transformations. Alice and Bob solve their problem by simulating P on input (x′, y′).
It is easy to see that (x′, y′) is uniformly distributed among all pairs with Hamming
distance n/2 + b

√
n+Δ(x, y).

Let ν denote the hard distribution for ghdn,n/2−b
√
n,

√
2n implied by our proof of

Theorem 2.6. To be explicit, we have ν = 3
7ξ4b/

√
n + 4

7ξ0. Let λ := 3
7μn,4b/

√
n + 4

7μn,0

be the corresponding distribution of Hamming distances. It then follows that

errν(Q) =

n∑
d=0

λ(d)δd+n/2+b
√
n .

Suppose we are given a constant α > 0. From standard properties of the binomial
distribution, it follows that there exist reals c,K > 0 (depending on α and b, but
independent of n) such that

n/2−c
√
n∑

d=0

λ(d) +

n∑
d=n/2+c

√
n

λ(d) ≤ α

and for integers d ∈ [n/2− c
√
n, n/2 + c

√
n],

λ(d) ≤ Kμ2n,0(d+ n/2 + b
√
n) .

It then follows that errν(Q) ≤ α + Kδ. By picking α sufficiently small, we obtain
by our proof of Theorem 2.6 that cost(Q) = Ω(n) for small enough δ. Since Q
communicates exactly as many bits as P , it follows that cost(P ) = Ω(n).

4.2. Related communication problems with a gap. We remark that results
similar to those for ghd also hold for gap-intersection-size, where Alice and Bob
have sets x, y ⊆ [n] as inputs and are required to distinguish between the cases
|x ∩ y| ≤ t − g and |x ∩ y| > t + g for a threshold parameter t and gap size g. Let
this problem be denoted by gisn,t,g. We then have the following result by an easy
reduction from ghd.

Proposition 4.5. Suppose t ∈ Ω(n) ∩ (n − Ω(n)) and g = Θ(
√
n). Then

R(gisn,t,g) = Ω(n).
Finally, we also remark that results similar to those for ghd also hold for the

closely related (in fact, essentially equivalent) problem gap-inner-product. Here,
Alice and Bob have d-dimensional unit vectors x, y as inputs and are trying to dis-
tinguish between the cases 〈x, y〉 ≥ ε and 〈x, y〉 ≤ −ε. There is a simple O(1/ε2)
protocol for this problem: the players use shared randomness to choose O(1/ε2) ran-
dom hyperplanes and then compare which side of each hyperplane their inputs lie in.
Our main theorem implies that this is tight assuming d ≥ 1/ε2, as can be seen by
embedding the hypercube in the set {−1/

√
n, 1/

√
n}n.
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