18 research outputs found

    Towards a Formal Model of Recursive Self-Reflection

    Get PDF
    Self-awareness holds the promise of better decision making based on a comprehensive assessment of a system\u27s own situation. Therefore it has been studied for more than ten years in a range of settings and applications. However, in the literature the term has been used in a variety of meanings and today there is no consensus on what features and properties it should include. In fact, researchers disagree on the relative benefits of a self-aware system compared to one that is very similar but lacks self-awareness. We sketch a formal model, and thus a formal definition, of self-awareness. The model is based on dynamic dataflow semantics and includes self-assessment, a simulation and an abstraction as facilitating techniques, which are modeled by spawning new dataflow actors in the system. Most importantly, it has a method to focus on any of its parts to make it a subject of analysis by applying abstraction, self-assessment and simulation. In particular, it can apply this process to itself, which we call recursive self-reflection. There is no arbitrary limit to this self-scrutiny except resource constraints

    Energy and relevance-aware adaptive monitoring method for wireless sensor nodes with hard energy constraints

    Get PDF
    © 2024 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Traditional dynamic energy management methods optimize the energy usage in wireless sensor nodes adjusting their behavior to the operating conditions. However, this comes at the cost of losing the predictability in the operation of the sensor nodes. This loss of predictability is particularly problematic for the battery life, as it determines when the nodes need to be serviced. In this paper, we propose an energy and relevance-aware monitoring method, which leverages the principles of self-awareness to address this challenge. On one hand, the relevance-aware behavior optimizes how the monitoring efforts are allocated to maximize the monitoring accuracy; while on the other hand, the power-aware behavior adjusts the overall energy consumption of the node to achieve the target battery life. The proposed method is able to balance both behaviors so as to achieve the target battery life, at the same time is able to exploit variations in the collected data to maximize the monitoring accuracy. Furthermore, the proposed method coordinates two different adaptive schemes, a dynamic sampling period scheme, and a dual prediction scheme, to adjust the behavior of the sensor node. The evaluation results show that the proposed method consistently meets its battery lifetime goal, even when the operating conditions are artificially changed, and is able to improve the mean square error of the collected signal by up to 20% with respect to the same method with the relevance-aware behavior disabled, and of up to 16% with respect the same algorithm with just the adaptive sampling period or the dual prediction scheme enabled. Consequently showing the ability of the proposed method of making appropriate decisions to balance the competing interest of its two behaviors and coordinate the two adaptive schemes to improve their performance.This study was supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR 2019 DI 075 to David Arnaiz). The founder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer ReviewedPostprint (published version

    To Adapt or Not to Adapt: A Quantification Technique for Measuring an Expected Degree of Self-Adaptation

    Get PDF
    Self-adaptation and self-organization (SASO) have been introduced to the management of technical systems as an attempt to improve robustness and administrability. In particular, both mechanisms adapt the system’s structure and behavior in response to dynamics of the environment and internal or external disturbances. By now, adaptivity has been considered to be fully desirable. This position paper argues that too much adaptation conflicts with goals such as stability and user acceptance. Consequently, a kind of situation-dependent degree of adaptation is desired, which defines the amount and severity of tolerated adaptations in certain situations. As a first step into this direction, this position paper presents a quantification approach for measuring the current adaptation behavior based on generative, probabilistic models. The behavior of this method is analyzed in terms of three application scenarios: urban traffic control, the swidden farming model, and data communication protocols. Furthermore, we define a research roadmap in terms of six challenges for an overall measurement framework for SASO systems

    A Self-Aware and Scalable Solution for Efficient Mobile-Cloud Hybrid Robotics

    Get PDF
    Backed by the virtually unbounded resources of the cloud, battery-powered mobile robotics can also benefit from cloud computing, meeting the demands of even the most computationally and resource-intensive tasks. However, many existing mobile-cloud hybrid (MCH) robotic tasks are inefficient in terms of optimizing trade-offs between simultaneously conflicting objectives, such as minimizing both battery power consumption and network usage. To tackle this problem we propose a novel approach that can be used not only to instrument an MCH robotic task but also to search for its efficient configurations representing compromise solution between the objectives. We introduce a general-purpose MCH framework to measure, at runtime, how well the tasks meet these two objectives. The framework employs these efficient configurations to make decisions at runtime, which are based on: (1) changing of the environment (i.e., WiFi signal level variation), and (2) itself in a changing environment (i.e., actual observed packet loss in the network). Also, we introduce a novel search-based multi-objective optimization (MOO) algorithm, which works in two steps to search for efficient configurations of MCH applications. Analysis of our results shows that: (i) using self-adaptive and self-aware decisions, an MCH foraging task performed by a battery-powered robot can achieve better optimization in a changing environment than using static offloading or running the task only on the robot. However, a self-adaptive decision would fall behind when the change in the environment happens within the system. In such a case, a self-aware system can perform well, in terms of minimizing the two objectives. (ii) The Two-Step algorithm can search for better quality configurations for MCH robotic tasks of having a size from small to medium scale, in terms of the total number of their offloadable modules

    On anomaly-aware structural health monitoring at the extreme edge

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Self-awareness has been successfully utilized to create adaptive behaviors in wireless sensor nodes. However, its adoption can be daunting in scenarios, such as structural health monitoring, where the monitored environment is too complex for it to be accurately modeled by a sensor node. This article addresses this challenge by proposing a novel and lightweight anomaly-aware monitoring method for structural health monitoring that can be directly executed by a sensor node. Instead of modeling the complete structure, the proposed anomaly-aware monitoring method uses the vibration measurements of the sensor node to identify local deviations in the dynamic response of the monitored structure. The self-awareness module can then use this information to guide the dynamic behavior of the sensor node, replacing more resource-intensive structural models. We use data from multiple public benchmark structures to evaluate different features and propose an unsupervised feature selection method. Additionally, we evaluate different anomaly detection algorithms comparing their ability to detect local structural damages, also taking into account their memory and energy cost. The proposed method has been implemented in a commercial sensor node, and deployed in a scaled structure where various damage scenarios were simulated to validate the proposed method, where it was able to successfully detect the presence of damages in over 88% of the cases. Finally, we showcase how the proposed method can enhance self-awareness through the use of a simulation, where the proposed monitoring method was able to extend the battery life of the sensor node by over 59%, without impacting the node’s ability to swiftly detect damages in the structure.This work was supported in part by the Industrial Doctorate Plan of the Department of Research and Universities of the Generalitat de Catalunya. The work of David Arnaiz was supported by Agència de Gestió d’Ajuts Universitaris de Recerca under Grant AGAUR 2019 DI 075.Peer ReviewedPostprint (published version

    Hierarchical Self-awareness and Authority for Scalable Self-integrating Systems

    Get PDF
    System self-integration from open sets of components provides the basis for open adaptability to unpredictable environments. Hierarchical architectures are essential for enabling such systems to scale, as they allow to compromise between processing detailed knowledge in parallel and coordinating parallel processes from a more abstract viewpoint; recursively. This position paper aims to bring to the fore the following key design aspect of such hierarchical systems: how should the authority of decision and action be assigned across hierarchical levels, with respect to the self-awareness capabilities of these levels, The difficulty lays in that all levels lack knowledge, which may be key to certain decisions, because lower levels have detailed knowledge but within a narrow scope (good for local customisation), and higher levels have a broader scope but no details (good for global coordination). We highlight the most obvious authority schemes available and discuss their advantages and shortcomings: top-down, bottom-up, and iterative (yoyo). We discuss three detailed application examples from our previous work on hierarchical systems, pointing-out the knowledge and authority schemes employed and the possible alternatives. This provides a basis for offering system designers the necessary understanding and tools for taking the appropriate decisions with respect to the distribution of self-awareness capabilities and authority of decision and action across hierarchical system levels

    Feature Space Augmentation: Improving Prediction Accuracy of Classical Problems in Cognitive Science and Computer Vison

    Get PDF
    The prediction accuracy in many classical problems across multiple domains has seen a rise since computational tools such as multi-layer neural nets and complex machine learning algorithms have become widely accessible to the research community. In this research, we take a step back and examine the feature space in two problems from very different domains. We show that novel augmentation to the feature space yields higher performance. Emotion Recognition in Adults from a Control Group: The objective is to quantify the emotional state of an individual at any time using data collected by wearable sensors. We define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and neutral and their respective levels at any time. The generated model predicts an individual’s dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each emotional state and anxiety. We present an iterative learning framework that alters the feature space uniquely to an individual’s emotion perception, and predicts the emotional state using the individual specific feature space. Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of existing image recognition by leveraging text features from the images. As humans, we perceive objects using colors, dimensions, geometry and any textual information we can gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the textual information. This study develops and tests an approach that trains a classifier on a hybrid text based feature space that has comparable accuracy to the state of the art CNN’s while being significantly inexpensive computationally. Moreover, when combined with CNN’S the approach yields a statistically significant boost in accuracy. Both models are validated using cross validation and holdout validation, and are evaluated against the state of the art
    corecore