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ABSTRACT Self-awareness has been successfully utilized to create adaptive behaviors in wireless sensor
nodes. However, its adoption can be daunting in scenarios, such as structural health monitoring, where the
monitored environment is too complex for it to be accuratelymodeled by a sensor node. This article addresses
this challenge by proposing a novel and lightweight anomaly-aware monitoring method for structural health
monitoring that can be directly executed by a sensor node. Instead of modeling the complete structure, the
proposed anomaly-aware monitoring method uses the vibration measurements of the sensor node to identify
local deviations in the dynamic response of the monitored structure. The self-awareness module can then
use this information to guide the dynamic behavior of the sensor node, replacing more resource-intensive
structural models. We use data from multiple public benchmark structures to evaluate different features and
propose an unsupervised feature selection method. Additionally, we evaluate different anomaly detection
algorithms comparing their ability to detect local structural damages, also taking into account their memory
and energy cost. The proposed method has been implemented in a commercial sensor node, and deployed in
a scaled structure where various damage scenarios were simulated to validate the proposed method, where
it was able to successfully detect the presence of damages in over 88% of the cases. Finally, we showcase
how the proposed method can enhance self-awareness through the use of a simulation, where the proposed
monitoring method was able to extend the battery life of the sensor node by over 59%, without impacting
the node’s ability to swiftly detect damages in the structure.

INDEX TERMS Internet of Things (IoT), wireless sensor networks (WSN), anomaly detection, structural
health monitoring, self-awareness, structural monitoring.

I. INTRODUCTION
Civil structures play a critical role in modern society, as many
of us rely on bridges, tunnels, railways, and buildings, among
others, for our everyday affairs. Consequently, correctly
maintaining these structures is not only critical to prevent
unplanned downtime, but also because failures in these struc-
tures may suppose a safety hazard for its users. Despite this,
many structures are not correctly maintained or are even
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known to be in unhealthy states. The American Society of
Civil Infrastructure (ASCE) Report Card from 2021 reported
that 7.5% of the bridges in the US are considered struc-
turally deficient and the US has a backlog of $ 125 billion
in repairs [1]. Even in cases where the damaged bridges
are identified, they are not correctly maintained because of
the limited budget of the organizations responsible for these
structures.

Reducing the maintenance cost of the structures requires
shifting from reactive to proactive maintenance, detecting
and repairing potential problems early before they turn into
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FIGURE 1. Overview of the proposed anomaly-aware monitoring method.

costly damages. To this end, in the past decade, signifi-
cant effort has been devoted to the development of Wireless
Sensor Networks (WSN) [2], [3] and Structural Health Mon-
itoring (SHM) [4], [5]. WSNs facilitate the collection of
data from the monitored structure in a reliable, autonomous,
simple to install, and inexpensive way [6]; while SHM pro-
vides the analytic capabilities to model the state or ‘health’
of the structure using the collected data. The combination
of these two technologies enables the evaluation of the
state of the monitored structure in real-time, minimizing
the need for manual inspections, and reducing the repair
costs by detecting failures early or even before they actu-
ally take place, increasing the safety and lifetime of the
structure [7].
Despite the progress made in these two technologies, their

adaption to civil structures is still limited. One of the biggest
challenges for the widespread adoption of wireless sensors
is their limited resource availability, particularly their battery
life. This becomes particularly problematic in data-intensive
applications such as vibration monitoring, typically used for
SHM [8]. The problem of how to optimally allocate resources
in wireless sensors has attracted significant attention from
the research community since the inception of this technol-
ogy. Nevertheless, as the optimal configuration of the sensor
nodes is highly dependent on the environment being moni-
tored, sensor nodes need to dynamically adjust their behavior
based on their operating conditions. Over the years countless
dynamic energy management methods have been proposed
to address this problem [9], [10], and have proven to be
able to reduce the energy consumption of the sensor nodes
while maintaining their Quality of Service (QoS). The main
drawback of these methods is the loss of predictability on
the sensor node’s behavior, since it becomes environment
dependent. Maintaining predictability is paramount in safety-
critical applications to prevent the loss of data. In recent years
the notion of Self-Awareness [11] has been used to address
this problem, by allowing the node to adjust to the monitoring
environment while being able to retain some predictability in
the form of operational goals.

Introducing self-awareness at the sensor node level for
SHM is particularly challenging due to the size and complex-
ity of the monitored structures. Modeling the health condi-
tion of the structure requires collecting data from multiple
distributed sensor nodes, and aggregating it using resource-
intensive models. A single sensor node only has access to
its local environment and lacks the resources to run such
models, thus, is unable to model the monitored structure
in a reliable way. This hinders the implementation of self-
awareness at the sensor node level, as it removes the ability to
react to changes in the monitored environment. Alternatively,
the cloud application can relay this information back to the
nodes [12]. However, this approach is only adequate to model
slow changes in the condition of the structure, not for real-
time decision-making, since there will be some delay from
when the node performs the measurement and when it gets
an update on the state of the structure from the cloud.

A vibration-based SHM application collects the vibra-
tion data from multiple points of the structure to analyze
the dynamic response of the structure. If the structure gets
damaged, its dynamic response varies, allowing the SHM
application to detect and identify such damage. An individual
sensor node does not have access to this information, as it
can only access its local measurements. However, it can
generate a model of its local vibration patterns, and identify
any deviation that may take place. Any local damage will
introduce changes in the vibration patterns measured by the
sensor node, allowing it to detect local damages. The node
may not have enough information to assess the source of the
damage, or even if the observed deviation has been caused
by the presence of damages, but it has enough information to
detect that some previously unseen event is taking place and
has to be studied in detail.

Even in cases where the deviations in the observed vibra-
tion patterns are not introduced by the presence of damages
(for example if the structure was loaded by a previously
unseen wind direction) collecting detailed information about
these anomalous events is more useful to the SHMapplication
than the data collected when the structure is in a known state,
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as the latter is already accounted for by the model. Therefore,
the sensor node should increase its monitoring efforts when
the data is considered to be more anomalous, and it can
compensate for this increment by reducing the monitoring
efforts when the data is closer to nominal.

The proposed anomaly-aware monitoring method uses an
anomaly detection algorithm to model the local dynamic
response of the healthy structure using the vibration data col-
lected by the sensor node. Then, it uses this model to assign
an anomaly or novelty score to the monitoring data, indicat-
ing the extent to which it has deviated from the nominal,
or healthy, state. This score is utilized by the self-awareness
module of the sensor node to manage the resource allocation
based on the perceived usefulness of the measured data.

This article, evaluates the use of a lightweight anomaly
detection algorithm at the sensor node level for SHM applica-
tions to compute the anomaly score of the data, and evaluates
potential use to guide the node’s behavior. Figure 1 pro-
vides an overview of the proposed anomaly-awaremonitoring
method, which will be thoroughly discussed and explained in
detail. The main contributions can be summarized as follows.

• We propose a novel, lightweight anomaly-aware moni-
toring method for SHM that identifies deviations in the
dynamic behavior of the monitored structure to dynam-
ically adjust the node’s behavior.

• We use public SHM benchmarks to propose an unsu-
pervised feature selection method based on the achieved
feature performance. Additionally, we compare com-
mon anomaly detection algorithms, evaluating their per-
formance, computational and memory cost.

• We validate the proposed monitoring method with a
commercial node and a scaled structure, simulating
damage conditions on the structure.

• Finally, we showcase how the proposed monitoring
method can be used to enhance self-awareness at the
sensor node level through a simulation.

The rest of this paper is structured as follows. Section II,
reviews the background and related works on self-awareness,
damage detection in SHM, and ML for embedded systems.
Section III continues by presenting a high-level descrip-
tion of the proposed anomaly-aware monitoring method.
Section IV introduces the feature selection method and eval-
uates common, lightweight, anomaly detection algorithms.
The setup and results of the validation test are commented on
in Section V. Section VI showcases how the anomaly-aware
monitoring method can be used to implement self-awareness
at the sensor node level through the use of a simulation.
Finally, the conclusions and future work are summarized in
Section VII.

II. BACKGROUND AND RELATED WORK
This work was motivated by the need of introducing self-
awareness at the sensor node level in the context of
SHM, where modeling the environment is not viable. The
notion of self-awareness is introduced in subsection II-A.

Then, subsection II-B evaluates the existing examples of
self-awareness in the context of wireless sensor nodes.
Subsection II-C brings the focus back to SHM by reviewing
the relevant works in damage detection methods. Finally,
subsection II-D evaluates the relevant works in anomaly
detection methods for resource-constrained systems.

A. SELF-AWARENESS
Self-awareness [13], [14], changes the paradigm of how
systems are managed in dynamic environments. Computer
systems are expected to operate reliably and efficiently under
a wide range of operating conditions, and thus, their behavior
needs to be adjusted accordingly. Traditionally, to adjust the
system behavior, the system designers had to analyze all the
system behavior under all possible operating conditions and
define the low-level adaptive policies that the system should
follow based on the perceived environment. This approach
is problematic as the operating conditions and their effects
on the system may not be a priori known, and defining the
low-level policies necessitates a deep understanding of the
system’s inner workings and its operating environment. Self-
awareness provides a promising solution, by giving devices
the ability to self-manage. Instead of following a set of
predefined low-level policies, a self-aware system is able to
autonomously define and perform adaptive actions at run-
time based on its high-level operational goals, which can be
defined without knowledge about the system’s inner work-
ings or its operating environment.

A computing system can be considered as being self-
aware if it is capable of monitoring itself and its environ-
ment, and autonomously adjusting its behavior at runtime
in order to achieve its goals in an efficient way. To achieve
self-awareness, a self-aware system needs sensors to collect
information about its internal parameters (e.g. CPU load,
power consumption) and environmental parameters (e.g.
atmospheric temperature, risk factor), which is then used to
generate and maintain models. These models allow the sys-
tem to observe its current state, its goals, its potential actions,
and its environmental conditions. Additionally, a self-aware
system needs to be able to use its models to predict the effect
of its current operating conditions on its ability to achieve its
goals and decide the best adaptive actions to take in response,
taking into account the predicted effect of these actions on
itself and its environment. Finally, a self-aware system needs
to be able to execute the defined adaptive plan. Themain traits
of a self-aware system are summarized in Figure 2. Generally,
all this functionality is organized in the form of an Observe-
Decide-Act (ODA) loop [15].

B. SELF-AWARENESS IN WIRELESS SENSOR NODES
The self-managing nature of self-awareness has attracted
the attention of researchers in different research fields such
as resource-constrained cyber-physical systems [16], system
on chip [17], computer networks [18], among many others.
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FIGURE 2. Main traits of a self-aware system.

In this section, we review the relevant work in self-aware
wireless sensor nodes.

The principles of self-awareness have been applied
to different aspects of sensor nodes. In the network,
Zhuang et al. [19] applied the principles of self-awareness for
congestion control in multi-hop wireless sensor networks.
Each sensor in the network is able to monitor, and affect
its transmission bandwidth using lossy compression, at the
cost of introducing distortion to the data. The congestion
control method proposed by Zhuang et al. allowed the sensor
nodes in the network to autonomously allocate the distortion
budget between them to prevent network congestion, while
minimizing the introduced distortion.

Regarding data processing in sensor nodes, Forooghifar
et al. [20] applied self-awareness to an epileptic seizure detec-
tion classifier. The proposed approach uses multiple hierar-
chical classifiers with increasing complexity. Self-awareness
is used to select the appropriate classifier for the data to main-
tain the required accuracy level, while minimizing the energy
consumption of the classification. The self-aware classifier
proposed by Forooghifar et al. only takes into account one
parameter, the expected accuracy of the classifiers for the
given data, to guide the selection. Other self-aware patient
monitoring systems are able to improve the performance by
also taking into account the risk factor of the patient [21],
[22], although this requires having access to information from
additional sensors and increased processing, which is not
viable to implement in a singular sensor node.

Self-awareness has also been applied to the data acqui-
sition function of wireless sensor nodes. Arnaiz et al. [23]
proposed a data acquisition method using the principles of
self-awareness. Given a target battery lifetime for the sensor
node, the proposed method is able to dynamically adjust the
sampling period to achieve the target battery life while max-
imizing the Quality of Service (QoS) of the wireless sensor.
The QoS of the sensor node is improved by increasing the
sampling rate when the signal is considered more ‘‘relevant’’
and compensating for this increment during periods when the

signal is deemed less important. To model the data relevance,
the authors use a synthetic metric (i.e. the mean deviance of
the measured data). The Mean deviance does not model the
state of the environment, but provides statistical information
about the collected data. Using this metric, the proposed
method was able to outperform equivalent naive sampling
methods, thus, showing that modeling the collected data is
also advantageous.

The self-aware-based methods presented in this section
have one main difference from the more conventional
dynamic energy management methods in that they are able to
not only adjust to the operating conditions, but are also able
to comply with their given operational targets. In all the pre-
sented examples, the sensor nodes are able to monitor at least
one internal parameter and have some kind of model of their
environmental context. Modeling the complete environment
can be complex and resource intensive in applications such
as SHM, hindering the use of self-awareness in these cases.
Instead of modeling the complete structure, the anomaly-
aware monitoring method presented in this paper models
the vibration measurements of the sensor node, allowing the
sensor to react to the changes in the measured data.

C. DAMAGE DETECTION IN SHM
SHM is the area of research focused on answering the ques-
tion of what is the condition (or health) of a given structure
through non-destructive means. It is distinguishable from the
more traditional structuremaintenance processes in that SHM
is performed automatically on near real-time bases, instead
of relying on periodic inspections. One of the main aspects
of SHM is structural damage identification. In this context,
structural damage can be defined as ‘‘changes introduced into
a system that adversely affect its current or future perfor-
mance’’ [24].
There are a myriad of methods for SHM, however, they

are usually classified as model-driven, if they use an ana-
lytical model of the monitored structure; or as data-driven,
if they use statistical analysis of the data collected from
the structure, to detect, locate and identify the presence of
damages [25]. Typically, analytical models are Finite Ele-
ment Models (FEM) of the monitored structure. Simulating
FEM models is a resource-intensive task, which is usually
performed by cloud servers. Consequently, in this subsection,
we will focus on reviewing relevant lightweight data-driven
methods.

Data-driven models can be further classified depending on
the tools used to analyze the data, as time domain such as
Autoregressive Moving Average (ARMA) [26] and Bayesian
probabilistic methods [27], or as frequency domain such
as Wavelet Packet Decomposition (WPD) or Fourier-based
tools. Han et al. [28] used WPD to compute a damage index
based on the spectral energy distribution with promising
results. WPD is commonly used over the traditional Fourier
transform for SHM as it has better properties for non-
stationary signals, which are common in this domain. These
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data-driven methods perform statistical analysis of the data to
detect when the structure deviates from its nominal operation.
These models are significantly more lightweight than other
approaches and have shown interesting results. However, due
to their simplicity, these models are commonly less robust to
changes in environmental conditions and sensor noise.

More advancedMLmethods have also been used for SHM,
Malekloo et al. [25] reviewed the existing literature about the
use of ML for SHM. One challenge of using ML models
for SHM is that typically, there is only data available of
the structure in its healthy state, and thus, novelty/anomaly
detection models are more widely used than supervised learn-
ing models. As an example, Sarmadi and Karamodin [29]
proposed an adaptive Mahalanobis squared distance and one-
class KNN-based algorithm for SHM, trained exclusively
from healthy data, which was able to detect damages under
varying environmental conditions. ML models are generally
more computationally expensive and require extensive train-
ing. Nevertheless, they have been shown to be able to operate
under varying environmental conditions.

Most of the efforts in SHM focus on the accuracy of the
proposed methods and their ability to operate under varying
temperature conditions. However, little effort has been done
into evaluating the cost of running such models in terms of
computational power and memory usage, since such models
are not aimed at resource-constrained systems. This article
evaluates different lightweight anomaly detection algorithms
in terms of performance, computational cost, and memory
usage to understand the tradeoffs and decide the best candi-
date to be used in resource-constrained wireless sensors.

D. ANOMALY DETECTION METHODS FOR
RESOURCE-CONSTRAINED EMBEDDED SYSTEMS
The advancements in microelectronic manufacturing, have
allowed for the development of more capable and power-
efficient embedded systems. The performance improvements
of embedded systems, combined with the recent progress in
optimizingMLmodels, have made it possible to deploy these
models directly on edge devices. This area of research is
known as TinyML [30]. Processing part of the data locally,
instead of outsourcing the computation to the cloud has
some advantages: it reduces the latency, improves privacy and
security, reduces bandwidth, and in wireless sensors allows
reducing the energy consumption required to transmit the
data. Nevertheless, local processing also has some draw-
backs, as it increases the processor and memory usage, and
due to its lightweight nature, it will be generally less accurate
than its resource-intensive counterpart.

For the purpose of this paper, we focus on lightweight
anomaly detection methods. Domingues et al. [31] made a
comparison between the fourteen most prevalent anomaly
detection methods using multiple datasets, evaluating their
accuracy, robustness, processing time and memory usage.
As a result of their evaluation, the authors favored the iso-
lation forest (or I-Forest) algorithm for its scalability and

accuracy with large datasets; and One-Class Support Vec-
tor Machine (OCSVM) for its performance with smaller
datasets. Similarly, McKinnon et al. [32] compared the accu-
racy between Elliptic Envelope (EE), I-Forest, and OCSVM;
using a dataset extracted from a wind turbine gearbox data.
The test showed that the I-Forest and OCSVM algorithms
obtained similar results and outperformed the EE algorithm.
This shows a clear preference for these two algorithms
I-Forest and OCSVM.

Similarly, this article evaluates four different anomaly
detection algorithms, I-Forest, OCSVM, Gaussian Mixture
Model withMahalanobis Distance (GMM-MD), and Z-score.
Unlike the existing literature, it uses data from four public
SHM datasets, evaluating the model’s ability to identify light
and severe damages in the structure. Additionally, during the
evaluations, the inference is executed directly in a sensor node
to accurately measure the memory usage and computation
cost of each algorithm.

III. ANOMALY-AWARE MONITORING
Vibration monitoring is the most widely used method for
SHM [33], as it is able to detect superficial and internal
damages. In wireless sensor nodes, vibrations are commonly
measured using Micro-Electro-Mechanical System (MEMS)
accelerometers, due to their small size and low energy con-
sumption [34].
The typical operation of a wireless sensor for vibration

monitoring is shown in Figure 3 (a). To save energy, sen-
sor nodes remain in sleep mode most of the time, only
waking up periodically to start a monitoring event before
returning to sleep mode. Monitoring events can be started
periodically with a predefined periodicity, or be triggered by
external factors. In vibration monitoring, monitoring events
are commonly triggered based on the vibration level of the
structure. Commonly, in vibrationmonitoring, themonitoring
events are triggered when the vibration intensity surpasses
the threshold value. Having a high enough vibration level
is critical for the accuracy of the measurements as it is
directly related to the Signal-to-Noise Ratio (SNR) of the
measurements. Therefore, sensor nodes designed for vibra-
tionmonitoring remain in sleepmodemaintaining theMEMS
accelerometer active, waiting for the vibration level of the sig-
nal to exceed a predefined threshold to start a newmonitoring
event.

Unlike static measurements, such as temperature, humid-
ity, or inclination, where a single data point contains enough
information to characterize the monitored parameter; the
dynamic response of the structure is characterized by the
temporal changes in the accelerometer data over a period
of time. Therefore, in vibration monitoring, sensor nodes
have to acquire a series of acceleration measurements for a
window of time. The duration of the acceleration measure-
ment window can range between a few seconds to several
minutes, sampled at a rate of 0.1 to 4kHz depending on the
structure being monitored and the available memory in the
sensor node. Transmitting the complete window of data using
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FIGURE 3. Vibration monitoring flow, (a) standard and (b) additions for
anomaly-aware monitoring.

the node’s wireless interface is not usually a viable option
due to the bandwidth restrictions of the most commonly
used Low Power Wide Area Networks (LPWANs), such as
LoRaWAN [35]. Instead, sensor nodes have to preprocess the
accelerometer data locally to extract a set of relevant features
that reflect the main characteristics of the collected signal in
a compact form.

With the proposed anomaly-aware monitoring method,
when the nodes are first deployed in the structure, they have
no prior knowledge or model of the dynamic response of the
structure. Sensor nodes start in learningmode, performing the
standard processing flow from Figure 3 (a), collecting a win-
dow of accelerometer data, computing a set of features, and
transmitting those features using their wireless interface. Sen-
sor nodes remain in learning mode while collecting enough
data to train the anomaly detection model. It is important
that during this phase, the sensor nodes collect data from
the structure in different operating conditions (e.g. different
load distributions, or excitation sources) and environmental
conditions (e.g. different temperatures or humidity levels),
so as to correctly model the behavior of the model.

Once a sensor node has gathered enough data, the data
collected by the sensor node is used to generate a model
of the structure using an anomaly detection algorithm. The
generated model is transmitted to the sensor node, ending
the training phase and switching the node to inference mode.
In inference mode, the sensor node performs the additional
operations from Figure 3 (b). During each monitoring event,
the anomaly detection model processes the features extracted
in the current monitoring event, calculating an anomaly score,
which is then used to guide the behavior of the node.

The anomaly score value provides information on how
different are the current feature values from the ones used to
train the model. If the dynamic response of the system has
not changed, the anomaly scores obtained will remain low.
If the structure’s response changes due to the presence of
damages or is operating under previously unseen conditions,
the anomaly scores will increase. It should be noted that the
actual anomaly score value does not provide any information
on its own, as the actual score depends on the model and
the training data used. However, two measurements can be
compared using their anomaly score value to determine the
most anomalous one. If the anomaly score value obtained
during a monitoring event is high, it may be an indication

FIGURE 4. Anomaly score for increasingly more severe damage test cases.

that the structure is damaged or has changed in some way,
and thus, it should be prioritized over others.

The anomaly score value can be used by the self-awareness
module to implement different adaptive policies. One such
policy is to only transmit the data with the highest anomaly
scores. By only transmitting the anomalous data, the sen-
sor node can significantly increase its battery life, without
impacting its ability to detect if the structure is damaged,
as the presence of damages will increase the anomaly score
of the measurement, so they would be transmitted. Figure 4
shows the anomaly scores obtained with the Qatar University
Grandstand Simulator benchmark data [36], [37], [38] (see
Section IV-A4) with increasingly more severe damage con-
ditions. Each marker in the graph shows the score of a single
monitoring event; the horizontal green dashed line shows the
anomaly detection threshold set to the 90th percentile of the
training data. As can be seen, as the damage in the structure
increases, so does the calculated anomaly score, for the two
most severe damage test cases all of the monitored events are
correctly identified. In this case, the anomaly-aware moni-
toring method would be able to save energy by only sending
10% of the data, without having a significant impact on the
ability of the SHM application to detect damages.

Structures progressively degrade over time, until they
eventually get damaged. To minimize the maintenance cost
and improve the safety of the structure is important to identify
and repair these damages early—before they grow into more
severe and costly structural failures—. However, when the
structure is only slightly damaged, it will not experience large
changes in its dynamic response, and thus, it will not cause
large increments in the anomaly score value calculated by the
sensor node. In these cases, the anomaly detection model may
not correctly label all the monitoring events as damaged due
to the weak change in the structure’s response. Nevertheless,
even if not all the cases are correctly labeled, the overall
scores calculated by the node while the structure is slightly
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damaged will be larger than the scores obtained when the
structure was completely healthy. In such cases, analyzing
the temporal evolution of the anomaly score can provide
a useful insight to identify slight, but gradual changes in
the monitored structure. These changes can be characterized
using the moving percentile of the anomaly scores, which is
calculated using Algorithm 1. Where α controls the weight
of previous values, and 0 < α < 1; p is the percentile value;
score is the current score value; m0 is the moving percentile
value of the previous iteration; and m is the updated moving
percentile value.

An example of how the moving percentile of the anomaly
score value provides information about the state of the
monitored structure is shown in Figure 5. The data in the
graph is from the SMC Cable Stayed Bridge benchmark [39]
(see Section IV-A2). The graph shows the evolution of the
anomaly score as the bridge degrades. The data used to train
the anomaly detection model is shown in green, the data used
to evaluate the model is shown in orange, and the horizontal
dashed green line represents the anomaly detection threshold
set as the 90th percentile of the training data. Two separate
damages take place in the benchmark structure while it was
being monitored. The date when these damages took place
is not known as they were identified on a later date, during a
routine inspection, however, the anomaly scores clearly show
two points in time where the anomaly score increased. These
dates are marked by the vertical red dashed lines. In this
dataset, the effect of the damages is weak, particularly for
the first event, and thus, most of the monitoring events are
not correctly classified as anomalies. However, it can be seen
that the moving 90th percentile of the scores does react to
the damage, thus allowing the sensor node to identify the two
damage cases.

Overall, the proposed anomaly score monitoring method
presented in this paper extends the conventional sensor nodes’
vibration monitoring flow, allowing them to calculate an
anomaly score of their measurement as an indication of how
much has the structure deviated from its nominal state. The
anomaly score of a single monitoring event can be used
to detect severe damages, enabling the SHM application to
generate early responses, or it can use the moving percentile
of anomaly scores to identify the effect of slight damages
over a period of time.While the presence of damage produces
changes in the dynamic response of the structure, resulting in
larger anomaly scores, it is important to note that an increase
in the anomaly score does not necessarily indicate the pres-
ence of damage. The sensor node does not have a model of
the structure to evaluate the possible cause of the damage
and discard any changes due to the structure operating in
previously unseen conditions. Nonetheless, increasing the
monitoring effort in such conditions also provides valuable
insights for the SHM application. Therefore, the anomaly-
aware monitoring method presented in this paper is intended
as an efficient data collection method rather than a stand-
alone alarm generation system.

Algorithm 1Moving Percentile Calculation
Parameters: initialized , α

1: procedureMovingPercentile(p, score, m0)
2: q← (p/100)
3: if initialized then
4: initialized ← True
5: m← score
6: else if score < m0 then
7: m← m0 − α/q
8: else if score > m0 then
9: m← m0 + α/(1− q)

10: else
11: m← m0

return m

FIGURE 5. Temporal evolution of the moving percentile of the anomaly
score.

IV. BENCHMARK EVALUATIONS
We assess various features, feature selection methods, and
anomaly detection algorithms to determine the optimal strat-
egy to implement the anomaly-aware monitoring method
presented in this paper. For the evaluation, we utilized data
from four distinct public SHM benchmarks, which were col-
lected from different structures experiencing different dam-
age conditions. The varied range of conditions of the different
benchmarks allows us to identify how the proposed solution
will behave in a generic SHM application, and thus, provide
a general solution, instead of one focused on a given structure
or damage condition.

A. SHM BENCHMARKS
The benchmarks used for the evaluation are publicly available
benchmarks commonly used in the literature to evaluate SHM
damage detection methods. In this subsection, we provide
a brief overview of the different benchmark structures, the
damage conditions evaluated, and the data collection set-
tings for each of the benchmarks. The benchmarks consist
of data collected from multiple sensors distributed across
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the structure and include various test cases with different
levels of structural damage. To simplify the evaluation pro-
cess, from each benchmark we only considered data from
one of the sensors, and only from three different test cases.
The first test case we selected was used as a reference for
the healthy, undamaged state of the structure. The second
test case was selected to represent the structure with severe
damage, referred to as damage condition 1, which gives an
example where the damage can be easily detected. Finally,
the last test case, which is referred to as damage test case 2,
was selected to represent a case where the structure is slightly
damaged, making this test the hardest to identify.

The data of the benchmarks are presented as a continuous
time series of the accelerometer measurements sampled over
the duration of each test case. To generate multiple monitor-
ing events from these data, we divided the data into windows
of 1000 acceleration samples. Each window represents the
data collected in a single monitoring event of a sensor node.
The length of 1000 samples is mainly limited by the memory
capacity of the commercial sensor node used to evaluate the
algorithms. The data on some benchmarks is very limited,
so we applied some overlapping between consecutive win-
dows to increase the number of windows available for the
test. The degree of overlappingwas adjusted based on the data
available on each benchmark.

To prepare the data before the evaluation we performed
some preprocessing. Each data window was preprocessed
independently as if it corresponded to a monitoring event
from a sensor node. The preprocessing consisted of first a
first-order detrending, so as to remove the offset and drift
that was observed in some of the benchmark data. After
the detrending, we normalized the energy of the vibration
signals, by dividing the acceleration samples by their Root
Mean Square (RMS) value. The energy normalization pro-
cess eliminates the temporal variability in the vibration level,
making sure that changes in the vibration source between the
undamaged and damaged test cases are not used to identify
these cases. In addition to this, some benchmarks required
additional preprocessing. In these cases, benchmark-specific
preprocessing is introduced in conjunction with the bench-
mark description in the remaining part of this subsection.

1) BENCHMARK 1: IASC-ASCE SHM TASK GROUP
BENCHMARK STRUCTURE
On August 2002 the IASC-ASCE SHM Task Group per-
formed experimental studies on a test structure simulating
damages by removing bracing or loosening bolts [40]. The
test structure is a four-story, two-bay by two-bay steel frame
scaled-model structure with a scaling factor of 1 to 3. The
structure was monitored using fifteen accelerometers, three
per floor including the base of the structure. The accelerom-
eters were placed on the center column, east wall, and west
wall of each floor of the structure. The test structure was stud-
ied under nine different test conditions, which are detailed in
Table 1. In each of the test cases, the response of the structure

was studied under four different sources of excitation: ambi-
ent, shaker performing a sine sweep, shaker with random
vibration, and hammer.

For the simulation tests presented in this paper, only the
data collected when the structure was loaded with the shaker
in randommode were used, so as to make sure there is enough
vibration energy in the data to extract useful information,
and because of its similarity with the sources used for other
benchmarks. From the fifteen accelerometers used to collect
the benchmark data, only the data from the accelerometer on
the fourth floor, the east face was used, since it is located
directly where most of the damage is introduced in the test
cases. From all the available test cases, case 1 is used as the
reference, undamaged case; case 9 is used as the severe dam-
age condition; and case 5 is used as the slightly damaged case.
In test case 5, since all the east face braces are removed, the
response of the structure becomes similar to the undamaged
case, making it more complex to detect than the rest of the
test cases. The acceleration measurements of the benchmark
were sampled at 250 Hz for at least 2.5 minutes per test case.
Because of the little amount of data available for some of the
test cases, for this benchmark, thewindow lengthwas reduced
to 500 samples and set the overlapping between windows
to 60%.

2) BENCHMARK 2: SMC CABLE-STAYED BRIDGE
The Center of Structural Monitoring and Control (SMC) at
the Harbin Institute of Technology [39] published the data
collected by the SHM system from an actual cable-stayed
bridge. The bridge is a three-span concrete bridge with a total
length of 510m and a width of 11m. The SHM monitoring
data is composed of the measurements of fifteen accelerom-
eter sensors collected with a sampling rate of 100Hz to
monitor the dynamic response of the bridge, in conjunction
with temperature and wind sensors to monitor the environ-
mental conditions of the bridge. The accelerometer data is
available since the 1st of January 2008. Then, during an
inspection carried out on August 2008, two damaged patterns
were detected, and the bridge was eventually closed to traffic.
It is believed that the bridge gradually degraded due to over-
loading, but the exact date when the two damages occurred is
unknown.

The resonance frequencies of the bridge are at very low
frequencies, so to remove unnecessary data,the original data
was filtered using a fourth-order low pass Butterworth filter
with a cut-off frequency of 25Hz, and we downsampled it
by a factor of two. When the data was recorded, the bridge
was not subjected to any active excitation sources, as the
other benchmarks. Instead, the vibration of the bridge is
caused by external sources, such as traffic and wind. There-
fore, any acceleration window with an RMS value below
0.02m/s2 was discarded, so as to ensure the energy of the
used data was sufficiently high. The utilized threshold was
defined so that no background vibrationwas consideredwhile
keeping all the traffic-induced events. For this benchmark,
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TABLE 1. Test cases for the IASC-ASCE SHM Group experimental tests.

TABLE 2. Selected test cases for the SMC bridge benchmark.

since there was more than enough data for the tests, no over-
lapping was applied.

The monitored bridge in this benchmark gradually
degraded, thus, there are no clearly distinctive test cases.
Huang et al. [41] analyzed the data from the benchmark using
a Kalman filter-based method and observed that larger varia-
tions in the dynamic response of the bridge took place around
May and larger changes towards the end of June. The dates
used to determine the test conditions used for the evaluations
are detailed in Table 2. Only the data recorded using sen-
sor 1 was used for the evaluations, as it is located the closest
to where both damaged patterns were identified during the
August inspection.

3) BENCHMARK 3: K.U. LEUVEN Z24 BRIDGE
The Z24 bridge was a Swiss concrete two-cell box-girder
bridge with a main span of 30m and two side spans of
14m. In 1998, prior to its demolition, the KU Leuven Struc-
tural Mechanics Section introduced artificial damages to the
bridge, while monitoring its dynamic response of the bridge
under different test conditions. The instrumentation and the
test conditions of the bridge are explained in the original
publication by De Roeck et al. [42], the follow-up publica-
tions [43], [44], and the K.U. Leuven webpage [45]. The
damage tests were divided into two parts, during the first
part simulated damages in the pier settlement, simulated by
lowering the pier; then, during the second part the pier was
left in its original position and different damage conditions
were simulated.

For the evaluations presented in this paper, only the pier
settlement cases were used, as they provide progressively
more severe test cases. The test cases for the first part of
the Z24 benchmark can be seen in Table 3. Case 2 is used
as the undamaged condition, to avoid mistakenly identifying

TABLE 3. Initial test cases of the Z24 bridge benchmark.

the pier settlement equipment as a damage, case 3 is used
as the slight damage test condition, and case 6 as the severe
damage condition. The KU Leuven Structural Mechanics
Section monitored the dynamic response of the bridge using
62 accelerometers under ambient and forced vibration. Only
the data measured using sensor 209 was used for the test,
as it experienced the most change when the damages were
applied, and only the measurements from the forced vibration
tests, as they have more energy. The original data from the
benchmark was collected with a sampling rate of 100Hz,
using an antialiasing filter with a cut-off frequency of 30Hz.
To generate enough data windows for the evaluations, the
overlapping between windows was fixed to 40%.

4) BENCHMARK 4: QATAR UNIVERSITY GRANDSTAND
SIMULATOR
The Qatar University Grandstand Simulator (QUGS) struc-
ture [36], [37], [38] is a 4.2m x 4.2m hot-rolled steel frame,
consisting of 30 joints. The frame was designed to carry a
total of 30 spectators. The vibrations on the structure were
monitored by an accelerometer located at each joint of the
frame, with a sampling rate of 1024Hz, and each event was
recorded for 256 s. During the tests, the structure was excited
using a shaker, which generated vibration at random frequen-
cies. The QUGS structure was tested under 31 different test
cases, one undamaged, and the rest with the bolts loosened
in each of the joints. The test cases were repeated two times,
generating two different datasets, which are available at Qatar
University website [46].
The evaluation only considers the data from the sensor

located at the first joint. The undamaged test case was used as
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the reference case, the test case where the damage is located
at the first joint as the severe damage test scenario, and the
test case where the damage is located at the joint located at
the opposite corner of the structure as the slight damage test
case. Since there are two different datasets available for the
same structure, the data from the first dataset was used to train
the model, and data from the second dataset for the evaluation
test cases.

B. FEATURE SELECTION
The acceleration time series, which records the dynamic
response of the structure, is the basis for building the feature
vector in the second step of the proposed anomaly-aware
monitoring method (as shown in Figure 1). The feature vector
is a compressed representation of the time series data, empha-
sizing its significant attributes. This subsection evaluates
different features and introduces the proposed unsupervised
feature selection method for SHM.

1) FEATURE EVALUATION METHOD
The feature selection manages the tradeoff between the com-
plexity of the anomaly detection algorithm and its perfor-
mance. Not all features are equally sensitive to the presence
of damages, and furthermore, some features are sensitive only
to a certain type of damages. To obtain a better compromise in
this tradeoff it is important to select only those features that
will produce the best results. Ideally, a feature should have
similar values for data points in the same class and values as
different as possible for other classes. In supervised learning
applications, Fisher score [47] is the most common method
to evaluate the performance of a given feature. In SHM
applications the data from the damaged structure is generally
not available and there is no prior knowledge about the failure
mode. Thus, without access to the failure data, there is no
clear way of evaluating the performance of a given feature.
Instead, the proposed unsupervised feature selection method
evaluates the statistical performance of the features in the
benchmark structures to evaluate which features provide the
best performance for a wide range of structures and failure
modes.

We evaluated the features by computing the Fisher score
for all the features using the data from the different bench-
marks. Each benchmark has two damaged scenarios and an
undamaged one. Since the goal of the damage detection
algorithm is to identify any potential damage, we combined
the data from the two damage scenarios. The Fisher score
measures the sensitivity of a feature to the presence of dam-
ages. However, it is possible that two different features are
highly correlated and have similar sensitivity to the damages,
making them redundant. The redundancy between features is
commonly evaluated using the Pearson Correlation Coeffi-
cient (PCC), which measures the linear dependence between
two randomvariables. The PCCgives a value between−1 and
1. A PCC of zero indicates that the two variables are not
linearly dependent, and a value close to 1 or -1 means they

are linearly dependent (inversely dependent in the case of -1).
The PCC can be calculated using Equation 1, with X and Y
being the two features being evaluated, µI being the mean
value of feature I, and σI being the standard deviation of
feature I.

ρXY =
E [(X − µX ) (Y − µY )]

σXσY
(1)

Two features may be correlated when the structure is
undamaged, but become uncorrelated in the presence of dam-
age. To consider a feature redundant, it needs to be correlated
before, and after the damage appeared. Consequently, the cor-
relation coefficient needs to be aggregated using Equation 2,
where ρ0

XY is the PCC of features X and Y on the undamaged
case, and ρ1

XY is the PCC of features X and Y in the combined
damaged test cases.

ρ̂XY =

∣∣∣ρ0
XY

∣∣∣+ ∣∣∣ρ1
XY

∣∣∣ (2)

The aggregated PCC values are used to determine which
features are redundant. For the evaluations presented in this
paper, we defined a threshold of 1.4 for the combined PCC.
If the PCC of two features is higher than the threshold value,
the one with the lowest Fisher score is discarded. Once all the
redundant features have been discarded, the optimal features
are the ones with the highest Fisher scores.

2) WAVELET PACKET COMPONENT ENERGY
The frequency response of the monitored structure is com-
monly used to evaluate the health condition of the monitored
structure, since it is generally sensitive to the presence of
damages. In the proposed feature selection method, we eval-
uate the use of WPD to extract this information. For the
fast discrete wavelet transform, the data is passed through
a pair of quadrature mirror filters, one acting as a low-pass
(scaling) filter and the other as a high-pass (wavelet) filter.
The low-pass filtered data is referred to as approximation (A)
coefficients and the high-pass filter data is referred to as detail
(D) coefficients. The filtered signals are then decimated by a
factor of two, so the total number of samples in the detail
and approximation coefficients match the number of samples
in the original signal. A new decomposition level can be
obtained by applying the same process to the approximation
coefficients. As the signal is decomposed it will generate a
partial decomposition tree as shown in Figure 6 (a).

WPD [48] is a generalization of the wavelet transform
where the detail coefficients are also processed in subsequent
decompositions, generating the full decomposition tree as
shown in Figure 6 (b). Effectively each decomposition splits
the signal into 2j frequency bands, with j being the number of
decompositions. As the number of decompositions increases,
the frequency bands get narrower, so the frequency resolution
increases; but the number of samples per band decreases,
reducing the temporal resolution.

Sun and Chang [49] demonstrated using a numerical sim-
ulation of a three-span bridge that the Wavelet Packet Com-
ponent Energy (WPCE) is a robust indicator even in the
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FIGURE 6. Comparison between (a) wavelet tree decomposition and
(b) wavelet packet tree decomposition, showing two decomposition
levels.

presence of noise. WPCE has been successfully tested in
other use cases, such as beam structures [28], ASCE bench-
mark structure [50], and sub-sea pipeline bedding condition
assessment [51], to name a few; showing promising results in
all cases.

If the mother wavelet used for the decomposition is orthog-
onal, the energy of the signal is the sum of the energy from
all the frequency bands [49], as shown by Equation 3.

Ef =
j2∑
i=1

Ef ij (3)

where Ef is the total energy of the signal, and Ef ij is wavelet
packet component energy stored in the i th frequency band.
The energy stored in the component signal f ij (t) is calculated
using Equation 4,

Ef ij =
∫
+∞

−∞

f ij (t)dt (4)

The WPCE gives a vector with the energy stored in each
frequency band after the decomposition. This vector can be
normalized to obtain the percentage of energy stored in each
frequency band, thus, removing the dependence on the vibra-
tion level when the signal was collected. The normalization
is done by dividing the energy in each frequency band Ef ij by
the total energy Ej, using Equation 5.

Êf ij =
Ef ij∑j2
i=1 Ef ij

(5)

There is a wide variety of orthogonal wavelets reported in
the literature. The most common family of wavelets for SHM
is the Daubechies (db), shown in Figure 7. The Daubechies
wavelet family is commonly referred to as dbN, where the

FIGURE 7. Daubechies with 20 vanishing moments (db20) wavelet scaling
and wavelet functions.

FIGURE 8. Accumulated Fisher’s scores for different mother wavelets.

N expresses the order or the number of vanishing moments
of the wavelet. The wavelet’s order also defines the number
of coefficients in the low-pass and high-pass filters used
to decompose the signal, which is 2N . The order of the
wavelet is a key parameter that needs to be adjusted. As the
order of the wavelet increases, the leakage between frequency
bands is reduced. However, it reduces the maximum num-
ber of decompositions that may be done for a given signal
length, and consequently, the frequency resolution that can
be achieved.

The performance of different wavelet orders for different
sizes of feature vectors was evaluated using the procedure
from Section IV-B1, using theWPCE bands as features. Since
each structure has unique resonance frequencies, each bench-
mark was evaluated separately and the results were obtained
by taking the geometric mean of the individual results. The
average accumulated Fisher scores for the evaluated wavelets
and for different lengths of the feature vector are shown in
Figure 8. The optimal wavelet order depends on the dimen-
sion of the feature vector. However, the wavelets of orders 5 to
8 perform best during most of the range, with the db8 wavelet
obtaining the best overall performance. Consequently, the
db8 wavelet was used as the mother wavelet for the remaining
tests presented in this paper.

3) FEATURE SELECTION METHOD
Apart from the normalized WPCE, there are countless other
features that can be extracted from the acceleration data.
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TABLE 4. Features considered for the proposed feature selection method.

For example, some features measure the variability of the
signal (standard deviation), its energy (RMS), or the shape
of its probability density function (skewness, kurtosis). The
features taken into account by the feature selection method
are detailed in Table 4. It should be noted that some of
the features in the table are affected by the detrending and
energy normalization preprocessing performed on the bench-
mark data, nevertheless, they will still be listed in italics for
completion.

Measurements from other sensors can also provide useful
information that can be used as features. One clear example
of this is the temperature, which is known to have an impact
on the dynamic response of the system [52]. However, these
data are not available for all the benchmarks, and thus, they
were not taken into consideration during the valuation.

Scoring the features using the procedure from
Section IV-B1, it can be seen that the features with the highest
scores for all benchmarks are theWPCE bands. Nevertheless,
the actual bands with the highest score depend on the struc-
ture being monitored.

The presence of damages in the structure changes its fre-
quency response, changing how the energy is distributed.
There are two possible effects: 1) a new resonance peak
appears or disappears; 2) the energy shifts from a set of bands
to a different set of bands. In the first case, even if the band
where the new resonance peak changed is not being moni-
tored, the normalized energy in the rest of the bands will be
affected. The second case may be more problematic as if the
energy changes from one band to another, and none of them
is being monitored, the damage will not cause any noticeable
effect. In this case, it is more likely that the energy shifts from
a band that already had energywhen the structurewas healthy.
Therefore, an intuitive method to select the WPCE bands is
to select the bands with more energy when the structure is
healthy.

On the other hand, from the common features only skew-
ness, kurtossis and mean absolute deviation, remained after
the correlation filter. Based on the obtained Fisher scores,
these features are only preferable over the WPCE peaks once
the feature vector already contains the main peaks, making
them only useful in cases where the feature vector is large.
The reduced memory availability in wireless sensor nodes

TABLE 5. Relative accumulated Fisher score obtained with the
unsupervised WPCE selection method, with respect to the supervised
method for the different benchmarks.

limits the maximum number of features, thus, making these
features less preferable.

Table 5 shows the relative accumulated score obtained
using the accumulated Fisher score to select the optimal
features (i.e. the supervised feature selectionmethod), and the
unsupervised feature selectionmethod of selecting theWPCE
bands with more energy during the training period. In Table 5
it can be seen that as the number of selected bands increases,
the difference between the unsupervised and the supervised
feature selection method decreases. Overall, the result shows
that selecting the WPCE based on their undamaged energy is
a good method if the number of bands is large.

During the learning process, when the wireless sensor
nodes are first deployed in learning mode, the WPCE bands
with more energy are still not known. The sensor node
computes the complete WPCE vector and transmits the infor-
mation of the bands with the highest energy, thus saving
energy compared to sending the complete WPCE vector.
However, Due to the variability in the structure’s response,
there is a chance that one of the peak WPCE bands is not
transmitted, as another band may have achieved more energy
during this monitoring event. These transmissions cannot be
taken into account as they have at least one band missing,
so the training phase needs to be extended to compensate for
this. To avoid this effect and still save energy, the number of
transmitted bands can be set higher than the maximum length
of the feature vector, and adjusted based on the observed
variability in the WPCE bands.

C. ANOMALY DETECTION ALGORITHMS
Anomaly detection is the third step of the proposed anomaly-
aware monitoring method, as shown in Figure 1. During
this step, the feature vector is processed to determine if the
behavior of the structure has deviated from its nominal state.
These deviations can indicate the presence of damages in
the structure and are detected using anomaly detection algo-
rithms, which are trained using only data from the healthy
structure.

There are countless anomaly detection algorithms reported
in the literature, each with its unique characteristics and
applications. In our evaluation, we focus on the perfor-
mance as well as the memory and computation efficiency
of these algorithms, which are essential for their imple-
mentation in wireless sensor nodes. We assessed four algo-
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rithms: OCSVM, I-Forest, Mahalanobis Distance with Gaus-
sian Mixture Model (MD-GMM), and Z-score. OCSVM and
I-Forest are the most widely used anomaly detection algo-
rithms and have been shown to outperform other algorithms
in a wide range of applications [31]. More focused on SHM,
the Mahalanobis distance metric has obtained promising
results [29]. We paired the Mahalanobis distance metric with
a GMM, which defines the clusters from which to measure
the distance. Lastly, the Z-score algorithm is particularly
useful in resource-constrained systems due to its memory and
computational efficiency.

1) ISOLATION FOREST (I-FOREST)
I-Forest [53] identifies outliers in the data based on how easy
they are to separate, or isolate, from the rest of the data.
An I-forest model is an ensemble of isolation trees, which
are a special case of binary classification trees. Isolation trees
define a random threshold value for one of the features to
split the data into two groups. Each of those groups can be
subdivided by defining another threshold value for the same
or a different feature. This is repeated until each data point
in the training is isolated from the rest, or until the maximum
tree depth is reached. Outliers are different from the nominal
data, and thus, they require fewer splits, or tree depth, to be
isolated. The I-forest algorithm uses the average tree depth to
calculate the anomaly score.

The number of trees in the ensemble is the main
hyperparameter for the I-forest algorithm. Adding more
trees to the ensemble increases the performance of the
model—as more results are averaged—however, it also
increases the computational and memory cost of the
model.

2) ONE-CLASS SUPPORT VECTOR MACHINE (OCSVM)
The OCSVM algorithm is a special case of Support Vec-
tor Machine (SVM), which is trained using only data from
the positive case (i.e. the undamaged case for SHM). The
basic principle of SVM is to locate the hyperplane in the
feature space that best separates the data from the two
classes. In cases where the data cannot be linearly sepa-
rated, the data is transformed into a higher dimensional space
using a kernel function. The OCSVM model, as defined by
Schölkopf et al. [54] and the variant evaluated in this paper,
is trained to find the hyperplane that separates the training
data from the origin while maximizing the distance to the
origin.

There are different kernel functions that may be used to
transform the data in SVMs, the most common ones are
linear, polynomial, Radial Basis Function (RBF), and sig-
moid kernels. Some of these kernels introduce additional
hyperparameters, such as the kernel coefficient (gamma) for
polynomial, sigmoid and RBF kernels; or the independent
coefficient (coef0) required by the polynomial and sigmoid
kernels.

3) GAUSSIAN MIXTURE MODEL WITH MAHALANOBIS
DISTANCE (GMM-MD)
The GMM [55] is a probabilistic clustering algorithm that
assumes all the data is generated from a mixture of k normal
distributions. The GMMalso provides the means for calculat-
ing the parameters of those distributions, such as their cluster
centers. Anomalous data will be distributed far from the
center of Gaussian distributions. Mahalanobis distance [56]
provides a measure of distance between a point and the center
of a normal distribution. The Mahalanobis distance is given
by Equation 6. µ⃗ is the mean vector of the cluster, S−1 is
the inverse of the covariance matrix for the cluster with size
N × N with N being the length of the feature vector, and x⃗
is the data point to be evaluated. In essence, the Mahalanobis
distance measures the number of standard deviations between
the current data point and the center of the distribution in the
feature space.

dM
(
x⃗xx,Q

)
=

√(
x⃗xx − µ⃗µµ

)T S−1(x⃗xx − µ⃗µµ
)

(6)

4) Z-SCORE
The concept behind the Z-score anomaly detection model
is similar to the GMM-MD model, but instead of defin-
ing the clusters and distance in the complete feature space,
each feature is treated independently. Removing the dimen-
sions significantly simplifies its processing as the covariance
matrix gets replaced by the standard deviation of each feature.
The anomaly score is given by Equation 7, where µf if the
mean of feature f , σf is the variance of feature f , xf is the
feature value for the evaluated data point, and N is the length
of the feature vector.

z
(
x⃗xx
)
=

N∑
f=0

∣∣xf − µf
∣∣

σf
(7)

D. HYPERPARAMETERS
To correctly compare the different anomaly detection models
they need to have their hyperparameters optimally adjusted.
A summary of the hyperparameters from all the models
evaluated in this paper is shown in Table 6, along with the
tested range for each parameter. As can be seen, particularly
for the OCSVM, the total search space is considerably large.
Before the evaluation tests, a set of coarse-grain simulations
was performed using the benchmark data to reduce the search
space.

Initial tests done on the I-Forest model show that when the
number of estimators is low (<100), the performance of the
model is significantly affected and has a large dependence on
the stochastic nature of the training process (i.e. the feature
and value used to split the data at each node), which cannot be
realistically tested in an unsupervisedway. For a large number
of estimators, the memory required for the model proved to
be too large to run on the Sensor node, thus, the maximum
number of trees was limited to 500.
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TABLE 6. Summary of the hyperparameters of the anomaly detection
models.

For OCSVM the initial tests show that the Coef0 and
Gamma parameters had little effect on the overall perfor-
mance of the model, as long as they are close to the center
of the range. The effect of the extreme values on the per-
formance of the OCSVM highly depended on the stochastic
nature of the test, helping to improve or significantly reduce
the performance of themodel. Nevertheless, as themodels are
trained in an unsupervised way, the variability in the perfor-
mance is undesirable. Consequently, we fixed the values used
for the gamma and coef0 parameters to the default values used
by the Scikit-learn library [57]. The default gamma value is
given by Equation 8, where N is the number of features and
σ 2 is the variance of the training data. The default coef0 value
is zero. In addition to this, the degree of the polynomial kernel
did not show any noticeable improvements for large degree
values, and consequently, we limited the maximum degree of
the polynomial kernel to 5.

γop =
1

Nσ 2 (8)

Similarly, the coarse grain simulation tests showed no con-
siderable improvement when the number of clusters defined
for the GMM-MD algorithm was high, and thus, we limited
the maximum number of clusters to 3.

E. EVALUATION SETUP
The evaluation setup is shown in Figure 9, (a) shows an
interconnection diagram of the setup, and (b) a photograph
of the actual setup. The main simulation script is executed in
a Raspberry Pi, which iterates over the different benchmarks,
anomaly detection algorithms, and their respective hyperpa-
rameters. For each evaluation, the Raspberry Pi was respon-
sible for performing the feature selection process, training
the anomaly detection models, and splitting the benchmark
data into preprocessed accelerometer data windows. The fea-
ture extraction from the accelerometer data windows and the
inference were executed in a slightly modified commercial
sensor node. The commercial node used for the evaluation

FIGURE 9. Setup for the evaluations in the sensor node
(a) interconnection diagram of the setup, (b) labeled photo of the setup.

was awireless tilt sensormanufactured byWorldsensing [58],
which has an EFM32GG12B410F1024, ARM Cortex-M4
based microcontroller from Silicon Labs [59]. Executing the
feature extraction and inference tasks on the node provides
a more realistic evaluation environment, and also allows us
to precisely monitor the energy consumption and memory
overhead of the evaluated algorithms.

The power consumption of the sensor node was monitored
using an INA219 power monitor IC [60], read by an Arduino
board connected to the Raspberry Pi. A GPIO from the sensor
node was used to indicate to the Arduino board the beginning
and end of the inference, so only the inference power is
recorded. In some cases, the inference timewas too short to be
accurately measured with this setup. To avoid this, the sensor
node was programmed to perform each inference 200 times,
making sure that the Arduino could accurately measure it.

In the proposed anomaly-aware monitoring method, the
anomaly score threshold used to decide if a monitoring event
is considered anomalous or not is dynamically adjusted by the
self-awareness module depending on the needs at any given
point in time. For the evaluation tests, the anomaly detec-
tion threshold was set to 90% of the anomaly score values
obtained for the training data. The data from the undamaged
test case was split into two equal halves, with one half used
for training and the other half for the evaluation process.
From the training data, two-thirds were used to train the
damage detection model, and the remaining third to calculate
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the anomaly detection threshold. To prevent sequential data
from being concentrated in a single group, the data from
the undamaged test case was randomly distributed across the
three groups.

The stochastic nature of the evaluation process gener-
ates some variability in the results. For example, the data
points used to train or evaluate the model may impact its
overall performance; or the random splits generated by the
I-forest algorithm will also affect the accuracy of the model.
To eliminate this variability, each individual test was repeated
500 times, changing the stochastic parameters for each rep-
etition. We averaged the results from the 500 repetitions to
generate the final metrics of each evaluation. As the anomaly
detection models will be trained while only having access
to the healthy structure, removing the possibility to test the
trained model before it is deployed; it is critical that the
algorithm is robust, so that the obtained metrics have very lit-
tle variability. To check the variability of the metrics obtained
for each test, the standard deviation of each metric from the
500 repetitions was also recorded.

F. SIMULATION RESULTS AND CONCLUSIONS
1) MEMORY USAGE
Sensor nodes have very limited memory, which has to be
shared between the ML model and the rest of the application.
The model size obtained with the anomaly detection algo-
rithms is a key parameter that determines if a model can be
ported or not to a device. Figure 10, shows the average size in
bytes of the models obtained from the evaluated algorithms
across all benchmarks in the Y-axis, and the length of the
feature vector in the X-axis. The legend shows the tested
algorithms followed by their hyperparameter. For I-forest,
the hyperparameter is the number of trees in the ensemble;
for OCSVM the hyperparameter is the kernel, and for the
polynomial kernel the order of the polynomial is shown
between brackets; lastly, for the GMM-MD the hyperparam-
eter is the number of clusters. The Z-score algorithm does
not have hyperparameters, and thus, nothing is added to the
legend.

I-forest is, with a difference, the algorithm with the highest
memory requirements, remaining above 10kB. The actual
model size for the I-forest algorithm depends on how easy it
is to isolate the data, so it changes from benchmark to bench-
mark. This variability in the model size is highly undesirable
as it means that some memory buffer has to be reserved in
case the trainedmodel is large, or themaximum tree depth has
to be limited which will impact its performance. The number
of estimators also has a considerable impact on its memory
requirements, since the parameters of each tree need to be
stored independently. An interesting result about the I-forest
algorithm is that the size of the feature vector has very little
effect on the final model size, and thus, this algorithm may
be comparable with the rest, in terms of memory usage, if the
feature vector is increased, which matches the findings by
Domingues et al. [31].

The next algorithm in terms of model size is the GMM-
MD. Most of the memory of the model is used to store the
inverse covariance matrix and mean vector of each cluster,
which requires m(n2 + n) elements for n features and m
clusters. The size of the OCSVM models is the second low-
est and increases linearly with the number of features. The
algorithm with the lowest memory cost is the Z-score, which
just requires storing the standard deviation and mean value
of each feature, resulting in 2n elements for n features. For
25 features, the GMM-MD algorithm with just one cluster
requires approximately twice the memory of the OCSVM
model with linear kernel, ten times more memory than the
Z-score model, and four times less memory than the I-Forest
algorithm with 100 trees.

2) INFERENCE CHARGE
The energy cost of performing the inferences is also a crit-
ical aspect to decide the optimal algorithm to implement in
a sensor node, as it will affect the battery lifetime of the
sensor node. The average battery charge required to perform
a single inference is shown in Figure 11. The top image
shows the charge consumption measured for all the evaluated
algorithms, and the bottom image focuses on the algorithms
with an inference charge consumption below 10nAh.

As with the memory, the I-forest algorithm has the largest
energy cost, more so as the number of trees in the ensemble
increases. The energy cost of the I-forest algorithm does not
only depend on the number of trees but also on the average
tree depth required to isolate the data. Therefore, the battery
charge consumption of the i-Forest model is highly depen-
dent on the processed data. The main benefit of the i-Forest
algorithm is that its energy cost slightly decreases with the
length of the feature vector since with more features the data
becomes easier to isolate. If the trend continues, the I-forest
algorithms would be an interesting approach if the length of
the feature vector is increased.

The next algorithm in terms of charge usage is the GMM-
MD algorithm. The GMM-MD algorithm’s complexity is
O(mn2) for m clusters and n features, which limits the scal-
ability of this algorithm. Nevertheless, for the evaluated
feature vector lengths the inference charge consumption of
the GMM-MD algorithm with just one cluster remains below
10nAh.

For the OCSVM, the RBF kernel had the highest energy
cost, with an inference charge consumption for 25 features
above 20nAh, while the rest of the kernels had a charge
consumption below 4nAh for 25 features. The rest of the
kernels had similar charge consumption, slightly higher for
the kernels with higher orders. Due to its simplicity, the
Z-score algorithm had the lowest inference charge consump-
tion, remaining below 1nAh for 25 features.

The execution time of the anomaly detection algorithm
is also a parameter of interest to compare the evaluated
algorithms. The execution time and the consumed charge are
related by Equation 9, where Q is the inference charge; I is
the current consumption of the node while performing the
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FIGURE 10. Memory usage of the anomaly detection models.

inference, with for the evaluation node is 22.3mA; and t is
the execution time.

Q = It (9)

FIGURE 11. Inference charge usage of the anomaly detection algorithms.
All algorithms are shown on the top, and the bottom image focuses on
the algorithms with the lowest charge.

3) MODEL ACCURACY
The accuracy of an anomaly detection algorithm is given by
its ability to correctly identify if the structure’s state is dam-
aged or undamaged. There are several metrics to quantify the
performance of these algorithms. The most commonly used
performance metrics in ML are precision, which measures
the rate of all the data points where the structure is detected
as damaged that have been correctly identified and is given
by Equation 10; recall or sensitivity, given by Equation 11 is
the rate of data points from the damaged test case that have
been correctly classified; F-score, which is a combination of
the recall and precision metrics and is given by Equation 12;
specificity is the rate of data points from the undamaged
test case that have been correctly classified, and is given by
Equation 13.

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

FScore = 2
Precision · Recall
Precision+ Recall

(12)

Specificity =
TN

TN + FP
(13)

90242 VOLUME 11, 2023



D. Arnaiz et al.: On Anomaly-Aware Structural Health Monitoring at the Extreme Edge

where:

• True positive (TP) are the data points from the damage
test case that have been correctly identified.

• False positive (FP) are the data points from the undam-
aged test case, that have been incorrectly classified as
coming from a damaged structure.

• True negative (TN ) are the data points from the undam-
aged test case that have been correctly identified.

• False negative (FN ) are the data points from the dam-
aged test case that have been incorrectly classified as
coming from an undamaged structure.

To limit the number of graphs shown in this section, the
results shown in the graphs are the averaged results obtained
for the evaluated algorithms across the different benchmarks.
The average precision metric is shown in Figure 12. It can
be seen that for the severe damage case, damage test case 1,
the OCSVM algorithm, except for the case with the RBF
kernel, outperforms the rest. It is followed by the GMM-MD
and Z-score algorithms. It can be seen that for the OCSVM,
GMM-MD and Z-score algorithm, the precision reaches a
plateau as the length of the feature vector increases, meaning
the further increments in the length of the feature vector do
not increase the precision in a significant way. The OCSVM
algorithm reaches the plateau with only 10 features, while
the GMM-MD and Zscore algorithms require 20 features to
reach the plateau. The I-forest algorithm obtained the worst
performance, since its performance decreased when more
than 15 features are considered due to overfitting.

On the slight damage test case, damage test case 2, the
GMM-MD algorithm has the highest precision, followed by
the Z-Score algorithm. Unlike the results obtained for the
severe damage test case, where the precision stabilized for
long feature vectors; in the slight damage test case, the preci-
sion continues to increase with the dimension of the feature
vector. Therefore, showing that the models can benefit from
adding even more features. This contrasts the results obtained
for the OCSVM and I-Forest algorithms, which stabilize their
performance at 15 features.

A noticeable effect is that increasing the number of clusters
in the GMM-MD algorithm has a negative impact on its per-
formance, since it may be suffering from overfitting. In cases
where the structure may be subjected to different stresses or
loaded in different ways, adding more clusters can help to
discriminate between these cases. Tools such as the Bayesian
Information Criterion [61] are commonly used to determine
the optimal number of clusters for a given application.

Similar results have been obtained for the average recall
metric, Figure 13. It can be seen that for damage test case 2,
the recall is mostly below 50% showing that the algorithms
have a hard time identifying slight damage cases. This is to be
expected as the slight damage cases produce small changes
in the response of the structure, thus making them hard to
classify. Consequently, the anomaly score value of a single
monitoring event is not a good indicator when the structure is
slightly damaged.

FIGURE 12. Average precision, damage test case 1 on the top, damage
test case 2 on the bottom.

FIGURE 13. Average recall, damage test case 1 on the top, damage test
case 2 on the bottom.

The average F-score metric, shown in Figure 14, con-
firms the initial observations that the OCSVM algorithm
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FIGURE 14. Average F-score, damage test case 1 on the top, damage test
case 2 on the bottom.

outperforms the rest in the severe damage case; while the
GMM-MD algorithm takes the lead for the slight damage test
case.

The specificity value only considers how the data points
from the undamaged test case are classified. The specificity
value is controlled by the percentile parameter used to adjust
the anomaly score threshold, which was fixed to 90% for the
evaluation. Since the threshold is set using training data, this
metric identifies how well the algorithms are able to hold the
specificity value for previously unseen data points. Figure 15,
shows the average specificity for the evaluated models. It can
be seen that in all cases, the value is only slightly lower than
90% regardless of the number of features.

On top of the performance metrics, we also calculated their
variability, since each configuration was tested 500 times.
As an example of this variability, the standard deviation of
the F-score for the damage test case 2 is shown in Figure16.
The I-Forest algorithm and the GMM-MD algorithm with
multiple clusters had the highest standard deviation. The next
algorithm in terms of standard deviation was the GMM-MD
with only one cluster, followed by the Z-score algorithm.
The OCSVM algorithm had the lowest variability. Taking
into account the variance, the F-Score value obtained with
the GMM-MD algorithm on the damage test case 2 with
25 features, is higher than 0.461 in over 98% of the cases.

Despite its low memory and processing requirements, the
Z-score algorithm has shown promising results. Making it

FIGURE 15. Average model specificity.

FIGURE 16. Average model F-score standard deviation.

an interesting alternative in cases where the sensor nodes
do not have enough resources for the GMM-MD algorithm.
From another point of view, given the memory and energy
constraints for a sensor node, using the Z-score allows us to
usemore features, compared to the other algorithms.We eval-
uated this case by extending the simulations for the Z-score
algorithm increasing the number of features. The average
F-score for the Z-score algorithm with the extended feature is
shown in Figure 17. In this case, only the results for Damage
test case 2 are shown, as Figure 14 already showed that the
F-score for the severe damage test case reached a plateau at
20 features. The extended simulation shows that increasing
the number of features above 25 was actually detrimental to
the Z-score algorithm, as the performance peak is reached
with 25 features.

The evaluation results per benchmark are shown in Table 7.
To limit the size of the table, it only shows the results obtained
with 25 features, and from the best-performing hyperpa-
rameter for each evaluated algorithm. The results obtained
with benchmark 2 (i.e. the SMC bridge benchmark) were
significantly worse than for the rest of the benchmarks. The
SMC structure is a large and complex structure, which was
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FIGURE 17. Extended feature evaluation for the Z-score algorithm.

subjected tomultiple different operating conditions (e.g. wind
and traffic) and environmental conditions (e.g. temperature,
rain, and humidity) while the benchmark data was recorded.
On top of this, the damage conditions were less severe than
the cases from the other benchmarks. Consequently, for this
benchmark, the anomaly score of a single monitoring event
is not a good indicator of the presence of damage in the
structure. In these cases, where the changes in the dynamic
response of the structure are small, the running percentile
of the anomaly scores is a more robust indicator to detect
damage.

To test the ability of the anomaly monitoring method of
identifying slight damages using the moving percentile of the
anomaly scores, we calculated the average relative increment
of the 90th percentile of the anomaly scores obtained for
the damage test cases with respect to the 90th percentile
obtained for the anomaly scores of the undamaged test case.
Figure 18, shows the achieved increment in the 90th per-
centile obtained by the evaluated anomaly detection algo-
rithms. As can be seen, the GMM-MD algorithm outperforms
the other algorithms in the severe and the slight damage test
cases. For the OCSVM, the polynomial kernel outperforms
the other kernels. Unlike the othermetrics, such as the F-score
value, the polynomial kernels with higher orders obtained
a larger increment. For the GMM-MD algorithm with one
cluster and 25 features, the relative increments for benchmark
2 is 51.076% and 26.15% for damage test cases 1 and 2,
respectively; and their standard deviation of 11.832% and
8.453%. The standard deviation in the undamaged test case
was 7.707%. In other words, the increment in the moving
90th percentile of the anomaly scores for the slight damage
test case with benchmark 2 is higher than three standard
deviations with respect to the 90th percentile value of the
undamaged test case. This shows that the moving percentile
metric is a good indicator to identify when the structure is
damaged even when the change in the structure’s response is
weak.

FIGURE 18. Relative increment of the 90th percentile of the anomaly
score with respect to the undamaged test case.

4) CONCLUSION OF THE MODEL EVALUATION
Civil structures slowly degrade over time. The goal of an
SHM system is to detect the presence of damages as soon as
possible, i.e. when the dynamic response of the structure is
only slightly altered. This scenario matches the conditions of
the damage test case 2, for which the GMM-MD algorithm
yielded the best performance, obtaining an average F-score
of 0.66 with 25 features. The main drawback of the GMM-
MD algorithm is its limited scalability with the number of
features. The complexity of the inference is O

(
mn2

)
, and the

number of elements in its model m(n2+ n) for m clusters and
n features. For the severe damage test case, the algorithms
achieved a plateau, beyond which adding additional features
did not improve the performance of the algorithms, and thus,
the models to identify severe damage can use shorter feature
vectors, without sacrificing performance. However, this is not
the case for the slight damage test case, as the performance of
the GMM-MD algorithm continued to improve as the length
of the feature vector is increased. To identify slight damages
having a large feature space is beneficial, which significantly
impacts the energy and memory efficiency of the GMM-MD
algorithm. On the other side, our evaluation results show that
using a single cluster gave the best results, which mitigates
the energy and memory cost of the GMM-MD algorithm,
particularly when the feature vector is large.

The battery charge required to perform a single infer-
ence with the GMM-MD algorithm with 25 features is
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TABLE 7. Results of the anomaly detection algorithms with the best-performing hyperparameters by benchmark.

approximately 8nAh, making this algorithm energy-efficient,
at least when comparedwith the energy used for the collection
of the accelerometer data window, which is more than two
orders of magnitude higher, in the range of 3µAh.

Overall, the GMM-MD algorithm showed the best per-
formance, while still being lightweight enough to be imple-
mented in a wireless sensor node, followed by the OCSVM
algorithm with a second-order polynomial kernel if the struc-
ture is expected to be severely damaged. The results also
show that the Z-score algorithm also provides a good tradeoff
between energy and memory usage, and the achieved perfor-
mance, thus making it an interesting alternative for heavily
constrained sensor nodes.

V. EXPERIMENTAL EVALUATION IN THE UPC
BENCHMARK STRUCTURE
The benchmark evaluation tests used the data from public
benchmarks to test different aspects of the anomaly-aware
monitoring method presented in this paper. Even though
during the evaluations the feature extraction and inference
were performed by a sensor node, the data collection and pre-
processing were done externally. In this section, we present
the experimental evaluation carried out to validate the results
from the benchmark evaluations and assess the anomaly-
aware monitoring method in a benchmark structure. For the
experimental evaluation, the complete anomaly-aware mon-
itoring method from Figure 1, except for the last step, is
implemented in the sensor node, which was deployed in a
benchmark structure and tested under several damaged and
undamaged conditions.

The benchmark structure is a steel frame, reduced-scale
model structure, developed and maintained by the Depart-
ment of Civil and Environmental Engineering at the Polytech-
nic University of Catalonia (UPC) [62], [63]. The structure
has a four-story, two-bay by one-bay configuration, with a

height of 2m and a base of 1.45 × 0.77m, as shown in
Figure 19. The horizontal beams of the structure have 4.5kg
lead blocks located at the center point of the beam, repre-
senting the permanent loads of the structure. This benchmark
structure has been used in prior publications to validate struc-
tural damage detection methods. Caselles et al. [63] tested
a PCA (Principal Component Analysis)-based method, and
validated their proposed damage detection method using the
same benchmark structure. For their experimental evaluation,
Caselles et al. simulated different damage scenarios by releas-
ing the bolts of different junctions.

In our experimental setup, we positioned two sensor nodes
attached to the top beam of the front, and back facades of the
structure, as close to the center as possible, but slightly to the
left as the lead blocks were on the way. The sensor nodes are
the same modified commercial nodes by Wordsensing used
for the benchmark evaluation tests. Each nodeweighs approx-
imately 300g andwas placed on opposite sides of the structure
to avoid unbalancing of the structure. In Figure 19 the posi-
tion of the sensor nodes is highlighted with a red circle, and
the orientation of the accelerometer axes is shown in cyan.
The sensor nodes were configured to sample acceleration data
at a rate of 1000Hz, and to collect a 2000 sample window
for each monitoring event. The internal accelerometer has a
band-pass filter with −3dB corner frequencies of 2.38 mHz
and 250Hz respectively. Even though the accelerometer data
is collected along the three axes, the anomaly-aware monitor-
ing method is only implemented for the Y-axis data.

The monitoring events are generated by striking the base
of the structure with a 2.5kg medicine ball, which is swung
to the structure from a constant height, so as to induce
similar vibration levels to the structure in each monitoring
event. The medicine ball striking the structure can be seen
in Figure 20 (a), and the strike location is highlighted with
a green 16-point star in Figure19. This excitation method is
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FIGURE 19. UPC benchmark structure. Side view on the left, front view on the right.

FIGURE 20. The top image (a) shows the medicine ball striking the
structure, the center image (b) shows the node attached to the structure,
and the bottom image (c) shows the simulated damage on a junction.

the same as the one used by Caselles et al. for their evalua-
tion, showing it does generate enough energy to measure the
dynamic response of the structure. When the ball strikes the

TABLE 8. Test scenarios of the experimental evaluation.

structure, the sensor nodes are wakened up by their internal
accelerometer to start a monitoring event. To eliminate the
transitory effects caused by the strike, the sensor nodes were
configured to discard the first 500 samples (i.e. waiting half a
second) after the strike before starting the data collection pro-
cess for the monitoring event. Additionally, we waited several
seconds between each consecutive strike to ensure that the
vibration had stopped before starting a newmonitoring event.

The anomaly-aware monitoring method was tested under
three different damage scenarios, with incremental damage
to the structure. The damage scenarios consisted in removing
the junction bolts between the horizontal beams along the Y-
axis and the column at different locations of the structure. The
locations of the junctions where the damages were introduced
are highlighted with dashed orange circles in Figure 19, and
an image of a damaged junction can be seen in Figure 20 (c).
The test scenarios evaluated are summarized in Table 8.

The data collected during the experimental setup is made
public in [64]. The dataset is composed of 275 different mon-
itoring events from each sensor node. For each monitoring
event, we recorded the raw 3d-accelerometer data in m/s2,
the feature vector calculated by the node, and the anomaly
score and prediction value calculated with the anomaly detec-
tion model. The first 75 monitoring events, the sensor nodes
remained in training mode, and thus, for these events, the
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TABLE 9. Results from the experimental evaluation.

feature vector contains the complete feature set, and no infer-
ence data was recorded (as the model was yet to be trained).

Once the first 75monitoring events were recorded, we used
this data to perform the feature selection and train the
anomaly detection model for each node independently. Fol-
lowing the conclusions from the benchmark evaluation tests,
the number of features was set to 20, which was themaximum
that could be fit in memory, and we used the GMM-MD
algorithm with one cluster to train the model. 75% of the
training data was used to train the model, and the other 25%
was used to set the anomaly detection threshold. To compare
with the results from the benchmark evaluation tests, we fixed
the threshold to the 90th percentile of the anomaly scores
calculated for the threshold training data.

The training was done in a PC and then communicated
to the sensor nodes, transitioning them to inference mode.
In inference mode, the sensor nodes can run the full anomaly-
aware monitoring flow obtaining the anomaly scores and
deciding if the data is considered anomalous or not. The
results obtained for each test case on each of the nodes are
detailed in Table 9. The anomaly scores of the different mon-
itoring events are shown in Figure 21. Each marker represents
the anomaly score of a single monitoring event, and the
horizontal dashed, red line shows the fixed anomaly detection
threshold. It should be noted that the anomaly scores for the
training data were obtained later in a PC using the trained
model, and not in the sensor node, as the models were not
trained at the moment the data was collected. Also, twomoni-
toring events for test case 3 had an anomaly score greater than
10, these values have been cropped out to improve the read-
ability of the image. The results show that both sensor nodes
successfully identified the presence of damage in over 75% of
the cases, obtaining an F-score of 0.826 and 0.931 depending
on the test case. Overall, the Experimental test show that the
anomaly-aware monitoring method is lightweight enough to
be executed in a commercial sensor node, using its internal
MEMS-based accelerometer, and be able to identify when the
structure is damaged.

VI. ANOMALY-AWARE MONITORING FOR
SELF-AWARENESS
The fourth and last step of the anomaly-aware monitoring
workflow presented in Figure 1 is using the anomaly score
values to guide the adaptive actions of the sensor node and

FIGURE 21. Anomaly scores obtained for each monitoring event of the
dataset. The results from node 1 are shown on the top, and the results
from node 2 are shown on the bottom.

support the implementation of self-awareness at the sensor
node level. The anomaly score value enables the node to
react to changes in the monitored structure, without requiring
costly and slow communications with the central server. The
anomaly score value can be combined with other internal
metrics of the node (e.g. its remaining battery life or its
energy consumption, etc.) to support the implementation of
self-aware behaviors on the sensor node. This section show-
cases how the anomaly score value can be used to support
self-awareness in the context of SHM through an example
simulation.

The self-aware monitoring method proposed by Arnaiz
et al. [23] dynamically adjusts the power consumption of
the sensor node to comply with its defined battery lifetime
target; while allocating the energy budget more efficiently
by taking into account changes in the temporal correlation of
the monitored data. Temporal correlation is a useful param-
eter to model the perceived utility of the signal for simple
measurements, such as temperature, humidity, or wind speed.

90248 VOLUME 11, 2023



D. Arnaiz et al.: On Anomaly-Aware Structural Health Monitoring at the Extreme Edge

However, this metric cannot be used for more complex data
such as vibration data in SHM. Instead, we use the anomaly
score value to model the perceived utility of the data. Rather
than having to transmit all the measurements to the central
server, the sensor node can process the data locally, using
the anomaly detection model, and only transmit a predefined
percentage of values using its radio interface. This way the
node can save energy, as it does not have to transmit every
monitoring event to the central server, and still be able to
detect the presence of local damages in the monitoring struc-
ture by analyzing its local anomaly score values.

In the simulation, the node implements the complete
anomaly-aware monitoring workflow proposed in this paper.
The node remains most of the time in low power mode with
just the accelerometer active waiting for vibration peaks to
start a monitoring event. These vibration peaks are generated
by external factors (e.g. traffic, hammer strikes, trains, etc.)
and the node has no control over how often these peaks are
generated. But can adjust how often it relays these data to
the central server. Once a vibration peak is detected, the
node starts a monitoring event, where it collects a window of
raw accelerometer measurements, builds the feature vector,
and calculates the anomaly score value for the event. The
anomaly score value is used to determine if the event data
is transmitted, using additional energy, or it is discarded.
The self-awareness module needs to dynamically adjust the
anomaly score threshold, to control the energy consumption
of the sensor node and comply with the battery life target.

To simulate the measurements from the node we used
the data from the SMC bridge, or benchmark 2 [39]
(Section IV-A2) as it is the more realistic test case from all
the benchmarks and contains the time series data from an
extended period of time. The benchmark data were prepro-
cessed as described in Section IV; shuffled, so the training
period contains data taken at different times with different
environmental conditions; and re-timed, introducing random
intervals between consecutive samples to simulate the ran-
dom nature of the monitoring events. To evaluate the response
of the sensor node to the presence of damage, we added two
groups of 1000 accelerometer windows using data from the
periods where the structure is considered to be damaged, from
damage test case 2 and damage test case 1, respectively, as
defined in Section IV-A2.
The charge consumption of the sensor node is given by

Equation 14, where Cevent is the battery charge consumption
of the node since the last monitoring event, Iidle is the current
consumption of the sensor node in idle mode in mAh, 1T is
the time in hours since the last monitoring event, Csp is the
charge required the sample and process the data; and Ctr is
the charge required to transmit the data, which is set to zero
if the measurement is not transmitted in the end.

Cevent = Iidle1T + Csp + Ctr (14)

As the monitoring events are generated using the accel-
eration trigger and not a fixed monitoring period, the time
between events is not known. Consequently, the sensor node

FIGURE 22. Battery discharge rate of a sensor node with the proposed
anomaly-aware monitoring method and the naive monitoring method.

TABLE 10. Simulation data for the sensor node.

cannot directly model its power consumption and predict
its remaining battery life. For simplicity, in the simulation,
the sensor node models the average time between events,
to estimate the expected number of events until the battery
lifetime target is reached. The average time between events
is calculated using the Exponential Moving Average (EMA)
from Equation 15, where α is the smoothing coefficient of
the EMA, 1̂T eventx is the mean time between events at time
x, and 1T is the time since the last monitoring event took
place.

1̂T event i = α1T + (1− α) 1̂T event i−1 (15)

Equation 16 is used to calculate the percentage of mon-
itoring events that can be transmitted to the central server
while complying with the battery lifetime target. Where Cbat
is the remaining battery charge, Tbat is the time remaining
until the battery lifetime target is accomplished, 1̂T event is
the mean time between events, and the rest of the parameters
are detailed in Table 10. The percentage of monitoring events
to be transmitted is used to adjust the anomaly score threshold
used to determine if a givenmonitoring event is transmitted or
not. The threshold value is calculated as themoving percentile
of the anomaly score values following Algorithm 1.

Trans% =
Cbat − Tbat

(
Iidle + Csp1̂T event

)
CtrTbat1̂T event

(16)
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FIGURE 23. Anomaly scores with the anomaly score threshold and the 90th percentile.

Figure 22 shows the sensor node’s battery charge over time
in the continuous blue line. For the first 1000 monitoring
events, the sensor node starts in training mode. The end of
the training period is marked with a dashed red vertical line.
During the training period, the sensor node transmits the data
from all the monitoring events, so they can be used to train the
anomaly detection model. For the simulations, we used the
GMM-MDmodel with a single cluster, which is configured in
the node once the training period ends. In inference mode, the
sensor node computes the anomaly score for each monitoring
event to decide if the data is transmitted or not. By not trans-
mitting the information of each monitoring event, the sensor
node is able to adjust its energy consumption. As can be seen
in Figure 22, after the training is completed, the sensor node
reduces its battery discharge rate so it is able to reach the
battery lifetime target. For comparison, the discharge rate of
a sensor node using a naive monitoring method is shown as
a brown dotted line. For the naive monitoring method, the
sensor node transmits the data from all the monitoring events,
so its energy consumption does not change once the training
ends.

The simulation results are detailed in Table 11. The battery
life of the node in the simulation is over six months with
a mean time between events of eight minutes. The self-
awareness module is able to successfully adjust the energy
consumption of the sensor node and achieve a battery life
within a few hours of its predefined target. Furthermore,
by only transmitting the most anomalous monitoring events,
the sensor node is able to extend the battery life of the node
by 77 days or by 59% compared with the naive monitoring
method.

The anomaly scores for the different monitoring events
can be seen in Figure 23, along with the 90th percentile of
the scores represented as a blue line, and the anomaly score
threshold as a continuous black line. All the events with an

TABLE 11. Simulation results. Dates as (DD/MM/YYYY hh:mm:ss).

anomaly score value larger than the anomaly score threshold
are transmitted.

The monitoring events extracted from when the data is
considered to be damaged are shown in brown. As it can
be seen when both groups of monitoring events from the
damaged structure are being processed, the 90th percentile of
the anomaly score increases significantly, allowing the node
to identify that the structure is potentially damaged, as it can
be seen by the damage detection signal, which transitions
from zero to one when the node detects the presence of dam-
age. When the node suspects that the structure is potentially
damaged, it transmits the information of all the captured
monitoring events regardless of its battery life target, as can
be seen during this period the anomaly score threshold is
set to zero. In the simulation, once the damage period ends
the node resumes its regular operation, having to re-adjust its
operation to compensate for energy excess consumed during
the period where the structure was considered to be damaged.

Overall, the example self-aware application is able to
dynamically adjust the percentage of transmitted monitor-
ing events, so as to comply with its target battery life. The
anomaly score is leveraged tomodel whichmonitoring events
are considered more interesting and prioritize the transmis-
sion of these events. Moreover, anomaly scores are also used
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to detect the presence of structural damage without having
to communicate with the central server. Thus, allowing the
sensor node to operate with a low percentage of transmitted
monitoring events, without impacting the damage detection
delay in a significant way.

VII. CONCLUSIONS AND FUTURE WORK
This article proposes a lightweight SHM monitoring method
that employs an anomaly detection model to identify vari-
ations in the dynamic response of the monitored structure,
which may indicate the presence of damages. This article
starts evaluating a wide range of commonly used features for
SHM using publicly available SHM benchmarks, showing
that the Wavelet Packet Component Energy bands outper-
formed the other features in all cases. Based on the analytic
results an unsupervised feature selection method is proposed.
The result shows that when the feature vector is large, with
20 or more features, the score of the proposed method is 70%
that of the ideal supervised feature selection method.

The anomaly detection model is a critical aspect of the pro-
posedmonitoringmethod. This article evaluates the fourmost
common lightweight anomaly detection algorithms using the
data from the SHM benchmarks. The result shows that the
GMM-MD algorithm with only one cluster has the best per-
formance in cases where the structure is slightly damaged,
while having a relatively small memory footprint and energy
cost. For nodes where the resources are heavily constrained,
the Z-score algorithm offered a good algorithm, reducing
the memory and energy cost by more than 85%, and only
reducing the F-score by 20%. The benchmark evaluation also
showed that the anomaly score obtained for an individual
monitoring event provides a good indication of the presence
of severe damage, but is not robust when the structure is
slightly damaged. However, using the running percentile of
the anomaly score value in consecutive monitoring events,
does provide a robust indication even when the damage has
very little effect on the dynamic response of the structure.

The evaluation results successfully validated the proposed
anomaly-aware monitoring method using a commercial node
deployed in a benchmark structure. The results obtained
for the evaluation test, running the complete anomaly-aware
monitoring method in the sensor nodes, were similar to the
results obtained with the public benchmark data, validating
that running the algorithm in the node is viable. Furthermore,
this article also showcases how the anomaly scores can be
used to support self-awareness in a test simulation where the
anomaly score values were successfully leveraged to guide
the behavior of the sensor node, allowing the sensor node
to comply with a specified battery lifetime goal, without
impacting the system’s ability to identify damages in the
structure.

Future research directions will focus on two directions.
One research direction is to evaluate the performance of
the anomaly detection algorithm in a real structure, under
varying environmental conditions. Additionally, the use of
environmental measurements (e.g. temperature and humid-

ity) as features also needs to be considered, evaluating their
effect on the robustness of the anomaly detection model. The
other research direction centers on the implementation of
more sophisticated self-aware behaviors at the sensor node
level. The self-aware behavior presented in the article is a first
approximation, only taking into account one goal (the battery
life), two monitored parameters (i.e. remaining battery and
anomaly scores), and one control variable (i.e. the transmis-
sion rate) to guide the node’s behavior. Future self-aware
methods should evaluate the use of multiple, competing,
goals and multiple control and monitored parameters.
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