
HAL Id: hal-01087367
https://hal.inria.fr/hal-01087367

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tropical Fourier–Motzkin elimination, with an
application to real-time verification

Xavier Allamigeon, Axel Legay, Uli Fahrenberg, Ricardo Katz, Stéphane
Gaubert

To cite this version:
Xavier Allamigeon, Axel Legay, Uli Fahrenberg, Ricardo Katz, Stéphane Gaubert. Tropical
Fourier–Motzkin elimination, with an application to real-time verification. International Jour-
nal of Algebra and Computation, World Scientific Publishing, 2014, 24 (5), pp.569 - 607.
�10.1142/S0218196714500258�. �hal-01087367�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49578257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01087367
https://hal.archives-ouvertes.fr


Tropical Fourier-Motzkin Elimination, with an Application to

Real-Time Verification∗

Xavier Allamigeon
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We introduce a generalization of tropical polyhedra able to express both strict and non-
strict inequalities. Such inequalities are handled by means of a semiring of germs (en-

coding infinitesimal perturbations). We develop a tropical analogue of Fourier-Motzkin
elimination from which we derive geometrical properties of these polyhedra. In partic-
ular, we show that they coincide with the tropically convex union of (non-necessarily
closed) cells that are convex both classically and tropically. We also prove that the
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redundant inequalities produced when performing successive elimination steps can be
dynamically deleted by reduction to mean payoff game problems. As a complement, we
provide a coarser (polynomial time) deletion procedure which is enough to arrive at a
simply exponential bound for the total execution time. These algorithms are illustrated
by an application to real-time systems (reachability analysis of timed automata).

Keywords: Tropical polyhedra, strict inequalities, Fourier-Motzkin elimination, mean
payoff games, real-time verification, timed automata

Mathematics Subject Classification 2010: 14T05, 52A01, 52B55

1. Introduction

1.1. Tropical convexity

Tropical or max-plus algebra refers to the set Rmax := R ∪ {−∞} equipped with

x⊕ y := max(x, y) as addition and x⊗ y := x+ y as multiplication (the latter will

be also denoted by concatenation xy). In this setting, an inequality constraint on

variables x1, . . . ,xn is said to be (tropically) affine if it is of the form:

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn , (1.1)

or equivalently, with usual notation,

max(a0, a1 + x1, . . . , an + xn) 6 max(b0, b1 + x1, . . . , bn + xn) , (1.2)

where ai, bi ∈ Rmax for i = 0, 1, . . . , n. By analogy with the terminology of usual

convex geometry, a tropical (convex) polyhedron is defined as a set composed of

all the vectors x ∈ R
n
max satisfying finitely many such inequalities. An example is

depicted on the left-hand side of Figure 1.

Tropical polyhedra and, more generally, tropically convex sets, have been intro-

duced and studied in various contexts, including optimization [49], control the-

ory [19], idempotent functional analysis [46], or combinatorics [23]. Several ba-

sic results of convex analysis and geometry have been shown to have tropical

analogues. These include Hahn-Banach [49,46,20,23], Minkowski [29,15,39], and

Carathéodory/Helly-type [13,34,32] theorems. Some algorithmic aspects have also

been studied (e.g. [16,40,3]). We refer the reader to [3] for further references.

1.2. Motivation

The present work is motivated by a specific application of tropical algebra to the ver-

ification of real-time systems. Indeed, a remarkable property of tropical polyhedra

is their ability to concisely encode possibly non-convex sets expressed as disjunc-

tions of closed zones. A closed zone, also known in the literature as polytrope, is

a set of vectors x ∈ R
n defined by inequalities of the form xi > mi, xi 6 Mi,

and xi 6 kij + xj , for certain constants mi,Mi, kij ∈ R. More generally, zones

are obtained by replacing some of the previous inequalities by strict ones. See the

right-hand side of Figure 1 for an illustration.
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Fig. 1. Left: a tropical polyhedron (including the black border). Right: a (non-closed) zone defined
by the inequalities 1 6 x1 < 7, 1 < x2 6 5, −2 < x1 − x2 6 3.

Zones are extensively used in the area of verification of real-time systems, where

these systems are modelled by formalisms such as e.g. timed automata [8] or timed

Petri nets [12]. More precisely, zones are used by model checking tools as symbolic

states, typically representing infinitely many states of the system. They can be

represented using difference-bound matrices (DBM), which are essentially adjacency

matrices of weighted graphs. This allows for efficient algorithms for the manipulation

of zones during the verification process.

An inherent drawback of zones is that they are convex sets, and consequently

they are not closed under set union. This means that during the analysis process,

symbolic states cannot generally be combined, which potentially leads to state-

space explosion. Due to this, tropical polyhedra have been proposed in [47] as a

replacement for zones. However, an important drawback in this approach is that the

analysis of timed automata often requires to express strict constraints, for instance

in the analysis of communication protocols [22,44], while tropical polyhedra are

by definition topologically closed. An example illustrating these drawbacks will be

given in Section 5.

1.3. Contributions

In this paper we first introduce (Section 2) a class of non-necessarily closed tropically

convex sets. This class is called tropical polyhedra with mixed constraints. It can

express not only inequalities of the form (1.2) in which the relation 6 has been

replaced by <, but also finer constraints exploiting the disjunctive character of

tropical inequalities. For instance, the inequality

x1 6 max(1 + x2, 0
− + x3)

is going to represent the disjunction of the inequalities x1 6 1 + x2 and x1 < x3.

These mixed inequalities are defined using coefficients in a semiring of affine germs,

which represent infinitesimal perturbations of reals.
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In the second place, we present a tropical counterpart of Fourier-Motzkin elim-

ination (Section 3). It provides a constructive method to show that the projection

in R
n−1
max of a tropical polyhedron with mixed constraints P ⊂ R

n
max is a polyhedron

with mixed constraints (Theorem 3.4). It computes a representation by mixed in-

equalities of the projection by combining the defining inequalities of P. Actually,

this approach handles more generally systems of inequalities with coefficients in a

totally ordered idempotent semiring, modulo some assumptions. Note that such an

analogue of Fourier-Motzkin algorithm has not been considered previously in the

tropical setting, even in the case of standard (closed) tropical polyhedra. Fourier-

Motzkin elimination also appears as a useful tool to show the polyhedral character

of some non-closed tropically convex sets. As an application, we indeed prove that

tropical polyhedra with mixed constraints are precisely the tropically convex union

of finitely many zones, and the intersection of finitely many tropical hemispaces

(i.e. tropically convex sets whose complements are also tropically convex, which

were studied in e.g. [14,42]), see Theorem 3.6 and Corollary 3.10.

Superfluous inequalities may be produced by Fourier-Motzkin algorithm, so that

the size of the constraint systems can grow in a double exponential way during con-

secutive applications of the method. In order to eliminate such redundant inequal-

ities, in Section 4 we extend to mixed inequalities a result of [1] and its subsequent

refinement in [5], building on techniques of these two papers. The result of [1] shows

that deciding the feasibility of a system of tropical linear inequalities is (Karp)

polynomial-time equivalent to solving mean payoff games. The result of [5] shows

that deciding logical implications over tropical linear inequalities is also equivalent

to solving mean payoff games. Theorem 4.7 generalizes these two results to mixed

inequalities. We note that the present approach (through germs) also yields an al-

ternative, simpler derivation of the result of [5]. Indeed, deciding whether a given

inequality of the form (1.2) is logically implied by a system of other inequalities

of the same kind amounts to checking if the intersection of a tropical polyhedron

with the complement of a closed half-space is empty or not. Such an intersection is

obviously a tropical polyhedron with mixed constraints.

Experimentally efficient algorithms have been developed to solve mean payoff

games, but no polynomial time algorithm is known. Hence we also provide a weak

criterion which allows to eliminate some of the superfluous inequalities in polynomial

time (Section 4.2). We prove that, in the case of non-strict inequalities, this weak

elimination is sufficient to obtain a single-exponential bound for Fourier-Motzkin

elimination (Section 4.3).

Finally, Section 5 illustrates the application of tropical polyhedra with mixed

constraints to the verification (reachability analysis) of timed automata. We show

that the operations necessary for forward exploration of timed automata can be

defined on tropical polyhedra with mixed constraints, using Fourier-Motzkin elimi-

nation and the algorithms developed to eliminate redundant inequalities.
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1.4. Related work

The algorithms developed so far for tropical polyhedra usually benefit from the fact

that these can be represented either externally, using inequalities (as in (1.1)), or

internally, as sets generated by finitely many points and rays (see [30] for details).

In contrast, non-closed tropically convex sets may not be finitely generated. Gen-

erating representations of (non-necessarily closed) tropical convex cones have been

studied in [15], and in [42] in the particular case of tropical hemispaces. A certain

class of possibly infinite generating representations was treated in [28], however,

the associated algorithms rely on the expensive Presburger arithmetic. Defining

non-closed polyhedra using infinitesimal perturbations of generators also presents

some difficulties, see Remark 2.6 below. Moreover, we should warn the reader that

some geometric aspects of tropical polyhedra, in particular the notion of faces, are

still not yet understood [24]. Thus it does not seem easy to manipulate non-closed

polyhedra from closed ones by excluding some “facets” or “edges”.

The present tropical Fourier-Motzkin algorithm may be thought of as a dual

of the tropical double description method [3], in which one successively eliminates

inequalities rather than variables. In both algorithms, redundant intermediate data

(inequalities or generators) are produced, and the key to the efficiency of the al-

gorithm lies in the dynamic elimination of such data. Redundant generators can

be eliminated in almost linear time using a combinatorial hypergraph algorithm,

however the hypergraph criterion appears to have no natural dual analogue which

can detect redundant inequalities.

As mentioned above, the equivalence between mean payoff games and the empti-

ness problem for tropical polyhedra with mixed constraints generalizes a result of [1].

Moreover, it generalizes an earlier result [48] concerning finite solutions of a class of

non-strict disjunctive constraints appearing in scheduling. The non-strict inequality

satisfiability problem has also been studied under the name of “max-atom problem”

in [10], with motivations from SMT solving. Note here a fundamental difference

between strict and non-strict constraints: in the latter case, for inequalities with

integer coefficients, it is shown in [1] that emptiness over the integers is equivalent

to emptiness over the reals. The same is not true for strict inequalities (consider

for example the open hypercube ]0, 1[n which is non-empty, but contains no integer

points), so that the present result for mixed inequalities cannot be deduced from

earlier ones.

The infinitesimal perturbation of reals used in mixed inequalities is based on

a semiring of affine germs, which was used in [27,25] to provide policy iteration

based methods to solve mean payoff games. It also appeared in the context of

tropical linear programming, see [31, § 3.7]. The idea here is that germs allow one

to determine algebraically the value of a perturbed game. Related perturbation or

parametric game ideas were used in [5,35].
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2. Tropical Polyhedra with Mixed Constraints

In the semiring (Rmax,⊕,⊗), addition and multiplication admit neutral elements,

namely −∞ and 0. Addition does not generally admit inverses. In contrast, any non-

zero (in the tropical sense) element x admits a multiplicative inverse, which is given

by −x and will be denoted x−1. The semiring operations are extended to vectors and

matrices in the usual way, i.e. (A⊕B)ij := Aij⊕Bij and (A⊗B)ij := ⊕k(Aik⊗Bkj).
We will work in the semimodule R

n
max, for n ∈ N. Its elements can be seen as

points or vectors and are denoted x, y, etc. The order 6 on Rmax is extended

to vectors entry-wise. We equip Rmax with the topology induced by the metric

(x, y) 7→ |expx− exp y|, and R
n
max with the product topology. In the sequel, we also

use the completed max-plus semiring Rmax := Rmax ∪ {+∞}, with the conventions

x < +∞ for all x ∈ Rmax, x⊗ (+∞) = +∞ if x 6= −∞, and (−∞)⊗ (+∞) = −∞.

Finally, given a positive integer n, we denote by [n] the set {1, . . . , n}.
The notion of convexity can be transposed to tropical algebra. A subset C of

R
n
max is said to be (tropically) convex if it contains the tropical segment

{λx⊕ µy | λ, µ ∈ Rmax, λ⊕ µ = 0}
joining any two points x and y of C. This is analogous to the usual definition of

convexity, except that in the tropical setting the non-negativity constraint on λ and

µ is implicit (any scalar x ∈ Rmax satisfies x > −∞).

We now introduce the algebraic structure which will allow us to handle possibly

strict tropical inequalities. We use a disjoint copy R
− of R composed of elements

denoted α− for α ∈ R, and we set G := Rmax ∪R
−. The modulus |x| of an element

x ∈ G is defined by:

|x| :=
{
x if x ∈ Rmax ;

α if x = α− ∈ R
− .

The set G is totally ordered by the order relation 6G defined by:

x 6G y ⇐⇒
{
|x| < |y| if x ∈ Rmax and y ∈ R

− ;

|x| 6 |y| otherwise.

We use the notation x <G y when x 6G y and x 6= y. As an illustration, the Hasse

diagram of 6G over the elements with modulus in Z ∪ {±∞} is given in Figure 2.

The element α− can be interpreted as an infinitesimal perturbation of α of the

form α − ε with ε > 0. Formally, given x ∈ G and ε > 0, the valuation of x at ε,

denoted by x(ε), is the element of Rmax defined as follows:

x(ε) :=

{
x if x ∈ Rmax ;

|x| − ε if x ∈ R
− .

The valuation is extended to vectors and matrices entry-wise.

The set G has a semiring structure when equipped with the sum of two elements

x, y ∈ G defined as the greatest element among them, and the multiplication given
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Fig. 2. Hasse diagram of the order 6G over the elements of G with modulus in Z ∪ {±∞}.

by:




x⊗ y if x, y ∈ R ;

(|x| ⊗ |y|)− if x ∈ R
− or y ∈ R

−, and x, y 6= ±∞ ;

−∞ if x = −∞ or y = −∞ ;

+∞ if x, y 6= −∞, and x = +∞ or y = +∞ .

By abuse of notation, the multiplication in G will be simply denoted by concate-

nation and the sum by ⊕, as in the case of Rmax. Observe that in G the neutral

elements are still −∞ and 0, and that only the elements x ∈ R are invertible with

respect to multiplication. Also note that the modulus map is a semiring morphism.

We begin with a technical lemma on the arithmetic operations in the semiring

G.

Lemma 2.1. The following properties hold:

(i) for any x, y ∈ G, x 6G y if, and only if, x(ε) 6 y(ε) for ε > 0 sufficiently

small;

(ii) for any x, y ∈ G and ε > 0 sufficiently small, (x⊕ y)(ε) = x(ε)⊕ y(ε);

(iii) for any x ∈ Rmax, y ∈ G, and ε > 0, (xy)(ε) = xy(ε);

(iv) for any x, y, z ∈ G, x 6G y implies xz 6G yz, and the converse holds if z ∈ R;

(v) for any x, y ∈ Rmax, x < y is equivalent to x 6G 0−y when x ∈ R, and to

0 6G (+∞)y when x = −∞.

Proof. (i) The only non-trivial case is when x ∈ R and y ∈ R
−, so assume we are

in this case. Then, x 6G y amounts to x < |y|. This is equivalent to x(ε) = x 6

|y| − ε = y(ε) for ε > 0 sufficiently small.



8 Xavier Allamigeon, Uli Fahrenberg, Stéphane Gaubert, Ricardo D. Katz, Axel Legay

(ii) Straightforward from Property (i).

(iii) This property readily follows from the definition of the multiplication.

(iv) If z = ±∞, the first property is straightforward, so assume |z| ∈ R. Let

x <G y (the implication is trivial when x = y). If |x| < |y|, we have |xz| < |yz|
because z 6= ±∞. Moreover, if |x| = |y| =: α, then α 6= ±∞ (as x and y are

distinct), and thus necessarily x = α− and y = α (because x <G y). Hence xz ∈ R
−

and |xz| = |yz|. In both cases, we conclude that xz 6G yz.

Conversely, assume that z ∈ R. Using the first part of the proof, xz 6G yz

implies x 6G y by multiplying both sides of the inequality xz 6G yz by z−1.

(v) In the first place, we suppose that x ∈ R. If x < y, then y ∈ R and 0−y = y−.

Thus, x < y implies x 6G y−, i.e. x 6G 0−y. Conversely, if the latter inequality

holds, then y is distinct from −∞. Thus, 0−y = y−, and x 6G y− ensures that

x < y.

Assume now that x = −∞. Note that (+∞)y is equal to +∞ if y 6= −∞, and

to −∞ otherwise. Thus, we have 0 6G (+∞)y if, and only if, y > −∞ = x.

A mixed tropical affine inequality is defined as a constraint of the form

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6G b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn , (2.1)

where the coefficients ai on the left-hand side belong Rmax, while the coefficients

bi on the right-hand side are in G. When the set of x in R
n
max satisfying a mixed

inequality is a non-empty proper subset of Rnmax, it is called mixed half-space.

Lemma 2.2. A vector x ∈ R
n
max satisfies (2.1) if, and only if, there exists ε > 0

such that

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0(ε)⊕ b1(ε)x1 ⊕ · · · ⊕ bn(ε)xn . (2.2)

Proof. If (2.1) is satisfied, then by Property (i) of Lemma 2.1 we have

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 (b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn)(ε)

for ε > 0 sufficiently small, since the left-hand side of (2.1) belongs to Rnmax. Besides,

by Properties (ii) and (iii) of Lemma 2.1, it follows that

(b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn)(ε) = b0(ε)⊕ b1(ε)x1 ⊕ · · · ⊕ bn(ε)xn

for ε > 0 sufficiently small, which shows that (2.2) holds.

Conversely, suppose that (2.2) is satisfied for some ε > 0. Then

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0(ε
′)⊕ b1(ε

′)x1 ⊕ · · · ⊕ bn(ε
′)xn

for any ε′ < ε (the map ε′ 7→ b0(ε
′)⊕ b1(ε′)x1⊕· · ·⊕ bn(ε′)xn is non-increasing). It

follows that (2.1) holds, by Properties (i), (ii) and (iii) of Lemma 2.1 and the fact

that the left-hand side of (2.1) belongs to Rmax.

A tropical polyhedron with mixed constraints is defined as a set composed of

the vectors x ∈ R
n
max which satisfy finitely many mixed tropical affine inequalities.
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To contrast with, we use the term closed tropical polyhedron when the defining

mixed inequalities only involve coefficients in Rmax, i.e. they are of the form (1.1).

The following proposition establishes that polyhedra with mixed constraints are

(possibly non-closed) tropically convex sets.

Proposition 2.3. Any tropical polyhedron with mixed constraints is a tropically

convex set.

Proof. Let x,y be two solutions of (2.1), and λ, µ ∈ Rmax be such that λ⊕µ = 0.

By Lemma 2.2, there exist ε, ε′ > 0 such that:

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0(ε)⊕ b1(ε)x1 ⊕ · · · ⊕ bn(ε)xn ,

a0 ⊕ a1y1 ⊕ · · · ⊕ anyn 6 b0(ε
′)⊕ b1(ε

′)y1 ⊕ · · · ⊕ bn(ε
′)yn .

These inequalities are still valid if we replace ε and ε′ by min(ε, ε′). Hence, we can

assume, without loss of generality, that ε = ε′. Then, z = λx⊕ µy satisfies

a0 ⊕ a1z1 ⊕ · · · ⊕ anzn 6 b0(ε)⊕ b1(ε)z1 ⊕ · · · ⊕ bn(ε)zn ,

which proves that z is a solution of (2.1) by Lemma 2.2. Thus, any mixed half-

space is tropically convex. We conclude that every tropical polyhedron with mixed

constraints is tropically convex, as the intersection of finitely many tropically convex

sets.

Example 2.4. The vectors x ∈ R
2 satisfying the strict inequality x1 < max(−1+

x2, 0), depicted on the left-hand side of Figure 3, are obtained as the real solutions

of the mixed affine inequality x1 6G (−1)−x2⊕0−. Similarly, the solutions of x1 6G

(−1)−x2 ⊕ 0 correspond to the previous set in which the half-line {(0, λ) | λ 6 1}
is added (middle of Figure 3).

The set depicted on the right-hand side of Figure 3 is the tropical polyhedron

with mixed constraints defined by the following mixed inequalities:

(−2)x2 6G 0− ⊕ 0−x1

−3 6G x1

0 6G 1x1 ⊕ 0−x2

−2 6G x2

x1 6G 3−x2

(−2)x1 6G 0− ⊕ (−1)x2

(2.3)

Observe that the inequalities in (2.3) have the property that no variable (or

constant term) ever appears on both the left- and right-hand sides. The following

lemma ensures that this situation is not restrictive, and that in any inequality of

the form (2.1), we can always assume ai = −∞ or bi = −∞ for all i ∈ {0, . . . , n}.

Lemma 2.5. Let a, b ∈ Rmax and c, d ∈ G. The set of solutions in Rmax of the

mixed tropical affine inequality ax⊕b 6G cx⊕d is given by {x ∈ Rmax | b 6G cx⊕d}
if a 6G c, and by {x ∈ Rmax | ax⊕ b 6G d} otherwise.

Proof. In the first place, suppose that a 6G c. Then, ax 6G cx for all x ∈ Rmax

by Property (iv) of Lemma 2.1. It follows that ax 6G cx⊕ d is always satisfied.
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x1

x2

x1

x2

x1

x2

Fig. 3. Tropical polyhedra with mixed constraints (the ends of the black segments marked by
points are included in the polyhedra).

Suppose now that a >G c. If x ∈ R, we have ax⊕b >G ax >G cx by Property (iv)

of Lemma 2.1. As a consequence, any x ∈ Rmax such that ax ⊕ b 6G cx ⊕ d also

satisfies ax⊕ b 6G d. This completes the proof.

Remark 2.6. Following the analogy with closed tropical polyhedra, we could also

consider subsets of Gn generated by finitely many points and rays (given by vectors

with entries in G), having in mind to encode non-closed subsets of Rnmax thanks to

infinitesimal perturbation of generators. More precisely, we could consider that a

subset C of Gn encodes the subset C̃ of Rnmax given by the points y ∈ R
n
max such

that for all ε > 0 there exist ε′ ∈ ]0, ε[ and x ∈ C verifying y = x(ε′). However,

this approach presents several difficulties. For example, consider the segment S of

G
2 joining the points v = (0−, 1) and w = (1−, 1), i.e.

S = {λv ⊕ µw ∈ G
2 | λ, µ ∈ G, λ⊕ µ = 0} .

Then, it can be checked that S̃ = {(α, 1) ∈ R
2
max | α ∈ [0, 1[}. Now, observe that if

we consider the segment S ′ joining v′ = (1−, 0) and w′ = (0, 1), we have S̃ ′ = S̃.
Noticing that v′ 6∈ S and v 6∈ S ′, we see that different polyhedra of Gn can encode

the same subset of Rnmax. Consequently, it seems far from trivial to determine the

equality of two subsets of Rnmax when they are encoded as polyhedra of Gn.

Remark 2.7. As a complement of Remark 2.6, we point out that the closure

of a polyhedron with mixed constraints is apparently harder to compute than in

the case of usual convex polyhedra. Indeed, in the latter case, the closure can be

simply obtained by substituting < by 6 in the defining inequalities. In contrast,

in the current setting, replacing the coefficients bi of the form β−
i by βi on the

right-hand side of mixed inequalities provides a closed tropical polyhedron which

may be larger than the closure. For example, consider the polyhedron with mixed

constraints defined by the inequalities:

0 6G x1 x1 ⊕ x2 6G 1 0 6G (−1)−x1 ⊕ 0−x2 ,
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x1

x2

x1

x2

Fig. 4. Left: a tropical polyhedron with mixed constraints, together with an open mixed half-

space (in blue) defining it. Right: the closed polyhedron defined by the corresponding non-strict
inequalities.

which is depicted on the left-hand side of Figure 4. The mixed half-space defined

by the last inequality is represented in blue. The closure of the polyhedron is the

usual unit square. However, the closed polyhedron defined by the inequalities:

0 6 x1 x1 ⊕ x2 6 1 0 6 (−1)x1 ⊕ x2 ,

contains additionally the half-line {(1, λ) | λ 6 0} (right-hand side of Figure 4).

3. Tropical Fourier-Motzkin Elimination

In this section, we first present a tropical Fourier-Motzkin elimination method,

which allows to eliminate a variable in a finite system of mixed inequalities. Then

we apply this method to establish relationships between tropical polyhedra with

mixed constraints, zones and tropical hemispaces.

3.1. The algorithm

We first illustrate the algorithm on an example.

Example 3.1. Consider the system given in (2.3), and assume we want to eliminate

the variable x1. From the last (rightmost) two inequalities of (2.3), we know that:

x1 6G 3−x2 x1 6G 2− ⊕ 1x2 (3.1)

In each inequality involving the variable x1 on the right-hand side (i.e. the leftmost

three inequalities of (2.3)), we propose to replace x1 by the two upper bounds

provided by (3.1). This produces the following six inequalities:

(−2)x2 6G 0− ⊕ 3−x2

(−2)x2 6G 2− ⊕ 1−x2

−3 6G 3−x2

−3 6G 2− ⊕ 1x2

0 6G 4−x2

0 6G 3− ⊕ 2x2

(3.2)

Besides, in each inequality not involving x1 on the right-hand side, we remove the

term in x1 from the left-hand side, if any. From the rightmost inequalities of (2.3),

we obtain the following three inequalities:

− 2 6G x2 −∞ 6G 3−x2 −∞ 6G 0− ⊕ (−1)x2 . (3.3)
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We claim that the inequalities in (3.2) and (3.3) precisely describe the projection

on the x2 axis of the polyhedron with mixed constraints defined by (2.3). Note

that the collection of inequalities obtained in this way is redundant: one inequality,

−2 6G x2, suffices.

We now formalize the approach sketched in Example 3.1. Under some assump-

tions (which are specified in Theorem 3.3 below), it applies more generally to sys-

tems of constraints over a totally ordered idempotent semiring.

Recall that a semiring (S,⊕,⊗, 0, 1) is said to be totally ordered if there exists

a total order 6S on S such that:

(i) 0 6S a for all a ∈ S,

(ii) for all a, b, c ∈ S, a 6S b implies a⊕c 6S b⊕c, a⊗c 6S b⊗c, and c⊗a 6S c⊗b.

The semiring S is said to be idempotent if a⊕ a = a for all a ∈ S. The next lemma

shows that such a semiring is naturally ordered, meaning that a⊕ b is equal to the

maximal element among a and b.

Lemma 3.2. Let (S,⊕,⊗, 0, 1,6S) be a totally ordered idempotent semiring. Then,

for all a, b ∈ S, a⊕ b = a if a >S b, and a⊕ b = b otherwise.

Proof. First, observe that b >S 0 implies a⊕b >S a. Analogously, we have a⊕b >S b.

Now suppose that a >S b. Then, a = a⊕ b since a = a⊕ a >S a⊕ b.

Now we explain how to eliminate xn in a linear system of inequalities over S

in the variables x1, . . . ,xn. For the sake of simplicity, we extend the operations of

S to matrices and vectors in the usual way and represent the multiplication ⊗ by

concatenation.

Theorem 3.3 (Fourier-Motzkin elimination for systems over totally or-

dered idempotent semirings). Let (S,⊕,⊗, 0, 1,6S) be a totally ordered idem-

potent semiring and P ⊂ S
n be the solution set of the system Ax ⊕ c 6S Bx ⊕ d,

where A,B ∈ S
p×n and c,d ∈ S

p satisfy the following conditions:

(i) Ain is (left-)invertible with respect to ⊗ if Ain 6= 0 (we denote its inverse by

A−1
in ),a

(ii) for any α ∈ S there exists β ∈ S such that α 6S Binβ if Bin 6= 0,

(iii) either Aij = 0 or Bij = 0 for i ∈ [p] and j ∈ [n].

Let Q ⊂ S
n−1 be the set defined by the following inequalities in the variables

x1, . . . ,xn−1:

(⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nBijxj)⊕ di , (3.4)

aHere and below, Min denotes the (i, n)-entry of matrix M , and should not be confused with any
abbreviation.
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for all i ∈ [p] such that Bin = 0, and

(⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=n(Bij ⊕BinA
−1
knBkj)xj)⊕ di ⊕BinA

−1
kndk , (3.5)

for all i, k ∈ [p] such that Bin 6= 0 and Akn 6= 0.

Then x ∈ Q if, and only if, there exists λ ∈ S such that (x, λ) ∈ P.

Proof. Assume that (x, λ) ∈ P for some λ ∈ S. Then for all i ∈ [p] such that

Bin = 0, we have:

(⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nAijxj)⊕Ainλ⊕ ci 6S (⊕j 6=nBijxj)⊕ di ,

which proves that x satisfies the inequalities of the form (3.4). Now consider i, k ∈ [p]

such that Bin 6= 0 and Akn 6= 0. Then, Ain = Bkn = 0 by Condition (iii), and Akn
is left-invertible by Condition (i). Since Aknλ 6S (⊕j 6=nBkjxj)⊕ dk, we know that

λ 6S A
−1
kn (⊕j 6=nBkjxj)⊕A−1

kndk .

Replacing λ by the latter upper bound in the inequality

(⊕j 6=nAijxj)⊕ ci = (⊕j 6=nAijxj)⊕Ainλ⊕ ci 6S (⊕j 6=nBijxj)⊕Binλ⊕ di

precisely yields inequality (3.5), using distributivity of ⊗ and commutativity of ⊕.

Thus, we conclude that x ∈ Q.

Conversely, let x ∈ Q. In the first place, assume that Ain = 0 for all i ∈ [p].

Define

λ := ⊕i∈Iβi ,

where I := {i ∈ [p] | Bin 6= 0} and βi ∈ S is such that (⊕j 6=nAijxj) ⊕ ci 6S Binβi
for i ∈ I (βi exists thanks to Condition (ii)). Then, if Bin 6= 0, we have

(⊕j 6=nAijxj)⊕Ainλ⊕ci = (⊕j 6=nAijxj)⊕ci 6S Binλ 6S (⊕j 6=nBijxj)⊕Binλ⊕di .

The same inequality is trivially satisfied if Bin = 0 due to (3.4). It follows that

(x, λ) ∈ P.

Now assume that Akn 6= 0 for some k ∈ [p]. Define

λ := min
k∈[p]
Akn 6=0

(
A−1
kn (⊕j 6=nBkjxj)⊕A−1

kndk
)
, (3.6)

where the operator min is understood as providing the minimum of its operands

with respect to the order 6S. As a consequence, for all i such that Ain 6= 0, we

have Ainλ 6S (⊕j 6=nBijxj) ⊕ di. The fact that Bin = 0 (by Condition (iii)) and

the conjunction with (3.4) yield:

(⊕j 6=nAijxj)⊕Ainλ⊕ ci 6S (⊕j 6=nBijxj)⊕ di = (⊕j 6=nBijxj)⊕Binλ⊕ di .

Note that the latter inequality also holds for all i ∈ [p] such that Ain and Bin are

both equal to 0.
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Now suppose that i ∈ [p] satisfies Bin 6= 0 and k ∈ [p] attains the minimum

in (3.6). Since x satisfies (3.5), i.e.

(⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nBijxj)⊕ di ⊕BinA
−1
kn (⊕j 6=nBkjxj ⊕ dk)

it follows that

(⊕j 6=nAijxj)⊕Ainλ⊕ ci = (⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nBijxj)⊕Binλ⊕ di ,

because Bin 6= 0 implies Ain = 0 by Condition (iii). This shows that (x, λ) belongs

to P.

The case of tropical polyhedra with mixed constraints is obtained by setting

S = G. Note that the conditions of Theorem 3.3 are satisfied when S = G, due in

particular to Lemma 2.5 and the fact that any non-zero coefficient on the left-hand

side of a mixed inequality is invertible (as an element of R). However, a tropical

polyhedron with mixed constraints consists of the solutions belonging to R
n
max,

while Theorem 3.3 applies to the solutions in G
n. The following result shows that

the projection algorithm is still valid when restricted to R
n
max.

Theorem 3.4 (Fourier-Motzkin elimination for systems of mixed inequal-

ities). Assume P and Q are defined as in Theorem 3.3 with S = G. Then, for all

x ∈ R
n−1
max , x ∈ Q if, and only if, there exists λ ∈ Rmax such that (x, λ) ∈ P.

Proof. Observe that to prove the theorem, it is enough to show that if y := (x, λ) ∈
P for some x ∈ R

n−1
max and λ ∈ G, then there exists λ′ ∈ Rmax such that (x, λ′) ∈ P.

If λ ∈ Rmax, there is nothing to prove, so assume λ ∈ R
−∪{+∞}. We will show

that for a certain choice of λ′ ∈ R verifying λ′ 6G λ, the vector y′ := (x, λ′) ∈
R
n
max belongs to P. Note that for any such choice of λ′, the vector y′ satisfies the

inequalities in Ax⊕ c 6G Bx⊕ d indexed by i ∈ [p] such that Bin = ±∞. Indeed,

in this case, we have

(⊕jAijy′
j)⊕ ci 6G (⊕jAijyj)⊕ ci 6G (⊕jBijyj)⊕ di = (⊕jBijy′

j)⊕ di . (3.7)

Thus, we next focus on the inequalities indexed by elements of the set I := {i ∈
[p] | Bin ∈ R ∪ R

−}. In consequence, Ain = −∞ for all i ∈ I. It is convenient to

split the rest of the proof into two cases.

In the first place, assume λ = +∞. Define λ′ := δǫ ∈ R, where ǫ > 0 and

δ =

{
⊕i∈I |Bin|−1(⊕j 6=nAijxj ⊕ ci) if I 6= ∅ ,
0 otherwise.

Obviously, λ′ 6G λ. Besides, for all i ∈ I we have

(⊕j 6=nAijxj)⊕Ainλ
′ ⊕ ci 6G (⊕j 6=nBijxj)⊕Binλ

′ ⊕ di ,

since ⊕j 6=nAijxj ⊕ ci < |Bin|λ′ and Ain = −∞.
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Now assume λ ∈ R
−. Let I ′ be the set of indices i ∈ I such that Binλ >G

⊕j 6=nBijxj ⊕ di. Then,

(⊕jAijyj)⊕ ci = (⊕j 6=nAijxj)⊕ ci 6G Binλ

for all i ∈ I ′. For i ∈ I ′, let νi = ⊕j 6=nAijxj ⊕ ci. Since νi belongs to Rmax (Aij , xj
and ci belong to Rmax) and Binλ belongs to R

−, we necessarily have νi < |Binλ|.
Define λ′ := κ|λ| ∈ R, where

κ =

{
maxi∈I′(νi − |Binλ|)/2 if {i ∈ I ′ | νi ∈ R} 6= ∅ ,
−1 otherwise.

As κ < 0, we have λ′ 6G λ. Moreover, if i ∈ I ′, then νi < κ|Binλ| and so

(⊕jAijy′
j)⊕ ci 6G (⊕jAijyj)⊕ ci = (⊕j 6=nAijxj)⊕ ci =

= νi 6G κBinλ 6G κBin|λ| = Binλ
′
6G (⊕jBijy′

j)⊕ di .

Finally, note that for i ∈ I \ I ′ the relations in (3.7) are still valid because in that

case we have ⊕j 6=nBijxj ⊕ di >G Binλ >G Binλ
′. This completes the proof.

3.2. Characterization of tropical polyhedra with mixed constraints

in terms of zones and tropical hemispaces

In this subsection we discuss some consequences of tropical Fourier-Motzkin elimi-

nation. In the first place, we establish that the tropical convex hull of the union of

two tropical polyhedra with mixed constraints is a tropical polyhedron with mixed

constraints. Recall that the tropical convex hull tconv(G) of a set G ⊂ R
n
max is

defined as the set of the vectors of the form

λ1x
1 ⊕ · · · ⊕ λmxm

where m is a positive integer, xi ∈ G, λi ∈ Rmax (i ∈ [m]), and ⊕i∈[m]λi = 0.

Proposition 3.5. Let P,P ′ ⊂ R
n
max be polyhedra with mixed constraints, respec-

tively defined by the systems Ax ⊕ c 6G Bx ⊕ d and A′x ⊕ c′ 6G B′x ⊕ d′, and

let Q be the polyhedron defined by the inequalities which are obtained eliminating

y1, . . . ,yn,y
′
1, . . . ,y

′
n, λ and µ in the following system:

x = y ⊕ y′ λ⊕ µ = 0

Ay ⊕ λc 6G By ⊕ λd y1 ⊕ · · · ⊕ yn 6G (+∞)λ (3.8)

A′y′ ⊕ µc′ 6G B
′y′ ⊕ µd′ y′

1 ⊕ · · · ⊕ y′
n 6G (+∞)µ

Then, we have tconv(P ∪ P ′) = Q.

Proof. In the first place, note that P ⊂ Q. Indeed, given x ∈ P, let λ = 0,

µ = −∞, y = x and y′
i = −∞ for i ∈ [n]. Then, (3.8) is clearly satisfied, and so

from Theorem 3.4 we deduce that x ∈ Q. Similarly, P ′ ⊂ Q. Since Q is tropically

convex, we deduce that tconv(P ∪ P ′) ⊂ Q.
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Conversely, let x ∈ Q, and consider y,y′, λ, µ as in (3.8). If both λ, µ are distinct

from −∞, then λ−1y ∈ P, µ−1y′ ∈ P ′, and x = λ(λ−1y)⊕µ(µ−1y′), which ensures

that x ∈ tconv(P ∪ P ′). Otherwise, if for instance µ = −∞, then we necessarily

have λ = 0, and so y ∈ P. Moreover, from y′
1 ⊕ · · · ⊕ y′

n 6G (+∞)µ we deduce

that y′
i = −∞ for all i ∈ [n], and in consequence x = y. This completes the proof,

because again we have x = y ∈ P ⊂ tconv(P ∪ P ′), and so Q ⊂ tconv(P ∪ P ′).

In order to characterize tropical polyhedra with mixed constraints in terms of

zones, we first need to extend the definition of zones to Rmax: a zone (of Rnmax) is a

set of vectors x ∈ R
n
max defined by inequalities of the form

mi ⊳ xi xi ⊳Mi xi ⊳ kijxj (3.9)

where ⊳ ∈ {6, <} and mi,Mi, kij ∈ Rmax.

Theorem 3.6. A subset P of Rnmax is a tropical polyhedron with mixed constraints

if, and only if, it is a tropically convex union of finitely many zones.

Proof. Observe that when ⊳ is equal to 6 in (3.9), these inequalities are equivalent

to the ones obtained replacing ⊳ by 6G. Moreover, we have

mi < xi ⇐⇒
{
mi 6G 0−xi if mi ∈ R

0 6G (+∞)xi if mi = −∞
xi < Mi ⇐⇒ xi 6G 0−Mi if Mi ∈ R

xi < kijxj ⇐⇒ (xi 6G (0−)kijxj and 0 6G (+∞)xj) if kij ∈ R

In consequence, any zone is a tropical polyhedron with mixed constraints. Then, by

Proposition 3.5, so is the tropical convex hull of the union of finitely many zones.

The “if” part of the theorem follows from the fact that if the union of finitely many

zones is tropically convex, then it coincides with its tropical convex hull.

Suppose now that Q is a polyhedron defined by mixed inequalities of the

form (2.1), in which only one of the coefficients bj is distinct from −∞. If this

coefficient is b0, as we can assume that b0 6= +∞, it follows that (2.1) can be rewrit-

ten as a system of inequalities of the form xi 6G βMi, with β ∈ {0, 0−} andMi ∈ R.

If the considered coefficient is bj for j ∈ [n], then (2.1) can be rewritten as a system

of inequalities of the form mj 6G βxj and xi 6G βkijxj , with β ∈ {0, 0−,+∞}
and mj , kij ∈ R. Since

xi 6G βkijxj ⇐⇒





xi 6 kijxj if β = 0

xi < kijxj or (xi 6 −∞ and xj 6 −∞) if β = 0−

−∞ < xj or (xi 6 −∞ and xj 6 −∞) if β = +∞

xi 6G βMi ⇐⇒
{
xi 6Mi if β = 0

xi < Mi if β = 0−
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mj 6G βxj ⇐⇒





mj 6 xj if β = 0

mj < xj if β = 0−

−∞ < xj if β = +∞

it follows that Q is a finite union of zones.

The “only if” part of the theorem follows from the fact that any polyhedron

with mixed constraints can be written as a finite union of polyhedra of the form

considered in the previous paragraph (it suffices to choose, in each inequality, one

term in the right-hand side to be the maximizing one).

Theorem 3.6 raises the problem, of independent interest, of determining whether

a given union of finitely many zones is tropically convex. To our knowledge, this

problem has not been studied so far, even in the case of closed zones. A naive

solution consists in computing the tropical convex hull of the union of zones (using

Proposition 3.5), and checking whether it intersects the complement of the union

of zones (the latter can be expanded into a union of zones, and the intersection test

requires the techniques developed in Section 4, see Theorem 4.7). This approach

would be particularly expensive. Yet, it is similar to the technique implemented in

the UPPAAL DBM library [21] to test if a union of zones is a zone. Whether there

exists a more efficient method is left for future work.

Now we study the relationship between tropical polyhedra with mixed con-

straints and tropical hemispaces. Recall that a tropical hemispace is a tropically

convex set whose complement is also tropically convex. Tropical hemispaces and

mixed half-spaces share the property that their closure is a closed half-space (in the

case of hemispaces, this is proved in [14]). In fact, Proposition 3.7 and Example 3.8

below show that mixed half-spaces are a proper subclass of hemispaces.

Proposition 3.7. Mixed half-spaces are tropical hemispaces.

Proof. We already proved in Proposition 2.3 that mixed half-spaces are tropically

convex.

The complement of the mixed half-space defined by (2.1) consists of the vectors

x ∈ R
n
max such that

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn >G b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn . (3.10)

Let x,y ∈ R
n
max be in this complement, and λ, µ ∈ Rmax be such that λ ⊕ µ = 0.

Without loss of generality, assume that λ = 0. If µ = −∞, then λx ⊕ µy = x

trivially satisfies (3.10). Otherwise, i.e. if µ ∈ R and µ 6 0, then by Property (iv)

of Lemma 2.1 we have µ(a0 ⊕ a1y1 ⊕ · · · ⊕ anyn) >G µ(b0 ⊕ b1y1 ⊕ · · · ⊕ bnyn). It

readily follows that a0 ⊕ a1(λx1 ⊕ µy1) ⊕ · · · ⊕ an(λxn ⊕ µyn) >G b0 ⊕ b1(λx1 ⊕
µy1)⊕ · · · ⊕ bn(λxn⊕µyn). This shows that the complement of a mixed half-space

is tropically convex.
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Example 3.8. Consider the tropical hemispace H defined as the set of vectors

x ∈ R
4
max such that

(x3 6 x1 and x4 6 x1) or (x3 6 x2 and x4 < x2) .

We claim that H is not a mixed half-space. Its closure is the tropical half-space

defined by the inequality

x3 ⊕ x4 6 0x1 ⊕ 0x2 . (3.11)

Any mixed half-space whose closure is given by (3.11) is defined by a mixed inequal-

ity obtained from (3.11) by replacing some of the coefficients 0 on the right-hand

side by 0−. However, it can be easily verified that none of these mixed half-spaces

is equal to H.

Similarly, it can be checked that the complement of H, which is given by the set

of vectors x ∈ R
4
max such that

x1 < x3 ⊕ x4 and (x2 < x3 or x2 6 x4) ,

is not a mixed half-space either.

To prove the following proposition, we shall use the characterization of tropical

hemispaces in terms of (P,R)-decompositions established in [42].

Proposition 3.9. Tropical hemispaces are tropical polyhedra with mixed con-

straints.

Proof. In the first place, let us recall that the tropical conic hull of a subset G of

R
n
max is defined as

tcone(G) := {µ1x
1 ⊕ · · · ⊕ µmxm | m ∈ N, xi ∈ G, µi ∈ Rmax} .

Moreover, given two subsets G and G′ of Rnmax, their tropical Minkowski sum G⊕G′

is defined as {x⊕ x′ | x ∈ G, x′ ∈ G′}. In this proof, we denote by ui ∈ R
n
max, for

i ∈ [n], the vector defined by uij := 0 if j = i and uij := −∞ otherwise.

Let H1,H2 be two complementary hemispaces. Suppose that the vector all of

whose entries are equal to −∞ belongs to H1. Then, by [42, Theorem 4.22] there

exist a partition I, J of [n] and interval sets Λ1
ij , Λ

2
ij ⊂ Rmax for i ∈ I ∪ {0} and

j ∈ J such that

H1 = tconv({λuj | j ∈ J, λ ∈ Λ1
0j})⊕ tcone({ui ⊕ λuj | i ∈ I, j ∈ J, λ ∈ Λ1

ij})
H2 = tconv({λuj | j ∈ J, λ 6= +∞, λ ∈ Λ2

0j})
⊕ tcone({λui ⊕ uj | i ∈ I, j ∈ J, λ ∈ −Λ2

ij})

where each couple of intervals Λ1
ij , Λ

2
ij has one of the following forms:

(Λ1
ij , Λ

2
ij) =

{
([−∞, β], ]β,+∞]), β ∈ R ∪ {−∞}
([−∞, α[, [α,+∞]), α ∈ R ∪ {+∞}

(3.12)
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Thus, note that x ∈ H1 if, and only if, there exist λij and µij in Rmax for i ∈ I∪{0}
and j ∈ J such that

xi = ⊕j∈Jµij for i ∈ I

xj = ⊕i∈I∪{0}λijµij for j ∈ J

⊕j∈Jµ0j = 0

λij ∈ Λ1
ij for i ∈ I ∪ {0} and j ∈ J

Equivalently, x ∈ H1 if, and only if, there exist µij and νij in Rmax for i ∈ I ∪ {0}
and j ∈ J such that

xi = ⊕j∈Jµij for i ∈ I

xj = ⊕i∈I∪{0}νij for j ∈ J

⊕j∈Jµ0j = 0

νij 6G





βµij if Λ1
ij = [−∞, β], β ∈ Rmax

α−µij if Λ1
ij = [−∞, α[, α ∈ R

(+∞)µij if Λ1
ij = [−∞,+∞[

for i ∈ I ∪ {0} and j ∈ J

(3.13)

By Theorem 3.4, we conclude that H1 is a tropical polyhedron with mixed con-

straints, since it is defined by the system of mixed inequalities obtained by elimi-

nating µij and νij for i ∈ I ∪ {0} and j ∈ J in (3.13).

The same result can be obtained for H2 using a symmetric argument.

The following result is a straightforward consequence of Propositions 3.7 and 3.9.

Corollary 3.10. Tropical polyhedra with mixed constraints are precisely the inter-

sections of finitely many tropical hemispaces.

Remark 3.11. We have previously defined a closed tropical polyhedron as the

solution set of inequalities of the form (1.1), i.e. mixed inequalities with coefficients

in Rmax. We point out that this definition is consistent with the fact that such

polyhedra are precisely the tropical polyhedra with mixed constraints which are

closed. Indeed, by Theorem 3.6 a tropical polyhedron with mixed constraints P
can be written as a finite union of zones. If P is closed, then it is equal to the

union of the closure of these zones (i.e. closed zones, which can be generated by

finitely many points and rays by the tropical Minkowski-Weyl Theorem, see [30,

Theorem 2]). Since P is tropically convex, it is even equal to the tropical convex

hull of this union. It follows that it is generated by finitely many points and rays.

By the tropical Minkowski-Weyl Theorem, we deduce that it is the solution set of

finitely many inequalities of the form (1.1).
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4. Eliminating Redundant Mixed Inequalities

Like in the classical setting, Fourier-Motzkin elimination generates a system of

O(p2) inequalities from an input with p constraints. Consequently, the number

of inequalities may grow in O(p2
k

) after k successive applications. To avoid the

explosion of the size of the constraint system, superfluous inequalities must be

eliminated. With this aim, we present a decision procedure for implications of the

form:

Ax⊕ c 6G Bx⊕ d =⇒ ex⊕ g 6G fx⊕ h for all x ∈ R
n
max , (4.1)

where A ∈ R
p×n
max , B ∈ G

p×n, c ∈ R
p
max, d ∈ G

p, g ∈ Rmax, h ∈ G, and e and f are

n-dimensional row vectors with entries in Rmax and G respectively. We assume that

e and g are not identically null (in the tropical sense) and that h 6= +∞, because

otherwise deciding implication (4.1) is trivial.

4.1. Equivalence with mean payoff games

We first show that deciding an implication of the form (4.1) is equivalent to an

emptiness problem for tropical polyhedra with mixed constraints.

Proposition 4.1. Let Q be the tropical polyhedron with mixed constraints defined

by the system Ax⊕ c 6G Bx⊕ d and the following inequalities:




fixi 6G (0−e)x⊕ 0−g if fi ∈ Rmax

|fi|xi 6G ex⊕ g if fi ∈ R
−

xi 6G −∞ if fi = +∞
(4.2)

for all i ∈ [n],

{
h 6G (0−e)x⊕ 0−g if h ∈ Rmax

|h| 6G ex⊕ g if h ∈ R
−

(4.3)

and

0 6G ⊕ei 6=−∞(+∞)xi if g = −∞.

Then, implication (4.1) holds if, and only if, Q is empty.

Proof. Implication (4.1) is false if, and only if, there exists x ∈ R
n
max such that

Ax⊕c 6G Bx⊕d and ex⊕g >G fx⊕h. Observe that ex⊕g >G fx⊕h holds if, and

only if, ex⊕ g >G h and ex⊕ g >G fixi for all i ∈ [n]. This implies ex⊕ g > −∞,

i.e. 0 6G (+∞)(ex⊕g). The latter inequality is trivially satisfied if g 6= −∞. When

g = −∞, it is equivalent to 0 6G ⊕ei 6=−∞(+∞)xi. Finally, assuming ex⊕g > −∞,

note that ex ⊕ g >G fixi is equivalent to (4.2), and ex ⊕ g >G h is equivalent

to (4.3). This completes the proof.
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In light of Proposition 4.1, it is enough to develop a decision procedure to deter-

mine whether a tropical polyhedron with mixed constraints is empty. Our approach

relies on parametric mean payoff games, following the lines of [1,5].

Let R be a tropical polyhedron with mixed constraints defined by the system

Mx⊕ p 6G Nx⊕ q , (4.4)

where M ∈ R
r×n
max , N ∈ G

r×n, p ∈ R
r
max and q ∈ G

r. It is convenient to consider

two different cases, depending on whether +∞ coefficients appear or not in (4.4).

4.1.1. Polyhedra defined by systems with no +∞ coefficients.

In the first place, we restrict to the following case:

Assumption A. No coefficient is equal to +∞ on the right-hand side of mixed

inequalities.

In other words, in this subsection we assume N ∈ (G \ {+∞})r×n and q ∈
(G \ {+∞})r.

In this case, with each ε > 0 we associate a closed tropical polyhedron Rε, given

by the system Mx ⊕ p 6G N(ε)x ⊕ q(ε), and a mean payoff game involving two

players, “Max” and “Min”, playing on a weighted bipartite digraph Gε composed

of two kinds of nodes: row nodes i ∈ [r], and column nodes j ∈ [n + 1]. This

digraph contains an arc from row node i to column node j with weight Nij(ε) when

Nij 6= −∞, and an arc from j to i with weight −Mij when Mij 6= −∞. Similarly, it

contains an arc from row node i to column node n+1 with weight qi(ε) if qi 6= −∞,

and an arc from column node n+1 to row node i with weight −pi when pi 6= −∞.

Example 4.2. Figure 5 provides an illustration of the digraph Gε corresponding

to the tropical polyhedron with mixed constraints defined by the system:

1 : −3 6G x1

2 : 0 6G 1x1 ⊕ 0−x2

3 : −2 6G x2

4 : (−2)x1 6G 0− ⊕ (−1)x2

The principle of the game is the following. Players Min and Max alternatively

move a pawn over the nodes of Gε. When it is placed on a column node, Player

Min selects an outgoing arc, moves the pawn to the corresponding row node, and

pays to Player Max the weight of the selected arc. Once the pawn is on a row node,

Player Max similarly selects an outgoing arc, moves the pawn along it, and receives

from Player Min a payment equal to the weight of the selected arc.

In the sequel, we suppose that Players Max and Min always have at least one

possible action in each node:

Assumption B. Each node of Gε has at least one outgoing arc.
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1 2 3 4

1 2 3

0

3

1

−ε

0

0
2 −ε−12

Fig. 5. The digraph associated with a parametric mean payoff game (column and row nodes are
respectively represented by circles and squares).

This technical property can be assumed without loss of generality, up to adding

trivial inequalities or removing non-relevant unknowns in the system. We refer to

the discussion of Assumptions 2.1 and 2.2 in [1] for further details.

We consider infinite runs of the game, in which case the payoff is defined as the

mean of the payments of Player Min to Player Max. Player Min wants to minimize

this mean of payments while Player Max wants to maximize it. We denote by v(ε)

the value of the game associated with Gε when it starts at column node n + 1. It

is shown in [1, Theorem 3.5] that the tropical polyhedron Rε is non-empty if, and

only if, v(ε) > 0, i.e. column node n+1 is a winning initial node (for Player Max).

Then, the following result immediately follows from Lemma 2.2.

Proposition 4.3. The tropical polyhedron with mixed constraints R is non-empty

if, and only if, there exists ε > 0 such that v(ε) > 0.

Let M̃ (resp. Ñ) be the matrix of size r × (n + 1) obtained by concatenating

matrix M and column vector p (resp. N and q). The dynamic programming oper-

ator gε associated with the game over Gε is the function from R
n+1
max to itself defined

by

(gε(x))j := min
i∈[r]

M̃ij 6=−∞

(
−M̃ij + max

k∈[n+1]

Ñik 6=−∞

(
Ñik(ε) + xk

))
, (4.5)

for j ∈ [n+ 1]. This function satisfies the following properties:

(i) it is order preserving, i.e. x 6 y implies gε(x) 6 gε(y) for all x,y ∈ R
n+1
max,

(ii) it is additively homogeneous, i.e. gε(λx) = λgε(x) for all λ ∈ Rmax and

x ∈ R
n+1
max,

(iii) it preserves Rn+1, thanks to Assumption B above.

Such a function can be shown to be non-expansive for the sup-norm. Since it is also

piecewise affine, a theorem due to Kohlberg [43] implies the following vector χ(gε),
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referred to as the cycle-time vector of gε, exists and has finite entries:

χ(gε) := lim
h→+∞

ghε (0)/h .

Kohlberg’s theorem also implies the j-th entry of χ(gε), which we denote by χj(gε),

corresponds to the value of the game when it starts at column node j. We refer

to [1] for further details. Following the notation above, we consequently have

v(ε) = χn+1(gε)

for ε > 0.

The cycle-time vector χ(gε) can be expressed in terms of the cycle-time vectors

of dynamic programming operators associated with certain one-player games. More

precisely, a (positional) strategy for Player Min is a function σ : [n + 1] → [r]

associating with each column node j a row node σ(j) such that M̃σ(j)j 6= −∞. Such

a strategy defines a one-player game (played by Player Max) over the digraph Gσε
obtained from Gε by deleting the arcs connecting column nodes j with row nodes i

such that i 6= σ(j). Its dynamic programming operator gσε is given by:

(gσε (x))j = −M̃σ(j)j + max
k∈[n+1]

Ñσ(j)k 6=−∞

(
Ñσ(j)k(ε) + xk

)
,

for j ∈ [n + 1]. Observe that this operator is linear in the tropical semiring Rmax.

If we denote by Σ the (finite) set of strategies for Player Min, then as another

consequence of Kohlberg’s theorem, it can be shown that

χ(gε) = min
σ∈Σ

χ(gσε ) . (4.6)

A dual result based on strategies for Player Max can also be established.

Given σ ∈ Σ, the (n+1)-th entry of the vector χ(gσε ) can be similarly interpreted

as the value of the one-player game associated with the digraph Gσε when it starts

at column node n + 1. As the function gσε is linear in the tropical semiring, it

is known [18] that χn+1(g
σ
ε ) is equal to the maximal weight-to-length ratio of the

elementary circuits of Gσε reachable from column node n+1. A circuit in this digraph

is referred to as a sequence of column nodes j0, . . . , jl−1, jl = j0, where l > 1, and

so l is considered to be its length. Note that the reachability relation in Gσε does

not depend on ε. Let Cσ be the set of the elementary circuits of Gσ0 reachable from

column node n+ 1. By (4.6), we readily obtain

v(ε) = χn+1(gε) = min
σ∈Σ

max
(j0 ,...,jl−1,jl)∈Cσ

1

l

( ∑

06s6l−1

−M̃σ(js)js + Ñσ(js)js+1
(ε)

)
(4.7)

for ε > 0. We deduce that:

Lemma 4.4. The function ε 7→ v(ε) is non-increasing and piecewise affine.

Proof. The fact that ε 7→ v(ε) is piecewise affine straightforwardly follows

from (4.7).
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We next prove by induction on h that the function ε 7→ (ghε (x))j is non-increasing

for any x ∈ R
n and j ∈ [n]. In the first place, observe that ε appears only negatively

in the coefficients Ñik(ε) of (4.5), so the function ε 7→ (gε(x))j is non-increasing.

Now consider h ∈ N and ε 6 ε′. By induction, we know that ghε′(x) 6 g
h
ε (x) for any

x ∈ R
n. Since the function x 7→ gε(x) is order preserving, we have gε(g

h
ε′(x)) 6

gh+1
ε (x). Besides, gε(g

h
ε′(x)) > gε′(g

h
ε′(x))) = gh+1

ε′ (x). It follows that (gh+1
ε′ (x))j 6

(gh+1
ε (x))j for all j ∈ [n].

We conclude that ε 7→ v(ε) is non-increasing as the limit of non-increasing

functions.

If we assume that the numerical parts of the non-zero entries of M , N , p and

q are integers (this assumption is obviously satisfied in the application to timed

automata in Section 5), the criterion of Proposition 4.3 can be determined by eval-

uating v(ε) at ε = 0 and at a small positive value.

Proposition 4.5. The tropical polyhedron with mixed constraints R is non-empty

if, and only if, v(0) > 1/(n+ 1) or v(1/(n+ 1)2) > 0.

Proof. Each linear piece of the function ε 7→ v(ε) corresponds to an affine map

given by the weight-to-length ratio of an elementary circuit of Gσε for some strategy

σ for Player Min. In consequence, this affine map is of the form λ−kε
l , where:

(i) l is the length of the circuit (l 6 n+ 1),

(ii) λ is the sum of 2l integers given by the modulus, or their opposite, of some

entries of the matrices M and N and of the vectors p and q,

(iii) k is the number of occurrences of −ε in the weight Nij(ε) or qi(ε) of some

arcs of the circuit (so k 6 l).

Therefore, any non-differentiability point ε̃ of the map ε 7→ v(ε) satisfies (λ−kε̃)/l =
(λ′ − k′ε̃)/l′, where l′, λ′, and k′ have the same properties as l, λ, and k above

respectively. It follows that any positive non-differentiability point (if any) is of the

form:

ε̃ =
λ′l − λl′

k′l − l′k
.

Assume, without loss of generality, that k/l < k′/l′. Since ε̃ > 0, the numerator

λ′l − λl′ is a positive integer. This implies that ε̃ > ε∗, where ε∗ = 1/(n+ 1)2.

Consequently, the function ε 7→ v(ε) is affine on the interval [0, ǫ∗]. Since it is

non-increasing by Lemma 4.4, we have v(ε) < 0 for all ε > 0 if, and only if, v(0) 6 0

(by continuity) and v(ε∗) < 0. The application of Proposition 4.3 shows that R is

non-empty if, and only if, v(0) > 0 or v(ε∗) > 0. Since v(0) is equal to the weight-

to-length ratio of an elementary circuit of Gσ0 , for some σ ∈ Σ, it can be written

as λ′′/l′′, where λ′′ and l′′ have the same properties as λ and l above. It follows

that v(0) is positive if, and only if, it is greater than or equal to 1/(n + 1). This

completes the proof.
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Let G′
0 be the digraph obtained from G0 by subtracting 1/(n+1) from the weight

of each arc connecting a row node with a column node. Then, v(0)−(1/(n+1)) is the

value of the mean payoff game associated with G′
0 when it starts from column node

n+ 1. It follows that the condition of Proposition 4.5 holds if, and only if, column

node n + 1 is winning (for Player Max) in one of the two games associated with

G′
0 and G1/(n+1)2 . Let G⋆ be the digraph obtained as the disjoint union of G′

0 and

G1/(n+1)2 , adding a special row node 0 and two arcs, with zero weight, connecting

it with column nodes n + 1 of G′
0 and G1/(n+1)2 . The criterion of Proposition 4.5

can be restated as follows:

Proposition 4.6. The tropical polyhedron with mixed constraints R is non-empty

if, and only if, row node 0 is a winning initial node (for Player Max) in the mean

payoff game associated with G⋆.
As an immediate consequence, we obtain the following complexity result, in

which the equivalence (ii) ⇔ (iii) extends Theorem 3.2 of [1], whereas the equiva-

lence (i)⇔ (iii) extends Theorem 18 of [5] (only non-strict constraints are considered

there).

Theorem 4.7. Under Assumption A, the following problems are (Karp)

polynomial-time equivalent:

(i) deciding whether a mixed tropical affine inequality is implied by a system of

such inequalities;

(ii) deciding whether a tropical polyhedron with mixed constraints is empty;

(iii) determining whether a given initial node in a mean payoff game is winning.

Problem (iii) is known to be in NP ∩ coNP, see [50]. We deduce from Theo-

rem 4.7 that Problems (i) and (ii) both belong to the same complexity class (NP

and coNP are closed under Karp reductions). Whether Problem (iii) can be solved

in polynomial time has been an open question since the first combinatorial algo-

rithm [36]. Value iteration leads to a pseudo-polynomial algorithm [50]. Several

algorithms rely on the idea of strategy iteration [38], applying various strategy im-

provement rules, see in particular [11,18,25,41]. A remarkable example has recently

been constructed [26] in which some common rules lead to an exponential number

of iterations. However, many algorithms, including the one of [18,25], are known to

have experimentally a small average case number of iterations (growing sublinearly

with the dimension), see the benchmarks in [17].

The support of a tropically convex set C ⊂ R
n
max is defined as the set supp(C) of

indices j ∈ [n] such that there exists x ∈ C verifying xj 6= −∞. Note that supp(C)
is the greatest subset J ⊂ [n] such that J = {j ∈ [n] | xj 6= −∞} for a certain

x ∈ C.
Mean payoff games can be used to compute the support of the tropical polyhe-

dron with mixed constraints R. Indeed, j belongs to the support of R if, and only

if, j ∈ supp(Rε) for some ε > 0. By [1, Theorem 3.2], the fact that j ∈ supp(Rε) is

equivalent to χj(gε) > 0 and χn+1(gε) > 0, i.e. to the fact that column nodes j and
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n+1 are both winning initial nodes for Player Max in the game associated with Gε.
Using the same arguments as above, it can be shown that there exists ε > 0 such

that χj(gε) > 0 if, and only if, χj(g0) > 1/(n+ 1) or χj(g1/(n+1)2) > 0.

In consequence, the support of R can be computed by determining the winning

initial nodes in the games associated with G′
0 and G1/(n+1)2 . We point out that some

policy iteration based algorithms, such as the one of [18,25], directly provide the

cycle-time vector χ(g) of the dynamic programming operator g of a mean payoff

game (and so all the winning initial nodes).

Remark 4.8. Positional strategies for Player Max are defined symmetrically to

the ones for Player Min, i.e. as functions τ from row nodes to column nodes, such

that for each row node i there is an arc in Gε connecting it with column node τ(i).

Such a strategy τ induces a one-player game (now played by Player Min) whose

associated digraph Gτε is obtained by removing from Gε the arcs connecting row

nodes i with columns nodes j such that j 6= τ(i).

Positional strategies can be used as certificates to ensure that a mean payoff

game is winning for one of the players, and these certificates can be checked in

polynomial time. For instance, given a column node j ∈ [n + 1], a strategy σ for

Player Min satisfying χj(g
σ
ε ) 6 0 ensures that χj(gε) 6 0 by (4.6). In other words,

column node j is a winning initial node for Player Min in the game associated with

Gε. Since as explained above χj(g
σ
ε ) is given by the maximal weight-to-length ratio

of the circuits reachable from column node j in Gσε , it can be checked that χj(g
σ
ε )

is less than or equal to 0 in polynomial time using Karp’s algorithm.

4.1.2. Polyhedra defined by systems with +∞ coefficients.

We now deal with the case in which Assumption A is not satisfied. Suppose that

the tropical polyhedron with mixed constraints R is defined by (4.4), where now

N ∈ G
r×n. Observe that we can still assume that q ∈ (G \ {+∞})r, because any

inequality in which qi is equal to +∞ is trivial.

Given I ⊂ [r], we denote by RI the polyhedron defined by the inequalities

Mi1x1 ⊕ · · · ⊕Minxn ⊕ pi 6G (⊕Nij 6=+∞Nijxj)⊕ qi for i ∈ I.

The algorithm in Figure 6 determines whether R is empty by evaluating the empti-

ness of polyhedra of the form RI . To prove the correctness of this algorithm, we

shall use the following lemma.

Lemma 4.9. At each iteration of the loop at Line 4, we have R ⊂ RI∪I′ .

Proof. We prove the lemma by induction on the number of iterations of the loop.

Before the first iteration, we have J = [n] and so I ∪ I ′ = {i ∈ [r] | Nij 6=
+∞ for all j ∈ [n]}. Thus, the polyhedron RI∪I′ is defined by a subsystem of

Mx⊕ p 6G Nx⊕ q, and the inclusion R ⊂ RI∪I′ is immediate.
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Input: polyhedron with mixed constraints R defined by the system Mx⊕ p 6G Nx⊕ q

Output: true if R is empty, false otherwise
1: J := [n]
2: I := ∅
3: I ′ := {i ∈ [r] | Nij 6= +∞ for all j ∈ J}
4: while I ′ 6= ∅ do

5: I := I ∪ I ′

6: if RI is empty then

7: return true

8: else

9: J := supp(RI)
10: I ′ := {i 6∈ I | Nij 6= +∞ for all j ∈ J}
11: end if

12: end while

13: return false

Fig. 6. Determining whether a polyhedron with mixed constraints is empty in the general case.

Now suppose that at iteration k we have R ⊂ RIk∪I′k
, and let x ∈ R. If the loop

is iterated again, then the sets J , I and I ′ are respectively given by

Jk+1 = supp(RIk∪I′k
)

Ik+1 = Ik ∪ I ′k
I ′k+1 = {i 6∈ Ik+1 | Nij 6= +∞ for all j ∈ Jk+1}

In consequence, we have supp(R) ⊂ Jk+1, and so xj = −∞ for j ∈ [n]\Jk+1. Then,

we deduce that x satisfies the inequality

Mi1x1 ⊕ · · · ⊕Minxn ⊕ pi 6G (⊕j∈Jk+1
Nijxj)⊕ qi 6G (⊕Nij 6=+∞Nijxj)⊕ qi

for any i ∈ I ′k+1. Thus, we have x ∈ RI′
k+1

. Since x ∈ R ⊂ RIk∪I′k
= RIk+1

, we

readily obtain x ∈ RIk+1∪I′k+1
, which completes the proof.

Proposition 4.10. The algorithm of Figure 6 is correct, and the number of itera-

tions of the loop at Line 4 is bounded by min(n, r).

Proof. Suppose that the algorithm returns true. Then RI = ∅, and by Lemma 4.9

we have R = ∅.
Now assume that false is returned. Let x ∈ RI be such that {j ∈ [n] | xj 6=

−∞} = supp(RI) = J . We claim that x ∈ R. Indeed, since I ′ = ∅ (which is the

condition to reach Line 13 and return false), we know that for all i 6∈ I there exists

j ∈ J such that Nij = +∞. As xj 6= −∞ for j ∈ J , this means that the i-th

inequality of the system Mx ⊕ p 6G Nx ⊕ q is satisfied (the right-hand side is

equal to +∞). As x also satisfies the inequalities of the system indexed by i ∈ I,

the claim is proved.

Finally, observe that at each iteration of the loop, the set I is strictly increased

at Line 5. Similarly, if at Line 10 the set I ′ is not empty, then necessarily the set J



28 Xavier Allamigeon, Uli Fahrenberg, Stéphane Gaubert, Ricardo D. Katz, Axel Legay

has been strictly decreased at Line 9. We deduce that the number of iterations is

indeed bounded by min(n, r).

The idea behind the algorithm of Figure 6 can be used to build certificates.

Proposition 4.11. The problem of determining whether a polyhedron with mixed

constraints is empty belongs to NP ∩ coNP.

Proof. A certificate that R 6= ∅ can be provided by two sets J ⊂ [n] and I ⊂ [r]

such that {i 6∈ I | Nij 6= +∞ for all j ∈ J} = ∅, together with positional strategies

ensuring that RI 6= ∅ and supp(RI) = J (see Remark 4.8 and the discussion on

supports which precedes it). The first property of the sets I and J can be checked

in polynomial time, the same as the properties RI 6= ∅ and supp(RI) = J thanks to

the positional strategies for the players. As shown in the proof of Proposition 4.10,

this ensures that R is not empty. In consequence, the problem is in coNP.

To certify that R = ∅, we use a decreasing sequence J1 = [n], J2, . . . , Jk of

subsets of [n] and an increasing sequence I1, . . . , Ik of subsets of [r] such that

Il = {i ∈ [r] | Nij 6= +∞ for all j ∈ Jl} ,

for all l ∈ [k], together with positional strategies ensuring that RIl 6= ∅ and Jl+1 =

supp(RIl) for l ∈ [k − 1], and that RIk = ∅. Since Il+1 = Il ∪ {i 6∈ Il | Nij 6=
+∞ for all j ∈ Jl+1} for l ∈ [k − 1], it can be shown by induction on l ∈ [k] that

R ⊂ RIl , using the same technique as in the proof of Lemma 4.9. Thus, these

certificates allow to prove that R = ∅, and they can be checked in polynomial time.

This completes the proof.

4.2. Polynomial-time weak redundancy elimination

Since no polynomial-time algorithm is known to evaluate the criteria given in Sec-

tion 4.1, we also develop a sufficient criterion for which a potentially faster algorithm

exists. It consists in checking whether ex ⊕ g 6G fx ⊕ h is a linear combination

of the inequalities in Ax ⊕ c 6G Bx ⊕ d. Note that in general, this condition is

not necessary for (4.1) to hold (the tropical analogue of Farkas’ lemma given in [5]

shows that taking tropical linear combinations does not suffice to deduce all valid

inequalities).

Now we see the constraint ex ⊕ g 6G fx ⊕ h as the (2n + 2)-dimensional row

vector v := (e, g,f , h). Similarly, we introduce the matrix R ∈ G
p×(2n+2), whose

rows are given by the vectors (Ai, ci, Bi,di), for i ∈ [p], where Ai and Bi denote the

i-th rows of A and B respectively. We are reduced to the problem of determining

whether there exists a p-dimensional row vector w (with entries in G) such that

v = wR. Without loss of generality, we assume that no row of R is identically zero.

We propose a method based on residuation theory (see e.g. [33]). Given x ∈ G,

the self-map z 7→ zx on G can be shown to be residuated, meaning that for each
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y ∈ G there exists a maximal element of the set {z ∈ G | zx 6G y}, denoted by y/x.

Indeed, the later element is given by:

y 7→ y/x :=

{
(|y| − |x|)− if x ∈ R, y ∈ R

− ,

|y| − |x| otherwise,

where it is used the conventions α− (−∞) = +∞ for α ∈ Rmax, α− (+∞) = −∞
for α ∈ Rmax, and (+∞)− (+∞) = +∞.

Proposition 4.12. Define the p-dimensional row vector w∗ by

w∗
i := min

j∈[2n+2]
(vj/Rij)

for i ∈ [p]. Then, the inequality ex ⊕ g 6G fx ⊕ h is a linear combination of the

inequalities in the system Ax⊕ c 6G Bx⊕ d if, and only if, v = w∗R.

The principle of Proposition 4.12 is that w∗ can be shown to be the greatest

solution of wR 6G v. Thus, there exists a solution to v = wR if, and only if, the

equality is satisfied for w = w∗. It follows that the criterion of Proposition 4.12 can

be checked efficiently, in time O(n× p).

4.3. Complexity of successive Fourier-Motzkin eliminations

As discussed in the beginning of Section 4, propagating redundant inequalities may

produce O(p2
k

) constraints after k calls to Fourier-Motzkin elimination method

(recall that p refers to the number of constraints defining the initial polyhedron).

We claim that, in the case of closed tropical polyhedra, the number of constraints

remains simply exponential at every Fourier-Motzkin elimination when the weak

redundancy criterion is used. To see this, let P0 = P, P1, . . . , Pk be the closed

tropical polyhedra arising during a sequence of k calls to Fourier-Motzkin elimina-

tion followed by the weak inequality redundancy elimination of Proposition 4.12.

Proposition 4.13. There exists a constant K (independent from k, n, and p) such

that for all l ∈ [k], the number of inequalities describing Pl obtained using the weak

inequality redundancy elimination is bounded by

K(n− l + 1)p⌊n/2⌋⌊(n−l)/2⌋ . (4.8)

Proof. By the tropical analogue of McMullen’s upper bound theorem [4], we know

that the number q of extreme generators (points and rays) of P is bounded by

U(p+n+1, n), where U(p, n) is the number of facets of (classical) cyclic polytopes

with p extreme points in dimension n. In particular, q is bounded by p⌊n/2⌋ when

n and p are sufficiently large (see Appendix Appendix A).

It is straightforward to see that the extreme generators of every polyhedron

Pl (l ∈ [k]) arise as the projection of some of the extreme generators of P. In

consequence, the number of extreme generators of each Pl is bounded by q.
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Dually, the set of inequalities satisfied by all the points of a tropical polyhedronQ
forms a tropical polyhedral cone called the polar cone of Q, see [5]. As proved in [4],

if Q is generated by q points and rays in dimension n−l, the number of (non-trivial)

extreme rays of its polar is bounded by (n−l+1)(U(q+n−l+1, n−l)−n+l+2). In

particular, this also bounds the size of any description of Q by linearly independent

inequalities. It can be shown that there exists a constant K ′ > 0 such that the

latter quantity is bounded by K ′(n− l+1)q⌊(n−l)/2⌋ for all values of q and n− l (see
Appendix Appendix A). It follows that the representation by inequalities obtained

after the application of the weak redundancy criterion is bounded by a quantity of

the form (4.8).

As a consequence, after the (l + 1)-th call to Fourier-Moztkin elimination, the

number of inequalities (defining Pl+1) is bounded by the square of (4.8), and the

weak redundancy criterion can be applied in time O((n − l)3pn(n−l)/2). It follows

that the complexity of k successive calls to tropical Fourier-Motzkin elimination

using the weak redundancy criterion can be bounded by

O(kn3pn
2/2) .

Therefore, the time complexity is only exponential in the worst case.

Since the criterion provided by Theorem 4.7 may eliminate further inequalities,

the number of inequalities describing Pl obtained using this criterion instead of

the weak one is also bounded by (4.8). However, this has to be balanced with the

potentially greater cost of the associated algorithm for solving mean payoff games.

5. Tropical Forward Exploration for Timed Automata

Timed automata is one of the formalisms used for modelling and verification of real-

time systems. As an application of the methods developed in this paper, we show

how the forward exploration algorithm for timed automata [8] can be implemented

using tropical polyhedra with mixed constraints as symbolic states. This algorithm

is used to solve the reachability problem, to which most verification problems for

timed automata can be reduced, see [37,7].

We first recall some notions concerning timed automata, and illustrate with an

example the drawbacks (mentioned in the introduction) of using zones or closed

tropical polyhedra as symbolic states. Note that zones are also used as symbolic

states in the verification of other real-time models such as e.g. timed Petri nets [12,

45], hence the corresponding algorithms can potentially benefit from our results too.

We consider a timed automaton over the set of clocks C = {x1, . . . ,xn}. It is

represented by a directed graph whose nodes correspond to locations (l0, l1, . . . ).

We denote by l0 the initial location and by L the set of locations. An edge from

location l to l′ is denoted by l
φ,r−→ l′, where φ represents a clock constraint and

r a set of reset operations. More precisely, φ is a (possibly empty) conjunction of

atomic clock constraints of the form xi ⊲⊳ k and xi ⊲⊳ k + xj , where xi,xj ∈ C,
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l0

l1 l2

l3

lf

x1 := 0 x2 := 0

x2 > 1 x1 > 1

x1 6 1 ∧ x2 6 1

l0 :

l1 : l2 :

l3 : = ∪

lf :

Fig. 7. Left: Timed automaton. Right: Symbolic states accumulated during forward exploration,
shown after delays (black borders are included in the depicted gray regions).

k ∈ Z, and ⊲⊳ ∈ {<,6,=,>, >}. Besides, r is defined as a partial function from C

to N, meaning that xi is mapped to k when the clock xi is reset to the value k.

The set of edges is denoted by E. Each location l can be additionally labeled by a

clock constraint θ(l). Then, the states of the automaton are of the form (l, v), where

l ∈ L and v : C → R≥0 is such that (v(x1), . . . , v(xn)) satisfies the constraint θ(l).

The evolution of the system (i.e. the semantics of the automaton) is expressed as a

transition relation on these states, denoted by  . Transitions can be of two kinds:

Delays: where clock values increase synchronously at a given location. More pre-

cisely, (l, v)  (l, v′) if there exists t > 0 such that v′(xi) := v(xi) + t for all

i ∈ [n], and (v(x1) + t′, . . . , v(xn) + t′) satisfies θ(l) for all t′ ∈ [0, t].

Switches: which are governed by the edges l
φ,r−→ l′. In this case, we have (l, v)  

(l′, v′) if (v(x1), . . . , v(xn)) satisfies the constraints φ, and v′(xi) := r(xi) if r is

defined on xi, v
′(xi) := v(xi) otherwise.

The basic problem in the verification of timed automata is (untimed) reachabil-

ity: is a final location lf of the automaton reachable? More precisely, the reachability

problem consists in determining whether there exist clock values vf : C → R≥0 and

a finite path (l0, v0)  
∗ (lf , vf ) of transitions in the automata, where v0 is the

function which maps every xi to 0.

Example 5.1. Consider the timed-automaton fragment depicted in Figure 7, which

involves two clocks x1 and x2. Its edges are labeled by the reset operations (for

instance, x1 := 0) and/or the constraints on clocks (for instance, x2 > 1). As

mentioned above, the initial location is l0, and the two clocks are initialized to 0.

The diagrams on the right-hand side of Figure 7 depict the symbolic states of

this automaton, i.e. the sets of states (clock values) which can arise at each location.

For instance, at location l0 we recover the initial state x1 = x2 = 0, and all the

other states x1 = x2 = t > 0 arise as time goes by while staying at the same
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location. Similarly, the states at location l1 are obtained from the ones at location

l0 by resetting clock x1, i.e. setting x1 = 0, while x2 > 0 is not affected. Then,

as time goes by, we get all the states satisfying 0 6 x1 6 x2. Note that the final

location lf is not reachable in this example.

The symbolic states at locations l0, l1 and l2 can be represented exactly by zones,

but the one at location l3 cannot. Hence, the symbolic state at l3 has to be split,

potentially doubling the number of symbolic states to be visited after. If several such

timed-automaton fragments are concatenated, it is easy to see that this splitting of

symbolic states may lead to a situation where an exponential number of zones have

to be used to determine that the final location is not reachable. Alternatively, the

symbolic state at location l3 could be over-approximated by a single zone , but

in this case we cannot certify anymore that the final location lf is not reachable. On

the other hand, the use of closed tropical polyhedra to over-approximate the union

of the sets of states arising from l1 and l2 provides the closure of this union,

which contains the point (1, 1). Then, the final location lf becomes reachable, while

it should not if strict constraints were correctly handled.

The reachability problem can be solved using a symbolic forward exploration

algorithm, first given in [37], which is still used in state-of-the-art tools. This al-

gorithm, shown in Figure 8, is usually implemented using zones (or DBMs). The

algorithm explores sets of reachable states, representing them as symbolic states

using zones, and performing symbolic delay and switch operations on them. We

do not discuss this algorithm further, but we point out that any class of symbolic

states can be used, provided that it supports the operations is empty, is included,

intersect, reset, and delay used in the above algorithm. We now detail the defi-

nition of these operations, and show how to implement them over tropical polyhedra

with mixed constraints.

The operation is empty(P) determines whether the polyhedron P is empty. It

is implemented using the methods described in Section 4.1, i.e. through a reduc-

tion to mean payoff games. The operation is included(P1,P2) checks if P1 ⊂ P2.

This can be performed using the procedure for deciding implications of Section 4.1,

by determining whether the system of inequalities defining P1 implies each defin-

ing inequality of the polyhedron P2. The operation intersectψ(P) computes the

intersection of P with the constraints in ψ. It is simply defined by appending the in-

equalities in ψ to the system defining P, where any strict constraint in ψ is encoded

as an inequality over G using elements of the form λ−. The operation resetxi:=k(P)

consists in computing the polyhedron

{y ∈ R
n
max | x ∈ P, yj = xj if j 6= i, yi = k} .

It can be obtained by eliminating xi in the system of constraints defining P using

Fourier-Motzkin elimination, and then intersecting the resulting polyhedron with

the constraint xi = k (encoded as two inequalities xi 6G k and k 6G xi). Finally,

the operation delay(P) consists in converting the polyhedron P into the set {λx |
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Input: timed automaton (L, l0, C, θ, E), lf ∈ L

Output: true if ∃vf : C → R≥0 : (l0, v0) 
∗ (lf , vf ), false otherwise

1: Waiting := {(l0, intersectθ(l0)(delay({v0})))}; Passed := ∅
2: while Waiting 6= ∅ do

3: Choose and remove (l, V ) from Waiting

4: if l = lf then

5: return true

6: end if

7: if (not is included(V, V ′)) for all (l, V ′) ∈ Passed then

8: Passed := Passed ∪ {(l, V )}

9: for all l
φ,r
−→ l′ do

10: V ′ := intersectθ(l′)(delay(resetr(intersectφ(V ))

11: if not is empty(V ′) then
12: Waiting := Waiting ∪ {(l′, V ′)}
13: end if

14: end for

15: end if

16: end while

17: return false

Fig. 8. The symbolic forward reachability algorithm for timed automata.

x ∈ P, λ > 0} (recall that λx corresponds to the vector with entries λ + xi).

Assuming that P is given by the system Ax⊕ c 6G Bx⊕ d, we first let Q be the

polyhedron defined by Ax⊕ λc 6G Bx⊕ λd and 0 6G λ, and then apply Fourier-

Motzkin elimination on λ to get delay(P). To prove this algorithm is correct,

observe that:

delay(P) = {λx ∈ R
n
max | 0 6G λ, Ax⊕ c 6G Bx⊕ d}

= {x ∈ R
n
max | 0 6G λ, A(λ

−1x)⊕ c 6G B(λ−1x)⊕ d}
= {x ∈ R

n
max | 0 6G λ, Ax⊕ λc 6G Bx⊕ λd} .

To combat state space explosion, symbolic states are also equipped with an

over-approximating union operator. In this way, symbolic states which are reached

through different paths may be recombined, leading to a significant reduction in the

number of symbolic states the forward exploration algorithm has to consider. Given

two polyhedra with mixed constraints P,P ′ ⊂ R
n
max, the over-approximation union

operator over approx(P,P ′) is defined as the tropical convex hull of P ∪ P ′. Note

that given systems of mixed inequalities describing P and P ′, a system describing

over approx(P,P ′) can be computed by means of Proposition 3.5. As this involves

2n+2 calls to tropical Fourier-Motzkin elimination, it is crucial to implement some

redundancy elimination.

Observe that the error introduced using the operation over approx over poly-

hedra with mixed constraints is smaller than using zone-based over-approximation.

Indeed, zones are tropically convex, and thus any zone containing P ∪ P ′ also con-

tains the tropical convex hull of P ∪ P ′. In the example of Figure 7, the over-
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approximating union by polyhedra with mixed constraints of the two sets of states

arising at l3 is exact, and given by the polyhedron defined by x1,x2 >G 0 and

1 6G 0−x1 ⊕ 0−x2, or equivalently, 1 < max(x1,x2).

We have implemented a prototype of the forward exploration algorithm based on

tropical polyhedra with mixed constraints. The algorithms of Section 3 and the oper-

ations described above have been implemented within the OCaml library TPLib [2],

whose purpose is to provide algorithms for tropical polyhedra. It relies on the li-

brary MPGLib [6], which implements the algorithm in [25] for solving mean payoff

games by policy iteration. Our prototype successfully checks that location lf is not

reachable in the timed automaton of Figure 7. In future works, we plan to apply

our method on more representative examples taken from real case studies, and to

compare it in terms of performance/precision with state-of-the-art tools such as

Uppaal [9].
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Appendix A. Additional Details for the Proof of Proposition 4.13

We first recall that:

U(p, n) =

{(
p−⌊n/2⌋
⌊n/2⌋

)
+
(
p−⌊n/2⌋−1
⌊n/2⌋−1

)
for n even,

2
(
p−⌊n/2⌋−1

⌊n/2⌋

)
for n odd.

Thus, if n is even,

U(p+ n+ 1, n) =

(
p+ 1 + ⌊n/2⌋

⌊n/2⌋

)
+

(
p+ ⌊n/2⌋
⌊n/2⌋ − 1

)
,
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and if n is odd,

U(p+ n+ 1, n) = 2

(
p+ 1 + ⌊n/2⌋

⌊n/2⌋

)
.

In both cases, it can be easily checked that

U(p+ n+ 1, n) 6 2

(
p+ 1 + ⌊n/2⌋

⌊n/2⌋

)
.

We claim that for p and n sufficiently large,

U(p+ n+ 1, n) 6 p⌊n/2⌋ . (A.1)

Let m := ⌊n/2⌋. By Stirling approximation formulas, we know that for all positive

integer h,
√
2πh(h/e)h 6 h! 6 e

√
h(h/e)h

As a result,

(
p+ 1 +m

m

)
6

e

2π

√
p+ 1 +m

(p+ 1)m

(
1 +

p+ 1

m

)m(
1 +

m

p+ 1

)p+1

6
1

2

(
1 +

p+ 1

m

)m(
1 +

m

p+ 1

)p+1

when p > 1 and m > 2. We next show that
(
1+ p+1

m

)m(
1+ m

p+1

)p+1
is bounded by

pm by considering their logarithm:

m ln
(
1 +

p+ 1

m

)
+ (p+ 1) ln

(
1 +

m

p+ 1

)
6

m ln
(
1 +

p+ 1

m

)
+m = m ln

(e(p+ 1 +m)

m

)
6 m ln p

as soon as e(p+m+ 1) 6 pm. The latter condition is satisfied if p > 6 and m > 6.

This shows that (A.1) holds when p > 6 and n > 12.

Using the same arguments, we obtain that:

U(q + n− l + 1, n− l) 6 q⌊(n−l)/2⌋

as soon as q > 6 and n − l > 12. In any case, we can find a constant K ′ > 0 such

that for all values of q and n− l,

U(q + n− l + 1, n− l) 6 K ′q⌊(n−l)/2⌋

Assuming that q 6 U(p+ n+ 1, n), it follows that for a certain constant K ′′ > 0,

(n− l + 1)(U(q + n− l + 1, n− l)− n+ l + 2) 6 K ′′(n− l + 1)p⌊n/2⌋⌊(n−l)/2⌋

if p > 6 and n > 12. This allows to show that there exists K > 0 such that for all

p, n, and l ∈ [n− 1],

(n− l + 1)(U(q + n− l + 1, n− l)− n+ l + 2) 6 K(n− l + 1)p⌊n/2⌋⌊(n−l)/2⌋ .
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