4,744 research outputs found

    Creation of a Computational Pipeline to Extract Genes from Quantitative Trait Loci for Diabetes and Obesity

    Get PDF
    Type 2 Diabetes is a disease of relative insulin deficiency resulting from a combination of insulin resistance and decreased beta-cell function. Over the past several years, over 60 genes have been identified for Type 2 Diabetes in human genome-wide association studies (GWAS). It is important to understand the genetics involved with Type 2 diabetes in order to improve treatment and understand underlying molecular mechanisms. Heterogeneous stock (HS) rats are derived from 8 inbred founder strains and are powerful tools for genetic studies because they provide a basis for high resolution mapping of quantitative trait loci (QTL) in a relatively short time period. By measuring diabetic traits in 1090 HS male rats and genotyping 10K single nucleotide polymorphisms (SNPs) within these rats, Dr. Solberg Woods\u27 lab conducted genetic analysis to identify 85 QTL for diabetes and adiposity traits. To identify candidate genes within these QTL, we propose creation of a bioinformatics pipeline that combines general gene information, information from the rat genome database including disease portals and Variant Visualizer as well as the Attie Diabetes Expression Database. My project has involved writing code to pull data from these databases to determine which genes within each QTL are potential candidate genes. I have scripted the code to analyze genes within a single QTL or multiple QTL simultaneously. The resulting output is a single excel file for each QTL, listing all genes that are found in the disease portals, all genes that have a highly conserved non-synonymous variant change and all genes that are differentially expressed in the Attie database. The program also highlights genes that are found in all three categories. After creating the pipeline, I ran the program for 85 QTL identified in my laboratory. The program identified 63 high priority candidate genes for future follow-up. This work has helped my laboratory rapidly identify candidate genes for type 2 diabetes and obesity. In the future, the code can be modified to identify candidate genes within QTL for any complex trait

    Widespread parainflammation in human cancer.

    Get PDF
    BackgroundChronic inflammation has been recognized as one of the hallmarks of cancer. We recently showed that parainflammation, a unique variant of inflammation between homeostasis and chronic inflammation, strongly promotes mouse gut tumorigenesis upon p53 loss. Here we explore the prevalence of parainflammation in human cancer and determine its relationship to certain molecular and clinical parameters affecting treatment and prognosis.ResultsWe generated a transcriptome signature to identify parainflammation in many primary human tumors and carcinoma cell lines as distinct from their normal tissue counterparts and the tumor microenvironment and show that parainflammation-positive tumors are enriched for p53 mutations and associated with poor prognosis. Non-steroidal anti-inflammatory drug (NSAID) treatment suppresses parainflammation in both murine and human cancers, possibly explaining a protective effect of NSAIDs against cancer.ConclusionsWe conclude that parainflammation, a low-grade form of inflammation, is widely prevalent in human cancer, particularly in cancer types commonly harboring p53 mutations. Our data suggest that parainflammation may be a driver for p53 mutagenesis and a guide for cancer prevention by NSAID treatment

    Community standards for open cell migration data

    Get PDF
    Cell migration research has become a high-content field. However, the quantitative information encapsulated in these complex and high-dimensional datasets is not fully exploited owing to the diversity of experimental protocols and non-standardized output formats. In addition, typically the datasets are not open for reuse. Making the data open and Findable, Accessible, Interoperable, and Reusable (FAIR) will enable meta-analysis, data integration, and data mining. Standardized data formats and controlled vocabularies are essential for building a suitable infrastructure for that purpose but are not available in the cell migration domain. We here present standardization efforts by the Cell Migration Standardisation Organisation (CMSO), an open community-driven organization to facilitate the development of standards for cell migration data. This work will foster the development of improved algorithms and tools and enable secondary analysis of public datasets, ultimately unlocking new knowledge of the complex biological process of cell migration

    1st INCF Workshop on Needs for Training in Neuroinformatics

    Get PDF
    The INCF workshop on Needs for Training in Neuroinformatics was organized by the INCF National Node of the UK. The scope of the workshop was to provide as overview of the current state of neuroinformatics training and recommendations for future provision of training. The report presents a summary of the workshop discussions and recommendations to the INCF

    ImmPort, toward repurposing of open access immunological assay data for translational and clinical research

    Get PDF
    Immunology researchers are beginning to explore the possibilities of reproducibility, reuse and secondary analyses of immunology data. Open-access datasets are being applied in the validation of the methods used in the original studies, leveraging studies for meta-analysis, or generating new hypotheses. To promote these goals, the ImmPort data repository was created for the broader research community to explore the wide spectrum of clinical and basic research data and associated findings. The ImmPort ecosystem consists of four components–Private Data, Shared Data, Data Analysis, and Resources—for data archiving, dissemination, analyses, and reuse. To date, more than 300 studies have been made freely available through the ImmPort Shared Data portal , which allows research data to be repurposed to accelerate the translation of new insights into discoveries

    A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 within the gene EFEMP1

    Get PDF
    Biliary atresia (BA) is a rare pediatric cholangiopathy characterized by fibrosclerosing obliteration of the extrahepatic bile ducts, leading to cholestasis, fibrosis, cirrhosis, and eventual liver failure. The etiology of BA remains unknown, although environmental, inflammatory, infectious, and genetic risk factors have been proposed. We performed a genome-wide association study (GWAS) in a European-American cohort of 343 isolated BA patients and 1716 controls to identify genetic loci associated with BA. A second GWAS was performed in an independent European-American cohort of 156 patients with BA and other extrahepatic anomalies and 212 controls to confirm the identified candidate BA-associated SNPs. Meta-analysis revealed three genome-wide significant BA-associated SNPs on 2p16.1 (rs10865291, rs6761893, and rs727878; P < 5 Ă—10-8), located within the fifth intron of the EFEMP1 gene, which encodes a secreted extracellular protein implicated in extracellular matrix remodeling, cell proliferation, and organogenesis. RNA expression analysis showed an increase in EFEMP1 transcripts from human liver specimens isolated from patients with either BA or other cholestatic diseases when compared to normal control liver samples. Immunohistochemistry demonstrated that EFEMP1 is expressed in cholangiocytes and vascular smooth muscle cells in liver specimens from patients with BA and other cholestatic diseases, but it is absent from cholangiocytes in normal control liver samples. Efemp1 transcripts had higher expression in cholangiocytes and portal fibroblasts as compared with other cell types in normal rat liver. The identification of a novel BA-associated locus, and implication of EFEMP1 as a new BA candidate susceptibility gene, could provide new insights to understanding the mechanisms underlying this severe pediatric disorder
    • …
    corecore