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Abstract—System self-integration from open sets of compo-
nents provides the basis for open adaptability to unpredictable
environments. Hierarchical architectures are essential for enabling
such systems to scale, as they allow to compromise between
processing detailed knowledge in parallel and coordinating par-
allel processes from a more abstract viewpoint; recursively.
This position paper aims to bring to the fore the following
key design aspect of such hierarchical systems: how should the
authority of decision / action be assigned across hierarchical
levels, with respect to the self-awareness capabilities of these
levels? The difficulty lays in that all levels lack knowledge,
which may be key to certain decisions, because lower levels
have detailed knowledge but within a narrow scope (good for
local customisation), and higher levels have a broader scope but
no details (good for global coordination). We highlight the most
obvious authority schemes available and discuss their advantages
and shortcomings: top-down, bottom-up, and iterative (yoyo). We
discuss three detailed application examples from our previous
work on hierarchical systems, pointing-out the knowledge and
authority schemes employed and the possible alternatives. This
provides a basis for offering system designers the necessary
understanding and tools for taking the appropriate decisions
with respect to the distribution of self-awareness capabilities and
authority of decision / action across hierarchical system levels.

Index Terms—hierarchy, scalability, self-awareness, knowl-
edge management, authority, self-integrating systems, self-
optimisation, smart grids, poly-centric institutions.

I. INTRODUCTION

Self-integration helps solve complex problems automatically
by dividing them into smaller sub-problems and integrating
ensuing partial solutions into global solutions. In open sys-
tems, such as smart grids, smart cities and poly-centric e-
institutions, self-integration can ensure open-ended adaptabil-
ity – by assembling an ever evolving set of components – for
dealing with unpredictable environments. This includes the
runtime discovery, selection, configuration, interconnection,
coordination and management of system components.

Self-integration is a control problem – deciding which
components to integrate in which contexts for meeting stake-
holder goals [1]–[3]. Depending on the adaptation capabilities
desired, control processes require a certain level of self-
awareness [4]: acquiring knowledge about the system and its
environment, and reasoning about that knowledge so as to act
and achieve stakeholder goals (Fig. 1-a, Cf. section II).

In large-scale systems operating in complex environments,
self-aware controllers must acquire and process increasingly
large amounts of knowledge, which can become problematic

Fig. 1: (a) Centralised vs. (b) Decentralised Control

in terms of delays and resource consumption. Hence, self-
integration controllers are often decentralised [3], [5], [6]
(Fig. 1-b), to parallelise knowledge acquisition and processing
(lowering execution times and distributing resource usage).
Still, ensuring system coherence and optimisation requires
coordination among such decentralised controllers. Moreover,
each controller might self-adapt and evolve over time.

As system scale increases, the coordination of self-adaptive
controllers becomes a large-scale self-integration problem in
itself (where resources are local controllers). Often, this cannot
be solved by mere local communication amongst neighbouring
controllers, due to large convergence delays and communi-
cation overheads. Hence, the self-integration of controllers
must, itself, be controlled and coordinated at a higher ab-
straction level (meta-control); which may, again, become a
large-scale problem. This results in a recursive design process
of controller division and coordination leading to hierarchical
control architectures (Fig. 2) [7], [8]. The addition of control
levels stops when the highest level is sufficiently simple, or
small-scale, to be implemented via a fully-centralised or -
decentralised controller (Fig. 1-a and -b, respectively).

Hence, hierarchical architectures enable control scalability
by incrementally simplifying control complexity via abstrac-
tion, or loss of information, from lower control levels towards
higher control levels. This means that higher control levels
acquire knowledge from increasingly wider scopes (i.e. larger
domains of visibility over managed resources), but with lesser

Fig. 2: Overview of Hierarchic Control
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details, compared to lower control levels. Lower levels, in turn,
have narrower scopes and hence can retain more detailed local
knowledge (to reach the same complexity).

This implies that higher control levels take decisions with
broader action scopes (i.e. impacting larger system parts),
based on knowledge that is broader yet less detailed, com-
pared to lower control levels. Such decisions are well-suited
for global optimisation and coordination, yet cannot provide
guarantees about the local optimisation or even the viability of
decided adaptations (since they lack local details that may be
essential). Hence, there is lack of knowledge at all levels: the
lower levels have the details but only for a limited scope; and
the higher levels have the overall view but no details. When
it comes to decision-making and actions, a trade-off must be
made between knowledge scope and knowledge detail.

This situation often leads to conflicts between local optimi-
sation and global coordination in large-scale systems, poten-
tially jeopardising the viability of the integrated system. This
is particularly problematic in systems integrating conflicting
local interests, typically stemming from high heterogeneity of
local environments (e.g. smart grid and smart city federations).

The conflict potential of this inherent self-awareness trade-
off among control levels raises serious questions about the
authority assignment (Cf. sec. II) within control hierarchies.
Most hierarchical systems adopt top-down authority schemes,
with higher level decisions overriding or constraining lower-
level decisions (e.g. most human organisations and institu-
tions). This paper aims to investigates alternative approaches,
discussing bottom-up authority schemes (i.e. where high-
level decisions are mere recommendations); and yoyo decision
processes (i.e. iterative top-down and bottom-up decisions).

We illustrate such alternatives in socio-technical systems
via three use cases that employ hierarchic architectures:
component deployment in a distributed environment (IV-A);
self-management of sharing economies (IV-B); and, rule-
management in poly-centric e-institutions (IV-C).

The purpose of this analysis is to raise awareness of the ad-
vantages and shortcomings of hierarchical control schemes, in
terms of knowledge and decision distribution, and to highlight
the implications of this on alternative authority schemes across
hierarchical levels. Future work will analyse further hirarchical
system examples and aim to extract generic principles and
recommendations for control system designs.

II. HIERARCHICAL SELF-AWARENESS AND AUTHORITY

A. Knowledge Abstraction and Authority Legitimacy

Self-aware computing systems are control systems that must
acquire knowledge (e.g. models) about controlled resources
and their environment; and reason on this knowledge to
decide on control actions for reaching stakeholder goals [4].
Hence, the focus of self-awareness (compared to other self-
* functions) is on knowledge management, and its impacts
on reasoning and actions. Knowledge acquisition can rely
on runtime monitoring, learning and external sources. Within
hierarchical architectures, knowledge is impacted via loss of
information from lower to higher levels (Cf. sec. I).

Hence, hierarchies enable self-aware systems to scale by
recursively abstracting away the details of information that
is processed when taking decisions over increasingly large
system scopes (Fig. 2). Other advantages include the paralleli-
sation, reusability and robustness of partial control solutions
(self-integrating sub-systems) for creating complete solutions
(entire self-integrating systems) [1] – out of this paper’s scope.

This cross-level loss of information raises concerns about
the legitimacy of authority at higher hierarchical levels. Au-
thority, rooted in the Latin auctoritas, generally referred to
one’s ability to exercise influence, impose their will, or act. In
recent governance systems, it has been equated with legitimate
power – where power refers to the ability to perform an
act, and legitimacy to the justification and recognition of that
power as acceptable, by both its holders and its subjects (e.g.
by law, rationality, tradition, or higher/divine power).

Authority is particularly important when conflicts can arise
among stakeholders [2], [9], in terms of (incompatible deci-
sions leading to) incompatible actions. In this sense, authority
can be interpreted as a form of priority for resolving conflict-
ing (decisions and) actions. Such priority can be instantiated
in various manners, e.g. the right to veto or override decisions
taken by organisms with less authority; or, the right to define
constraints on the decisions, and associated processes, of such
lesser organisms. Authority has been extensively studied in
various areas – e.g. [10], [11], [12] – out of the paper’s scope.

Within the limited context of hierarchical self-aware socio-
technical systems, we consider authority to be some form
of priority over decisions and actions, which comes into
play for resolving conflicts between cross-level controllers (at
different abstraction levels). Priority assignments to hierarchy
levels can be set by design (and tuned via static or runtime
configurations), and potentially updated at runtime. Legitimacy
here comes from the acceptance of the system’s design, update
processes and provided functions, by users and regulatory
institutions. This general view of authority may have to be
refined, or defined more formally, case-by-case.

B. Hierarchical Authority Schemes

Considering the necessary trade-off between knowledge
scope and detail in hierarchical systems (Cf. sec. I) the
question of authority assignments for taking decisions and
actions within hierarchies becomes essential. E.g., in which
cases should global decisions (higher-level) override local
ones (lower-level), to help coordinate sub-systems for ensuring
overall coherence and optimisation? And, in which cases
should global decisions be mere guidelines for local optimisa-
tion and decentralised coordination among sub-systems? We
argue that the answer to this question depends on the targeted
system and its environment, and hence that it is important to
understand and consider key principles for selecting a suitable
answer, case-by-case. We aim here to identify the main types
of authority distribution schemes and to provide concrete
examples for illustrating their benefits and shortcomings.

One approach employed rather widely in human-made sys-
tems and organisations is the top-down scheme, where higher



levels have authority over lower levels (even if lower levels
do retain some autonomy). Here, global decisions constrain, or
override, local decisions – e.g. a federal governments decree
overrides provincial laws; global trade agreements constrain
local markets; global resource schedulers limit local ones.
This does not preclude higher-levels from getting feedback
from lower-levels, and adjusting their decisions accordingly.
Still, the higher-levels have the ‘final word’ – i.e. priority, and
the means to enforce it. The advantage here is that global
knowledge and decisions help overall coordination, coherence
and optimisation, which are essential for viability in hetero-
geneous systems. At the same time, global decisions based
on global knowledge may also overlook key local details,
and hence impose unsustainable conditions on certain sub-
systems. When multiple sub-systems are affected, the stability
and sustainability of the entire system may be jeopardised.

An alternative scheme is bottom-up authority assignment.
Here, global knowledge, as well as coordination or optimi-
sation plans, represent mere indicators, or recommendations,
for low-level controllers, which retain complete autonomy
(over their decisions and actions). A well-known example
here is that of free markets: prices represent signals carrying
aggregate knowledge, which guide individual behaviours and
implicitly their coordination [13], [14]. Surely, since humans
(advanced self-aware agents) can find innovative ways to
extract new kinds of information from such generic signals
(e.g. interpreting price changes as predictors of the intentions
or needs of others) they can exploit such knowledge for local
benefits in ways that can destabilise the economic system (e.g.
herding/racing investments leading to economic bubbles and
crashes) [15]. This may indeed suggest that in the context of
human societies the theory of decentralised economy should
not necessarily translate into a theory of unregulated market-
oriented governance; but rather allow for certain stabilising
regulations1 (Cf. yoyo scheme below).

To avoid this shortcoming, such bottom-up approach may
apply for systems where self-ware agents feature limited
innovation capabilities or limited self-interests. For instance,
in ant colonies, individuals take local decisions based on their
own knowledge (local) and on aggregate knowledge (global)
stored in the local environment (e.g. pheromone traces). Yet,
there is no master decision taker using global knowledge to
control everyone – indeed, some ants may explore outside
the pheromone trails. Similarly, within single organisms (e.g.
humans), central control (central nervous system) may take
global decisions based on global knowledge (e.g. where to go
next), but autonomic sub-systems cannot be directly controlled
by such decisions (e.g. one can hardly stop their heart from
beating just by thinking about it – and quite luckily so).

Hence, this approach may apply well to technical systems,
where agents are unable to innovate beyond the learning
boundaries they were designed for. A notable example is
the blackboard-oriented approach in multi-agent systems [16].

1This paper does not aim to take any position on the subject, but merely
to discuss it as a theoretical example

Here, a publicly available blackboard (centralised or hierar-
chical) computes and publishes global knowledge based on
local contributions from individual agents. Each agent can
then use the global knowledge to tune their local behaviour.
This approach has also been used in smart grid systems
to coordinate decentralised prosumers (local behaviour) via
global aggregate knowledge (frequency of the electric grid,
which all prosumers impact and have access to) [17].

The two alternative schemes discussed above can be com-
bined into a variety of iterative decision processing protocols,
or yoyo schemes. Here, decisions may propagate top-down
initially, but then enable feedback and decision amendments
to propagate bottom-up, leading to potential changes in the
original decisions and the re-distribution of these in a top-
down manner. The process can be repeated iteratively (though
sometimes one or few iterations may suffice (e.g. IV-B); may
start with a bottom-up phase; and may take diverse yoyo paths
through the hierarchy. In open environments, sub-systems that
were not designed to integrate with each-other may feature
incompatible authority schemes – e.g. one assuming top-
down authority and the other bottom-up authority. This may
happen for instance when human organisations merge and
the legitimacy of a federative authority coordinating them is
challenged. Future work will further investigate such cases.

We illustrate the above schemes via three hierarchical
applications – in sec. IV – highlighting the use of knowledge
abstraction and authority schemes, and discussing alternatives.

III. RELATED WORK

The problem of assigning knowledge (or self-awareness)
and authority (or decision priority) in distributed systems
has been studied extensively, in various research domains, as
these two aspects are essential for coordinating and resolving
conflicts amongst distributed entities. Different solutions were
identified in technical systems, such as organisation types
for multi-agent systems [18]; design patterns for conflict
resolution in autonomic systems [9]; and reusable architec-
tures for self-organising systems [19]. Reusable designs for
scalable self-* systems notably include hierarchical or holonic
architectures, such as generic Holonic MAS (HMAS) [20] and
goal-oriented holarchies [2]; as well as application-specific
solutions (Cf sec. IV). Within the realm of human societies,
distinct organisation types were set in place to deal with
political [21] and economic [22] [13] issues. These approaches
have different ways of dealing with knowledge and authority
(defining these aspects either implicitly or explicitly).

For instance, in HMAS [20], each agent set in a hierarchy
level is represented by one agent in the level above, recursively.
This implies that each agent representative acquires knowledge
from the agents it represents (abstraction); has the authority to
negotiate coordination issues with other agent representatives
at the higher level; and has decision / action authority over
the coordination of agents that it represents at the lower level.
Several alternatives can be considered here, e.g. where the
decisions of representative agents are mere suggestions for co-
ordinating lower-level agents, which maintain full autonomy.



In the GoTT generic architecture [2], each hierarchical level
is defined as an abstraction for the higher level, while leaving
open the implementation details (e.g. aggregation function,
de/centralised design) and the authority of decision/action.
GoTT also emphasises the importance of partial-isolation
among self-* sub-systems, and of timing differences between
self-* processes at subsequent hierarchical levels – both im-
pacting the behaviour of the knowledge abstraction function.

In the context of resource sharing in human communities,
Elinor Ostrom has identified eight core design principles [22]
for successful institutions that can ensure the sustainability of
common resources (and avoid the tragedy of the commons).
Importantly, while the first six principles (P1-6) concern the
design of a single institution, the remaining two principles ad-
dress scalability issues: (P8) defines encapsulated institutions
(or hierarchies); and (P7) specifies the necessary balance of
authority between higher and lower hierarchy levels (where
any community must have the right to self-organise internally,
hence avoiding complete interference from higher authorities).

P7 can be interpreted and implemented in various ways.
One option is to have higher-level authorities constrain the
scope within which lower-level communities can self-organise
– if taken to an extreme, such constraints may override the
right to self-organise all-together, or reduce it to an extent
where it becomes irrelevant. Another option is to have higher
authorities play merely consultative roles, and keep full au-
tonomy at the community level – this, in turn, may jeopardise
coordination amongst communities and risk global tragedy of
the commons (e.g. difficulty to reach international agreements
on issues such as global pollution). Intermediate options may
be optimal, with iterative top-down and bottom-up feedback
(yoyo) being codified as a formal process between embedded
institutions and managed like any other institution rule (P1-6).

Further relevant examples were discussed previously in
section IV. A comprehensive study of such approaches is
beyond this paper’s scope. Instead, this position paper aims
to emphasise the critical role of this particular design aspect –
the assignment of authority to decide/act, with respect to the
distribution of knowledge, considering the inherent limitation
of knowledge availability within large-scale systems.

While these aspects are relevant within any organisation
(e.g. centralised or decentralised) we focus here on hierar-
chical control systems, and more precisely on the knowledge
and authority distribution across hierarchical levels. This is
because hierarchies are employed in large-scale systems to
deal with the problem of knowledge management given limited
resources [7], [8], and system designers may adopt them while
overlooking their inherent knowledge-related limitations, the
consequent compromises required, and the necessary impli-
cations on decision authority schemes. These considerations
become particularly important in open, self-integrating, self-
optimising systems, where high dynamicity raises additional
knowledge management concerns.

IV. USE CASES

A. Hierarchical Component Assembly in Distributed Systems

This use case concerns a distributed component self-
assembly system [23]. It aims to identify a composition of
components, sourced from a large library, which achieves a
desired task, and then continuously find higher-performance
variations by adapting to alternative compositions which better
fit the current deployment environment. Adaptations come in
three forms: (i) a local adaptation to an alternative component
implementing a given concept (such as an alternative sorting
algorithm or buffering strategy); (ii) relocating components to
other available host machines, where the additional hardware
resources of the remote host may result in higher overall
performance for I/O-bound tasks; or (iii) replicating compo-
nents across multiple available hosts, with an injected load
balancer to distribute load across replicas and a consistency
management module to deal with any replicated state. Real-
time machine learning observes the current performance of
the system via particular metrics of interest, together with
observations of the current characteristics of the deployment
environment, and applies an explore/exploit strategy which
drives the suite of possible adaptations to discover where
the higher-performance system designs are for each set of
environment conditions encountered.

A specific example is a datacentre software infrastructure
(Fig. 3), which receives requests from users and should serve
responses as quickly as possible (reduce latency) while using
a minimal set of resources (maximise energy efficiency),
all while user behaviour is continuously changing to cause
stress in different parts of the system [6]. While conceptually
simple, in practice this kind of system can involve hundreds
of subsystems which are highly challenging even for expert
human engineers to design and maintain [23], making it a
good target for automated design with runtime learning.

Component-based applications feature directed graph
topologies, with nodes being components and links being
component dependencies (e.g. required / provided services).
Hence, client requests are processed via various call paths,
starting with an entry component (root) in the dependency
graph, then forwarded through component dependencies, re-
cursively, until reaching components with no further dependen-
cies (leaves). A component can have several implementation
variants which encode the same behaviour but have different
performance characteristics under different deployment condi-
tions; each such variant may feature different dependencies on
other components which alter the graph below that component.

In this use case, hierarchy with respect to knowledge
abstraction occurs in terms of the various performance pa-
rameters that are monitored throughout the component graph.
That is, components closer to the roots of the directed graph
(i.e., higher in client call paths) collect aggregate information
about the performance of components closer to the leaves
of the graph (i.e., lower in the call path). E.g., the delay
of a root component for handling a client request subsumes
the delays of all the components that it depends upon for
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Fig. 3: A self-deploying, self-assembling, self-optimising sys-
tem, which uses real-time machine learning to make decisions
on local adaptations, relocating components to other resources,
or replicating components across resources.

handling that request. Similarly, components in a call path can
forward monitoring information on their memory and CPU
consumption, recursively, from leaf components towards the
root. Abstraction here occurs if each component only sends to
its parent component the aggregate information of the entire
sub-tree of which it is a root – e.g. each component sends the
sum of its own consumption and the consumptions collected
from the components it depends on.

In terms of authority assignment, higher levels of the
component graph manage lower levels in cases where the
performance of the higher level provides a broader view of
the system. The learning agent at a particular host H may
therefore choose to offload one of its components (including
the dependency sub-graph of that component) to a different
host, give that host time to find a ‘good’ composition for
that sub-graph, and then measure the performance difference
at H . If this decision made a positive impact, H may stay
with it, otherwise H may decide to try something else. This
approach does take into account feedback from lower levels
by observing performance data; even once a system converges
to a stable state, perturbations observed at lower levels due to
changes in the deployment environment result in informative
feedback for the upper level to make choices. However, all of
this feedback is advisory, and the final authority over what to
do next rests with the higher levels of the component graph.

As an alternative to this, we may use hybrid authority
and knowledge propagation schemes. Consider a scenario in
which we have multiple self-integrating distributed systems (as
above), each of which can only see its own isolated perspec-
tive, but where all those systems are operating over shared
resources. In addition, we assume that the shared resources
themselves have an orthogonal intent or reward system, for
example being paid to take computational work. Here, the
purely top-down method of authority has the potential to
break down into an oscillating or chaotic shared ecosystem: a
resource may take on tasks from multiple client systems but
in doing so cause each system to observe poor performance

as a result of contention, in turn causing those self-* systems
to move tasks from that resource to other resources, and so
on. In this scenario we can imagine two kinds of authority.

The first is top-down authority, but with resources able to
provide a ‘soft no’ with extended reasons as to why they
may be a poor choice, acting as a kind of knowledge conduit
between multiple otherwise isolated self-* systems. The higher
level of authority may then be able to take this extra knowledge
into account in its decision making, after which it can either
proceed anyway and ignore the soft no, or take an alternative
decision. This implies that higher levels take initial decisions
based on abstract knowledge (lacking local resource details),
but are then provided with feedback in the form of more
detailed knowledge (limited to what is relevant with respect
to their initial decision), case-by-case.

The second is hybrid authority, in which a ‘hard no’ can
be given by resources; this may still contain additional useful
knowledge for the higher levels, but cannot be overridden. As
a consequence of empowering the lower level, there is a risk of
‘artificially’ claiming that resources are exhausted for any new
systems, and could perhaps be even further complemented by
a kind of shared knowledge among the resources themselves
to coordinate when one of them is willing to take on more
work when no other resources are willing to do so.

B. Hierarchical Self-management of Sharing Economies

This use-case concerns the scheduling and resource alloca-
tion in scenarios of sharing economies within Smart Cities:

• Energy self-management to match supply-demand;
• Charging electric vehicles to match supply-demand;
• Load-balancing of bike sharing stations.

All these different scenarios face the same foundational com-
putational challenge: at a local level, autonomous agents (e.g.
individuals using personal assistants in their smart phones;
or ubiquitous smart controllers) schedule or allocate their
resources (e.g. switch on/off their appliances; plug-in/out their
electrical vehicles; or choose stations from which to pick-up
or return their bikes). At a global level, these choices have
a collective impact on the system reliability and efficiency.
For instance, power peaks can cause blackouts. Over/under-
loaded parking stations require manual bike relocations, which
increase operational costs. When agents choose among au-
tonomously generated plans that schedule or allocate their
resources, the computational problem of selecting the optimal
plan for each agent, so as to minimize a quadratic cost
function (e.g. system balancing or matching resources) is a
combinatorial optimization problem known to be NP hard.

A generic and fully decentralized hierarchical learning ap-
proach has been introduced to address such computational
problems: EPOS2, the Economic Planning and Optimized
Selections [24], [25]. The deep hierarchical tree structures of
EPOS orchestrate the (remote) interactions of agents (nodes)
that exchange knowledge in a peer-to-peer fashion via avail-
able communication channels (links). The role of the hier-

2Available at http://epos-net.org (last accessed: May 2018)
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Fig. 4: The decentralized coordination and learning paradigm of EPOS: Iterative bottom-up and top-down knowledge exchange
forms the agents’ collective self-awareness based on which iterative coordination and learning is performed. The hierarchical
structure aggregates knowledge from the agents underneath (tree branch) and from earlier learning iterations.

archy is twofold: (i) to perform an efficient aggregation of
information, i.e. aggregation of the selected plans (bottom-
up) – this is in contrast to unstructured networks that require
complex mechanisms and a long convergence time for a
distributed estimations of aggregates [26]; and, (ii) to perform
coordinated decision-making by taking into account the aggre-
gate decisions of the agents lower in the hierarchy (bottom-
up), as well as earlier decisions propagated over the tree
topology (top-down). Therefore, EPOS draws parallels with
back-propagation learning in neural networks, nevertheless,
EPOS is a decentralized networked system of autonomous
agents. Figure 4 illustrates the coordination concept of EPOS.

With respect to knowledge abstraction, EPOS aggregates
resource scheduling plans in a bottom-up manner (Fig. 4-
b). This means that initially, scheduling decisions are taken
at lower hierarchy levels first, and then taken into account
(via aggregates) by higher hierarchy levels (bottom-up). Once
the aggregate decision-making process reaches the top of
the hierarchy, a global plan is formed and propagated back
throughout the hierarchy (top-down) – each level adjusts
its scheduling plan accordingly (Fig. 4-c). This leads to an
iterative decision-making process (yoyo) (Fig. 4-d), starting
with locally optimised decisions (bottom-up) and adjusting
these based on global optimisation feedback (top-down).

Authority-wise, higher levels have priority over lower lev-
els, as lower levels adjust their local plans according to the
global optimised plan received from the top. Still, lower levels
play, indirectly, a key role in selecting the global optimum,
by only sending upwards the aggregate plans that improve
the earlier global plan. Furthermore, as detailed below, lower
levels may also choose the extent to which they adjust local
plans based on global optimisation plans from the top.

EPOS does not require any centralized authority. Therefore,
the hierarchy does not impose different agent roles and serves
exclusively the computational aspects of the scheduling co-
ordination problem. However, the hierarchy does introduce a
priority over the decision-making of the agents. It is shown that
changing the positioning of the agents in the hierarchy leads
to a different traversal of the optimization space and therefore
the agents’ topology has an impact on performance [5], [24].

For instance, consider the following extreme scenario of a
large industrial consumer positioned at the root of the tree,
while all the other agents underneath are smaller residential
consumers. The plan selections of the root are performed at
the last step of the bottom-up phase and therefore the chances
of over-fitting are high, i.e. the larger energy consumption of
the industrial consumer has a large oscillatory impact over
the aggregate consumption of the residential consumers, hence
causing power peaks in the total consumption.

Agents may also have preferences over alternative plans. For
instance, turning on or off home appliances at specific times
may cause discomfort to residents, impacting their lifestyle
and daily activities [27]. Therefore, a selected plan may serve
the system-wide objective (e.g. decrease power peaks to avoid
blackouts), but may oppose the residents’ local preferences.
Forcefully having to adhere to the selected plan can undermine
agents’ autonomy, freedom of choice as well as system trust.
To address such cases, EPOS encodes the priority over local
or system-wide objectives in a local parameter3 selected by
the residents and incentivized by system operators or third
party stakeholders, e.g. power utility companies providing
(monetary) rewards to sacrifice comfort for global optimality.

3This is the λ parameter that encodes the extent to which agents choose
locally preferred plans over globally preferred ones [24].



This parameter biases the algorithm and weights local vs.
global objectives. While satisfying the individuals’ preferences
may not suit certain critical application scenarios (e.g. risk
of blackouts in smart grids) it may work well in resource
sharing systems where members are willing to pay the extra
optimisation costs (e.g. more expensive membership fees for
bike rentals, to cover bike relocations between overloaded and
under-loaded stations, allowing, in turn, to leave and pick-up
bikes at the users’ most convenient stations).

This concept can be taken a step further by introducing
the dispersion of discomfort among agents as a measure of
fairness [27]. Tragedies of the commons can be prevented,
for instance, by making sure that in case of a power grid
emergency all residents contribute to demand response, i.e.
experience equal discomfort.

C. Hierarchical Rule Management in Poly-centric Institutions

This use case concerns the governance of socio-technical
systems (Fig. 5) – e.g. smart grids, cities, vehicular networks,
the Internet of Things, and of People. Governance involves
defining and updating rules, and evaluating their impacts with
respect to high-level goals. Goals may be global (e.g. system
stability, sustainability and fairness) and local (e.g. individual
gains and development). Rules aim to constrain the behaviour
of system agents (human or technical). To define rules, one
must assess the system’s current state and dynamics, and
predict how rule changes would alter agent behaviours in a
way that would bring the system states closer to the goals.

At large scales, the need for hierarchical governance stems
from the sheer number of resources and agents to consider,
as well as from their increasing heterogeneity, and diversity
of their environments. Democratic hierarchies are typically
implemented via representation, where each governance sub-
system at a lower-level is represented by one or several
governance agents at the higher-level. In other words, the role
of agents at a higher level is to represent the interests (local
goals) of the lower-level sub-system which has appointed them
(bottom-up). In autocratic hierarchies, the role of agents at
higher governance levels is to ensure that top-down rules are
enforced successfully into lower-level sub-systems, which are
assigned as their responsibility (top-down).

Fig. 5: Hierarchical / embedded institutions

An extensive analysis of governance hierarchy types is
beyond this paper’s scope. Still, in all cases, knowledge
abstraction increases from lower to higher levels. For human
governance, knowledge loss occurs not only as a necessity
for scalability, but also because representatives can only ac-
quire information via communication (indirect) rather than
experience (direct). Indeed, even in relatively small human
communities sharing a relatively uniform environment and
adopting a decentralised governance scheme (e.g. democracy
in ancient Athens [28]) collective decisions must be taken
based on aggregate knowledge – about individual members,
their views and priorities – which, to some extent, must also
be acquired via communication (as no individual can have
the exact same experience as the others). In such small-scale
cases, knowledge aggregation can be decentralised (e.g. based
on peer-to-peer exchanges and gossiping), rather than collected
by specially-assigned representatives. As before, the larger the
scale the higher the knowledge abstraction (and loss of details,
which may be critical for collective decisions).

Authority-wise, most large-scale governance hierarchies
feature top-down schemes (irrespectively of whether higher
level agents are elected representatives or appointed man-
agers). In smart grids for instance, price regulations are
dictated by high-level government and electricity companies.
Alternative authority schemes may feature bottom-up price
setting – e.g. via decentralised markets and auctions [29].
Further alternatives may consider grid power as a common
pool resource, where agents store their production in a shared
pool, from which they can consume according to community
rules. The community itself has the right to self-govern, i.e.
to manage its own resource sharing rules [30].

Hierarchy-wise, a community’s right to self-govern is typ-
ically constrained by a higher-level authority, e.g. federal
government, which has the ‘final word’. An alternative scheme
may give communities authority over (at least) local matters.
In the smart grid example, a higher government authority may
impose technical standards on local power grids (e.g. electric
power voltage and current frequency) but may not intervene
on price regulations within such local sub-grids, which would
be managed by local communities (except when power is
exchanged with the national grid). Both alternatives above are
consistent with Ostrom’s P7 principle (Cf. sec. III) [22].

V. CONCLUSIONS AND FUTURE WORK

This position paper aimed to highlight the importance of the
following system design question: how should the authority (or
priority) of decision / action be placed within a hierarchical
system with respect to the self-awareness capabilities of each
hierarchical level? We focus on hierarchical systems because
of their ability to help ensure scalability with respect to
knowledge management, in systems that pursue one or several
goals (i.e. control systems). Centralised and fully decentralised
designs are special cases of hierarchy. Self-integrating systems
are of particular interest because of their increased dynamicity,
which exacerbates the scalability and knowledge management



issue. Hence, system self-integration brings about the issues
of self-integration of self-awareness and of authority.

We argued that hierarchical designs help scalability by
progressive knowledge abstraction (i.e. information loss) as
knowledge scope (i.e. domain) increases, from lower to higher
hierarchy levels. This means that the resources necessary to
collect and process system knowledge can remain limited (or
more-or-less constant) at each level. This also means that self-
awareness capabilities are necessarily limited at all levels. The
question of authority assignment considering this limitation
becomes significant. We categorised solutions into three main
schemes: top-down, bottom-up and iterative (yoyo).

Top-down authority schemes favour coordination among
(self-integrated) system parts, which is best for global system
goals; yet may miss system details and fail to customise
solutions for local goals, which, if essential, may jeopardise
the entire system. Conversely, bottom-up authority schemes
favour local goals, yet may fail to coordinate with the rest of
the system, possibly jeopardising other local and global objec-
tives. Various iterative schemes (yoyo) combine several top-
down and bottom-up phases, each one bringing more context-
sensitive knowledge to hierarchical levels, as feedback to their
previously proposed decisions. This helps avoid bloating the
system with unnecessary information that is only used on
rare occasions; and also helps improve privacy by sharing
minimum information, and only when necessary.

We illustrated these concepts via three hierarchical applica-
tions from our previous work: i) component self-assembly in
distributed systems; ii) resource self-management in sharing
economies; and, iii) rule self-management in poly-centric
institutions. For each, we highlighted cross-level abstraction
and adaptation, discussed authority schemes and alternatives.

Future work will focus on consolidating and refining the
authority schemes, including a study of hierarchical topologies
(span of control) and their impact on self-awareness and au-
thority in various contexts. We will also study conflicts among
incompatible authority schemes in self-integrating systems.

Since most modern systems are large-scale socio-cyber-
physical systems, often connected to other socio-cyber-
physical systems (leading to ever larger-scales), seriously
considering the positioning and interrelation among authority
and knowledge management centres becomes rather urgent.
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