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Abstract

Stone representation theorems are a central ingredient in the metathe-
ory of philosophical logics and are used to establish modal embedding
results in a general but indirect and non-constructive way. Their use in
logical embeddings will be reviewed and it will be shown how they can
be circumvented in favour of direct and constructive arguments through
the methods of analytic proof theory, and how the intensional part of
the representation results can be recovered from the syntactic proof of
those embeddings. Analytic methods will also be used to establish the
embedding of subintuitionistic logics into the corresponding modal logics.
Finally, proof-theoretic embeddings will be interpreted as a reduction of
classes of word problems.

1 Introduction

Algebraic-topological representation theorems have a long history, dating back
to the work of Marshall Stone on the representation of Boolean algebras (1936),
with the spaces that arise from such representation bearing his name. As em-
phasized in the historical introduction of Johnstone (1982), the legacy of Stone
representation theorems has a↵ected almost all fields of mathematics, having
been a tool not only in logic but also in topology, with the study of its fun-
damental structures from a lattice-theoretic and categorical viewpoint (locale
theory and topos theory), and encompassing also the areas of algebraic geometry
and functional analysis.

The common aspect of such theorems is the representation of algebraic struc-
tures in terms of set-theoretic ones, often endowed with a topology. Ordered

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/245131283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


algebraic structures are an abstraction of the properties of Boolean operations of
intersection, union, and complementation in sets, with the order corresponding
to set inclusion, and can be considered as an intensional way of conceptualizing
the extensional properties of topological spaces.

The shift from intensional to extensional definitions is a delicate one, and in fact,
the move requires the use of a non-constructive principle to assert the existence
of ideal elements. The same shift is encountered when topological notions are
formalised intensionally in approaches such as formal or pointfree topology1,
specifically in proving that these new topologies can be made equivalent to the
traditional, point-set ones.

The wide area of algebraic logic has its foundations in duality theory that in
turn depends largely on algebraic-topological representations. In particular,
Stone representation theorems are a central ingredient in the metatheory of
philosophical logics. In this field, one of the most well known uses of Stone-
type representations is in the embedding of intuitionistic logic into modal logic,
achieved, through completeness, with the representation of complete Heyting
algebras as closure spaces.2

The representation of Heyting algebras in terms of closure algebras is used in—
and in a way corresponds to—the proof of faithfulness of the translation of
intuitionistic logic, Int, into the modal logic S4. In turn, the embedding of
intuitionistic logic into the modal logic S4 was obtained as an attempt to give
a provability interpretation of intuitionistic logic. Gödel’s (1933) sound transla-
tion from Int into S4 was proved faithful as long as 15 years later by McKinsey
and Tarski (1948). The result was then generalised by Dummett and Lemmon
(1959) who extended it to intermediate logics between Int and classical logic
and the corresponding intemerdiate logics between S4 and S5. Like the result
by McKinsey and Tarski, Dummett and Lemmon’s proof used the same indirect
semantic method, namely the completeness of intuitionistic logic with respect to
Heyting algebras (there called Brouwerian algebras) and of S4 with respect to
topological Boolean algebras (called closure algebras). The algebraic part of the
proof consists in the representation of Heyting algebras as the opens of topolog-
ical Boolean algebras. The proof is therefore indirect because it is obtained by
algebraic means through completeness, and non-constructive because of the use
of Stone representation of distributive lattices, in particular Zorn’s lemma. In
more recent literature, surveyed by Wolter and Zakharyaschev (2014), embed-
ding results are established semantically and by use non-constructive principles.

All these results obtained by semantic means establish correspondences with re-
spect to derivability between superintuitionistic systems and normal extensions
of S4. In particular, they do not show how to translate a proof from one system
to the other. The interest in obtaining a direct proof of the faithfulness result
was therefore motivated not only by the need of adhering to a strict purity of

1Cf. Sambin (1987).
2Heyting algebras are also called pseudo-Boolean algebras, e.g. in Rasiowa and Sikorski

(1963).
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methods.

It has been shown (Dyckho↵ and Negri 2012) that logical embeddings can be
obtained as translations of derivations, in a direct way that does not employ the
non-constructive principles typical of the representation theorems. The method
is based on the uniform development of analytic proof systems for the logics in
question. Analytic proof systems stem from the tradition of Gentzen systems
of sequent calculi, with the characteristic feature that in a proof only syntactic
objects ranging in a set which is predetermined by the statement to be proved
are used. If one uses axiomatic systems for embedding results, the soundness
part of the proof can be given, as Gödel did, by induction on derivations. For
the faithfulness part, however, this is not in general possible. The reason is that
when proceeding inductively one needs to have in the derivations premisses to
which the inductive hypothesis can be applied, but the inductive hypothesis
can be applied only to formulas in the range of the translation. Without a
calculus with su�cient analyticity properties, in particular with an axiomatic
system, the premisses of the last rule used in the derivation can be very far
from a formula of that form, and the inductive hypothesis cannot in general be
applied. Sequent calculi with cut elimination and the subformula property are a
remedy to this shortcoming of axiomatic systems and thus give the potentially
appropriate tool for establishing results of this kind directly.

When such systems can be developed in a uniform way for a family of log-
ics, through the definition of a common core calculus to which further rules are
added, they can be used not just for studying the relation of logical consequence
of a given logic, but for establishing metatheoretic results, such as embeddings,
on the relationship between di↵erent logics. Analyticity and uniformity are the
key features that reduce the proof of faithfulness of those embeddings to an
induction on derivations, and thus one avoids the need of the detour through
completeness and Stone-representations. Analyticity gives full control on the
structure of derivations in the frame classes considered. Uniformity, on the
other hand, guarantees that the same procedure works in all the corresponding
systems because it operates only on the common core calculi and leaves un-
changed the added rules. As a further evidence of its generality and flexibility,
we show how the method can be employed to establish also the embedding of
subintuitionistic logics into the corresponding modal logics below S4.

The general picture that emerges with the development of uniform analytic
methods for non-classical logics not only shows that the indirect and non-
constructive proofs based on Stone representation can be avoided in the proof
of such embeddings, but also suggests a change in perspective, that is, to priv-
ilege the use of logical methods, and more specifically, proof-theoretic meth-
ods, to recover the intensional, pointfree part of representation results. By the
identification of free Heyting algebras with the Lindenbaum algebras of intu-
itionistic logic, the logical embedding gives an embedding of freely generated
Heyting algebras in closure algebras. Finally, thanks to the precise sense in
which the inductive generation of syntactic objects in a sequent calculus paral-
lels the inductive generation of equalities between terms in a free algebra, the
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proof-theoretic embedding can then be interpreted as a reduction of classes of
word problems.

The paper is organized as follows: Section 2 gives background notions and
a summary of the current literature and results on the algebraic-topological
representation theorems and their use in logical embeddings. Some features
concerning modal embedding results obtained by traditional (semantic) means
are analyzed: in particular, the proof of such results uses indirect and non-
constructive proofs based on Stone-type representation theorems. Section 3
presents two main lines of enquiry directed at the isolation and avoidance of
non-constructive principles in Stone-like theorems and their applications. The
first is given by the development of constructive mathematics within formal
topology, discussed in Section 3.1, the second by analytic proof theory, espe-
cially labelled sequent calculi. Section 3.2 shows how uniform analytic methods
for non-classical logic can be employed to establish a proof-theoretic embedding
of intermediate and subintuitionistic logic into the corresponding modal logic.
Finally, Section 4 addresses how to interpret proof-theoretical embeddings as
a reduction of classes of word problems. The conclusion summarizes the main
point of this paper and contains pointers to literature that discusses Stone rep-
resentation theorems from a philosophical perspective.

2 Algebraic-topological representation theorems

Stone-type representation theorems characterize abstract ordered and algebraic
structures in terms of suitable fields of sets or topological spaces.

The most well known such theorem is the Stone representation theorem for
Boolean algebras (1936). On the one hand it is immediate to verify that the
set of subsets of a set constitutes a Boolean algebra with the operations of
intersection, union, and complement, on the other it is not obvious that fields of
sets, i.e. families of sets closed under such operations, are su�ciently general to
be put into correspondence with Boolean algebras. The representation theorem
solves the problem of showing that any abstract Boolean algebra is isomorphic
to a field of sets, indeed an appropriate subspace thereof.

Another celebrated representation result is the topological representation theo-
rem for complete Heyting algebras which states that the opens of a topological
space form a complete Heyting algebra and conversely that every complete Heyt-
ing algebra with a suitable additional property can be obtained in this way: For
every complete Heyting algebra with enough points3 H, there is a topological
space X such that

H ⇠= O(X)

3 The condition of having enough points, or being spatial, means that if a ⌦ b in the
algebra, there is a formal point that contains a but not b, that is, the (formal) points are
enough to witness the order relation in the algebra. See Johnstone (1982) for the condition
of spatiality in locale theory and Gambino and Schuster (2007) for a survey on spatiality in
formal topology.
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where O(X) is the ordered algebra of open sets of X.

Instead of recalling the basic ideas of the afore-mentioned representation, we
start from the result that presupposes the minimum of structure and then indi-
cate how the representation is enriched.

To make the presentation self-contained, we shall also briefly recall in the notes
the order-theoretic notions used; however, for a comprehensive background the
reader can consult Davey and Priestley (1990).

Given a partially ordered set4 (P,) we can associate to it in a natural way
a partially ordered set of sets. We say that a subset C of P is a cone if it
is upward closed, that is, for all x, y in P , if x 2 C and x  y, then y 2 C.
Then, to any element a of P , we associate the set of cones included in P that
contain a, denoted by h(a). It is then easy to show that a  b if and only if
h(a) ✓ h(b): If a  b and C is a cone in h(a), then by definition of cone and
the assumption we have that b 2 C, thus C is in h(b) as well. For the converse,
"a, defined as the set {x 2 P : a  x}, is a cone that contains a (called the
principal cone generated by a) and the assumption gives b 2 "a, which is the
same as a  b. It is equally easy to see, just using antisymmetry of , that
the map h is injective, thus giving an embedding of (P,) into (P(P(P )),✓),
the double powerset of P ordered by set-theoretic inclusion.

In a similar way one can represent a semilattice,5 (L,^), and the operation
that corresponds to ^ on the set-theoretic side is intersection. In this case as
a map h one takes h(a) ⌘ #a, where #a ⌘ {x 2 P : x  a}, called the dual
principal cone generated by a. The map is a semilattice homomorphism from
(L,^) to (P(P ),\) since h(a^ b) = h(a)\h(b) immediately follows from the ^-
semilattice laws; it is also injective and therefore an embedding of semilattices.
The non-triviality of representation results is seen already when by the same
method one attempts to represent lattices other than semilattices. One would
expect that the set-theoretic operation that corresponds to _ would be the
union, however, sets with union and intersection always form a distributive
lattice,6 whereas lattices are not, in general, distributive. It is unproblematic
to represent semilattices with either meet or join, but when both operations are
involved it is not possible to obtain the representation in an easy way from the
representations of both semilattice structures.

Leaving the problem of representation of arbitrary lattices aside, we turn to

4We recall that a relation  on a set P is a partial order if it is reflexive, transitive, and
antisymmetric, i.e. if it satisfies 8x.x  x, 8xyz.x  y& y  z ! x  z, and 8xy.x  y& y 
x ! x = y. Since a partial order is an antisymmetric preorder and antisymmetry holds by
definition if equality is defined by the  relation in the two direction, preorders are often
preferred to partial orders as more basic structures.

5We recall that a partially ordered set L is a meet-semilattice if for any two elements a, b
of L the greatest lower bound of a and b exists, i.e. there is a binary operation ^ on elements
of L with the properties a ^ b  a, a ^ b  b, and 8c.c  a& c  b ! c  a ^ b.

6A lattice is distributive if the operations of meet and join distribute over each other, i.e.
the condition a ^ (b _ c) = (a ^ b) _ (a ^ c) holds for arbitrary elements of the lattice. By a
general result in lattice theory, the condition is equivalent to the dual condition a _ (b ^ c) =
(a _ b) ^ (a _ c).
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distributive lattices. Also in this case, the map h defined by h(a) ⌘ {x 2 L :
x  a} fails to be a homomorphism between L and P(L). An example can be
constructed of a lattice where a _ b is the top element but h(a) [ h(b) is not.7

The requirement for this to happen is that the map h ranges among elements
of P(L) with the property that x  a _ b implies x  a or x  b, i.e. satisfy
the condition of being prime. A filter is a non-empty set which is upward closed
and closed under meets. A prime filter P thus satisfies the following closure
properties

a ^ b 2 P if and only if a 2 P and b 2 P

a _ b 2 P if and only if a 2 P or b 2 P

These imply immediately that the map

h : L ! P(L)
a 7! h(a) ⌘ {P 2 P(L) : P prime filter, a 2 P}

is a homomorphism from (L,^,_) to (P(P ),\,[). Injectivity of the map in-
stead calls into play the following separation principle, known as the prime filter
theorem:

Lemma 2.1. Let L be a distributive lattice, and a, b two elements of L with
a ⇥ b. Then there exists a prime filter P such that a 2 P and b /2 P .

The proof of this result (cf. e.g. Dunn and Hardegree 2001 for details) consists
in considering the set E of filters that contain a but not b. Since by assumption
a ⇥ b, the principal filter "a is in E which is thus nonempty. Then, given an
arbitrary chain C in E it is easy to verify that the union of C is also in E. By
Zorn’s lemma, E has a maximal element, call it P . To show that P is prime,
we reason by contradiction and assume that there are c, d with c _ d in P but
neither c nor d in P . Let (P, e) be the filter {y : x ^ e  y for some x 2 P}.
Then the filters F1 ⌘ (P, c) and F2 ⌘ (P, d) are proper extensions of P and
therefore cannot be in E, so they have to contain b. It follows that we have
x ^ c  b and y ^ d  b for some x, y in P , and therefore, taking z = x ^ y
we have z ^ c  b and z ^ d  b, and thus (z ^ c) _ (z ^ d)  b, so using the
lattice laws and distributivity we have z ^ (c _ d)  b. But then b would be in
P , against the fact that P is a filter in E.

The topological part of Stone representation theorem for distributive lattices
(1937, theorem 15) follows from defining a topology in the space of prime filters
over L taking as a base the sets h(a). In the corresponding point of the construc-
tion, Stone takes ideals rather than filters, and denotes the set of ideals that
contain a with S(a); we observe that these are dual notions so the di↵erence is
inessential. The sets h(a) are then seen to characterize the compact elements
of the topology. A topological space generated by a base of compact sets and
where the compact sets form a meet semilattice is called a coherent space. The
representation theorem establishes the following:

7Cf. Dunn and Hardegree (2001), p. 293.
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Theorem 2.2 (Stone representation theorem for distributive lattices). Every
distributive lattice is isomorphic to the lattice of compact elements of a coherent
space.

The representation theorem for distributive lattices can then be specialised, by
using the same map, to a representation theorem for complete Heyting algebras8

with enough points as the algebras of opens and complete Boolean algebras as
the algebras of clopens (sets which are both open and closed) of suitable topo-
logical spaces. For our purposes, we needn’t go into the details of these results
that can be found for example in Johnstone (1982). We also just mention here
that the duality theory for general Heyting algebras, rather than just complete
Heyting algebras, has followed a line of development started with Priestley du-
ality of bounded distributive lattices (Priesley 1970, see also ch. 10 of Davey
and Priestley 1990), the special case of Esakia’s duality for Heyting algebras,
and a bitopological duality in the work by Bezhanishvili et al. (2010).9 We ob-
serve that the common ingredient of these representations of ordered-algebraic
structures as lattices/algebras/fields of sets is the embedding of the ordered-
algebraic structure into its corresponding algebra of prime filters, that play the
role of points of the topological space. On the one hand, as we have seen above,
proving that the map that gives the embedding is injective requires the use of
the non-constructive separation principles of the prime filter theorem, on the
other, the topological part of the representation is just a plain application of the
definitions involved. Taking an inductively defined notion of cover relation as a
primitive, rather than the notion of point, should therefore allow to isolate the
constructive content of the representation, and in fact this is what is achieved
through the formal approach to topology which has been developed in two main
lines of investigation, that of locale theory and category theory, and that of
formal topology (we shall return to this in Section 3.1 below).

2.1 Embedding of Heyting algebras into closure algebras

Instead of representing Heyting algebras externally through the space of open
sets of a topological space, one can abstract from the set-theoretic notion of
openness and consider, rather than a topological space, the abstract algebraic
structure of a Boolean algebra endowed with an operation that has the same

8We recall that an Heyting algebra is a distributive lattice endowed with an operation !
that satisfies a ^ b  c if and only if a  b ! c. A complete Heyting algebra is an Heyting
algebra which is complete as a lattice, i.e. one in which the supremum (least upper bound)
and infimum (greatest lower bound) exist for arbitrary subsets of elements. By a known result
(cf. e.g. I.4.3 of Johnstone (1982) it is enough to require closure under arbitrary meets (resp.
joins) to obtain closure under arbitrary joins (resp. meets), i.e. a complete semilattice is
also a complete lattice. The two notions are however distinct when morphisms are considered
because a map that preserves arbitrary joins (resp. meets) need not preserve arbitrary meets
(resp. joins).

9This latter paper gives a useful summary of the results in duality theory in this line of
investigation.
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properties as those of a closure operator. The representation can thus be formu-
lated internally, without mentioning spaces of points. We recall some definitions.

Definition 2.3. A closure algebra (B, c) is a Boolean algebra B endowed with
a closure operator c, i.e. an operator that satisfies the following properties:

1. c 0  0

2. c (x _ y) = c x _ c y

3. x  cx

4. c c x  c x

Definition 2.4. Given a closure algebra (B, c), an interior operator is defined
as the dual of a closure operation by i a ⌘ �c� a. The open elements of (B, c)
are the elements a of B such that a = i a.

We recall that given a topological space (X,O(X)), a complete Heyting algebra
H is obtained by taking as elements the open sets O(X) of the topological space,
as lattice operations union and intersection, and as implication of two open sets
a and b the topological interior of the union of b and the complement of a,
I((X � a) [ b). In an analogous way, given a closure algebra (B, c), a Heyting
algebra H can be defined as the abstract version of the Heyting algebra of open
sets of a topological space. The algebra is obtained by taking as elements the
open elements of B, as lattice operations ^, _ the lattice operations of B, and
as implication

a ! b ⌘ i (�a _ b)

Conversely, every Heyting algebra can be obtained as the algebra of open ele-
ments of a closure algebra. The result is proved by using the prime filter theorem
and is therefore not constructive.

3 Avoiding non-constructive principles

As indicated in the previous sections, algebraic-topological representation the-
orems depend essentially on non-constructive principles in the construction of
ideal elements that connect their intensional and extensional sides. We shall
outline two ways in which such non-constructive principles are first isolated,
and then avoided. The first is the use of formal, rather than point-set, topology.
The second is the use of the methods of analytic proof theory.

3.1 Pointfree topology

Stone representations and their applications were studied systematically by
Johnstone (1982) through the use of the unifying conceptual framework of ca-
tegory theory and, more specifically, locale theory. The avoidance of the use of
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non-constructive principles was, however, the main emphasis in another strand
of developments of topology in a synthetic fashion known as formal (pointfree)
topology (Sambin, 1987). Predicativity is guaranteed in formal topology by a
formalization of its basic notions and results within Martin-Löf’s constructive
type theory (Martin-Löf, 1984). Other developments that started from Stone
representation and more specifically directed to the semantic study of modal
logic include the work on duality theory initiated by Leo Esakia and brought
further by his many followers, as is well documented in a recent volume (Bezhan-
ishvili, 2014).

In formal topology, the order-theoretic properties of a topological space are
assumed as primitive by means of a relation, called formal cover, between ele-
ments a and subsets U of a set S. The properties that a cover relation a�U has
to satisfy correspond to the properties of the set-theoretic relation of inclusion
a ✓ S

U between basic neighbourhoods and the union of a set of basic neigh-
bourhoods of a topological space. Formal topology is pointfree, as the points
are not primitive objects, and constructive, because its underlying set theory is.
Points are not among the primitive notions of formal topology, but are defined
as particular, well-behaved collections of neighbourhoods (in lattice-theoretic
terms, completely prime filters over the basic opens of the formal topology).
Formal spaces are the spaces that arise as spaces of formal points of a suitable
formal topology.

As we already hinted at in discussing the representation of distributive lattices,
the constructive content of Stone representation can be made evident by suitably
restricting the representation to the pointfree part of the representing spaces.

The representation theorem for complete Heyting algebra (equivalently called
frames, i.e. complete lattices with finite meets that distribute over arbitrary
joins) takes the form (see Sambin 1987):

Every frame F is isomorphic to the frame of saturated subsets and to the frame
of formal opens of a formal topology A

F ⇠= Sat(A) ⇠= Open(A) ⌘ P(S)/ =A

Here Sat(A) denotes the collection of subsets U of the base S of the formal
topology which are closed with respect to the closure operator induced by the
formal topology A, i.e., which satisfy AU = U , where AU consists of the a in S
such that aCU . The frame of formal opens, Open(A) is the quotient of P(S)
modulo the equivalence relation

U =A V ⌘ U CV &V CU .

The isomorphism is established by the assignment that selects, for each equiva-
lence class [U ], the canonical representative AU using the fact that U =A V if
and only if AU = AV .

Several extensions of constructive Stone representation based on formal spaces
were given in Negri (1996, 2002). They cover distributive lattices and lattice
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structures used in abstract computable analysis and domain theory, such as con-
tinuous, prime-continuous, algebraic lattices, continuous and algebraic dcpo’s,
Scott domains; they do not use any non-constructive principles, which might
at first sight seem surprising since Stone representation relies in its very heart
on Zorn’s lemma. Indeed, one would be more cautious in saying that pointfree
topology allows to isolate, rather than avoid, non-constructive principles; let
us see why. We recall the way in which pointfree spaces are put into corre-
spondence with standard topological spaces, that is, how pointfree topology is
matched with point-set topology (in addition to the aforementioned literature,
for a compact introduction to the basic notions of formal topology we refer to
section 2 of Negri, 2002).

Topological spaces can be turned into formal spaces by considering the formal
points over any base for their topology

O(X)

X -

-

Pt(O(X))

-

We have X ⇠= Pt(O(X)) if the space X satisfies a weak separation principle
called sobriety. The principle states that any irreducible closed set is the clo-
sure of a unique point. To locate the principle in the hierarchy of separation
principles in topology it su�ces to say that the principle is incomparable with
T1 (for any two distinct points there is a neighbourhood that contains one but
not the other) but weaker than T2 (any two distinct points are separated by
disjoint neighbourhoods). Sobriety is generically expressed by the slogan there
are enough opens.

Conversely, formal topologies are turned into point-set spaces as follows: sets
of formal points are endowed with the extensional topology which takes as basic
opens the set of formal points that contain a basic open a, denoted by ext(a).
This is the counterpart of the set of prime filters h(a) in Stone representation.

Pt(A)

A -

-

Ext(Pt(A))

-

We have A ⇠= Ext(Pt(A)) if the formal topology A is spatial, or extensional or,
in a slogan, has enough points. The property is

ext(a) ✓ ext(U) implies aCU

Observe that this is an implication that goes from the extensional inclusion
between two sets of formal points to a formal cover relation, which can be
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presented in many interesting cases as an inductively defined relation,10 and
therefore moves from a universal property to an existential one, exactly as in a
completeness theorem. Indeed, the property of extensionality for formal spaces
can be made to correspond to completeness in a very precise sense which was
made clear already by Fourman and Grayson (1982). As for completeness of
a logical system, also extensionality cannot in general be established construc-
tively. For example, proving extensionality for locally Stone formal topologies
requires Zorn’s lemma (cf. Negri, 2002).

In this sense, one may regard formal spaces as theoretical entities that allow the
separation of two components: the first, based on formal basic opens and formal
covers, is often used to reformulate and prove constructively theorems that in
their traditional formulation belong to classical topology and analysis; the sec-
ond component, based on formal points, puts formal spaces in correspondence
with traditional, point-set, spaces. One finds the use of non-constructive prin-
ciples in the proofs of equivalence of the formal and point-set part, so what one
achieves is the isolation, rather than complete avoidance, of non-constructive
principles of proof. In the next section we shall show how analytic proof theory
goes further in the avoidance of non-construcive principles.

3.2 Analytic proof theory

The representation of Heyting algebras in terms of closure algebras is used
in, and in a way corresponds to, the proof of faithfulness of the translation
of intuitionistic logic, Int, into the modal logic S4. We are going to recall
from Dyckho↵ and Negri (2012) how analytic proof systems allow a direct and
constructive proof of the result that was previously established by algebraic
means. Further, we shall show that not only the non-constructive reasoning of
algebra can be avoided by these means, but that the algebraic result itself can
be recovered through the methods of proof theory.

We recall that the embedding of intuitionistic logic into the modal logic S4 was
obtained as an attempt to give a provability interpretation of intuitionistic logic
(see, however, the introduction of Dyckho↵ and Negri 2016 for a discussion on
the suitability of S4 for such an interpretation). In his note of 1933, Gödel
defined a translation from Int into S4 and proved its soundsness, i.e. that

`
Int

A ! `
S4 A⇤

10Inductive generation of formal covers has been the key property in the presentation of
formal reals, formal intervals and formal linear functionals for establishing results such as the
constructive version of the Tychono↵, the Heine-Borel, and the Hahn-Banach theorem and
the representation of continuous domains (cf. Negri and Soravia, 1999; Negri and Valentini,
1997; Cederquist and Negri, 1996; Cederquist, Coquand, and Negri, 1998; Negri, 2002). For a
survey on inductive generation of formal topologies in the wider context of inductive definitions
in type theory and examples of formal topologies that cannot be inductively generated cf.
Coquand, Sambin, Smith, and Valentini (2003). For examples of inductively generated formal
topologies see also section 4 of Gambino and Schuster (2007).

11



and only conjectured faithfulness, i,e, that also the converse

`
S4 A⇤ ! `

Int

A

holds. It took 15 years before the conjecture was proved true in McKinsey and
Tarski (1948), who showed semantically the contrapositive of faithfulness, i.e.
that

0
Int

A ! 0
S4 A⇤

The result was then generalised by Dummett and Lemmon (1959) who extended
it to intermediate logics between Int and classical logic, obtained by the addi-
tion of an arbitrary propositional axiom Ax to intuitionistic logic and to the
corresponding intermediate logics between S4 and S5, the latter obtained by
adding the modal translation of the same axiom

`
Int+Ax

A if and only if `
S4+Ax

⇤ A⇤

The latter result was a generalisation of the former of McKinsey and Tarski and
used the same indirect semantic method, namely the completeness of intuitionis-
tic logic with respect to Heyting algebras (there called Brouwerian algebras) and
of S4 with respect to topological Boolean algebras, also called closure algebras,
which are Boolean algebras endowed with an operator axiomatized through the
properties of a topological operator of interior. The algebraic part of the proof
consists in the representation of Heyting algebras as the opens of topological
Boolean algebras. The proof is therefore indirect because it is obtained by al-
gebraic means through completeness and non-constructive because of the use of
Stone representation of distributive lattices, in particular Zorn’s lemma.

A survey of the classical embedding results and of more recent related literature
can be found in section 9.6 of the monograph by Chagrov and Zakharyaschev
(1997). We just recall that one can define various maps from intermediate (also
called superintuitionistic or s.i.) logics (ExtInt) and normal extensions of S4
(NExtS4). For the canonical translation T , given L ⌘ Int + �, there is, by
the result of Dummett and Lemmon restated in other words in the above, an
associated modal logic

⌧L ⌘ S4� {T (A) |A 2 �}

such that for every A 2 L, A 2 L i↵ T (A) 2 ⌧L. One can define two more maps
⇢ : NExtS4 ! ExtInt and � : ExtInt ! NExtS4 by ⇢M ⌘ {A 2 L |T (A) 2 M}
and �L ⌘ ⌧L � Grz, where Grz is the extension of S4 with axiom 2(2(A �
2A) � A) � A. The logic ⇢M was called by Esakia the superintuitionistic
fragment of M and M the modal companion of L. For an intermediate logic there
is no unique modal companion, and indeed there is a smallest and largest modal
companion. For Int the smallest is S4 and the largest Grz. Various results
have been established on the relations between the lattice of superintionistic
logics and the lattice of normal extensions of S4, and we recall in particular the
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Blok-Esakia theorem by which the map ⇢ is a lattice isomorphish from ExtInt
onto NExtGrz.11

All these results are proved by semantic means and establish correspondences
with respect to derivability between superintuitionistic systems and normal ex-
tensions of S4. In particular they do not show how to translate a proof in the
companion of L to a proof in L. The interest in obtaining a direct proof of the
faithfulness result was therefore motivated not only by the need of adhering to
a strict purity of methods. The di�culty in establishing the result using only
the methods of proof theory is the following: for the proof of soundness one
can use the well established axiomatic system that allows to define derivations
inductively. The proof can thus be given, as already Gödel did, by induction
on derivations. For the faithfulness part, however, this is not in general possi-
ble. The reason is that when proceeding inductively one needs to have in the
derivations premisses to which the inductive hypothesis can be applied, but the
inductive hypothesis can be applied only to formulas in the range of the trans-
lation. Without a calculus with su�cient analyticity properties, in particular
with an axiomatic system, the premisses of the last rule used in the derivation
can be very far from a formula of that form, and the inductive hypothesis cannot
in general be applied. Sequent calculi with cut elimination and the subformula
property remedy this shortcoming of axiomatic systems and thus give the po-
tentially appropriate tool for establishing these kinds of results directly. The
first direct proof of faithfulness of the modal embedding of intuitionistic logic
was in fact given in Troelstra and Schwichtenberg (1996) through a cut-free
sequent calculus for S4. The following variant of the original Gödel translation
was used:

P2 := 2P

?2 := ?
(A � B)2 := 2(A2 � B2)

(A&B)2 := A2&B2

(A _B)2 := A2 _B2

The translation �2 of a multiset � ⌘ A1, . . . , An

is defined componentwise by

(A1, . . . , An

)2 := A2
1 , . . . , A

2
n

Soundness and faithfulness for the translation of the relation of logical conse-
quence in sequent calculus is formulated as

Int ` � ! A if and only if S4 ` �2 ! A2

The result was established through a proof that, although being proof-theoretical,
was not completely direct as it used an auxiliary translation. It is not clear how

11See the self-contained survey by Wolter and Zakharyaschev (2014), whose notation we
have followed and which includes an extension of the Blok-Esakia theorem to intuitionistic
modal logics.
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the proof could be extended to intermediate logics, the first reason being the
lack of standard Gentzen calculi for those logics. Calculi that extend tradi-
tional sequent calculi with the use of labels have however been developed in
recent years by many authors, and they have proved successful especially for
the proof-theoretic investigation of philosophical and non-classical logics (see
the bibliography of Negri 2011 for references). Labelled sequent calculi for in-
termediate logics and their modal companions have been provided in Dyckho↵
and Negri (2012) together with a constructive, direct, and uniform proof of
soundness and faithfulness of the modal embedding.

Labelled systems for logics characterized by a Kripke-style semantics appear
in several guises, as labelled tableaux, natural deduction, or sequent calculi.
All these systems take advantage of the generality and uniformity of relational
semantics and have the following features in common:

- The language is enriched by expressions of the form x : A to denote truth
of A at world x and xRy for the accessibility relation between worlds.

- Introduction and elimination rules (or right and left rules in the case of
sequent calculi) are determined by the possible-world explanation of logical
constants by unfolding the inductive definition of truth at a world.

- Rules for extensions of basic systems are found by translating the proper-
ties of characteristic Kripke frames into rules for the accessibility relation.

In the labelled sequent calculi introduced in Negri (2005) these guiding ideas are
implemented through a methodology of extension of cut- and contraction-free
sequent calculi with rules. The extension is realised in a way that allows the
structural properties of the calculus to be maintained. More specifically, the
properties of the accessibility relation of characteristic Kripke frames for each
logic are obtained by the method of “axioms as rules” (Negri and von Plato
1998).

The above features are common to all proof systems obtained through the inter-
nalization of Kripke semantics. As a concrete example, the rules for the basic
modal logic K are obtained from the semantic explanation of modality

x � 2A () for all y, xRy implies y � A

that gives the rules

y : A, x : 2A, xRy,� ! �
x : 2A, xRy,� ! �

L2
xRy,� ! �, y : A
� ! �, x : 2A

R2 (y fresh)

Similarly, the rules for implication for intuitionistic propositional logic are ob-
tained from

x � A � B () for all y, x 6 y and y � A implies y � B

14



that gives the rules

x : A � B, x 6 y,� ! �, y : A y : B, x : A � B, x 6 y,� ! �
x : A � B, x 6 y,� ! �

L�

x 6 y, y : A,� ! �, y : B
� ! �, x : A � B

R� (y fresh)

Here the relation 6 is a preorder, i.e. reflexive and transitive, which are the
properties of the accessibility relation for the modal logic S4. These properties
are formulated in the form of sequent rules as

x 6 x,� ! �
� ! �

Ref
x 6 z, x 6 y, y 6 z,� ! �

x 6 y, y 6 z,� ! �
Trans

In this way, complete sequent calculi G3I and G3S4 are obtained from a uni-
form methodology for intuitionistic logic and S4, respectively (see Dyckho↵ and
Negri, 2012, for the full table of rules). The calculi have the important feature
of having all the structural rules admissible and all the rules invertible. In par-
ticular, faithfulness of the embedding of Int into S4 is obtained by a simple
proof by induction on the height of derivations, in the same way as soundness,
and the result (theorem 7.2 ibid.)

G3I ` � ! � if and only if G3S4 ` �2 ! �2

is obtained in both directions through an explicit proof transformation, without
any use of non-constructive principles.

The identification of intuitionistic implication with classical strict implication
is clear at the level of semantic explanation and is reflected in the rules of the
labelled calculus for intuitionistic logic. This can be recognized as the first
reason for the simplicity of the proof of the embedding. The second reason
is the way di↵erent logics are obtained from a “core” logical system by the
addition of rules for the accessibility relation. In fact, the properties and the
corresponding rules are the same for intermediate logics between intuitionistic
and classical logic and between S4 and S5. Intermediate logics are obtained by
adding suitable axioms to Int. We obtain analytic proof systems for a wide class
of such logics by converting such axioms into frame properties of their Kripke
semantics and by converting the frame properties into rules to be added to the
sequent calculus. All the seven interpolable intermediate logics are obtained in
this way, but there are infinitely many more.

For example, Gödel-Dummett logic is characterized by the axiom

(A � B) _ (B � A)

This axiom corresponds to a linear accessibility relation

8x8y(x 6 y _ y 6 x)
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and becomes the rule

x 6 y,� ! � y 6 x,� ! �
� ! �

Lin

The addition of the rule to G3I defines a complete relational proof system for
Gödel-Dummett logic.12 In a similar way, complete proof systems are obtained
for all intermediate logics characterised by frames that satisfy first-order prop-
erties known as geometric implications (Dyckho↵ and Negri 2012).13

The embedding result is extended to such logics in a straightforward way because
their modal companions are characterized by the same frame properties, hence
the same added rules. Given an extension G3I

ext of G3I with rules for 6 , we
denote by G3S4

ext the corresponding extension of G3S4; we have

G3I

ext ` � ! � if and only if G3S4

ext ` �2 ! �2

The embedding result can be extended also in the direction of subintuitionistic
logics, that is, logics obtained by giving up combinations of the following condi-
tions of Kripke semantics for intuitionistic logics (where we indicate the generic
accessibility relation with R rather than 6 because in the absence of reflexivity
and transitivity the accessibility relation is not a preorder):

1. Monotonicity of forcing: If x � A and xRy, then y � A

2. Reflexivity: 8x.xRx

3. Transitivity: 8xyz.xRy ^ yRz ! xRz

4. Falsum non datur: 8x.x 1?

Restall (1994) presents axiomatizations and Henkin-style completeness proofs
for all the 12 subintuitionistic logics obtained by giving up combinations of the
above conditions, with the proviso that whenever monotonicity is present, also
transitivity is (recall that the extension of monotonicity of forcing from atomic
to arbitrary formulas requires transitivity). Their algebraic semantics has been
investigated by Celani and Jansana (2001).

We obtain complete relational sequent calculi G3I

rest

S

for these logics by modi-
fying the calculus G3I with S consisting of one or more of the following items:

1. Replace the initial sequent xRy, x : P,� ! �, y : P by x : P,� ! �, x : P .

12As discussed in Section 8 of Dyckho↵ and Negri (2012), analyticity is guaranteed by the
possibility of restricting the above rule to labels x and y found in its conclusion.

13Indeed, by the replacement of rules with systems of rules, the method can be further
extended to frame classes expressed by generalized geometric implications, which are first-
order properties with an arbitrary number of quantifier alternations (cf. Negri 2016), and
even to arbitrary first-order frame conditions with the method detailed in Dyckho↵ and Negri
(2015).
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2. Remove the rule of reflexivity.

3. Remove the rule of transitivity.

4. Remove L?, i.e., x :?,� ! �, and replace it with x :?,� ! �, x :?.

We shall indicate with G3I0 the system obtained by all four of the above mod-
ifications, namely G3I

rest

1,2,3,4 With the same modifications but the first on the
modal side (where initial sequents already have the modified form) we obtain
complete relational calculi G3S4

rest for their modal companions. Observe that
G3S4

rest

2,3,4 is just G3K

rest

4 , and will be denoted with G3K0.

The restriction of the embedding of Int into S4 to subintuitionistic logics is
not as straightforward as its extension to intermediate logics. We start with
G3I0 and G3K0. Whereas soundness of the 2-translation is unproblematic,
faithfulness is not: the case in which the translated formula has the form 2P
and is principal in the last rule of the derivation requires, if the rule is R2,
use of reflexivity of the accessibility relation, and, if the rule is L2, use of
monotonicity. However, by modifying the (·)2 translation to the identity on
atomic formulas, we obtain another translation, (·)t, for which these problematic
cases are avoided, soundness continues to hold, and the other cases in the proof
of faithfulness are shown as in the proof of the embedding of G3I into G3S4

because they stay within the respective restrictions. Clearly, soundness and
faithfulness are maintained also in the presence of Ref, Trans and Ex falso.
Monotonicity xRy, x : P,� ! �, y : P requires a special mention because it
required also transitivity for monotonicity on arbitrary formulas, i.e. xRy, x :
A,� ! �, y : A to be derivable. The t-translation is inadequate to obtain
soundness because xRy, x : P,� ! �, y : P is not derivable in G3S4

rest. By
the requirements made to get faithfulness of the 2 translation we obtain:

Theorem 3.1. (a) Let G3I

rest

S

be any non-monotonic restriction of G3I, i.e.
S is a subset of {1, 2, 3, 4} including 1. Then G3I

rest

S

` � ! � if and only if
G3S4

rest

S

` �t ! �t.

(b) If G3I

rest

4 ` � ! � if and only if G3S4

rest

4 ` �2 ! �2.

Proof. (a) Both soundness and faithfulness of the translation are proved by
induction of the height of the derivation. The proof proceeds as the proof of
theorem 7.2 of Dyckho↵ and Negri (2012) but with a simplification owing to a
reduction of the number of cases because of the identity translation of atomic
formulas. In particular, there is no need of a separate lemma to account for the
possibility of premisses, with conclusion in the range of the translation, that
contains formulas not in the range of the translation.

(b) Follows as a special case from the proof of the above-mentioned theorem.
QED
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The result can be related to the algebraic results of Celani and Jansana (2005)
that characterize weak Heyting algebras as strict implication fragments of normal
modal algebras.

4 Back to representations and applications to
word problems

The algebraic-topological representation theorems that arise from Stone repre-
sentations constitute the backbone of the algebraic methods for philosophical
logic that give the key ingredient in the traditional proofs of logical embedding
results. Indeed, what can be regarded as the extensional part of representation
results, i.e. the part concerned with the formalization of the notion of points of
topological spaces, requires the use of non-constructive principles. On the other
hand, we have seen that by the use of analytic proof theory we can establish the
embedding results for intermediate and subintuitionistic logics into their modal
companions in a direct, uniform, and constructive way. Indeed, we can further
prove that logical (proof-theoretic) embeddings allow to recover the intensional
(pointfree) part of representation results.

Suppose that we have a sound and faithful translation (embedding) from a logic
L1 to a logic L2, that is, a map inductively defined on formulas

⇤ : L1 �! L2

that satisfies
� `

L1 A i↵ �⇤ `
L2 A⇤

Let L1 and L2 be the Lindenbaum algebras of L1 and L2, respectively, and
define a map

f : L1 ! L2

[A] 7! [A⇤]

Proposition 4.1. If the logics L1 and L2 satisfy detachment and the deduction
theorem, the map f is well defined and injective.

Proof. To show that i is well defined, i.e. that its definition does not depend on
the choice of the class representative, we have to show that if A and B belong
to the same class in L1 then [A⇤] = [B⇤]. This is an immediate consequence of
soundness of the translation: from `

L1 A �⇢ B we get, through detachment
and the deduction theorem, `

L2 A⇤ �⇢ B⇤. Injectivity of i follows in the same
way from faithfulness. QED

Let ⇤ be the modal translation that we have considered in Section 3.2 and let
L2 be any modal logic extending S4. We can extend ⇤ to the language of L2 by
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adding to the inductive definition of ⇤ the clause

(2A)⇤ ⌘ A⇤

Next, we endow L2 with an operator i defined by

i [A] ⌘ [A⇤]

We have:

Proposition 4.2. The operator i satisfies the dual properties of the operator of
closure algebras:

1. 1  i(1)
2. i(a) ^ i(b)  i(a ^ b)
3. i(a)  a
4. i(a)  i(i(a))

Proof. 1. Immediate from the derivability in L2 of 2>14. 2. By definition of
i and the inductive clause that defines ⇤ for conjunction. 3, 4. By definition
of i and, respectively, the facts (proved by induction on A) that A⇤ `

L2 A and
A⇤ `

L2 A⇤⇤. QED

We recall that the open elements of an algebra with an interior operator are the
elements a such that a = i(a). In the special case of the Lindenbaum algebra L2,
the open elements are the equivalence classes [A] such that [A] = i [A] ⌘ [A⇤],
i.e. such that `

L2 A �⇢ A⇤. It is almost immediate to verify that for all A in
the language of L2 there is A0 (obtained by removing all boxes) in the language
of L1 such that A⇤ = A0⇤. Therefore the open elements are given by classes of
formulas equivalent in L2 to translated formulas.

When ⇤ is the modal translation, the map f is clearly a congruence with respect
to the operations of the algebra and we have that L1 is isomorphic to the algebra
of open elements of L2.

By the identification of free Heyting algebras with the Lindenbaum algebras of
intuitionistic logic, the algebraic-topological reading of the Int to S4-embedding
becomes:

Every freely generated Heyting algebra is isomorphic to the algebra
of open elements of a closure algebra.

A similar reading can be applied, with the appropriate class of algebras substi-
tuted for Heyting and closure algebras, to each of the logical embedding results
we have presented. Although the result is not new, the use of analytic calculi
will allow a change of perspective: instead of using algebras to solve problems

14Observe that it is not necessary to assume a constant > since we can use a definition such
as ?�?.
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in the logics, we use the logics, and more especifically their well behaved calculi,
to solve problems in the algebras.

The representation of Heyting algebras as algebras of open elements of a closure
algebra is replaced by the following embedding:

Int ⇢
⇤ - S4

H

⇠
6

- (B, c)

⇠
?

and more generally by

L1
⇢

⇤ - L2

L1

⇠
6

- (L2, c)

⇠
?

There is a more precise sense in which these embedding results can be inter-
preted in algebra, namely as reductions of classes of word problems: the question
whether an inequality a  b holds in a variety L1 of freely generated alge-
bras/ordered structures can be reduced to the question whether the inequality
a⇤  b⇤ holds in another variety L2. Soundness and faithfulness of the trans-
lation allow the transfer of both the problem and the solution between L1 and
L2.

The general idea behind the use of sequent calculus in the solution of word
problems in varieties of lattices is the following: first the defining properties of
the lattice operations are translated into appropriate sequent calculus rules, for
example, a ^ b  a, and c  a and c  b imply c  a ^ b, get translated to the
rules (where c ⌘ a together with reflexivity gives the first axiom)

a  c

a ^ b  c

c  a c  b

c  a ^ b

As a further step, the  relation is substituted by the sequent arrow !, and
a sequent calculus is obtained. The sequent calculus can have a single formula
both in the antecedent and succedent, or a multiset of formulas if distributivity
properties also need to be encoded. Transitivity of the  relation corresponds
to the cut rule, and then it is shown that an atom of the form a  b holds in the
specific class of ordered structures if and only if the sequent is derivable in the
sequent calculus. The calculus is formulated in such a way that it decomposes
the problem of deciding whether a  b holds by root-first application of the rules
that pertains to the lattice operations in a and b. Then cut elimination allows to
solve the word problem because cut is the only rule that does not satisfy the sub-
formula property. The elimination of transitivity is behind the solution of the
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word problem for free lattices in Whitman (1941), and the explicit translation
of word problems into questions of cut elimination is at the basis of the work of
Matsumoto (1965) for free lattices and of Tamura (1988) for ortholattices. The
question as to what properties of a variety of algebras ensure cut elimination for
the corresponding sequent calculus has been posed in precise terms and partially
answered in Schulte Mönting (1981).

In the specific case of modal logic that we have considered here, the problem
of deciding whether a⇤ 6 b⇤ hols in a closure algebra is first translated to the
question of whether the corresponding sequent a⇤ ! b⇤ is derivable in S4 (or
extension thereof). The next step is to use an analytic system to answer the
question, as the labelled calculi presented in Dyckho↵ and Negri (2012, 2016).
Alternatively, one can use faithfulness of the translation to reduce the problem
to a question of derivability in the corresponding intermediate logic. Again, the
labelled calculus provides an analytic system that either produces a proof or a
countermodel, by the methods of Negri (2014).

There is a more general sense in which proof theory can be employed for the
solution of word problems in algebra, namely to answer the questions posed by
uniform word problems, i.e. the question whether an atomic formula (of the
form a  b or a = b) follows from a finite number of atomic formulas � used
as assumptions, say a1  b1, . . ., an  b

n

. Thanks to the internalization of
the derivability relation in sequent calculus, the problem can be expressed as
the question of whether the sequent � ! a  b is derivable. This problem is
more general and the inequality cannot be translated as a sequent arrow. It can
nevertheless be faced with sequent calculus by leaving the inequality between
terms as atomic formulas in the logic and translating the axioms of the algebraic
or ordered structure under consideration as rules that govern the behaviour of
such relations, in the same way as transitivity or reflexivity were added as “non-
logical” sequent rules. The method has been employed to solve the uniform word
problem for linear order (Negri, von Plato and Coquand, 2004), lattices (Negri
and von Plato, 2002, 2004), linear lattices (Negri, 2005a, and by a di↵erent route
in section 7.2 of Negri and von Plato, 2011), groupoids (Negri and von Plato,
2011), linear Heyting algebras (Dyckho↵ and Negri, 2006), and ortholattices
(Meinander, 2010).

5 Concluding remarks and related work

Stone representation theorems are considered one of the most important achieve-
ments in the unification of logic and topology; they show that “growth in math-
ematical knowledge often results when two or more distinct but related fields
are unified by the hypothesis of a partial structural analogy, which allows for
the combination of their resources in the solution and discovery of problems”
(Grosholz 1985). The importance of this unification has been compared to the
one realized by Descartes between algebra and Euclidean geometry through the
creation of analytic geometry (Grosholz, ibid.).
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Mormann (2005) describes the representational program initiated by Stone as
one of the “success stories” of 20th century mathematics, in a line of conceptual
development that sees Russell’s theory of definite descriptions and Carnap’s
construction of qualities out of elementary experiences as forerunners of what
was successfully carried out by Stone, and Stone’s work as a precursor of the
later conceptualization of pointfree topology. Mormann (2013) goes further in
analyzing the way topology has been neglected in 20th century philosophy of
science despite the “spectacular results” obtained by Stone, and conjectures
that the cause of this neglect is to be found in a reductionist logical philosophy,
with its emphasis on the logical foundations of mathematics.

The role of logic mediated through axiomatics in Stone’s unification of algebra
and topology is presented as central by Schlimm (2008): a common set of axioms
is instrumental in the transfer of notions and methods between the domain of
deductive systems and topology through the axiomatization of Boolean algebras.

In this work we have proposed a change of perspective by pushing the role of logic
further through the use of analytic proof theory. We have made a distinction
between the intensional and the extensional parts of the algebraic-topological
representation theorems and analyzed how the shift from the intensional part to
the extensional one requires the use of non-constructive principles. We have out-
lined two ways in which such non-constructive principles can be isolated or even
avoided: the first is through the use of formal topology, the second is through
the methods of analytic proof theory. Our focus is on the second method, for
two reasons: On the one hand, embedding results are provable in a direct and
constructive way, and on the other hand, they make it possible to recover the
intensional part of the representation results through proof-theoretical embed-
dings. We have also indicated how embedding results can be interpreted in
algebra as reductions of classes of word problems, a way for obtaining applica-
tions in algebra of the methods of analytic proof theory.

Finally, I thank the organizers of the conference “Intensionality in Mathemat-
ics”, held in May 2013 in Lund, that gave the occasion to present this work,
and gratefully acknowledge the insightful and constructive comments by the
referees.
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