72 research outputs found

    Modal logic of planar polygons

    Get PDF
    We study the modal logic of the closure algebra P2P_2, generated by the set of all polygons in the Euclidean plane R2\mathbb{R}^2. We show that this logic is finitely axiomatizable, is complete with respect to the class of frames we call "crown" frames, is not first order definable, does not have the Craig interpolation property, and its validity problem is PSPACE-complete

    Semantical Investigations on Non-classical Logics with Recovery Operators: Negation

    Full text link
    We investigate mathematical structures that provide a natural semantics for families of (quantified) non-classical logics featuring special unary connectives, called recovery operators, that allow us to 'recover' the properties of classical logic in a controlled fashion. These structures are called topological Boolean algebras. They are Boolean algebras extended with additional unary operations, called operators, such that they satisfy particular conditions of a topological nature. In the present work we focus on the paradigmatic case of negation. We show how these algebras are well-suited to provide a semantics for some families of paraconsistent Logics of Formal Inconsistency and paracomplete Logics of Formal Undeterminedness, which feature recovery operators used to earmark propositions that behave 'classically' in interaction with non-classical negations. In contrast to traditional semantical investigations, carried out in natural language (extended with mathematical shorthand), our formal meta-language is a system of higher-order logic (HOL) for which automated reasoning tools exist. In our approach, topological Boolean algebras become encoded as algebras of sets via their Stone-type representation. We employ our higher-order meta-logic to define and interrelate several transformations on unary set operations (operators), which naturally give rise to a topological cube of opposition. Furthermore, our approach allows for a uniform characterization of propositional, first-order and higher-order quantification (also restricted to constant and varying domains). With this work we want to make a case for the utilization of automated theorem proving technology for doing computer-supported research in non-classical logics. All presented results have been formally verified (and in many cases obtained) using the Isabelle/HOL proof assistant

    The topology of justification

    Get PDF
    Justification Logic is a family of epistemic logical systems obtained from modal logics of knowledge by adding a new type of formula t:F, which is read t is a justification for F. The principal epistemic modal logic S4 includes Tarski’s well-known topological interpretation, according to which the modality 2X is read the Interior of X in a topological space (the topological equivalent of the ‘knowable part of X’). In this paper, we extend Tarski’s topological interpretation from S4 to Justification Logic systems with both modality and justification assertions. The topological semantics interprets t:X as a reachable subset of X (the topological equivalent of ‘test t confirms X’). We establish a number of soundness and completeness results with respect to Kripke topology and the real topology for S4-based systems of Justification Logic

    The Introduction of Topology into Analytic Philosophy: Two Movements and a Coda

    Get PDF
    Both early analytic philosophy and the branch of mathematics now known as topology were gestated and born in the early part of the 20th century. It is not well recognized that there was early interaction between the communities practicing and developing these fields. We trace the history of how topological ideas entered into analytic philosophy through two migrations, an earlier one conceiving of topology geometrically and a later one conceiving of topology algebraically. This allows us to reassess the influence and significance of topological methods for philosophy, including the possible fruitfulness of a third conception of topology as a structure determining similarity

    Verified Decision Procedures for Modal Logics

    Get PDF
    We describe a formalization of modal tableaux with histories for the modal logics K, KT and S4 in Lean. We describe how we formalized the static and transitional rules, the non-trivial termination and the correctness of loop-checks. The formalized tableaux are essentially executable decision procedures with soundness and completeness proved. Termination is also proved in order to define them as functions in Lean. All of these decision procedures return a concrete Kripke model in cases where the input set of formulas is satisfiable, and a proof constructed via the tableau rules witnessing unsatisfiability otherwise. We also describe an extensible formalization of backjumping and its verified implementation for the modal logic K. As far as we know, these are the first verified decision procedures for these modal logics

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    The intensional side of algebraic-topological representation theorems

    Get PDF
    Stone representation theorems are a central ingredient in the metatheory of philosophical logics and are used to establish modal embedding results in a general but indirect and non-constructive way. Their use in logical embeddings will be reviewed and it will be shown how they can be circumvented in favour of direct and constructive arguments through the methods of analytic proof theory, and how the intensional part of the representation results can be recovered from the syntactic proof of those embeddings. Analytic methods will also be used to establish the embedding of subintuitionistic logics into the corresponding modal logics. Finally, proof-theoretic embeddings will be interpreted as a reduction of classes of word problems.Peer reviewe
    • …
    corecore