
 Clifford, R., & Starikovskaia, T. (2016). Approximate Hamming distance in
a stream. In I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, & D. Sangiorgi
(Eds.), 43rd International Colloquium on Automata, Languages and
Programming (ICALP 2016). (pp. 20:1-20:14). (Liebniz International
Proceedings in Informatics; Vol. 55). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany. DOI: 10.4230/LIPIcs.ICALP.2016.20

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.4230/LIPIcs.ICALP.2016.20

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Schloss Dagsthul
at http://drops.dagstuhl.de/portals/extern/index.php?semnr=16012. Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.20
http://research-information.bristol.ac.uk/en/publications/approximate-hamming-distance-in-a-stream(6a5b7f40-a5c2-4ab4-8c38-fdb5dcd6a38b).html
http://research-information.bristol.ac.uk/en/publications/approximate-hamming-distance-in-a-stream(6a5b7f40-a5c2-4ab4-8c38-fdb5dcd6a38b).html

Approximate Hamming Distance in a Stream
Raphaël Clifford1 and Tatiana Starikovskaya2

1 University of Bristol, Bristol, UK
raphael.clifford@bristol.ac.uk

2 University of Bristol, Bristol, UK
tat.starikovskaya@gmail.com

Abstract
We consider the problem of computing a (1+ε)-approximation of the Hamming distance between a
pattern of length n and successive substrings of a stream. We first look at the one-way randomised
communication complexity of this problem. We show the following:

If Alice and Bob both share the pattern and Alice has the first half of the stream and Bob the
second half, then there is an O(ε−4 log2 n) bit randomised one-way communication protocol.
If Alice has the pattern, Bob the first half of the stream and Charlie the second half, then
there is an O(ε−2√n logn) bit randomised one-way communication protocol.

We then go on to develop small space streaming algorithms for (1 + ε)-approximate Hamming
distance which give worst case running time guarantees per arriving symbol.

For binary input alphabets there is anO(ε−3√n log2 n) space andO(ε−2 logn) time streaming
(1 + ε)-approximate Hamming distance algorithm.
For general input alphabets there is an O(ε−5√n log4 n) space and O(ε−4 log3 n) time stream-
ing (1 + ε)-approximate Hamming distance algorithm.

1998 ACM Subject Classification F.2 Analysis of algorithms and problem complexity

Keywords and phrases Hamming distance, communication complexity, data stream model

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.20

1 Introduction

We study the complexity of one of the most basic problems in pattern matching, that of
approximating the Hamming distance. Given a pattern P of length n the task is to output a
(1 + ε)-approximation of the Hamming distance between P and every n-length substring of a
longer text. We provide the first efficient one-way randomised communication protocols as
well as a new, fast and space efficient streaming algorithm for this problem.

The general task of efficiently computing the Hamming distances offline between a
pattern and a text has been studied for many years. When the input is binary and the text
has length proportional to that of the pattern, then all outputs can be computed exactly
in O(n logn) time by repeated application of the fast Fourier transform [14]. For larger
alphabets, O(n

√
n logn) time solutions were first discovered in the 1980s [1, 22]. The fastest

randomised algorithm for (1 + ε)-approximate Hamming distance computation for large
alphabets was due for many years to Karloff from 1993 [20] running in O(ε−2n log2 n) time
overall. In a breakthrough paper in 2015 a new algorithm was given improving the time
complexity to O(ε−1n log3 n log ε−1) [21]. These fast methods all require linear space and
up until this point no sublinear space solutions have been known.

The first basic question that arises is whether it is in fact possible to give a (1 + ε)-
approximation to the Hamming distance in a streaming setting while using only sublinear
space. In order to explore this question we start our study by considering two natural

EA
T

C
S

© Raphaël Clifford, Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Approximate Hamming Distance in a Stream

communication complexity problems which may also be of independent interest. Any lower
bound for these communication problems will give a lower bound for the space usage of a
corresponding streaming algorithm. This follows from a standard reduction where a space
efficient streaming algorithm is converted into a communication protocol by taking a snapshot
of memory after some symbol of the input has been read in and then sending this snapshot
to the other player. On the other hand, the communication upper bounds we provide will
set targets for space bounds for algorithms in the streaming setting.

Any streaming pattern matching algorithm using a pattern of length n can be reduced
to repeated application of a streaming algorithm that runs on texts of length 2n. This is
done by splitting the stream into substreams of length 2n which overlap by n symbols. As a
result we consider communication problems with these parameter settings for pattern and
text length.

I Problem 1. Consider a text T of length 2n and a pattern P of length n. Let Alice hold the
information about the first half of the text and the whole of the pattern, and let Bob hold the
information about the second half of the text and the whole of the pattern. Bob must output
(1 + ε)-approximations of the Hamming distance for each alignment of P and T .

A lower bound for the communication complexity of this problem follows from a combin-
ation of the lower bound for the communication complexity of a windowed counting problem
introduced by Datar et al. in 2002 [13] and the one-way communication complexity lower
bound for approximating the Hamming distance between two n-bit strings from [18].

For the first part consider the following communication problem. Assume that there is a
bit vector B of length 2n. Let Alice hold the information about the first half of B, and let Bob
hold the information about the second half of B. Bob must output (1 + ε)-approximations of
the number of set bits in each window of length n. Datar et al. showed that Alice will have
to send to Bob Ω(ε−1 log2 ε−1n) bits of information. There is a straightforward reduction
from this basic counting problem to Problem 1 which then gives us the same lower bound.
We set T = B and P = 00 . . . 0 and then a (1 + ε)-approximation of the Hamming distance
at an alignment i of P and T gives a (1 + ε)-approximation of the number of set bits in the
window T [i, i+ n− 1]. For the second part we use Theorem 4.1 from [18] which states that
the one-way communication complexity of (1 + ε)-approximate Hamming distance for two
strings of length n is Ω(ε−2 logn) for constant error probability. Combining these two lower
bounds together we get a lower bound of Ω(ε−2 logn+ ε−1 log2 ε−1n) for the communication
complexity of Problem 1.

Our first result is an efficient one-way communication protocol for Problem 1 whose
complexity is only slightly higher than this lower bound. In our protocol Alice uses the fact
that Bob knows the pattern as well to give an efficient encoding for parts of her half of the
text which are at small Hamming distance from the pattern.

I Theorem 1. Problem 1 has one-way randomised communication complexity O(ε−4 log2 n).

As a model for streaming pattern matching, this communication upper bound requires
that a copy of the pattern is available at all times. Our main interest is however in algorithms
whose total space complexity is sublinear in the pattern size. In order to model this situation
more accurately we now consider a stronger three party communication problem.

I Problem 2. Assume that there is a text T of length 2n and a pattern P of length n. Let
Alice hold the information about the pattern, let Bob hold the information about the first half
of the text, and let Charlie hold the information about the second half of the text. Alice will
send one message to Bob who will then send one message to Charlie. Charlie must output
(1 + ε)-approximations of the Hamming distance for each alignment of P and T .

R. Clifford, T. Starikovskaya 20:3

Somewhat surprisingly, we are still able to obtain a sublinear protocol for this new
problem although the bound is higher than for the simpler Problem 1. The main technical
elements of this communication protocol combine the newly introduced idea of approximate
periods with succinct run-length encoded representations of the input.

I Theorem 2. Problem 2 has one-way randomised communication complexity O(
√
n
ε2 logn).

Having investigated the communication complexity of (1 + ε)-approximate Hamming
distance we can now define the streaming (1 + ε)-approximate Hamming distance problem.

I Problem 3. Consider a pattern P of length n and a stream arriving one symbol at a time.
We must output a (1 + ε)-approximation to the Hamming distance between P and the latest
n-length suffix of the stream as soon as a new symbol arrives. In this setting we cannot, for
example, store a copy of the pattern or stream without accounting for it in our space usage.

The upper bounds for the communication complexity of Problem 2 suggest space upper
bounds we shall aim for in order to develop an optimal algorithm for the (1 + ε)-approximate
Hamming distance in the streaming setting. We make the first step towards this direction
and show two randomised sublinear-space algorithms for the problem. We start by giving a
solution for the case when both the pattern and the text are binary strings.

I Theorem 3. When both P and T are binary, there is an algorithm for Problem 3 which
uses O(ε−3√n log2 n) bits of space and runs in O(ε−2 logn) time per arriving symbol.

The same bounds hold for alphabets of constant size σ as we can map each occurrence of
the ith symbol of the alphabet in the pattern or in the text to a binary string 0i−110σ−i,
which will result in doubling the Hamming distance between the pattern and the text at
each particular alignment.

For polynomial size alphabets our bounds are higher by a factor ε−2 log2 n and our
approach is based on the mapping idea of Karloff [20]. In that paper he showed that there
exists Θ(ε−2 log2 n) mappings mapj of the alphabet onto {0, 1} such that an (1 + ε/3)-
approximation of the Hamming distance between P and T at a particular alignment can be
given by a normalised average of the Hamming distances between mapj(P) and mapj(T) at
this alignment. Moreover, Karloff showed that the mappings can be generated in O(ε−2 log3 n)
space and O(logn) time per symbol. For each pattern-text pair mapped on to a binary
alphabet we then run the algorithm of Theorem 3 to find (1 + ε/3)-approximations and
finally obtain:

I Theorem 4. There is an algorithm for Problem 3 which uses O(ε−5√n log4 n) bits of
space and runs in O(ε−4 log3 n) time per arriving symbol.

Our solution has guaranteed worst case complexity per arriving symbol and uses roughly
the square root of the space required by the known offline (1 + ε)-approximate algorithms. A
key technical innovation for our space reduction is the notion we introduce of a super-sketch.
This a compact and efficiently updateable representation of consecutive text substrings which
we require to be able to achieve sublinear space. For simplicity we will make the natural
assumption throughout that ε < 1/2.

1.1 Related work and lower bounds
The one-way communication complexity of a number of variants of Hamming distance
computation has been studied over the years. These includes (1 + ε)-approximation [18],

ICALP 2016

20:4 Approximate Hamming Distance in a Stream

the so called gap Hamming problem [9] and a bounded version known as k-mismatch [15].
However all this previous work has assumed that both Alice and Bob have strings of the same
length and so need only give a single output. There has also been great interest in efficient
streaming algorithms over the last 20 years, following the seminal work of [2]. In relation
specifically to pattern matching problems, where space is not limited but where an output
must be computed after every new symbol of the text arrives, the Hamming distance between
the pattern and the latest suffix of the stream can be computed online in O(

√
n logn) worst-

case time per arriving symbol or O(
√
k log k + logn) time for the k-mismatch version [11].

Both these methods however require Θ(n) space. Using the same approach, a number of
other approximate pattern matching algorithms have also been transformed into efficient
linear space online algorithms including [4, 3, 5, 8, 7, 6, 23]. In 2013 a small space streaming
pattern matching algorithm was shown for parameterised matching [17] and in 2016 for the
k-mismatch problem [10]. The latter k-mismatch paper is of particular relevance to our work.
In [10] as a part of a space-efficient streaming algorithm for the k-mismatch problem, the
authors presented a (1 + ε)-approximate algorithm with space O(ε−2k2 log7 n) and running
time O(ε−2 log5 n) per arriving symbol that returns a (1+ε)-approximation for all alignments
of the pattern and text where the Hamming distance is at most k. The algorithm we give in
this current paper can be seen a generalisation of this work, both removing the requirement
for a prespecified threshold k and also using less space when k & n1/4.

2 Overview

In this section we give an overview of the main ideas needed for our results. We will make
extensive use of sketching. Alon, Matias and Szegedy were first to show that sketching can
be used to approximate frequency statistics of a stream with a particular emphasis on F2 [2].
Later their sketching technique was generalized to allow approximation of ||x1 − x2||p for
two vectors x1 and x2 and any p ∈ (0; 2] by Indyk et al. [16, 12]. We will use the sketches of
Indyk et al. to show the communication complexity upper bounds. These sketches are based
on p-stable distributions and have the advantage that they can be used even for large-size
alphabets. For our streaming algorithm where we assume that the input alphabet is binary
we will use simpler sketches based on the original technique of Alon et al.

2.1 Communication complexity

To show communication complexity bounds we will be using sketches based on p-stable
distributions (see [16] and Sections 4.1 and 5.1 of [12]). Setting σ to be the alphabet size, a
sketch of a string x is defined as a vector sk(x) of length Θ(ε−2) such that

sk(x)[i] =
∑
j

Yi,j · x[j]

where each Yi,j is drawn independently from a random stable distribution with parameter
p ≤ ε/ log σ. For two vectors x1 and x2 it can be shown that with constant probability the
median of values |sk(x1)[i]− sk(x2)[i]|, appropriately scaled, is a (1 + ε)-approximation of
the Hamming distance. Importantly, variables Yi,j can be generated when we need them
with the help of Nisan’s pseudo-random generator, which requires only O(log2 n) random
bits.

R. Clifford, T. Starikovskaya 20:5

2.1.1 Problem 1 – both Alice and Bob know the pattern
The main idea of our communication complexity upper bound for Problem 1 is that if the
Hamming distance between the text and the pattern at a particular alignment is (relatively)
small, then Alice and Bob can use the pattern to describe the part of the text aligned with
the pattern.

At each alignment the pattern can be divided into two parts – a prefix, aligned with
Alice’s half of the text, and a suffix, aligned with Bob’s half of the text. Alice needs to
transmit information that will help Bob approximate the Hamming distance between these
different prefixes of the pattern and her half of the text. She does so by selecting a logarithmic
number of prefixes of the pattern with Hamming distances Θ(ε−j) from the text. She then
divides the part of the text aligned with each of these prefixes into blocks such that the
mismatches are evenly spread across the blocks, and sends each block’s starting position and
sketch to Bob.

When Bob wants to compute the Hamming distance between a prefix P ′ of the pattern
and the text and he knows that this Hamming distance is at least Θ(ε−(j−1)), he uses the
prefix Pj with Hamming distance Θ(ε−j) and the sketches of associated text blocks. The
part of Alice’s text aligned with P ′ can be composed of several full blocks and at most one
block suffix. Hamming distances between P ′ and the full blocks can be approximated with
the help of the sketches. To approximate the Hamming distance between P ′ and the suffix
of the block, Bob will substitute the suffix with the aligned part of Pj . As the number of
mismatches between the suffix and Pj is small compared to Θ(ε−(j−1)), it will give a good
approximation of the Hamming distance.

2.1.2 Problem 2 – only Alice knows the pattern
We start by reviewing some notation introduced in [10].

I Definition 5. The x-period of a string S of length n is the smallest integer ` > 1 such
that the Hamming distance between S[1, n− `] and S[`, n] is at most x.

I Definition 6. We define the `-RLE encoding of S to be the ordered set of the run-length
encodings of strings Si = S[i]S[`+ i]S[2`+ i] . . . S[b(n− i)/`c · `+ i], where i ∈ [1, `]. The
size of the `-RLE encoding is the total number of runs in the encodings of strings Si.

I Example 7. Let S = aabaabaabaabaabaabaac. The 3-RLE encoding of S is: the run-length
encoding (a, 7) of S1 = aaaaaaa, the run-length encoding (a, 7) of S2 = aaaaaaa, and the
run-length encoding (b, 6)(c, 1) of S3 = bbbbbbc. The size of the encoding is 1 + 1 + 2 = 4.

Note that `-RLE encoding of S is deterministic and lossless. In [10] it was also shown that
if ` is the x-period of a string S for some integer x, then the size of the `-RLE encoding is
O(`+ x). Intuitively, this is because each new run in the encoding of Si corresponds to a
mismatch between S[1, n− `] and S[`, n], and therefore there can be at most `+ x runs.

We now explain the idea of the communication protocol for Problem 2. Let the block
size B =

√
n and the threshold τ = 2ε−1√n. Bob will compute a sketch for each Bth suffix

of his half of the text and send it to Charlie. Consider a particular alignment of the pattern
and of the text.

Case 1: Hamming distance is large. The pattern can be divided into three parts: a prefix
of length at most B − 1, a middle part aligned with one of the n/B sketched suffixes of
Bob’s half of the text, and a suffix aligned with Charlie’s half of the text. If the Hamming

ICALP 2016

20:6 Approximate Hamming Distance in a Stream

distance at the alignment is larger than τ , then the prefix can be discarded as it will change
the Hamming distance by at most B = (ε/2) · τ . The Hamming distance between the rest
of the pattern and the text can be approximated easily. Charlie has received the sketch of
the middle part of the pattern as well as the sketch of the suffix of Alice’s half of the text
which aligns with it. Charlie can combine the sketch from Alice’s part of the text with the
information he has about his half of the text and then compare this sketch to the pattern
sketch as required.

Case 2: Hamming distance is small. The main challenge is therefore alignments where
the Hamming distance is smaller than τ . If the (2 + ε)τ -period of the pattern is larger than
B, then there are at most n/B such alignments. In this case, Bob can simply send the
Hamming distances for all these alignments to Bob. If the period is at most B, then Bob
will find the first alignment with small Hamming distance and will use the `-RLE encoding
of the pattern and the full list of mismatches to describe the text. Using this description
Charlie will be able to fully recover the corresponding suffix of the text and to compute the
Hamming distances for all remaining alignments. The only technicality is that Bob does not
know Charlie’s half of the text and thus will not be able to compute the Hamming distances
between the whole pattern and the text. We elaborate on this in Section 3.2.

2.2 A small space streaming algorithm
In our small space streaming algorithm we will use simpler sketches which provide a (1 + ε)-
approximation to the Hamming distance between two binary strings of the same length
B. The method is now folklore but is essentially an application of the technique of the
Johnson-Lindenstrauss lemma [19]. To do this we create a random ε−2 ×B matrix M whose
entries are from {−1, 1}. The sketch of a string x of length B is then defined to be equal to
Mx, and it is known that the appropriately scaled square of the L2 norm of the difference of
the sketches of two strings gives a (1 + ε)-approximation of the Hamming distance between
them. We will also be using M to define sketches of strings of length ` < B. In this case, we
simply append the strings with (B−`) zeros and use the method describe above. The original
analysis applies here as well. Finally, we will use M to define “super-sketches” of strings of
length n−B. Assume that a string of length n−B is divided into n/B − 1 non-overlapping
blocks of size B. A super-sketch is then defined to be a linear combination of the sketches of
the blocks. We elaborate more on sketches and super-sketches in Section 4.

Now we give a high-level overview of our algorithm. The algorithm starts by preprocessing
the pattern P . It computes and stores a super-sketch of each (n− B)-length substring of
P . The algorithm then processes the text in non-overlapping blocks of length B, computing
a sketch for each block. The blocks’ sketches can be maintained efficiently as we need to
maintain only one sketch at a time. The algorithm also maintains a super-sketch of the last
n/B − 1 blocks. To compute an approximation of the Hamming distance at a particular
alignment, the algorithm divides the pattern into three parts: a prefix of length (B − i), a
middle part of length (n−B), and a suffix of length i, where the middle part is aligned with
a block border (see Figure 1).

The algorithm then starts by computing the (1 + ε)-approximation of the Hamming
distance between the middle part and the text with the help of the super-sketches. If the
Hamming distance is large, the algorithm can simply discard the prefix and suffix parts.
Otherwise, the algorithm also needs to approximate the Hamming distance between the prefix
or the suffix of the pattern and the text. To approximate the Hamming distance between
the prefix of the pattern and the text the idea is to use the information Alice transfers to

R. Clifford, T. Starikovskaya 20:7

P [1, B − i] P [B − i+ 1, n− i] P [n− i+ 1, n]

Super-sketchProblem 1 Super-sketch Sketch

Figure 1 To estimate the Hamming distances at a particular position the algorithm uses a data
structure containing the information Alice transfers to Bob in our solution for Problem 1 for the
prefix P [1, B − i], a super-sketch for the middle part P [B − i+ 1, n− i], and a sketch for the suffix
P [n− i+ 1, n].

Bob in our solution for Problem 1. For the suffix, the algorithm will use the sketch of the
part of the block between its start and the current alignment.

3 Communication complexity

In this section we show upper bounds for communication complexities of Problems 1 and 2.

3.1 Problem 1

We start by showing an upper bound for the communication complexity of Problem 1.
Remember that in this problem we have two players, Alice and Bob. Alice knows the first
half of the text T and the pattern P , and Bob knows the second half of the text T and the
pattern P . We will show that the communication complexity of this problem is O(ε−4 log2 n).

Let us first explain what Alice sends to Bob. For simplicity, we denote k = 6/ε. First,
Alice selects q = blogk nc positions n ≥ i1 ≥ i2 ≥ . . . ≥ iq ≥ 1 such that the Hamming
distance between T [ij , n] and the prefix P [1, n − ij + 1] is at most kj+1. She does this in
turn starting from j = 1 and selecting the leftmost possible position for each j. Alice then
sends to Bob O(k2 · ε−2 logn) = O(ε−4 logn) bits of information for each j. She starts by
dividing T [ij , n] into k2 blocks such that the Hamming distance between each block and the
corresponding substring of the pattern is at most kj−1. If n ≥ b1 > b2 > . . . > bk2 = ij are
the borders of the blocks, she sends Bob b1, b2, . . . , bk2 = ij and the (1 + ε/6)-approximate
sketches of T [b`, n] for all ` ∈ [1, k2]. In total, Alice sends to Bob O(ε−4 log2 n) bits of
information.

To see how Bob can use this information, consider a particular position i. At this position
P [1, n− i+ 1] is aligned with Alice’s half of the text, whereas P [n− i+ 2, n] is aligned with
Bob’s half of the text. As Bob knows the pattern, he can compute the exact Hamming
distance between P [n− i+ 2, n] and his half of the text with no additional information. We
now go on to explain how he can estimate the Hamming distance h between P [1, n− i+ 1]
and Alice’s half of the text.

Bob starts by locating the position ij that is closest to i from the left, and the block
T [b`+1, b`] of T [ij , n] containing i (see Figure 2). The border b` divides the pattern into two
parts, P1 and P2. Let h1 be the Hamming distance between P1 and the text, and h2 be the
Hamming distance between P2 and the text, h1 + h2 = h. To find a (1 + ε)-approximation
h′2 of h2, Bob uses the sketch of T [b`, n]. He cannot use sketches to estimate h1 as P1 is not
aligned with the block T [b`+1, b`], but he knows that there are only a few mismatches between
T [b`, b`+1] and the pattern aligned at the position ij . So he estimates h1 by computing

ICALP 2016

20:8 Approximate Hamming Distance in a Stream

Alice

Text

Pattern

Pattern

ij b`+1 i b`

P1 P2

Figure 2 Figure shows Alice’s half of the text and the rightmost position ij < i. Dashed lines
show block borders for T [ij , n]. Borders b`+1 and b` are the closest to i from the left and from
the right respectively. The border b` divides the pattern into two parts P1 and P2. To estimate
the Hamming distance h1 between P1 and T , Bob uses the pattern aligned at ij . To estimate the
Hamming distance h2 between P2 and T , he uses the sketch of T [b`, n].

the Hamming distance h′1 between P1 and the pattern aligned at the position ij . The next
lemma shows that Bob can output h′ = (h′1 + h′2)/(1− ε/3) as a (1 + ε)-approximation of h.

I Lemma 8. h′ is a (1 + ε)-approximation of h.

Proof. Remember that h′1 is the Hamming distance between P1 and the pattern aligned at
the position ij , and h1 is the Hamming distance between P1 and the text. The Hamming
distance between the pattern aligned at the position ij and T [b`+1, b`] is at most kj−1.
Therefore,

h1 − kj−1 ≤ h′1 ≤ h1 + kj−1

On the other hand, h′2 is a (1 + ε/6)-approximation of h2. Hence,

h1 + h2 − kj−1 ≤ h′1 + h′2 ≤ h1 + kj−1 + (1 + ε/6) · h2 .

We now substitute h = h1 + h2 and estimate h2 ≤ h to obtain

h− kj−1 ≤ h′1 + h′2 ≤ (1 + ε/6) · h+ kj−1 .

Finally, by our choice of ij we have h ≥ kj+1, and therefore

(1− ε/3) · h ≤ (1− ε/6) · h ≤ h′1 + h′2 ≤ (1 + ε/3) · h .

Dividing all parts of this inequality by (1− ε/3), we obtain

h ≤ h′ = (h′1 + h′2)/(1− ε/3) ≤ 1 + ε/3
1− ε/3 h ≤ (1 + ε) · h . J

3.2 Problem 2
In this section we show an upper bound for the communication complexity of Problem 2.
Remember that in this problem we have three players, Bob, Charlie, and Alice. Bob
knows the first half of the text T , Charlie knows the second half of the text T , and Alice
knows the pattern P . We will show that the communication complexity of this problem is
O(ε−2√n logn).

Let the block size B =
√
n and the threshold τ = 2ε−1√n. We start by explaining what

the players send to each other. Alice sends to Bob the following information:

R. Clifford, T. Starikovskaya 20:9

P [1, n − j?B]

P [1, n − j??B]

Text

Pattern

Pattern

Bob

Block j? Block j??
⊗ ⊗⊗ ×

p
× × ×

Figure 3 The figure shows Bob’s half of the text. Crosses show alignments where the Hamming
distance is at most τ . P [1, n− j?B] is the longest prefix with τ(2 + ε)-period smaller than B. Block
j?? ≥ j? is the first block containing a cross. Bob sends to Charlie sketches of text suffixes starting
at blocks’ borders, locations of all encircled crosses, and the last block.

1. (1 + ε/2)-approximate sketches of suffixes P [i, n] for all i ∈ [1, B] (Charlie will use them
to estimate large Hamming distances);

2. (1 + ε/2)-approximate sketches of prefixes P [1, n− jB] for all j ∈ [1, n/B] (Bob will use
them to find alignments with small Hamming distances);

3. The `-RLE encoding of the longest prefix P [1, n− j?B] with (2 + ε)τ -period ` smaller
than B (Bob will use it to describe the text).

Overall Alice sends O((n/B + B) · ε−2 logn+ ((2 + ε)τ + B) · logn) = O(ε−2√n logn)
bits of information.

Bob starts by forwarding the information he received from Alice to Charlie. Bob also
sends him (1 + ε/2)-approximate sketches of all suffixes T [jB, n]. Next, for each j < j?

Bob uses the sketch of P [1, n− jB] to find (1 + ε/2)-approximations of Hamming distances
in a block j. (Remember that Bob knows T [1, n] and can compute a sketch for any its
substring.) If the approximate value of the Hamming distance for some alignment is smaller
than (1 + ε/2)τ , he sends it to Charlie. Note that there is at most one such alignment in
a block. Indeed, if we have two such alignments in the block, then the Hamming distance
between the patterns at these alignments is at most (2 + ε)τ , which is a contradiction with
the (2 + ε)τ -period being larger than B. Moreover, Bob will not miss any alignment with
the Hamming distance smaller than τ .

After that, Bob decodes P [1, n−j?B] from its `-RLE encoding and computes the Hamming
distances between P [1, n− jB] and the text for all alignments in blocks j ≥ j? precisely. He
finds the first block j?? ≥ j? where there is an alignment of P [1, n− j??B] with the Hamming
distance at most τ . Bob sends Charlie the starting position p of this alignment and the
positions of the mismatches. Finally, he sends Charlie all bits of the last block of his half of
the text. Overall, Bob sends to Charlie O(ε−2√n logn+ (ε−2 logn+ logn) · (n/B) + τ) =
O(ε−2√n logn) bits of information.

We now explain how Charlie computes the Hamming distances. If the Hamming distance
at a particular alignment i in a block j < j?? is smaller than τ , then Charlie already knows
its approximate value. If it is bigger than τ , then Charlie computes its approximation using
the sketch of the longest suffix P [jB − i, n] of P aligned with a block border, the sketch of
T [(j + 1)B,n], and T [n+ 1, 2n]. Let h be the Hamming distance between the text and the
pattern at the alignment i and let h′ be the Hamming distance between T [(j+ 1)B, i+n− 1]
and P [jB − i, n].

I Lemma 9. h ≤ h′ +B ≤ (1 + ε) · h .

ICALP 2016

20:10 Approximate Hamming Distance in a Stream

Proof. The left inequality is trivial. To prove the right one, remember that τ ≤ h, which
implies B = (ε/2)τ ≤ (ε/2) · h. J

We now go on to the remaining blocks. The Hamming distances at alignments i < p

in the block j?? are bigger than τ and Charlie can find their approximation in the way
described above. Charlie then decodes P [1, n − j?B] and recovers T [p, n] by fixing the at
most

√
n mismatches between P [1, n− j?B] and T [p, p+ n− j??B + 1] and appending the

last p − (j?? − 1)B symbols of T (Remember that Charlie knows all symbols of the last
block of T [1, n]). Using T [p, n], T [n+ 1, 2n], and the sketch of P , he can approximate the
Hamming distances for all alignments to the right of p.

4 Streaming algorithm

We now show a streaming algorithm for Problem 3. In this problem we are asked to output
a (1 + ε)-approximation of the Hamming distance between the pattern and the text at
each alignment, and we do not assume that we store a copy of the pattern or of the text.
For ε < 1/2, the algorithm uses O(ε−3√n log1.5 n) bits of space and its running time is
O(ε−2 logn) per arriving symbol. For simplicity, we will set k = 1/ε > 2 for the rest of this
section.

Let B = k
√
n. The algorithm starts by selecting a 9k2 × B matrix M and a vector

(σ1, σ2, . . . , σn/B−1) of i.u.d. ±1 random variables. The algorithm then preprocesses the
pattern P . It remembers the first B symbols of P , as well as a super-sketch of each (n−B)-
length substring of P . To compute the super-sketches the algorithm divides a substring into
(n/B− 1) blocks of length B, computes their sketches using M as described in Section 2, and
then sums the sketches multiplying them by σi. The algorithm also computes sketches of the
last B suffixes of P . The sketch of a suffix P [n− i+ 1, n] is defined to be equal to M · Si,
where Si = P [n− i+ 1, n] 0B−i. Finally, for each i ∈ [1, B] and for each j ∈ [0, log1+ε n] it
stores the maximal length of pattern’s prefix such that the Hamming distance between this
prefix aligned at position i and the pattern is at most (1 + ε)j , which takes O(ε−1B log2 n)
bits since log1+ε n = O(ε−1 logn).

4.1 Text processing
The algorithm processes the text in non-overlapping blocks of length B. For each of the
last n/B blocks the algorithm maintains its sketch and a data structure containing the
information Alice transfers to Bob in our solution for Problem 1.

Let us start by explaining how the algorithm maintains the sketches. At the starting
index of each block it initialises the block’s sketch with a zero vector of length 9k2. When
the jth symbol of the block arrives, the algorithm adds the product of the jth column of
M and the symbol to the sketch in O(9k2) time. While reading the block the algorithm
also computes the super-sketch of the (n − B)-length substring consisting of the n/B − 1
most recent blocks. Recall that the super-sketch is defined to be equal to the sum of the
blocks’ sketches multiplied by the variables σi. The total time needed for computing the sum
is O(9k2n/B). The algorithm de-amortises this time over the block executing Ω(9k2n/B2)
steps per arriving symbol.

For each block the algorithm maintains a data structure containing the information Alice
transmits to Bob in our solution for Problem 1. The algorithm starts computing the data
structure when it has received the entire block. It then computes the Hamming distance
between prefixes P [1], P [1, 2], . . . , P [1, B] as being aligned at the right border of the block

R. Clifford, T. Starikovskaya 20:11

and the block by running the fast Fourier transform algorithm on P [1, B] and the block
appended with B zeros, which takes O(B) space and O(B logB) time in total [14]. The
algorithm then finds i1, i2, . . . , iq, where q = dlogk Be as defined in Problem 1 and for each
ij it computes the borders and the sketches of the blocks, where the sketches are defined
with the help of the matrix M . Remember that the algorithm stores the block and the first
B symbols of the pattern, so this could be done in a naive way, using symbol-by-symbol
comparison. Finally, the algorithm builds binary search trees on i1, i2, . . . , iq and the block
borders for each ij to allow fast access to the information. The total construction time of
the data structure is O((B + k2) · logn). Note that the data structure will only be used
n/B − 1 ≥ 2 blocks later, so we can de-amortise the construction time over the succeeding
block executing Ω((1 + k2/B) · logn) steps of the construction process per symbol. The data
structure occupies O(k4 log2 n) bits of space.

4.2 Hamming distance

To compute the Hamming distance at an alignment i, the algorithm divides the pattern into
three parts: a prefix of length (B− i), a middle part of length (n−B), and a suffix of length i,
where the middle part is aligned with a block border. The algorithm then starts by computing
the square N of the norm of the difference between the super-sketches of the middle part and
the corresponding text substring. Both super-sketches are already known as the middle part
is an (n−B)-length substring of the pattern and we store its super-sketch explicitly, while the
super-sketch of the text substring was computed at the end of the preceding block. As both
sketches have length 9k2, it takes O(9k2) time. Next, the algorithm computes the Hamming
distance Hs between the sketch of the suffix of the pattern and the part of the text block seen
so far. This again takes O(9k2) time. Finally, the algorithm computes an approximation Hp

of the Hamming distance between the prefix and the text as described in Problem 1. With
the help of the binary search trees, ij , b`+1 and b` can be found in O(log logn+ log log k2)
time. Recall that b` divides the prefix into two parts. The Hamming distance between the
second part of the prefix and the text can be approximated in O(9k2) time with the help of
the sketches as in Problem 1, but it is not possible to use symbol-by-symbol comparison for
the first part as this would take too much time. Instead, the algorithm does binary search
on the prefixes’ lengths it calculated during the preprocessing step which allows him to find
(1 + ε)-approximation of the Hamming distance in O(log log1+ε n) time. It then outputs
Hp +Hm +Hs, where Hm = ε2N/9(1− ε/3).

4.3 Analysis

The running time of the algorithm is O(ε−2 logn) per arriving symbol. The space used is
O(ε−3√n log2 n) bits. We now need to show that Hp +Hm +Hs is a (1 + ε)-approximation
of the Hamming distance with constant probability. It suffices to show that Hm is a (1 + ε)-
approximation of the Hamming distance between the middle part of the pattern and the text.
Consider two binary strings t and p of length (n−B). Let skt and skp be their super-sketches
of length 9k2 calculated with the help of M and σi and let N = ‖skt − skp‖2

2 and H̃ = ε̃2N ,
where ε̃ = ε/3. We will show that H̃ is a good approximation of the Hamming distance
between t and p. Recall that t and p are binary, and therefore the Hamming distance between
them is equal to ‖t− p‖2

2.

I Lemma 10. With constant probability (1− ε̃) · ‖t− p‖2
2 ≤ H̃ ≤ (1 + ε̃) · ‖t− p‖2

2.

ICALP 2016

20:12 Approximate Hamming Distance in a Stream

Proof. Let ti and pi, i ∈ [1, n/B − 1], be the blocks of t and p of length B. We have

E
[
H̃
]

= ε̃2 · E

∥∥∥∥∥∑
i

σiM · (ti − pi)

∥∥∥∥∥
2

2

 = ε̃2
∑
j

E

(∑
i

σiMj · (ti − pi)
)2

where Mj is the jth row of M . As all rows of M are identically distributed, we have
E
[
(
∑
i σiMj · (ti − pi))2

]
= E

[
(
∑
i σiM1 · (ti − pi))2

]
for all j, which is equal to ‖t− p‖2

2
as if at least one of the inequalities i1 = i2 or j1 = j2 does not hold, then the variables
σi1M1[j1] and σi2M1[j2] are independent and the expectation of σi1σi2M1[j1]M1[j2] is equal
to zero, and otherwise it is equal to one. So finally we have E

[
H̃
]

= ‖t− p‖2
2.

We now compute the variance of H. We again use the fact that the rows of M are
independent and identically distributed.

Var
[
H̃
]

= ε̃2 ·Var

(∑
i

σiM1 · (ti − pi)
)2
 ≤ ε̃2 · E

(∑
i

σiM1 · (ti − pi)
)4
 .

By Khintchine’s inequality there exists a universal constant c > 0 such that

Var
[
H̃
]
≤ c ε̃2 · E

(∑
i

σiM1 · (ti − pi)
)2
2

≤ c ε̃2 · ‖t− p‖4
2 .

The claim then follows by Chebyshev’s inequality. J

Let now H = ε2N/9(1−ε/3) = H̃/(1−ε/3). The probability H is a (1+ε)-approximation
of the Hamming distance between t and p is at least the probability H̃ is in [(1 − ε/3) ·
‖t− p‖2

2 , (1− ε/3)(1 + ε) · ‖t− p‖2
2], which in turn can be estimated from below as

Pr
[
H̃ ∈ [(1− ε/3) · ‖t− p‖2

2 , (1 + ε/3) · ‖t− p‖2
2]
]
≥ 1− 1/c (Lemma 10.)

To justify the last transition note that (1− ε/3)(1 + ε) ≥ (1 + ε/3) for all ε < 1. From
above it follows that with constant probabilities Hp, Hm, and Hs are (1 + ε)-approximations
of the Hamming distances for the prefix, the middle part, and the suffix of the pattern
respectively. We note that the probabilities can be made arbitrarily small by Chebyshev’s
inequality if we run a constant number of independent instances of the algorithm in parallel
and output the sum of the medians of the values Hp, Hm, Hs. Correctness of the algorithm
follows by the union bound.

Acknowledgements. We are grateful to T.S. Jayram and Paul Beame for helpful and
inspiring conversations about the problems in this paper and to Ely Porat for introducing the
original streaming pattern matching problem to us and for explaining how to solve Problem 3
in O(n2/3poly(1/ε))) space. We were also informed that Ely Porat had independently
developed a solution that uses O(

√
n/ε2) space and for each alignment with Hamming

distance H outputs some integer in the interval [(1− ε) ·H−1/2
√
n, (1 + ε) ·H+ 1/2

√
n] [24].

References
1 Karl Abrahamson. Generalized string matching. SIAM Journal on Computing, 16(6):1039–

1051, 1987.

R. Clifford, T. Starikovskaya 20:13

2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In STOC’00: Proc. 28th Annual ACM Symp. Theory of Computing,
pages 20–29. ACM, 1996.

3 Amihood Amir, Yonatan Aumann, Gary Benson, Avivit Levy, Ohad Lipsky, Ely Porat,
Steven Skiena, and Uzi Vishne. Pattern matching with address errors: Rearrangement
distances. Journal of Computer System Sciences, 75(6):359–370, 2009.

4 Amihood Amir, Yonatan Aumann, Oren Kapah, Avivit Levy, and Ely Porat. Approxim-
ate string matching with address bit errors. In CPM’08: Proc. 19th Annual Symp. on
Combinatorial Pattern Matching, pages 118–129, 2008.

5 Amihood Amir, Yonatan Aumann, Moshe Lewenstein, and Ely Porat. Function matching.
SIAM Journal on Computing, 35(5):1007–1022, 2006.

6 Amihood Amir, Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. Over-
lap matching. Information and Computation, 181(1):57–74, 2003.

7 Amihood Amir, Estrella Eisenberg, and Ely Porat. Swap and mismatch edit distance.
Algorithmica, 45(1):109–120, 2006.

8 Amihood Amir, Martin Farach, and S. Muthu Muthukrishnan. Alphabet dependence in
parameterized matching. Information Processing Letters, 49(3):111–115, 1994.

9 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-
plexity of gap-hamming-distance. SIAM Journal on Computing, 41(5):1299–1317, 2012.

10 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In SODA’16: Proc. 27th ACM-SIAM Symp. on Discrete
Algorithms, pages 2039–2052, 2016.

11 Raphaël Clifford and Benjamin Sach. Pseudo-realtime pattern matching: Closing the gap.
In CPM’10: Proc. 21st Annual Symp. on Combinatorial Pattern Matching, pages 101–111,
2010.

12 Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data
streams using Hamming norms (how to zero in). IEEE Trans. on Knowl. and Data Eng.,
15(3):529–540, 2003.

13 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

14 M. Fischer and M. Paterson. String matching and other products. In Proc. 7th SIAM-AMS
Complexity of Comp., pages 113–125, 1974.

15 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity
of the Hamming distance problem. Information Processing Letters, 99(4):149–153, 2006.

16 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM, 53(3):307–323, 2006.

17 Markus Jalsenius, Benny Porat, and Benjamin Sach. Parameterized matching in the stream-
ing model. In STACS’13: Proc. 30th Annual Symp. on Theoretical Aspects of Computer
Science, pages 400–411, 2013. arXiv:1109.5269.

18 Thathachar S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss
transforms and streaming problems with subconstant error. ACM Transactions on Al-
gorithms (TALG), 9(3):26, 2013.

19 William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hil-
bert space. In Proc. of the Conference in Modern Analysis and Probability, volume 26 of
Contemporary Mathematics, pages 189–206. American Mathematical Society, 1984.

20 H. Karloff. Fast algorithms for approximately counting mismatches. Information Processing
Letters, 48(2):53–60, 1993.

21 Tsvi Kopelowitz and Ely Porat. Breaking the variance: Approximating the Hamming
distance in 1/ε time per alignment. In FOCS’15: Proc. 56th Annual Symp. Foundations of
Computer Science, pages 601–613, 2015.

ICALP 2016

http://arxiv.org/abs/1109.5269

20:14 Approximate Hamming Distance in a Stream

22 S. Rao Kosaraju. Efficient string matching. Manuscript, 1987.
23 Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. Journal of

Computer System Sciences, 37(1):63–78, 1988.
24 Ely Porat. Personal communication, 2016.

	Introduction
	Related work and lower bounds

	Overview
	Communication complexity
	Problem 1 – both Alice and Bob know the pattern
	Problem 2 – only Alice knows the pattern

	A small space streaming algorithm

	Communication complexity
	Problem 1
	Problem 2

	Streaming algorithm
	Text processing
	Hamming distance
	Analysis

