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Abstract. A stream X-machine is a type of extended finite state machine with an associated development
approach that consists of building a system from a set of trusted components. One of the great benefits of
using stream X-machines for the purpose of specification is the existence of test generation techniques that
produce test suites that are guaranteed to determine correctness as long as certain well-defined conditions
hold. One of the conditions that is traditionally assumed to hold is controllability: this insists that all paths
through the stream X-machine are feasible. This restrictive condition has recently been weakened for testing
from a deterministic stream X-machine. This paper shows how controllability can be replaced by a weaker
condition when testing a deterministic system against a non-deterministic stream X-machine. This paper
therefore develops a new, more general, test generation algorithm for testing from a non-deterministic stream
X-machine.
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1. Introduction

A formal model or specification can form the basis for automated test generation and this can reduce both the
cost of testing and the scope for errors in the testing process. Since many systems have a finite state structure
there has been much interest in testing from a finite state machine (see, for example, [DSA+99, Hie03,
HU06, LY96, PBG04, PY05a, PY05b, UW03]). However, finite state machines are not always appropriate
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for modelling systems that have an internal memory: extended finite state machines (EFSMs) might instead
be used.

The stream X-machine (SXM) is a type of EFSM. It describes a system using a finite set of states,
an internal store, called memory, and a number of transitions between the states, labelled by relation
names. Various case studies [HI98, KEK03] have demonstrated the value of the stream X-machine as a
specification method, especially for interactive systems. Many variants and subclasses of stream X-machines
[HI98, ABC+02, BGH03] and communicating Stream X-machine [CGV00] have been defined and inves-
tigated. Communicating stream X-machines have been used for modelling biological systems such as ant
foraging networks [JHR04] or epithelial cells [SH06] or the dynamic organization of biology-inspired multi-
agent systems [SGK04]. More recently, NASA has discussed using a combination of Communicating Stream
X-Machines and the process calculus WSCSS in the design and testing of swarm satellite systems [RHRT05].

Associated with SXMs is a software development approach [BHI+06] in which a system is built from
trusted components and communication between the components is modelled by the SXM’s memory. Testing
is black-box: all we can observe are inputs sent to the implementation under tests and outputs it produces.
Testing can be seen as a process of checking that the components have been integrated in an appropriate way
(see, for example, [BGGV99, BH01, Hol93]). Naturally, the trusted components might have been produced
in a previous SXM based development phase and thus SXMs can be used in incremental development. The
components may also have been previously tested using some other approach and recent results have shown
that the generation of tests for the components of a SXM Z can be integrated into the process of generating
a test suite from Z [Ipa04]. Naturally, the reliance on trusted components fits well with the increasing use of
component based software development methodologies. A key benefit of this “divide et impera” strategy is
that, unlike many other EFSM based test generation methods [LY96], the stream X-machine based approach
does not involve the construction of the equivalent finite state machine (whose states are the state/memory
pairs of the stream X-machine), thus avoiding the state explosion problem associated with this construction.

A key aspect of the SXM approach is that as long as certain conditions hold, it is possible to produce
a finite test suite that determines correctness: if the implementation under test (IUT) is faulty and satisfies
these conditions then the test suite must lead to a failure. The conditions can be divided into two types:
design for test conditions that place restrictions on the SXM model/specification from which test are to be
generated and test hypotheses that place restrictions on the IUT.

One of the traditional design for test conditions is that the SXM is controllable: all paths through the SXM
model are feasible. While this is an extremely useful property that significantly simplifies test generation,
many specifications are not controllable. While additional inputs can be added to a specification in order
to ensure that it is controllable, this may be undesirable. There has been recent work on transforming an
EFSM to one in which all paths are feasible but this approach relies on the operations and guards being
linear [FUDA03, DU04]. It has recently been shown that controllability can be weakened to input-uniformity
when considering deterministic SXMs [Ipa06]. Input-uniformity essentially says that each processing relation
changes the memory in a uniform manner: if there is a sequence p of processing relations and a processing
relation φ such that pφ is feasible then the feasibility of φ after p is not affected by the particular choice of
input sequence used to trigger p. It has been argued that almost all SXM specifications satisfy this weaker
condition [Ipa06].

The initial work on using SXMs in software development only considered deterministic SXMs (see, for
example, [HI98]). However, while many implementations are deterministic, non-determinism aids abstrac-
tion and is highly appropriate for specifications. There has thus been recent interest in testing from non-
deterministic SXMs [HH00, HH04, IH00]. The observable behaviour of a SXM is that of an input/output
transducer and so, unlike in the case of finite automata, it is not possible to convert a non-deterministic
SXM into a functionally equivalent SXM. For example, if a non-deterministic SXM responds to an input of
1 in its initial state and memory with either output 0 or output 1 then it is not equivalent to a deterministic
SXM.

All of the previous work regarding testing from a non-deterministic SXM assumes that the SXM is
controllable. The main contribution of this paper is to show how controllability can be weakened to input-
uniformity when testing a deterministic IUT against a non-deterministic SXM. We thus weaken the control-
lability assumption and show that this has significant ramifications for test generation since the SXM may
have infeasible paths: a test generation algorithm must avoid such infeasible paths while still achieving the
required test objective. As a result, we require a different test generation algorithm and this paper gives such
an algorithm and shows that the resultant test suite achieves full fault coverage with respect to the fault
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domain defined by the test hypotheses: for every IUT that satisfies the test hypotheses, if the IUT passes
the test suite then it must conform to the SXM specification.

This paper is structured as follows. Section 2 defines SXMs and introduces terminology and notation
used throughout the paper. Section 3 describes the design for test conditions and test hypotheses used in
this paper and Section 4 explains how we can find sequences to reach and distinguish states of a SXM.
Section 5 describes the product machine, which provides the basis of our test generation algorithm, and
Section 6 defines test processes that can be used to determine whether a specified sequence of operations
has been implemented. Section 7 then gives the test generation algorithm, Section 8 gives the complexity of
the approach, and Section 9 draws conclusions.

2. Preliminaries

2.1. Notation

Given a finite set B, card(B) denotes the number of elements in B. Given a finite alphabet B, B∗ denotes
the set of all finite sequences of elements of B including the empty sequence ε. We denote by Bk the set of
sequences of length k of elements of B and B[k] is the set of sequences of elements of B that have length
less than or equal to k.

Given two sequences b1 and b2, the concatenation of b1 and b2 is denoted b1b2. Given two sets B1 and
B2 of sequences, B1B2 = {b1b2|b1 ∈ B1 ∧ b2 ∈ B2} denotes the set of sequences that can be formed by
concatenating a sequence in B1 with a sequence in B2. Given a sequence b, pref(b) is the set of prefixes of b
and so pref(b) = {b′|∃b′′.b′b′′ = b}. Given a set B1 of sequences, pref(B1) is the set of prefixes of sequences
from B1 and so pref(B1) = {b|∃b′ ∈ B1.b ∈ pref(b′)}.

Given a relation f : B1 ↔ B2, dom f denotes the set of elements from B1 that are in the domain of f :
dom f = {b1 ∈ B1|∃b2 ∈ B2.(b1, b2) ∈ f}. Naturally, since every function is a relation, dom can also be used
with functions. Given a relation f : B1 ↔ B2 and b1 ∈ B1, f(b1) denotes the set of elements of B2 that are
associated with b1, i.e. f(b1) = {b2 | (b1, b2) ∈ f}.

Throughout this paper Σ denotes the set of inputs that the system (specification or IUT) can receive
and Γ represents the set of outputs it can produce. We will use the following notation regarding variable
names: σ, σ′, σ1, . . . will denote elements of Σ, s, s′, s1, . . . will denote elements of Σ∗, γ, γ′, γ1, . . . will denote
elements of Γ, and g, g′, g1, . . . will denote elements of Γ∗.

2.2. Finite Automata

A finite automaton is defined by a finite state structure and transitions between the states, each arc between
two states being labelled with an element of the finite alphabet Y .

Definition 2.1. A finite automaton (FA) A is defined by a tuple (Y,Q, h, q0, T ) in which Y is the finite
alphabet, Q is the (non-empty) finite set of states, h is the state transfer relation of type Q×Y ↔ Q, q0 ∈ Q
is the initial state, and T ⊆ Q is the set of final states.

The state transfer relation h should be interpreted in the following way: if A is in state q and receives
input y ∈ Y then it moves to one of the states in h(q, y). The relation h can be extended to the relation
h∗ of type Q × Y ∗ ↔ Q defined by the following rules in which y ∈ Y and y′ ∈ Y ∗: h∗(q, ε) = {q} and
h∗(q, yy′) = {q′ ∈ Q|∃q′′ ∈ h(q, y).q′ ∈ h∗(q′′, y′)}.

FA A defines a regular language: the set of sequences in Y ∗ that can take A from q0 to a final state.

Definition 2.2. The FA A = (Y,Q, h, q0, T ) defines the regular language LA = {y ∈ Y ∗|h∗(q0, y)∩ T 6= ∅}.
Similarly, state q of A defines the regular language LA(q) = {y ∈ Y ∗|h∗(q, y) ∩ T 6= ∅}.

Two FA are equivalent if they define the same language. FA A = (Y,Q, h, q0, T ) is deterministic if h is a
(possibly partial) function. It is known that every FA is equivalent to a deterministic FA (DFA) and thus it
is sufficient to only consider DFA (see, for example, [Eil74]). DFA A is minimal if no DFA with fewer states
than A is equivalent to A. Since any DFA can be converted into an equivalent minimal DFA, we assume
that any DFA considered in this paper is minimal.
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2.3. Stream X-machines

A Stream X-machine (SXM) is essentially a FA in which there is an associated memory and each element of
the alphabet represents a relation between a pair containing an input and initial memory value and a pair
containing a final memory value and an output (see, for example, [Eil74, HI98]).

Definition 2.3. A stream X-machine Z is defined by a tuple (Σ,Γ, Q,M,Φ, F, q0,m0) in which:

• Σ is the finite input alphabet.

• Γ is the finite output alphabet.

• Q is the finite set of states.

• M is the memory.

• Φ is a set of processing relations, each having type M × Σ↔ Γ×M .

• F is the next state function of type Q× Φ→ Q.

• q0 ∈ Q is the initial state.

• m0 ∈M is the initial memory value.

Typically, each element of Φ specifies components that may be used in the software system specified by
Z. The memory normally represents the variables used by the computer program; typically M is formed
from tuples, where each element of the tuple corresponds to either a global variable or a parameter that may
be passed between the elements of Φ.

Naturally, F can be extended to form a function F ∗ of type Q×Φ∗ → Q. If we abstract out the memory
then we get a FA.

Definition 2.4. Given SXM Z = (Σ,Γ, Q,M,Φ, F, q0,m0), the associated automaton AZ is the FA (Φ, Q,
F, q0, Q).

There are several ways in which we could generalize the definition of a SXM. First, we could use a next
state relation F of type Q × Φ ↔ Q rather than a function. It is straightforward to see that since the
associated automaton AZ must be equivalent to a DFA, we can always rewrite Z so that F is a function.
Naturally, the resultant SXM need not be deterministic since the relations may not be functions. In addition,
there may exist transitions, from a state s, with relations f1 and f2 such that there are values that satisfy
the preconditions of both f1 and f2. We could also choose to have a set of initial states rather than a single
initial state. However, if we can produce a test suite for a SXM with one initial state then we can produce
a test suite for a SXM with a set I of initial states: we simply produce a test suite for each state in I and
combine these test suites. Note that if more than one sequence is used then these are separated by resets
and it is important that the resets always take us to the same state. In addition, if the state the reset takes
us to might not be the state we start testing in then we need to start with a reset.

Each sequence in Φ∗ defines a relation of type M × Σ∗ ↔ Γ∗ ×M .

Definition 2.5. Given a sequence p ∈ Φ∗, p defines the relation ‖p‖, of type M × Σ∗ ↔ Γ∗ ×M , defined
by the following in which φ ∈ Φ, p′ ∈ Φ∗, σ ∈ Σ, s ∈ Σ∗, γ ∈ Γ, and g ∈ Γ∗.

‖ε‖ = {((m, ε), (ε,m))|m ∈M}

‖p′φ‖ = {((m, sσ), (gγ,m′))|∃m′′ ∈M.((m, s), (g,m′′)) ∈ ‖p′‖

∧((m′′, σ), (γ,m′)) ∈ φ}

A machine computation takes the form of a traversal of a sequence of arcs in the state space from the
initial state and the application, in turn, of the arc labels (which represent processing relations) to the initial
memory value. The correspondence between the input sequence applied to the machine and the output
produced gives rise to the relation computed by the machine.

Definition 2.6. Given a SXM Z, the relation computed by Z, fZ : Σ∗ ←→ Γ∗, is defined by: (s, g) ∈ fZ if
there exist p ∈ LAZ

and m ∈M such that ((m0, s), (g,m)) ∈ ‖p‖. We say that Z computes fZ .
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Fig. 1. The state-transition diagram of Z

The SXM Z is said to be completely-defined if fZ is defined on every input sequence: dom fZ = Σ∗. We
only consider completely-defined SXMs in this paper. It may be possible to extend the approach to the case
where Z is not completely-defined through completing Z by, for example, adding an error state.

If the SXM Z contains no infeasible paths, and so for all p ∈ LAZ
there exists some s ∈ Σ∗ such that

(m0, s) ∈ dom ‖p‖, then Z is said to be controllable. Previous work on testing from a non-deterministic SXM
has assumed that the specification is controllable, an assumption that is not made in this paper.

Traditionally the term deterministic SXM has usually been used for SXMs in which Φ is a set of functions
(rather than relations) and there are no overlapping transitions emerging from the same state (if F is defined
on both (q, φ) and (q, φ′) with φ 6= φ′ then dom φ∩ dom φ′ = ∅). This is a sufficient condition for a SXM to
define a function from input sequences to output sequences, as opposed to a relation, but is not a necessary
condition. In order to avoid confusion we use the term f-deterministic for a SXM that defines a function.

Definition 2.7. Z is said to be f-deterministic if fZ is a (possibly partial) function.

Example 2.1. We now give a SXM model of a simplified ATM shown in Figure 1. In order to access the
system the user must input a sequence of numbers that constitutes their PIN; to simplify the explanation
the PIN will have two digits. Once one or more numbers have been provided the user can delete the most
recent number. Once two numbers have been input they can press the enter button — at this point the
actual PIN is retrieved from another system S ′ within the bank and compared with the PIN provided by
the user. If the PIN is correct, the system moves to a state from which the user can access facilities; if not,
the system returns to its initial state.

The ATM can provide two services. One service allows the customer to withdraw money from their
account (if they have sufficient money in their account). A second feature is not implemented in all machines
and allows the user to either obtain their current balance or order a new cheque book.

The input alphabet is the set of tuples (button, inputS′), where button is either enter, delete, or a
number button (0, . . . , 9) and inputS′ is a number received from S′. When the input from S′ is not needed,
it is simply ignored. Similarly, each output is a tuple of the form (message to user, screen,message to S ′,
message to ATM). There are four states, q0, q1, q2, q3, with q0 being the initial state. The memory is the set
of tuples of the form (counter, pin1, pin2) where the elements of the tuples are numbers. The initial memory
is (0, 0, 0). We now describe the operations from each state.

Operations from q0:

• enterNo allows the user to enter a number as part of their PIN (counter counts how many numbers have
been provided). The guard is that the input from the user is a number button (num) and counter < 2. The
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output is a screen with an additional ‘star’. The change in memory is defined by: counter′ = counter+1;
if counter = 0 then pin1′ = num else pin2′ = num. There is no change in state.

• failedNo is the operation where the user attempts to enter a number but has already provided the entire
PIN number. The guard is thus that the button pressed is a number (num) and counter = 2. The output
is a message saying that PIN cannot have more than two numbers. There is no change in memory or
state.

• deleteNo allows the user to delete the most recent number provided. The guard is thus that the button
pressed is the delete button and counter > 0. The output removes one ‘star’ from the screen and
send a message that confirms that the number has been deleted. The change in memory is defined by:
counter′ = counter − 1; if counter = 1 then pin1′ = 0 else pin2′ = 0. There is no change in state.

• failedDelete covers the cases where the delete button is pressed but the guard for deleteNo is not
satisfied. The guard is the pressing of the delete button and counter = 0. The output is a message saying
that there is no number to delete. There is no change in memory or state.

• correctPIN is the operation executed when the correct PIN has been provided and the enter button
is pressed. The guard is the enter button being pressed and the PIN stored being the same as the PIN
(num) sent by S′: counter = 2 ∧ num = 10 ∗ pin2 + pin1. The output is a new screen (menu) and a
welcome message. There is no change in memory and the state becomes q1.

• incorrectPIN is the operation executed when the correct PIN has not been provided and the enter
button is pressed. The guard is the enter button being pressed and the PIN stored (num) not being
that sent by S′: counter < 2 ∨ num 6= 10 ∗ pin2 + pin1. The output is a message saying that the PIN
was wrong plus the removal of the ‘stars’ from the screen. The memory becomes (0, 0, 0) and there is no
change in state.

Operations from q1:

• moveToCash has the guard that the button pressed is enter. The output is the screen for withdrawing
cash. There is no change in memory and the state becomes q2.

• moveToManage has the guard that a number button is pressed. The output is a screen for managing
the account. There is no change in memory and the state becomes q3.

• nullManage has the guard that the button pressed is a number button. The output is a message saying
that the ATM does not provide the ‘manage account facility’. There is no change in memory or state.

• stopSystem has the guard that the button pressed is delete. The output is a message saying that the user
is being logged out and then the PIN entry screen. The memory becomes (0, 0, 0) and the state becomes
q0.

Operations from q2:

• withdrawCash is triggered by input (num, bal) where the balance bal is at least the amount requested
(10 ∗num). The guard is thus: a number button (num) being pressed and 10 ∗num ≤ bal. The output is
the menu screen associated with q1, a message being sent to the ATM hardware to provide notes, and a
message to S′ confirming the amount withdrawn. There is no change in memory and the state becomes
q1.

• failedWithdraw is triggered by input (num, bal) and corresponds to a failed attempt to withdraw cash.
The guard is thus that a number button (num) is pressed and that 10 ∗ num > bal. There is no change
in either memory or state.

• cancelRequest allows the user to leave the state without withdrawing cash. The guard is either the
enter or delete buttons being pressed. The output is the menu screen associated with q1 and a message
confirming that the option has been cancelled. There is no change in memory and the state becomes q1.

Operations from q3

• cancelRequest: as for q2.

• requestBalance is triggered by input (num, bal): the guard is that a number button (num) is pressed
and num is even. The output is the menu screen for q1 and a message giving the current balance bal.
There is no change in memory and the state becomes q1.
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• orderCheque is triggered by input (num, bal): the guard is that a number button (num) is pressed and
num is odd. The output is the menu screen for q1, a message saying that a cheque book has been ordered,
and a message to S′ saying that this request has been made. There is no change in memory and the state
becomes q1.

Note that while all of the operations in the example are functions, the withdrawCash operation will be
non-deterministic if we include information regarding different types of notes (the output is the number of
each type of note that is to be provided).

2.4. Correctness

In order to test from a SXM Z we need to say what we mean by the IUT being correct. If Z is deterministic
then it is normal to say that the IUT is correct if it is equivalent to Z. However, where Z is non-deterministic
there is an alternative notion of correctness, called conformance. Here the specification defines a set of allowed
output sequences for each input sequence and the IUT can choose from these. Thus the IUT conforms to Z
if and only if for every input sequence s the response of the IUT to s is in fZ(s).

Definition 2.8. Z ′ conforms to Z if dom fZ′ = dom fZ and fZ′ ⊆ fZ .

Note that the above definition is given for the general case, in which Z and Z ′ may not be completely-
defined. As we assume that Z and Z ′ are completely-defined in this paper we have that dom fZ′ = dom fZ =
Σ∗.

In a similar manner we can say what it means for one processing relation φ′ to conform to another
processing relation φ.

Definition 2.9. Processing relation φ′ of type Σ×M ↔ M × Γ conforms to processing relation φ of type
Σ×M ↔M × Γ if dom φ′ = dom φ and φ′ ⊆ φ. This is denoted φ′ ≤ φ. Given sets Φ′ and Φ of processing
relations we write Φ′ ≤ Φ if for all φ′ ∈ Φ we have some φ ∈ Φ such that φ′ ≤ φ.

3. Design for test conditions and test hypotheses

There are conditions associated with the use of SXMs for specification and design, the intention of these
conditions being to make testing tractable. These conditions can be split into design for test conditions that
place restrictions on the specification Z and test hypotheses that place restrictions on the IUT Z ′.

3.1. Design for test conditions on the specification

In testing we observe input/output sequences. We would like to be able to identify the corresponding se-
quences of relations that were executed and in order to achieve this we insist that two relations cannot
produce the same output for a given memory and input.

Definition 3.1. Φ is output distinguishable if for all φ1, φ2 ∈ Φ such that φ1 6= φ2, all σ ∈ Σ, all γ ∈ Γ, and
all m,m′ ∈M such that ((m,σ), (γ,m′)) ∈ φ1, there does not exist m′′ ∈M such that ((m,σ), (γ,m′′)) ∈ φ2.

Let us suppose that we applied the input sequence s, observed output sequence g and wish to now apply
an input to determine whether the relation φ1 can be triggered from the state of Z ′ reached. In order to
choose an appropriate input σ we need to know the current memory m since we require that (σ,m) ∈ dom φ1.
If Φ is output distinguishable then we can determine the sequence of relations that corresponds to s/g. Thus,
in order to determine the memory after s/g it is sufficient that for all φ ∈ Φ we have that the memory after
φ has been applied is fully determined by the memory before φ was applied, the input used, and the output
observed.

Definition 3.2. Φ is observable if for all φ ∈ Φ,m ∈M,σ ∈ Σ

(γ1,m1), (γ2,m2) ∈ φ(m,σ)⇒ ((γ1 = γ2)⇒ (m1 = m2)).
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If all sequences in LAZ
are feasible then Z is said to be controllable and naturally this significantly

simplifies test sequence generation. Previous work on testing from a non-deterministic SXM has assumed
that Φ is controllable. However, this is a strong restriction and many specifications are not controllable.
Instead we make a weaker assumption, recently introduced for testing from a deterministic SXM [Ipa06].

Informally, Φ is input-uniform if for all p ∈ Φ∗, all memory values that can be produced by the application
of p when applied in a given memory m are processed in a uniform way by all φ ∈ Φ: if φ ∈ Φ then either
φ can process all such memory values or none. The memory values that can be produced as the result of
applying a sequence of processing relations from m0 will be said to be image-similar. The memory values
that are processed uniformly by all φ ∈ Φ will be said to be domain-similar.

Definition 3.3. Two memory values m1,m2 ∈ M are domain-similar if for all φ ∈ Φ, there exists σ1 ∈ Σ
such that (m1, σ1) ∈ dom φ if and only if there exists σ2 ∈ Σ such that (m2, σ2) ∈ dom φ.

Naturally domain-similarity is an equivalence relation.

Definition 3.4. IM j , j ≥ 0, are relations on M defined as follows:

• (m,m) ∈ IM0, m ∈M .

• Given j > 0 and m1,m2 ∈M , (m1,m2) ∈ IM j if:

– (m1,m2) ∈ IM j−1; or

– there exist m′
1,m

′
2 ∈ M such that ((m′

1,m
′
2) ∈ IM j−1 and there exist φ ∈ Φ, σ1, σ2 ∈ Σ, γ1, γ2 ∈ Γ,

such that ((γ1,m1) ∈ φ(m′
1, σ1) and (γ2,m2) ∈ φ(m′

2, σ2))).

Memory values m1,m2 ∈M are image-similar if (m1,m2) ∈ IM j for some j ≥ 0.

A direct consequence of the above definition is that if there exists j ≥ 0 such that IM j = IM j+1 then
for all i ≥ 1 we have that IM j = IM j+i and so the image-similarity relation coincides with IM j . In essence
two memory values m1,m2 ∈M are image-similar if there is some p ∈ Φ∗, a memory value m ∈M and input
sequences s1 and s2 such that we can obtain memory mi after executing p with si given initial memory m.

Note that image-similarity, as defined above, is not a transitive relation. On the other hand, its transitive
closure could have been used instead, without affecting the definition of input-uniformity (Definition 3.5).

Definition 3.5. Φ is called input-uniform if for all m1,m2 ∈ M , if m1 and m2 are image-similar then m1

and m2 are domain-similar.

When Φ is input-uniform and one is trying to drive a sequence of processing relations in testing then it
is possible to apply an iterative process in which input symbols are selected one at a time: there is no need
to consider the relations that are to be applied after the one currently being considered.

We can now express the overall design for test conditions on the specification.

Definition 3.6. Given a SXM Z = (Σ,Γ, Q,M,Φ, F ′, q0,m0) the design for test conditions are that Φ is:

• output-distinguishable;

• observable; and

• input-uniform.

Now consider the example given in Figure 1. The SXM machine is non-deterministic due to the account
management features being optional. It clearly is not controllable, for example the sequence deleteNo is not
feasible since in order to apply this we first need to provide at least one number. However, it is straightforward
to show that it is input-uniform. The different messages sent by the operations ensure that they are output-
distinguishable. All of the operations are functions and so are automatically observable. As noted earlier,
withdrawCash is non-deterministic if we add information about the notes produced when this operation
is used. However, the operation would still be observable since the notes left in the machine after cash is
withdrawn is fully determined by the notes in the machine before this operation and the notes given to the
customer.

Recall that we assume that Z is completely-defined. We also assume that certain test hypotheses hold.
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Fig. 2. The state-transition diagram of Z
′

1

3.2. Test hypotheses on the implementation

In order to reason about test effectiveness it is normal to assume that the IUT is functionally equivalent
to some unknown element of a given fault domain that contains a set of models (see, for example, [IT97,
RMN06]). When testing from an SXM Z this fault domain contains SXMs with the same memory1, initial
memory, input alphabet and output alphabet as Z. Thus, since the IUT is deterministic, we assume that the
IUT behaves like an unknown f-deterministic SXM Z ′ = (Σ,Γ, Q′,M,Φ′, F ′, q′0,m0). In common with many
approaches for testing from other state-based models, such as finite state machines, we assume that there is
a known upper bound n′ on the number of states of Z ′.

Definition 3.7. Given a SXM Z = (Σ,Γ, Q,M,Φ, F ′, q0,m0) with n states the test hypotheses are that the
IUT behaves like an unknown controllable, completely-defined, f-deterministic SXM Z ′ = (Σ,Γ, Q′,M,Φ′,
F ′, q′0,m0) that has at most n′ states (some given n′) such that Φ′ ≤ Φ.

The fault domain thus contains all such f-deterministic SXMs. Observe that while we do not assume that
the specification Z is controllable we do assume that the implementation Z ′ is controllable. However, since
in practice the memory is finite, there is always a controllable stream X-machine that models the IUT. The
assumption that Φ′ ≤ Φ corresponds to Φ containing the specifications of the components in Φ′ and these
being trusted components since it requires that each component φ′ ∈ Φ′ in the IUT conforms to a component
φ ∈ Φ in the specification.

In our example, a controllable model of Z can be obtained by creating distinct states, q00, q01, q02 for
each value taken by the counter when the PIN is entered. Then, by removing the non-determinism caused
by the overlapping domains of moveToManage and nullManage, two controllable SXMs, Z ′

1 and Z ′
2, that

conform to Z are obtained. These are represented in Figure 2 and Figure 3, respectively. Thus the test
generation problem can be formulated for n′ ≥ 5.

From the design for test conditions and the test hypotheses (the condition Φ′ ≤ Φ) it follows that

• Φ′ is also observable and input-uniform and

• every processing relation in the IUT corresponds to an unique processing relation in the specification.

Lemma 3.1. Let us suppose the Φ is observable, input-uniform, and output-distinguishable. If Φ′ ≤ Φ then
Φ′ is observable and input-uniform.

1 We assume that the memory of Z
′ is known since the role of the memory is to allow values to be passed between relations

and thus is defined by the interfaces of the (trusted) components used in development.
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Fig. 3. The state-transition diagram of Z
′

2

Proof. We first prove that Φ′ is observable. Let us suppose that φ′ ∈ Φ′, (γ1,m1), (γ2,m2) ∈ φ′(m,σ). Then
we require to prove that (γ1 = γ2) ⇒ (m1 = m2). Since Φ′ ≤ Φ there exists some φ ∈ Φ such that φ′ ≤ φ.
Thus, (γ1,m1), (γ2,m2) ∈ φ(m,σ). The result now follows from Φ being observable.

Now let us assume that memory values m1 and m2 are image-similar for Φ′: we require to prove that
they are domain-similar for Φ′. Since Φ′ ≤ Φ it is clear that m1 and m2 must be image-similar for Φ. Since
Φ is input-uniform, m1 and m2 must be domain-similar for Φ. Further, since Φ′ ≤ Φ, if m1 and m2 are
domain-similar for Φ then they are domain-similar for Φ′. The result thus follows.

Lemma 3.2. Let us suppose the Φ is observable and output-distinguishable. If Φ′ ≤ Φ then for every φ′ ∈ Φ′

there is exactly one φ ∈ Φ such that φ′ ≤ φ.

Proof. Proof by contradiction: assume that there exists some φ′ ∈ Φ′ and φ1, φ2 ∈ Φ such that φ′ ≤ φ1,
φ′ ≤ φ2, and φ1 6= φ2. By definition, dom φ1 = dom φ2 = dom φ′. Choose some (m,σ) ∈ dom φ′ and some
(γ1,m1) ∈ φ′(m,σ). Since φ′ ≤ φ1 we must have that (γ1,m1) ∈ φ1(m,σ). Similarly, (γ1,m1) ∈ φ2(m,σ).
But this contradicts Φ being output distinguishable.

Abs(Z ′) = (Σ,Γ, Q′,M,Φ, F ′
abs, q

′
0,m0) will denote the abstraction of Z ′, formed by replacing each φ′ ∈ Φ′

by the unique relation φ ∈ Φ such that φ′ ≤ φ. This relation φ will be denoted abs(φ′).
Throughout this paper we assume that the design for test conditions and test hypotheses hold: the

problem now is to show how an automated process can produce a test suite that determines correctness
relative to these conditions.

4. Reaching and distinguishing states in a SXM

Test generation algorithms, for testing from a SXM or an FSM, typically use sequences that reach states
and distinguish the specification: these are used to explore the state structure of the IUT. However, as a
SXM Z may have infeasible paths, there might be states that are reachable in the diagram that cannot be
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reached by any input sequence applied to the machine. Similarly, there may be pairs of distinguishable states
in the associated automaton for which the sequences of processing relations that distinguish between them
can never be applied (see [Ipa06] for an example). In this section we therefore introduce terminology and
notation regarding feasible paths in a SXM.

4.1. Realisable sequences

In order to determine which states can actually be reached or distinguished, we have to establish which se-
quences of processing relations in the associated automaton can be driven by input sequences. Such sequences
of processing relations are said to be realisable.

Definition 4.1. Given a memory value m ∈ M, the set RΦ(m) consists of all sequences of processing
relations p = φ1 . . . φn ∈ Φ∗, n ≥ 0, for which there exists s = σ1 . . . σn ∈ Σ∗ such that (m, s) ∈ dom ‖p‖.

Definition 4.2. Given a state q ∈ Q and a memory value m ∈M, a sequence of processing relations p ∈ Φ∗

is said to be realisable in q and m if p ∈ LAZ
(q) and p ∈ RΦ(m). If q = q0 and m = m0, p is simply said to

be realisable. The set of all sequences of processing relations realisable (in q and m) is denoted by LRZ (or
LRZ(q,m)) and so LRZ(q,m) = LAZ

(q) ∩RΦ(m) and LRZ = LAZ
∩RΦ(m0).

If all sequences of processing relations accepted by the associated automaton are realisable then the SXM
is said to be controllable.

Definition 4.3. Z is said to be controllable if LRZ = LAZ
.

Due to non-determinism, an input sequence s may not always drive a sequence p from a memory value
m even if (m, s) is contained in the domain of p. This may happen where the domain of p intersects the
domain of other sequences from LRZ(q,m). However, given a state q and a memory value m of Z, it may be
possible to identify sequences that are guaranteed to be always driven by input sequences. Such sequences
of processing relations are called deterministically-realisable (d-realisable). As d-realisable sequences process
input sequences that are not processed by any other path in the specification Z, they must be in any
implementation that conforms to Z. They can therefore be used in testing to reach states of the IUT.

Definition 4.4. Given a state q ∈ Q and a memory value m ∈ M, a sequence of processing relations
p ∈ LRZ(q,m) is said to be d-realisable in q and m if for all s ∈ Σ∗ such that (m, s) ∈ dom ‖p‖, the
following holds: (m, s) /∈

⋃
x∈LRZ(q,m)\{p} dom ‖x‖. If q = q0 and m = m0, p is simply said to be d-realisable.

The set of all sequences of processing relations that are d-realisable (in q and m) is denoted by LDRZ (or
LDRZ(q,m)).

Interestingly, the above condition may be weakened: it is sufficient that for a state q and a memory
value m there is some such input sequence s. Such a definition might state that a sequence p is contained
in LDRZ(q,m) if and only if there exists s ∈ Σ∗ such that (m, s) ∈ dom ‖p‖ and the following holds:
(m, s) /∈

⋃
x∈LRZ(q,m)\{p} dom ‖x‖. However, if the weaker condition is used then the test process (Definition

6.1), that associates an input/output sequence to every sequence of processing function, will have to be
defined in a more complex manner. The above, stronger, condition, will be used throughout this paper in
order to aid readability, but, in practice, the weaker condition may lead to a more efficient test generation
procedure.

4.2. dr-reachable states

Sequences in LDRZ make it possible to reach some states of a SXM using appropriate input sequences and we
know that they should reach corresponding states of the IUT. Such states will be referred to as dr-reachable.
Since ε ∈ LDRZ , the initial state is always dr-reachable.

Definition 4.5. A state q ∈ Q is said to be dr-reachable if there exists p ∈ LDRZ such that F ∗(q0, p) = q.

An dr-state cover is a minimal set of realisable sequences Sdr, ε ∈ Sdr, that reaches every dr-reachable
state in Z.
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Definition 4.6. A set Sdr ⊆ LDRZ is a dr-state cover of Z if:

• ε ∈ S.

• For every dr-reachable state q of Z there exists p ∈ Sdr such that F ∗(q0, p) = q.

• For every two distinct sequences p1, p2 ∈ Sdr, F ∗(q0, p1) 6= F ∗(q0, p2).

Ideally, a dr-state cover will be used in test generation. However, the test generation algorithm will use
a set of sequences that dr-reach states of the SXM specification but will not require the use of a dr-state
cover.

For Z as in Example 2.1, the sequences ε, enterNo enterNo correctPIN , and enterNo enterNo
correctPIN moveToCash are all in LDRZ , so q0, q1 and q2 are dr-reachable. On the other hand, q3 is
not dr-reachable since it can only be reached (from q2) by moveToManage and dom moveToManage =
dom nullManage. Thus Sdr = {ε, enterNo enterNo correctPIN, enterNo enterNo correctPIN
allowbreakmoveToCash} is a dr-state cover of Z.

4.3. Attainable memory values

The memory values computed along sequences in LRZ that reach a state q will be said to be attainable in q.

Definition 4.7. Given a state q ∈ Q, a memory value m ∈ M is said to be attainable in q if there exist
p ∈ LRZ , s ∈ Σ∗, g ∈ Γ∗ such that F ∗(q0, p) = q and ((m0, s), (g,m)) ∈ ‖p‖. The set of all memory values
attainable in q is denoted by MAtt(q).

4.4. dr-distinguishable states

In test generation it is normal to use sequences that distinguish the states of the specification: these should
also distinguish the corresponding states of the IUT. We will say that two states q1 and q2 of a SXM are dr-
distinguishable if it is possible to distinguish between them by applying a finite set of d-realisable sequences
of processing relations in any attainable memory value of q1 and q2, respectively.

Definition 4.8. Given q1, q2 ∈ Q, a set Y ⊆ Φ∗ is said to dr-distinguish between q1 and q2 if for every
m1 ∈ MAtt(q1) and every m2 ∈ MAtt(q2), there exists p ∈ Y such that p ∈ LDRZ(q1,m1) \ LRZ(q2,m2)
or p ∈ LDRZ(q2,m2) \ LRZ(q1,m1). Two states q1 and q2 are said to be dr-distinguishable if there exists a
finite set of sequences Y that dr-distinguishes between them.

In other words, states q1 and q2 are dr-distinguishable if there exists a finite set of sequences Y such
that for every memory values m1 and m2, attainable in q1 and q2, respectively, Y contains a path p that is
d-realisable in q1 and m1 and not realisable in q2 and m2 or vice versa.

When Z is f-deterministic, LDRZ coincides with LRZ , so the above condition becomes LDRZ(q1,m1)∩
Y 6= LDRZ(q2,m2) ∩ Y. This coincides with the definition of r-distinguishable states given in [Ipa06] for
deterministic SXMs. As shown in [Ipa06], not every pair of states of a SXM can necessarily be dr-distinguished
(r-distinguished) by a set of sequences even if the associated FA is minimal and, furthermore, even if such a
set exists, it may not be finite.

A dr-characterization set is a set of sequences of processing relations that dr-distinguishes between every
pair of dr-distinguishable states.

Definition 4.9. A set Wdr ⊆ Φ∗ is called a dr-characterization set of Z if Wdr dr-distinguishes between
every two dr-distinguishable states of Z.

Ideally, we use a dr-characterization set in test generation. However, the test generation algorithm will
use a set W of sequences that dr-distinguish states of the specification SXM but will not require the use of a
dr-characterization set. Additionally, if we have no sequences that dr-distinguish states of the specification,
W will just contain the empty sequence.

For Z as in Example 2.1, it can be observed that, for any memory value m ∈ M, moveToCash ∈
LDR(q1,m), withdrawCash ∈ LDR(q2,m) (we assume that for every number entered by the user, S ′ can
provide an appropriate balance that meets the triggering condition) and requestBalance ∈ LDR(q3,m).
Thus, all states of Z are pairwise dr-distinguishable and Wdr = {moveToCash,withdrawCash, requestBalance}
is a dr-characterization set of Z.
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4.5. Checking realisable sequences

As Z and Abs(Z ′) are assumed to have the same type and this is output-distinguishable and observable, the
testing process involves checking that the sequences of processing relations allowed by the implementation
are contained in the set specified. Only the realisable sequences have to be considered, as the others have no
functional role. This idea is captured by the following lemma.

Lemma 4.1. Z ′ conforms to Z if and only if LRAbs(Z′) ⊆ LRZ .

Proof. “⇐”: From Definition 2.6 it follows that Abs(Z ′) conforms to Z. Since Φ′ ≤ Φ, Z ′ conforms to Abs(Z ′)
and so Z ′ conforms to Z.

“⇒”: Let p′ = φ′
1 . . . φ′

k ∈ LRAbs(Z′) and let φi = abs(φ′
i), 1 ≤ i ≤ k. Then there exist σ1, . . . , σk ∈ Σ,

γ1, . . . , γk ∈ Γ, m1, . . . ,mk ∈M such that ((mi−1, σi), (γi,mi)) ∈ φ′
i, 1 ≤ i ≤ k. Then ((mi−1, σi), (γi,mi)) ∈

φi, 1 ≤ i ≤ k. Since Z ′ conforms to Z there exist φ′′
1 , . . . , φ′′

k ∈ Φ, m′′
1 , . . . ,m′′

k ∈M such that φ′′
1 . . . φ′′

k ∈ LRZ

and (γi,m
′′
i ) ∈ φ′′

i (m′′
i−1, σi), 1 ≤ i ≤ k, where m′′

0 = m0. Since Φ is output-distinguishable and observable,
by induction on i, 1 ≤ i ≤ k, it follows that φ′′

i = φi and m′′
i = mi. Thus p ∈ LRZ . Since p is arbitrarily

chosen, LRAbs(Z′) ⊆ LRZ .

Consequently, since Z ′ is controllable, it is sufficient to check that every sequence of processing relations
in the associated FA of Abs(Z ′) is also accepted by the associated FA of Z.

Lemma 4.2. LRAbs(Z′) ⊆ LRZ if and only if LAAbs(Z′)
⊆ LAZ

.

Proof. “⇐”: Assume LAAbs(Z′)
⊆ LAZ

. Then LAAbs(Z′)
∩RΦ(m0) ⊆ LAZ

∩RΦ(m0). Thus LRAbs(Z′) ⊆ LRZ .

“⇒”: Conversely, assume LRAbs(Z′) ⊆ LRZ . Then LAAbs(Z′)
∩ RΦ(m0) ⊆ LAZ

∩ RΦ(m0). Since Z ′ is

controllable, LAAbs(Z′)
∩RΦ(m0) = LAAbs(Z′)

, so LAAbs(Z′)
⊆ LAZ

∩RΦ(m0). Thus LAAbs(Z′)
⊆ LAZ

.

5. The product machine

A state-counting approach will be used in order to establish whether LAAbs(Z′)
⊆ LAZ

. The reasoning

behind this involves the product machine of Z and Abs(Z ′) and this will now be defined. State-counting
was originally used for conformance testing of a deterministic implementation against a non-deterministic
finite state machine [PYB96] and has been more recently applied to test generation from stream X-machines
[HH04]. We will be able to express conformance of the IUT to the specification SXM in terms of the
reachability of a state Fail in the product machine and test generation will be based on this.

Given two FA, AZ and AAbs(Z′), it is possible to build a cross-product of their states, such that states
(q, q′) of the cross-product FA correspond to pairs of states q, q′ in the two FA. A transition FP ((q, q′), φ) =
(q1, q

′
1) exists in the cross-product FA if and only if the transitions F (q, φ) = q1 and F ′

abs(q
′, φ) = q′1 exist

in AZ and AAbs(Z′), respectively. The language accepted by the automaton produced by this construction
corresponds to the intersection of the languages accepted by the two FAs. If the language accepted by
AAbs(Z′) is not contained in that accepted by AZ , then there will be a transition from some (q, q′) that
Abs(Z ′) can follow but Z cannot. We add to the cross-product FA an extra state, Fail, and transitions
FP ((q, q′), φ) = Fail to correspond to transitions that can be taken by Abs(Z ′) but not by Z. Testing for
inclusion of LAAbs(Z′)

in LAZ
then corresponds to testing in order to determine whether the state Fail of

the cross-product FA is reachable. If the two SXMs, Z and Abs(Z ′), are considered instead of their FA, this
construction defines the product machine.

Definition 5.1. The product machine formed from Z = (Σ,Γ, Q,M,Φ, F, q0,m0) and Abs(Z ′) = (Σ,Γ, Q′,
M,Φ, F ′

abs, q
′
0,m0) is the SXM P (Z,Abs(Z ′)) = (Σ,Γ, QP ,M,Φ, FP , (q0, q

′
0),m0) in which QP = (Q×Q′) ∪

{Fail}, Fail /∈ Q×Q′, and FP is defined by the following rules:

• For (q, q′) ∈ QP and φ ∈ Φ:

– If (q, φ) ∈ dom F and (q′, φ) ∈ dom F ′
abs then FP ((q, q′), φ) = (F (q, φ), F ′

abs(q
′, φ)).

– If (q, φ) /∈ dom F and (q′, φ) ∈ dom F ′
abs then FP ((q, q′), φ) = Fail.

– Else FP ((q, q′), φ) is undefined.
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• For φ ∈ Φ, FP (Fail, φ) is undefined.

Since Z ′ is controllable and every sequence of processing relations accepted by AP (Z,Abs(Z′)) is also
accepted by AAbs(Z′), P (Z,Abs(Z ′)) is also controllable. Note also that, unlike Z and Z ′, P (Z,Abs(Z ′))
need not be completely-defined. This is not a problem, however, since it will be sufficient to check whether
the Fail state is reachable.

The remainder of this section shows that determining whether Z ′ conforms to Z corresponds to deter-
mining whether the Fail state of the product machine is reachable.

Lemma 5.1. Given p ∈ Φ∗, q ∈ Q, q′ ∈ Q′, F ∗
P ((q0, q

′
0), p) = (q, q′) if and only if F ∗(q0, p) = q and

F ′∗
abs(q

′
0, p) = q′.

Proof. Follows from Definition 5.1 by induction on the length of p.

Lemma 5.2. Given p ∈ Φ∗, p reaches Fail in AP (Z,Abs(Z′)) if and only if p ∈ LAAbs(Z′)
\ LAZ

and p = p1φ

for some p1 ∈ LAZ
∩ LAAbs(Z′)

and φ ∈ Φ.

Proof. By Definition 5.1, p reaches Fail in AP (Z,Abs(Z′)) if and only if p = p1φ for some p1 ∈ Φ∗, φ ∈ Φ for
which there exist q ∈ Q, q′ ∈ Q′ such that F ∗

P ((q0, q
′
0), p1) = (q, q′) and FP ((q, q′), φ) = Fail. By Lemma 5.1,

F ∗
P ((q0, q

′
0), p1) = (q, q′) if and only if F ∗(q0, p1) = q, F ′∗

abs(q
′
0, p1) = q′. By Definition 5.1, FP ((q, q′), φ) = Fail

if and only if (q, φ) /∈ dom F and (q′, φ) ∈ dom F ′
abs. Thus, p reaches Fail in AP (Z,Abs(Z′)) if and only if

p ∈ LAAbs(Z′)
\ LAZ

and p = p1φ for some p1 ∈ LAZ
∩ LAAbs(Z′)

and φ ∈ Φ.

Lemma 5.3. Fail is not reachable in AP (Z,Abs(Z′)) if and only if LAAbs(Z′)
⊆ LAZ

.

Proof. LAAbs(Z′)
⊆ LAZ

does not hold if and only if there exist p ∈ Φ∗, φ ∈ Φ such that p ∈ LAZ
∩LAAbs(Z′)

and pφ ∈ LAAbs(Z′)
\ LAZ

. Thus, by Lemma 5.2, Fail is reachable in AP (Z,Abs(Z′)) if and only if LAAbs(Z′)
⊆

LAZ
does not hold.

Lemma 5.4. Fail is not reachable in AP (Z,Abs(Z′)) if and only if LRAbs(Z′) ⊆ LRZ .

Proof. Follows from Lemmas 5.3 and 4.2.

Lemma 5.5. Fail is not reachable in AP (Z,Abs(Z′)) if and only if Z ′ conforms to Z.

Proof. Follows from Lemmas 5.4 and 4.1.

6. Test processes

Let us suppose that we have generated appropriate sequences of processing relations to check whether
the Fail state of AP (Z,Abs(Z′)) is reachable. We will then need a mechanism, called a test process of Z
that translates each sequence of processing relations into a pair containing an input sequence and the
corresponding output sequence observed in testing. In effect, the test process is used in order to determine
in testing whether a path in the SXM specification has been implemented. We require a test process, rather
than a preset input sequence, because of the nondeterminism in the SXM specification. The concept of a test
process was originally defined for a (controllable) quasi-nondeterministic SXM [HH00] and then the definition
was extended to any (controllable) non-deterministic SXM [HH04]. We further extend this definition to the
case in which Φ is input-uniform but may not be controllable.

A test process takes a sequence p ∈ Φ∗ of relations and attempts to find test data to execute p. It does
this in an adaptive manner: if a prefix p′ of p has been successfully executed then it finds an input that
should trigger the next relation given the current memory. If at any point the test process fails to trigger
the expected relation then it terminates. Note that since Φ is output-distinguishable we know whether a
relation conforming to a required relation φ has been triggered. In addition, since Φ is observable we know
the current memory after an input/output sequence has been observed.

Definition 6.1. Let us suppose that Φ is input-uniform. A test process of Z is a function t : Φ∗ −→ Σ∗×Γ∗

that satisfies the following conditions:

• t(ε) = ε. (1)
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• Let p ∈ Φ∗ and φ ∈ Φ and let t(p) = (s, g).

– Assume that p ∈ LAZ
and there exists m ∈M such that ((m0, s), (g,m)) ∈ ‖p‖.

· If there exists σ ∈ Σ such that (m,σ) ∈ dom φ then t(pφ) = t(p)(σ, γ) for some σ that satisfies
this condition and γ such that Z ′ produces γ in response to σ after (s, g). (2)

· Else, t(pφ) = t(p). (3)

– Otherwise, t(pφ) = t(p). (4)

The first rule is the base case, stating that testing based on the empty sequence requires no input and
produces no output. The remaining three rules are recursive cases, explaining how the test for sequence pφ
is defined in terms of t(p). The second and third rules give the case where p has been triggered in Abs(Z ′): if
an appropriate input can be found in the domain of φ, the sequence is extended further (rule 2); otherwise,
the sequence cannot be extended and the construction of t(pφ) reduces to the construction of t(p) (rule 3).
The final rule states how a sequence p is pruned.

Pruning happens in the following two cases: either some prefix of p is not contained in LAZ
or t(p)

triggers some other sequence in Abs(Z ′). In this paper the test process is used to decide whether LAAbs(Z′)
,

the language defined by the abstraction of the implementation machine is included in LAZ
, the language

defined by the specification. If a prefix of p is not contained in LAZ
then p is not in LAZ

and so there is no
need to test further. Similarly, if t(p) triggers some sequence p′ 6= p in Abs(Z ′) then, since Z is f-deterministic
and Φ is output-distinguishable, we can deduce that p is not contained in LAAbs(Z′)

. Then it is not necessary

for the test process to test beyond p: it is sufficient to establish that p /∈ LAAbs(Z′)
. Note that the IUT Z ′ is

an implicit parameter of the test process t.
Let us suppose that the test process is applied to a sequence p = φ1, . . . , φk from LAZ

. The test process
follows a sequence of steps. At the ith step, the test process produces an input σi that can trigger φi, given
the current memory. The input σi is sent to the IUT and the output is observed. From this, since Φ is
observable and output-distinguishable, the memory after the transition can be determined. The next input
used depends upon the output received in response to previous input since Z is non-deterministic: the choice
of next input depends upon the current memory. Since there may be more than one acceptable input at
some point, there can be more than one possible test process.

In general, the test process associates a sequence of processing relations p with a pair (s, g), where
g represents the output produced by the application of s to Z ′. This is shown by Lemma 6.1. A direct
consequence of this result is that, whenever Z ′ conforms to Z, the test process will produce only input/output
pairs that are allowed by the specification.

Lemma 6.1. Let us suppose that Φ is input-uniform, output-distinguishable and observable. Let t : Φ∗ −→
Σ∗ × Γ∗ be a test process of Z, p ∈ Φ∗ and let (s, g) = t(p). Then there exist p′ ∈ LRAbs(Z′) and unique
m ∈M such that ((m0, s), (g,m)) ∈ ‖p′‖.

Proof. We prove the result by induction on the length of p. The result clearly holds for the base case ε.
Let us suppose that the result holds for p and let φ ∈ Φ. Suppose p ∈ LAZ

, there exists m ∈ M such
that ((m0, s), (g,m)) ∈ ‖p‖. By the inductive hypothesis, there exists p′ ∈ LRAbs(Z′) and unique m ∈ M
such that ((m0, s), (g,m)) ∈ ‖p′‖. As Φ is output-distinguishable and observable, p′ = p, so p ∈ LRAbs(Z′).
If there exists σ ∈ Σ such that (m,σ) ∈ dom φ then t(pφ) = (sσ, gγ) for some σ and γ for which there exist
φ′ ∈ Φ′ and m′ ∈ M such that pφ′ ∈ LRAbs(Z′) and ((m,σ), (γ,m′)) ∈ φ′. As Φ is observable, m′ is unique
and so the result follows. In any other case, t(pφ) = (s, g) and the result follows directly from the inductive
hypothesis.

On the other hand, the test process may be used to explore the relationship between LAAbs(Z′)
, the lan-

guage defined by the abstraction of the implementation, and LAZ
, the language defined by the specification,

as shown by the following result.

Lemma 6.2. Let us suppose that Φ is input-uniform, output-distinguishable and observable. Let t : Φ∗ −→
Σ∗ × Γ∗ be a test process of Z, p ∈ Φ∗ and let (s, g) = t(p). If p ∈ LRAbs(Z′) and (s, g) ∈ fZ then p ∈ LAZ

and there exists unique m ∈M such that ((m0, s), (g,m)) ∈ ‖p‖.

Proof. We prove the result by induction on the length of p. The result clearly holds for the base case ε.
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Let us suppose that the result holds for p and let φ ∈ Φ such that pφ ∈ LRAbs(Z′). By the inductive
hypothesis, p ∈ LAZ

and there exists unique m ∈ M such that ((m0, s), (g,m)) ∈ ‖p‖. Since Φ is input-
uniform and pφ ∈ RΦ(m0), there exists σ ∈ Σ such that (m,σ) ∈ dom φ. Then, by rule (2) of Definition
6.1, t(pφ) = t(p)(σ, γ) for some σ that satisfies this condition and γ such that Z ′ produces γ in response to
σ after (s, g). Since pφ ∈ LRAbs(Z′), there exists m′ ∈M such that ((m,σ), (γ,m′)) ∈ φ. Furthermore, since
Φ is observable, m′ is unique. Since (sσ, gγ) ∈ fZ , there exist φ′ ∈ Φ and m′′ ∈ M such that pφ′ ∈ LAZ

and ((m,σ), (γ,m′′)) ∈ φ′. Since Φ is output-distinguishable, φ = φ′ and, hence, m′ = m′′. Thus the result
follows.

Conversely, the test process may also be used to establish that the dr-reachable sequences from the
specification are also present in the language defined by the abstraction of the implementation. In partic-
ular, this result will be used later, (Lemma 7.1) to show that dr-distinguishable states in Z correspond to
distinguishable states in AAbs(Z′).

Lemma 6.3. Let us suppose that Φ is input-uniform, output-distinguishable and observable. Let t : Φ∗ −→
Σ∗×Γ∗ be a test process of Z, p, p′ ∈ Φ∗ and let (s, g) = t(p). Suppose p ∈ LRAbs(Z′) and t(pp′) ∈ fZ . Then
t(p) ∈ fZ and, by Lemma 6.2, there exists q ∈ Q such that F (q0, p) = q and there exists unique m ∈M such
that ((m0, s), (g,m)) ∈ ‖p‖. If p′ ∈ LDRZ(q,m) then pp′ ∈ LAAbs(Z′)

.

Proof. Let (s′, g′) = t(pp′). We prove by induction on the length of p′ that pp′ ∈ LAAbs(Z′)
and there exists

unique m′ ∈M such that ((m0, s
′), (g′,m′)) ∈ ‖pp′‖. The result clearly holds for the base case ε.

Let us suppose that the result holds for p′ and let φ ∈ Φ such that p′φ ∈ LDRZ(q,m). Since Φ is
input-uniform, there exists σ ∈ Σ such that (m′, σ) ∈ dom φ. Then, by rule (2) of Definition 6.1, t(pp′φ) =
t(pp′)(σ, γ) for some σ that satisfies this condition and γ such that Z ′ produces γ in response to σ after
(s′, g′). Then there exist φ′ ∈ Φ and m′′ ∈ M such that pp′φ′ ∈ LAAbs(Z′)

and ((m′, σ), (γ,m′′)) ∈ φ′. Since

(s′σ, g′γ) ∈ fZ , there exist φ′′ ∈ Φ and m′′′ ∈ M such that pp′φ′′ ∈ LAZ
and ((m′, σ), (γ,m′′′)) ∈ φ′′. Since

p′φ ∈ LDRZ(q,m), φ = φ′′. Since Φ is output-distinguishable, φ = φ′. Since Φ is observable, m′′ = m′′′.
Thus the result follows.

7. Test generation

The first step in the construction of the test data is the selection of two sets of sequences of processing
relations, Sdr and Wdr, and of a relation ddr on the states of Z as follows:

• Sdr ⊆ LDRZ is a finite set of d-realisable sequences such that

– ε ∈ Sdr and

– no state in Z is reached by more than one sequence in Sdr and so for every two distinct sequences
p1, p2 ∈ Sdr, F ∗(q0, p1) 6= F ∗(q0, p2).

Sdr will be used to reach dr-reachable states in Z.

• Wdr ⊆ Φ∗ is a finite set of processing relations. Wdr will be used to dr-distinguish between dr-distinguishable
states of Z. Wdr is required to be non-empty, so when no sequences are used to dr-distinguish between
states of Z, we will use Wdr = {ε} instead of Wdr = ∅.

• ddr : Q←→ Q is a relation on the states of Z that satisfies the following condition: for every two states
q1, q2 ∈ Q, if (q1, q2) ∈ ddr then q1 and q2 are dr-distinguished by Wdr. The relation ddr identifies the pairs
of states that are known to be dr-distinguished by Wdr. For simplicity, ddr is required to be symmetric.

It is desirable that

• Sdr is an dr-state cover of Z,

• Wdr is an dr-characterization set of Z and

• all pairwise dr-distinguishable states of Z are known to be dr-distinguished by Wdr, and so (q1, q2) ∈ ddr

if and only if q1 and q2 are dr-distinguishable.

but these restrictions will not be introduced.
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The set of all states of Z reached by sequences in Sdr is denoted by Qdr and so Qdr = {q ∈ Q | ∃p ∈
Sdr.F

∗(q0, p) = q}. As all sequences in Sdr are realisable, all states in Qdr are dr-reachable. Furthermore,
since ε ∈ Sdr, the initial state of Z is contained in Qdr.

Let Q1, . . . Qj denote the maximal sets of states of Z that are known to be pairwise dr-distinguished by
Wdr; for all 1 ≤ i ≤ j, if q1, q2 ∈ Qi and q1 6= q2 then we have that (q1, q2) ∈ ddr and for every q3 ∈ Q \Qi,
there exists q1 ∈ Qi such that (q1, q3) /∈ ddr. Let also Q′

i = Qi ∩Qdr, 1 ≤ i ≤ j.
Consider Z in our example. As shown earlier, all states except q3 are dr-reachable and all pairs of states are

dr-distinguishable, Sdr = {ε, enterNo enterNo correctPIN, enterNo enterNo correctPIN moveToCash}
is a dr-state cover of Z and Wdr = {moveToCash,withdrawCash, requestBalance} is a dr-characterization
set of Z.

Let us suppose that Sdr and Wdr are the chosen sets of sequences and, furthermore, all pairs of states
are known to be dr-distinguished by Wdr and so (q, q′) ∈ dr if and only if q 6= q′. Then there is one maximal
set of states known to be pairwise dr-distinguished by Wdr : Q1 = Q. Thus, in the example in Figure 1,
Q′

1 = Qdr = {q0, q1, q2}.
Given a state q ∈ Qdr, let pq ∈ Sdr denote the unique sequence in Sdr that reaches q; by the minimality

of Sdr, pq is well defined. Let us suppose that a test process t : Φ∗ −→ Σ∗ × Γ∗ has been defined for all
sequences of processing relations in Sdr.

Given a state q ∈ Qdr, the set V (q) is defined to consist of all sequences x ∈ Φ∗ \ {ε} for which

• pqx ∈ LRZ ,

• there exists i, 1 ≤ i ≤ j, such that x visits states from Qi exactly n′ − card(Q′
i) + 1 times when followed

from q in AZ (the initial state of the path is not included in the count) and this condition does not hold
for any proper prefix of x. More formally:

– there exists i, 1 ≤ i ≤ j, such that card({y | y ∈ pref(x) \ {ε} ∧ F ∗(q, y) ∈ Qi}) = n′ − card(Q′
i) + 1

and

– for all i, 1 ≤ i ≤ j, and all x1 ∈ pref(x) \ {x}, card({y | y ∈ pref(x1) \ {ε} ∧ F ∗(q, y) ∈ Qi}) <
n′ − card(Q′

i) + 1.

The essential idea is that in order to determine whether Fail is reachable we search for a minimal path to
Fail. Informally, V (q) is thus defined to contain only “minimal” paths of the Product Machine AP (Z,Abs(Z′))

that may reach Fail. A minimal path must not have visited any pair of states ((p, p′) ∈ Q×Q′) twice and,
furthermore, cannot contain pairs of states that have already been reached by the sequences in Sdr. Since
we do not know the Product Machine we use a sufficient condition that ensures that at least one state of
the Product Machine has been repeated. If a path x visits states from some Qi, a tester can use Wdr after
each prefix of x to distinguish between the corresponding states visited along x in Z ′. Consequently, if states
from Qi are visited ni times along a minimal path x, then for there to have been no repeated state of the
Product Machine we must have visited ni distinct states in Z ′. Thus, ni cannot exceed the upper bound n′

on the number of states of Z ′ plus one (for the Fail state). In addition, there are card(Q′
i) states from Qi

that can be reached by sequences from Sdr. As Sdr will also reach the corresponding states of Z ′, this will
leave card(Q′

i) fewer pairs of states to explore. Thus, ni ≤ n′ − card(Q′
i) + 1.

Given Sdr, Wdr and ddr, the definition of V (q) coincides with that given for a deterministic specification
[Ipa06]. Note that, when Z is controllable, LRZ = LAZ

, so the definition reduces to that given in [HH04] for
this case.

The set V (q) can be constructed by devising a successor tree in which each path x from the root q
corresponds to a realisable sequence pqx. A path meets the termination criterion when it visits states from
some Qi exactly n′ − card(Q′

i) + 1 times (some 1 ≤ i ≤ j). In this case, the path need not be extended
further and so the node is a leaf. A formal description of the procedure is given below. The procedure not
only constructs V (q), but also the values of a test process t for the sequences in {pq}V (q). It will transpire
that these input/output sequences are used in testing.

In what follows, if Z ′ produces g ∈ Γ∗ in response to s ∈ Σ∗, outσ(s, g) will denote the output produced
by Z ′ in response to the input σ after (s, g). Furthermore, given m ∈ M and φ ∈ Φ with (m,σ) ∈ dom φ,
memφ(m,σ, γ) will denote the memory value m′ such that ((m,σ), (γ,m′)) ∈ φ, if this exists; otherwise,
memφ(m,σ, γ) will take a special value µ /∈ M, not contained in the original memory set. The definition of
mem can be extended to take sequences of elements, giving memp(m, s, g) for p ∈ Φ∗, s ∈ Σ∗ and g ∈ Γ∗.
For simplicity, in the following procedure it is assumed that (sq, gq) = t(pq), mq = mempq

(m0, sq, gq) and
the sets Q1, . . . Qj and Q′

1, . . . Q
′
j have already been determined.
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Input Z, n′, q, pq, (sq, gq), mq, Q1, . . . , Qj and card(Q′
1), . . . , card(Q′

j);
n1 := 0, . . . , nj = 0; X := ∅; Y := {((ε, ε, ε), (q,mq), (n1, . . . , nj))};
Repeat

For y in Y do
Y := Y \ y; ((p, s, g), (q,m), (n1, . . . , nj)) := y;
If m = µ then X = X ∪ {(p, s, g)}
Else

For φ in Φ such that (q, φ) ∈ dom F do
Find σ ∈ Σ such that (m,σ) ∈ dom φ;
If such σ was found then

γ = outσ(s, g);
m′ = memφ(m,σ, γ);
For i := 1 to j do

If F (q, φ) ∈ Qi then n′
i := ni + 1

Else n′
i := ni;

If there exists i, 1 ≤ i ≤ n, such that n′
i = n′ − card(Q′

i) + 1 then
X = X ∪ {(pφ, sσ, gγ)}
Else Y = Y ∪ {((pφ, sσ, gγ), (F (q, φ),m′)), (n′

1, . . . , n
′
j))};

Until Y = ∅;
V = ∅; TV = ∅;
For (x1, x2, x3) in X do

V = V ∪ {x1}; TV = TV ∪ {(pqx1, sqx2, gqx3);
Output V, TV.

Each iteration of the algorithm involves determining which elements of Y satisfy the termination criterion
and thus do not need extending; these are transferred into X. The remaining elements are extended and the
iteration continues. If the input/output pair produced by the test process has triggered a different processing
relation in the IUT (there is no m′ such that ((m,σ), (γ,m′)) ∈ φ)), m′ = µ and the sequence will be pruned.
The algorithm outputs the set V (q) (in which the sequences that are not triggered in the IUT are trimmed)
and the values of a test process t for sequences in {pq}V (q).

As shown in [Ipa06], each sequence in V (q) has length at most n · n′. Thus V (q) is finite and can be
computed.

In our example all states are known to be dr-distinguished by Wdr so all the paths in the tree will have
the same length, n′ − card(Q′

1) + 1 = n′ − 2. Thus, for any state q of Z, {pq}V (q) = {pq}Φ[n′ − 2] ∩ LRZ .
Once we have constructed the sets V (q), we define

U =
⋃

q∈Qdr

{pq}pref(V (q))

and

Up =
⋃

q∈Qdr

{pq}(pref(V (q)) \ V (q))

.
Then a test process t : Φ∗ −→ Σ∗ × Γ∗ need only be applied to sequences in UWdr ∪ UpΦ.
The remainder of the section validates this construction.

Lemma 7.1. Let p1, p2 ∈ LRZ , q1, q2 ∈ Q such that F ∗(q0, p1) = q1 and F ∗(q0, p2) = q2 and q′1, q
′
2 ∈ Q′

such that F ′∗
abs(q

′
0, p1) = q′1 and F ′∗

abs(q
′
0, p2) = q′2. Let us suppose that Wdr dr-distinguishes between q1 and

q2 in Z. If for all p ∈ {p1, p2}Wdr, t(p) ∈ fZ then Wdr distinguishes between q′1 and q′2 in AAbs(Z′).

Proof. Let m1,m2 ∈ M , g1, g2 ∈ Γ∗, s1, s2 ∈ Σ∗, such that t(p1) = (s1, g1), (g1,m1) ∈ ‖p1‖(m0, s1),
t(p2) = (s2, g2), and (g2,m2) ∈ ‖p2‖(m0, s2). Since Wdr dr-distinguishes between q1 and q2 in Z, there exists
x ∈ Wr such that x ∈ LDRZ(q1,m1) \ LRZ(q2,m2) or x ∈ LDRZ(q2,m2) \ LRZ(q1,m1). Without loss of
generality, assume x ∈ LDRZ(q1,m1) \ LRZ(q2,m2). Since t(p1x) ∈ fZ , by Lemma 6.3, x ∈ LAAbs(Z′)

(q′1).
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On the other hand, since t(p2x) ∈ fZ , by Lemma 6.2 x /∈ LAAbs(Z′)
(q′2). Thus Wr distinguishes between q′1

and q′2 in AAbs(Z′).

Lemma 7.2. Let q ∈ Q and x ∈ V (q) with pqx ∈ LAAbs(Z′)
. If for all p ∈ SdrWdr ∪ {pq}pref(x)Wdr,

t(p) ∈ fZ then the path in AP (Z,Abs(Z′)) formed by following x after pq either contains a loop or meets a
state, other than the root state, that has already been reached by some sequence in Sdr.

Proof. For simplicity, in what follows we will use pathZ(x, pq), pathZ′(x, pq) and pathZ,Z′(x, pq) to denote
the paths formed by following x after pq in AZ , AAbs(Z′) and AP (Z,Abs(Z′)), respectively. The root states are
not included when referring to these paths. First note that, by Lemma 5.1, path pathZ,Z′(x, pq) exists in
AP (Z,Abs(Z′)).

We prove the lemma by contradiction. Assume pathZ,Z′(x, pq) is cycle-free and does not meet any state
reached by sequences in Sr, other than the root state. Let i be such that pathZ(x, pq) visits states from Qi

exactly n′ − card(Q′
i) + 1 times. By Lemma 7.1, since Wdr pairwise dr-distinguishes between the states in

Qi, it also pairwise distinguishes between the corresponding states in AAbs(Z′). Thus, since pathZ,Z′(x, pq)
is cycle-free, pathZ′(x, pq) visits at least n′ − card(Q′

i) + 1 distinct states of Abs(Z ′) and the sequences in
Sr will reach at least another card(Q′

i) states of Abs(Z ′). This implies that Z ′ has more than n′ states,
providing a contradiction as required.

Lemma 7.3. Let us suppose that the Fail state of AP (Z,Abs(Z′)) is reachable. If for all p ∈ UWdr, t(p) ∈ fZ

then Fail can be reached by some sequence from UpΦ.

Proof. Let us suppose that Fail is reachable. Then there exist p1 ∈ LAZ
∩ LAAbs(Z′)

, φ ∈ Φ and (q1, q
′
1) ∈

Q×Q′ such that p1 reaches (q1, q
′
1) in AP (Z,Abs(Z′)), (q1, φ) /∈ dom F and (q′1, φ) ∈ dom F ′

abs. Since ε ∈ Sr,

p1 ∈ SrΦ
∗. Let i ≥ 0 be the minimum integer for which there exists a sequence in SrΦ

i that reaches (q1, q
′
1) in

AP (Z,Abs(Z′)). Let p2 = pqx be such a sequence, pq ∈ Sr, x ∈ Φi. By Lemma 5.1, p2 ∈ LAZ
∩LAAbs(Z′)

. Thus,

since Abs(Z ′) is controllable, p2 ∈ LRZ . Then, either p2 is contained in pref(V (q)) or extends some sequence
from V (q), i.e. x ∈ V (q)Φ∗. Since i is the minimum integer with the above property, the path in AP (Z,Abs(Z′))

formed by following x after pq will be cycle-free and will not meet any state reached by sequences in Sr.
Then, by Lemma 7.2, x ∈ pref(V (q)) \ V (q). Thus xφ ∈ (pref(V (q)) \ V (q))Φ, so p2φ ∈ UpΦ. Since p2

reaches (q1, q
′
1), p2φ will reach Fail in AP (Z,Abs(Z′)). Thus the result follows.

Lemma 7.4. If for all p ∈ UWdr ∪ UpΦ, t(p) ∈ fZ then the Fail state of AP (Z,Abs(Z′)) is not reachable.

Proof. We provide a proof by contradiction. Assume Fail is reachable. Then, by Lemma 7.3, Fail can be
reached by some sequence p from UpΦ. By Lemma 5.2, p ∈ LAAbs(Z′)

\ LAZ
. On the other hand, since

t(p) ∈ fZ , by Lemma 6.2, p ∈ LAZ
. This provides a contradiction, as required.

Theorem 7.1. The Fail state of AP (Z,Abs(Z′)) is not reachable if and only if for all p ∈ UWdr ∪ UpΦ,
t(p) ∈ fZ .

Proof. “⇐”: Follows from Lemma 7.4.
“⇒” By Lemma 6.1, for every p ∈ Φ∗, t(p) ∈ fZ′ . Then the result follows from Lemma 5.5.

Theorem 7.2. Z ′ conforms to Z if and only if for all p ∈ UWdr ∪ UpΦ, t(p) ∈ fZ .

Proof. Follows from Theorem 7.1 and Lemma 5.5.

Note that if all the states of Z are dr-reachable and pairwise dr-distinguishable, Sdr is a dr-state cover
of Z, Wdr is a dr-characterization set of Z and all states of Z are known to be pairwise dr-distinguished by
Wdr, then

U = SdrΦ[n′ − n + 1] ∩ LRZ

where n represents the number of states of Z, so the method reduces to an extension of the W -method
[Cho78] to SXMs. This particular case is a generalization of the result given in [IH97], which extends the
W -method only to controllable deterministic SXM specifications.

On the other extreme, if Sdr = {ε} and Wdr = {ε} then U = Φ[n′n]. In most practical applications,
however, the state counting approach will produce far fewer test sequences.
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We have seen that in our example, for any state q of Z, {pq}V (q) = {pq}Φ[n′ − 2] ∩ LRZ . Recall also
that Sdr = {ε, enterNo enterNo correctPIN, enterNo enterNo correctPIN moveToCash} and so we get:

U = {ε, enterNo enterNo correctPIN, enterNo enterNo correctPIN moveToCash}Φ[n′ − 2] ∩ LRZ

We thus simply apply a test process to all p ∈ UWdr∪UpΦ, for this value of U and Wdr = {moveToCash,
withdrawCash, requestBalance}.

8. Complexity

We now examine the size of the generated test suite and the complexity of the test generation algorithm. For
U = SdrΦ[n′ − n + 1], as given by the application of the W -method to the associated finite automaton, the

number of sequences in UWdr is at most n2 ·kn′−n+1 and the total length of all sequences in UWdr is at most
n2 ·n′ ·kn′−n+1, where k = card(Φ) [Cho78]. Typically, only a small fraction of the sequences in SdrΦ[n′−n+1]
are realisable, so the actual size of test suite is significantly lower. In the worst case, when Sdr = Wdr = {ε},

the upper bounds are proportional to kn′·n. However, this extreme is not normally encountered in practice. In
usual applications, most states will be dr-reachable and pairwise dr-distinguishable. When n′ is considerably
larger than n, additional criterion can be used to prune the sequences in U , as discussed in [Ipa06].

As each step of the test generation algorithm selects an input symbol and computes the next memory
value, the complexity of this algorithm will be proportional to the total length of all sequences in U, the
number of input symbols and the effort required to compute the new memory. Thus, for the case in which
all the states of Z are dr-reachable and pairwise dr-distinguishable, Sdr is an dr-state cover, Wdr is an dr-
characterization set of Z and all states of Z are known to be pairwise dr-distinguished by Wdr, the complexity
will be no more than C · r · n2 · n′ · kn′−n+1, where r = card(Σ) and C is the maximum effort needed by a
processing relation to compute the next memory value, given the input and the current memory. Note that
none of the above depend on the size of the input alphabet and instead depend on the size of Φ. This is
because we abstract away from the input values and consider relations in Φ.

9. Conclusions

Stream X-machines (SXMs) are a type of extended finite state machine that can be used for system spec-
ification. Associated with SXMs is an approach to development in which a system is built from trusted
components. One of the great benefits of this approach is that it is possible to produce a finite test suite
that determines correctness as long as certain properties hold.

Traditionally, work on using SXMs in development had two major limitations. First, it considered only
deterministic SXMs. Recent work has extended the approach to non-deterministic specifications, an impor-
tant generalization since non-determinism aids abstract and is highly appropriate for specifications. Second,
the work on testing from SXMs has included the condition that the specification is controllable: all paths
through the specification SXM are feasible. Unfortunately, many specifications are not controllable. This
paper is the first to show how the controllability property can be weakened for non-deterministic specifica-
tions. The paper also includes an algorithm that produces a finite test suite, that is guaranteed to determine
correctness subject to certain conditions holding, from a non-controllable non-deterministic SXM.

Testing is relative to a fault domain which contains deterministic SXMs that satisfy certain test hypothe-
ses: testing with the algorithm given in this paper is guaranteed to produce a failure if the implementation is
faulty and is a member of the fault domain. As usual, the fault domain places an upper bound on the number
of states of the implementation. It also assumes that every function used in the implementation conforms to
some relation contained in the specification: the implementation has been developed using trusted compo-
nents. While we do not assume that the specification is controllable we do assume that the implementation is
controllable. However, since in practice the memory is finite, there is always a controllable stream X-machine
that models the IUT.

It has previously been shown how design for test conditions required for generating test suites from a
SXM specification can be weakened by incorporating a test environment that restricts the inputs used in
testing (see, for example, [HH04, IH00]). It should be straightforward to include a test environment in the
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results given in this paper. There should also be scope for applying an adaptive approach to test generation
in which test generation is informed by the input/output sequences that have been observed in testing (see,
for example, [CLL04, Hie04, TN92, YKK97]). Finally, it should be possible to generalize the test generation
algorithm to work with non-deterministic implementations.
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