3,916 research outputs found

    Can Nondeterminism Help Complementation?

    Full text link
    Complementation and determinization are two fundamental notions in automata theory. The close relationship between the two has been well observed in the literature. In the case of nondeterministic finite automata on finite words (NFA), complementation and determinization have the same state complexity, namely Theta(2^n) where n is the state size. The same similarity between determinization and complementation was found for Buchi automata, where both operations were shown to have 2^\Theta(n lg n) state complexity. An intriguing question is whether there exists a type of omega-automata whose determinization is considerably harder than its complementation. In this paper, we show that for all common types of omega-automata, the determinization problem has the same state complexity as the corresponding complementation problem at the granularity of 2^\Theta(.).Comment: In Proceedings GandALF 2012, arXiv:1210.202

    A sufficient condition to polynomially compute a minimum separating DFA

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences 370–371 (2016) 204–220. DOI 10.1016/j.ins.2016.07.053.The computation of a minimal separating automaton (MSA) for regular languages has been studied from many different points of view, from synthesis of automata or Grammatical Inference to the minimization of incompletely specified machines or Compositional Verification. In the general case, the problem is NP-complete, but this drawback does not prevent the problem from having a real application in the above-mentioned fields. In this paper, we propose a sufficient condition that guarantees that the computation of the MSA can be carried out with polynomial time complexity. © 2016 Elsevier Inc. All rights reserved.Vázquez-De-Parga Andrade, M.; García Gómez, P.; López Rodríguez, D. (2016). A sufficient condition to polynomially compute a minimum separating DFA. Information Sciences. 370-371:204-220. doi:10.1016/j.ins.2016.07.053S204220370-37

    Synthesizing Finite-state Protocols from Scenarios and Requirements

    Full text link
    Scenarios, or Message Sequence Charts, offer an intuitive way of describing the desired behaviors of a distributed protocol. In this paper we propose a new way of specifying finite-state protocols using scenarios: we show that it is possible to automatically derive a distributed implementation from a set of scenarios augmented with a set of safety and liveness requirements, provided the given scenarios adequately \emph{cover} all the states of the desired implementation. We first derive incomplete state machines from the given scenarios, and then synthesis corresponds to completing the transition relation of individual processes so that the global product meets the specified requirements. This completion problem, in general, has the same complexity, PSPACE, as the verification problem, but unlike the verification problem, is NP-complete for a constant number of processes. We present two algorithms for solving the completion problem, one based on a heuristic search in the space of possible completions and one based on OBDD-based symbolic fixpoint computation. We evaluate the proposed methodology for protocol specification and the effectiveness of the synthesis algorithms using the classical alternating-bit protocol.Comment: This is the working draft of a paper currently in submission. (February 10, 2014

    Minimal cover-automata for finite languages

    Get PDF
    AbstractA cover-automaton A of a finite language L⊆Σ∗ is a finite deterministic automaton (DFA) that accepts all words in L and possibly other words that are longer than any word in L. A minimal deterministic finite cover automaton (DFCA) of a finite language L usually has a smaller size than a minimal DFA that accept L. Thus, cover automata can be used to reduce the size of the representations of finite languages in practice. In this paper, we describe an efficient algorithm that, for a given DFA accepting a finite language, constructs a minimal deterministic finite cover-automaton of the language. We also give algorithms for the boolean operations on deterministic cover automata, i.e., on the finite languages they represent

    An expressive completeness theorem for coalgebraic modal mu-calculi

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given functor. Using automatatheoretic techniques and building on recent results by the third author, we show that in order to provide such a characterization result it suffices to find what we call an adequate uniform construction for the coalgebraic type functor. As direct applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem for the modal mu-calculus, avoiding the use of syntactic normal forms, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors (including the "game functor"). As a more involved application, involving additional non-trivial ideas, we also derive a characterization theorem for the monotone modal mu-calculus, with respect to a natural monadic second-order language for monotone neighborhood models.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0721
    • …
    corecore