1,994 research outputs found

    Shipment consolidation and distribution models in the international supply chain

    Get PDF
    With the increasing competition in global trade, buying and transporting items effectively in the international network are critical and challenging problems for many companies. The objective of this study is to design a cost-effective consolidation and distribution method to transport shipments in a global network. In the dissertation, we investigate an integrated consolidation problem in the international supply chain, where a US manufacturing company buys multiple items from China. A proactive order consolidation strategy is proposed. Different from current practices, our approach consolidates items in China considering inland transportation in US. This strategy is modeled to minimize the total costs by effectively loading items into an ocean container considering subsequent inland transportation cost and handling cost given container capacity and packing constraints. Two difficult combinatorial optimization problems, such as a mode selection problem and a three-dimensional bin packing problem, are combined into the model. Due to the problem complexity, approximation algorithms are proposed to solve the model. The basic model is extended to consider the inland multi-stop delivery and multi-period planning horizon. Several solution methodologies are developed and evaluated to solve large-scale problems. Based on the numerical results, it is observed that our proposed methods could achieve up to 30% cost savings compared with the current shipping practices. The algorithms we developed could obtain the good implementable solution in a reasonable time for real-world problems

    Assessment of joint inventory replenishment: a cooperative games approach

    Get PDF
    This research deals with the design of a logistics strategy with a collaborative approach between non-competing companies, who through joint coordination of the replenishment of their inventories reduce their costs thanks to the exploitation of economies of scale. The collaboration scope includes sharing logistic resources with limited capacities; transport units, warehouses, and management processes. These elements conform a novel extension of the Joint Replenishment Problem (JRP) named the Schochastic Collaborative Joint replenishment Problem (S-CJRP). The introduction of this model helps to increase practical elements into the inventory replenishment problem and to assess to what extent collaboration in inventory replenishment and logistics resources sharing might reduce the inventory costs. Overall, results showed that the proposed model could be a viable alternative to reduce logistics costs and demonstrated how the model can be a financially preferred alternative than individual investments to leverage resources capacity expansions. Furthermore, for a practical instance, the work shows the potential of JRP models to help decision-makers to better understand the impacts of fleet renewal and inventory replenishment decisions over the cost and CO2 emissions.DoctoradoDoctor en IngenierĂ­a Industria

    Design Principles for Closed Loop Supply Chains

    Get PDF
    In this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the literature. It appears that setting up closed loop supply chains requires some additional design principles because of sustainability requirements. At the same time however, we see that traditional principles also apply. Subsequently we look at a business situation at Honeywell. Here, only a subset of the relevant design principles is applied. The apparent low status of reverse logistics may provide an explanation for this. To some extent, the same mistakes are made again as were 20 years ago in, for instance, inbound logistics. Thus, obvious improvements can be made by applying traditional principles. Also new principles, which require a life cycle driven approach, need to be applied. This can be supported by advanced management tools such as LCA and LCC.reverse logistics;case-study;closed loop supply chains

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much

    Optimal Global Supply Chain and Warehouse Planning under Uncertainty

    Get PDF
    A manufacturing company\u27s inbound supply chain consists of various processes such as procurement, consolidation, and warehousing. Each of these processes is the focus of a different chapter in this dissertation. The manufacturer depends on its suppliers to provide the raw materials and parts required to manufacture a finished product. These suppliers can be located locally or overseas with respect to the manufacturer\u27s geographic location. The ordering and transportation lead times are shorter if the supplier is located locally. Just In Time (JIT) or Just In Sequence (JIS) inventory management methods could be practiced by the manufacturer to procure the raw materials and parts from the local supplier and control the inventory levels in the warehouse. In contrast, the lead time for the orders placed with an overseas supplier is usually long because sea-freight is often used as a primary mode of transportation. Therefore, the orders for the raw materials and parts (henceforth, we collectively refer to raw material and part by part) procured from overseas suppliers are usually placed using forecasted order quantities. In Chapter 2, we study the procurement process to reduce the overall expected cost and determine the optimal order quantities as well as the mode of transportation for procurement under forecast and inventory uncertainty. We formulate a two-stage stochastic integer programming model and solve it using the progressive hedging algorithm, a scenario-based decomposition method. Generally, the orders are placed with overseas suppliers using weekly or monthly forecasted demands, and the ordered part is delivered using sea-containers since sea-freight is the primary mode of transportation. However, the end manufacturing warehouse is usually designed to hold around one to two days of parts. To replenish the inventory levels, the manufacturer considered in this research unloads the sea-container that contains the part that needs to be restocked entirely. This may cause over-utilization of the manufacturer\u27s warehouse if an entire week\u27s supply of part is consolidated into a single sea-container. This problem is further aggravated if the manufacturer procures hundreds of different parts from overseas suppliers and stores them in its warehouse. In Chapter 3, we study the time-series forecasting models that help predict the manufacturing company\u27s daily demand quantities for parts with different characteristics. The manufacturer can use these forecasted daily demand quantities to consolidate the sea-containers instead of the weekly forecasted demand. In most cases, there is some discrepancy between the predicted and actual demands for parts, due to which the manufacturer can either have excess inventory or shortages. While excess inventory leads to higher inventory holding costs and warehouse utilization, shortages can result in substantially undesirable consequences, such as the total shutdown of production lines. Therefore, to avoid shortages, the manufacturer maintains predetermined safety stock levels of parts with the suppliers to fulfill the demands arising from shortages. We formulate a chance-constraint optimization model and solve it using the sample approximation approach to determine the daily safety stock levels at the supplier warehouse under forecast error uncertainty. Once the orders are placed with the local and overseas suppliers, they are consolidated into trailers (for local suppliers) and sea-containers (for overseas suppliers). The consolidated trailers and sea-containers are then delivered to the manufacturing plant, where they are stored in the yard until they are called upon for unloading. A detention penalty is incurred on a daily basis for holding a trailer or sea-container. Consolidating orders from different suppliers helps maximize trailer and sea-container space utilization and reduce transportation costs. Therefore, every sea-container and trailer potentially holds a mixture of parts. When a manufacturer needs to replenish the stocks of a given part, the entire sea-container or trailer that contains the required part is unloaded. Thus, some parts that are not imminently needed for production are also unloaded and stored inside the manufacturing warehouse along with the required parts. In Chapter 4, we study a multi-objective optimization model to determine the sea-containers and trailers to be unloaded on a given day to replenish stock levels such that the detention penalties and the manufacturing warehouse utilization are minimized. Once a sea-container or trailer is selected to replenish the warehouse inventory levels, its contents (i.e., pallets of parts) must be unloaded by the forklift operator and then processed by workers to update the stock levels and break down the pallets if needed. Finally, the unloaded and processed part is stored in the warehouse bins or shelves. In Chapter 5, we study the problem of determining the optimal team formation such that the total expected time required to unload, process, and store all the parts contained in the sea-containers and trailers selected for unloading on a given day is minimized
    • …
    corecore