11 research outputs found

    Tropically convex constraint satisfaction

    Full text link
    A semilinear relation S is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in the intersection of NP and co-NP, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinaer constraints in general into NP intersected co-NP. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure

    Tropical Fourier-Motzkin elimination, with an application to real-time verification

    Get PDF
    We introduce a generalization of tropical polyhedra able to express both strict and non-strict inequalities. Such inequalities are handled by means of a semiring of germs (encoding infinitesimal perturbations). We develop a tropical analogue of Fourier-Motzkin elimination from which we derive geometrical properties of these polyhedra. In particular, we show that they coincide with the tropically convex union of (non-necessarily closed) cells that are convex both classically and tropically. We also prove that the redundant inequalities produced when performing successive elimination steps can be dynamically deleted by reduction to mean payoff game problems. As a complement, we provide a coarser (polynomial time) deletion procedure which is enough to arrive at a simply exponential bound for the total execution time. These algorithms are illustrated by an application to real-time systems (reachability analysis of timed automata).Comment: 29 pages, 8 figure

    Tropical polar cones, hypergraph transversals, and mean payoff games

    Get PDF
    We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.Comment: 27 pages, 6 figures, revised versio

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update

    Loop-checking and the uniform word problem for join-semilattices with an inflationary endomorphism

    Get PDF
    We solve in polynomial time two decision problems that occur in type checking when typings depend on universe level constraints

    Mean-payoff games and propositional proofs

    Get PDF
    "Vegeu el resum a l'inici del document del fitxer adjunt"

    Dichotomies in Constraint Satisfaction: Canonical Functions and Numeric CSPs

    Get PDF
    Constraint satisfaction problems (CSPs) form a large class of decision problems that con- tains numerous classical problems like the satisfiability problem for propositional formulas and the graph colourability problem. Feder and Vardi [52] gave the following logical for- malization of the class of CSPs: every finite relational structure A, the template, gives rise to the decision problem of determining whether there exists a homomorphism from a finite input structure B to A. In their seminal paper, Feder and Vardi recognised that CSPs had a particular status in the landscape of computational complexity: despite the generality of these problems, it seemed impossible to construct NP-intermediate problems `a la Ladner [72] within this class. The authors thus conjectured that the class of CSPs satisfies a complexity dichotomy , i.e., that every CSP is solvable in polynomial time or is NP-complete. The Feder-Vardi dichotomy conjecture was the motivation of an intensive line of research over the last two decades. Some of the landmarks of this research are the confirmation of the conjecture for special classes of templates, e.g., for the class of undi- rected graphs [55], for the class of smooth digraphs [5], and for templates with at most three elements [43, 84]. Finally, after being open for 25 years, Bulatov [44] and Zhuk [87] independently proved that the conjecture of Feder and Vardi indeed holds. The success of the research program on the Feder-Vardi conjecture is based on the con- nection between constraint satisfaction problems and universal algebra. In their seminal paper, Feder and Vardi described polynomial-time algorithms for CSPs whose template satisfies some closure properties. These closure properties are properties of the polymor- phism clone of the template and similar properties were later used to provide tractability or hardness criteria [61, 62]. Shortly thereafter, Bulatov, Jeavons, and Krokhin [46] proved that the complexity of the CSP depends only on the equational properties of the poly- morphism clone of the template. They proved that trivial equational properties imply hardness of the CSP, and conjectured that the CSP is solvable in polynomial time if the polymorphism clone of the template satisfies some nontrivial equation. It is this conjecture that Bulatov and Zhuk finally proved, relying on recent developments in universal algebra. As a by-product of the fact that the delineation between polynomial-time tractability and NP-hardness can be stated algebraically, we also obtain that the meta-problem for finite- domain CSPs is decidable. That is, there exists an algorithm that, given a finite relational structure A as input, decides the complexity of the CSP of A
    corecore