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ABSTRACT 
CREATION OF A COMPUTATIONAL PIPELINE TO EXTRACT GENES FROM 

QUANTITATIVE TRAIT LOCI FOR DIABETES  
AND OBESITY 

 
 
 

Joseph F. Fox 
 

Marquette University, 2015 
 

 
 
 Type 2 Diabetes is a disease of relative insulin deficiency resulting from a 
combination of insulin resistance and decreased beta-cell function.  Over the past several 
years, over 60 genes have been identified for Type 2 Diabetes in human genome-wide 
association studies (GWAS).  It is important to understand the genetics involved with 
Type 2 diabetes in order to improve treatment and understand underlying molecular 
mechanisms.  Heterogeneous stock (HS) rats are derived from 8 inbred founder strains 
and are powerful tools for genetic studies because they provide a basis for high resolution 
mapping of quantitative trait loci (QTL) in a relatively short time period.  By measuring 
diabetic traits in 1090 HS male rats and genotyping 10K single nucleotide 
polymorphisms (SNPs) within these rats, Dr. Solberg Woods’ lab conducted genetic 
analysis to identify 85 QTL for diabetes and adiposity traits.   

To identify candidate genes within these QTL, we propose creation of a 
bioinformatics pipeline that combines general gene information, information from the rat 
genome database including disease portals and Variant Visualizer as well as the Attie 
Diabetes Expression Database.  My project has involved writing code to pull data from 
these databases to determine which genes within each QTL are potential candidate genes.  
I have scripted the code to analyze genes within a single QTL or multiple QTL 
simultaneously.  The resulting output is a single excel file for each QTL, listing all genes 
that are found in the disease portals, all genes that have a highly conserved non-
synonymous variant change and all genes that are differentially expressed in the Attie 
database.  The program also highlights genes that are found in all three categories. After 
creating the pipeline, I ran the program for 85 QTL identified in my laboratory.  The 
program identified 63 high priority candidate genes for future follow-up.  This work has 
helped my laboratory rapidly identify candidate genes for type 2 diabetes and obesity.  In 
the future, the code can be modified to identify candidate genes within QTL for any 
complex trait.   
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INTRODUCTION 
 
 
 

Type 2 diabetes and obesity are serious illnesses that are becoming more prevalent 

within our country. Type 2 Diabetes is a disease of relative insulin deficiency resulting 

from a combination of insulin resistance and decreased beta-cell function [17,19].  More 

than 25 million American adults have already been diagnosed with diabetes, while the 

CDC projects that as many as one in three U.S. adults could have diabetes by 2050 [4,5].  

In addition, more than 80 percent of people who have diabetes are also overweight [7].  

The American Diabetes Association released new research on March 6, 2013 estimating 

the total costs of diagnosed diabetes have risen to $245 billion in 2012 from $174 billion 

in 2007 [1].  Due to the substantial financial burden that diabetes and obesity impose on 

our country, new treatments and preventative measures are needed to help treat this 

increasing problem.   

A person’s genetic background has been shown to play a role in developing Type 

2 diabetes and obesity, since studies of twins have shown that genetics play a very strong 

role in the development of type 2 diabetes [2].  Over the past several years, over 60 genes 

have been identified for Type 2 Diabetes in human genome-wide association studies 

(GWAS). [12,21,26].  Understanding the genes involved in these diseases will help reveal 

one’s predisposition for developing either of these diseases and aid in developing novel 

therapeutics.  The genomic differences between individuals are made up of in large part 

by changes in single nucleotide polymorphisms (SNPs) [3,13].  As a result, a common 

disease can develop from a combination of common SNP variants, which are responsible 

for quantitative variations of a common phenotypic trait [3,10,20].  There is a desire to 
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understand which SNP variants underlie a predisposition for the development of Type 2 

diabetes and obesity in order to improve future prevention and treatment. 

Genetic mapping is an effective tool for identifying quantitative trait loci (QTL) 

since genetic loci that contribute to specific traits can be measured and mapped to the 

genome.  There are two approaches for carrying out genetic mapping in rats: the 

traditional F2 cross and the outbred Heterogeneous Stock (HS) approach.  The traditional 

F2 cross consists of breeding two distinct strains of rats which give rise to offspring (F1).  

The F1 animals are then bred, leading to a limited number of recombination events. From 

here the desired traits can be mapped to regions on the genome.  However, these regions 

are large and may contain hundreds of genes making it difficult to determine exactly 

which gene is truly responsible for the resulting phenotypic trait. The HS approach allows 

for narrower fine mapping of traits (only 2-3 Mb) in comparison to the typical F2 cross 

(generally 30-40 Mb).  This approach works by using HS animals (mice or rats), which 

are created from 8 inbred founder strains that are bred for more than 50 generations to 

minimize inbreeding.  As a result, the chromosomes of these offspring are a random 

mosaic of the founder strains, and the probability of decent from each founder can be 

traced, thus generating a narrower region for the trait of interest along with a smaller 

number of candidate genes [23]. 

Using HS rats, Dr. Solberg Woods’ lab has conducted genome-wide association 

analysis to identify QTLs linked to Type 2 diabetes and obesity.  They carried out their 

genetic mapping by measuring diabetic and adiposity traits in 1090 HS and genotyping 

these rats using a 10K single nucleotide polymorphisms (SNPs) array.  Analysis was 

performed on these data using the programs Happy and Bagpipe.  The Happy algorithm 
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uses hidden Markov models to estimate the expected proportions of founder haplotypes 

in each marker based on observed genotypes [16].   Association analysis is then 

implemented using Bagpipe, which assigns a level of association between the 

chromosomal location and the diabetic phenotype [24]. The results yield a collection of 

QTL for each chromosome where each QTL is assigned a respective -log P score. 

The statistically significant QTL intervals Dr. Solberg Woods’ lab focused on 

were those that generated a -log P score greater than or equal to a particular phenotype’s 

significance threshold.  This threshold was determine by parametric bootstrapping, which 

normally resulted in a -log P score lower than -5.  The 1.5 LOD drop from the peak 

marker was then utilized to define the confidence intervals for each significant QTL [22].  

Overall, this approach identified 85 QTL associated with diabetic and adiposity traits.  

The average size of each QTL is 2.2 Mb and contains on average 22 genes.  Analyzing 

these genes more closely, our lab hopes to find candidate genes that play a significant role 

in the development of diabetes and obesity. 

Despite having identified numerous statistically significant QTL intervals, the lab 

currently uses a manual process to identify potential candidate genes. The process 

consists of manually extracting important gene information for each QTL from two 

different websites: the Rat Genome Database (RGD) (http://rgd.mcw.edu/) and Attie 

Diabetes Expression Database websites (http://diabetes.wisc.edu/).  The manual process 

is time-consuming and prone to error.  The Diabetes/Obesity Disease Portals and the 

Variant Visualizer tool from the RGD website are used to determine if a gene has been 

previously shown to be associated with a particular disease or if a gene contains any non-

synonymous variants that could be damaging.  Information from the Attie Diabetes 
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Expression Database helps determine if any of those genes are differentially expressed in 

various tissues.  Although possible to obtain manually, keeping track of all of this 

information for all of the genes of interest for each of the 85 QTL is a challenge due to 

the magnitude of the data.  That is why a computational bioinformatics pipeline to 

automate this process was desired.  Therefore, using the programming languages Perl and 

R, my present study was to create a computational bioinformatics pipeline to automate 

the processes listed above to identify potential candidate genes associated with the 

development of Type 2 diabetes and obesity. 
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METHODS 

 

The programming languages Perl and R were used for the creation of this 

computational pipeline (for summary schematic, see Figure 1).  The first part of the 

pipeline consists of a Perl script that uses the chromosome number and start/stop 

locations of a specific QTL as command line arguments to extract gene information 

found within that particular QTL.  In addition, the user can also provide a text file that 

contains multiple QTLs to be analyzed.  Once the QTL parameters are provided, the 

command line arguments and/or QTL text file are used to name and organize the results 

and analysis files that are generated by the Perl script.  This script extracts general gene 

information from an available RGD rat gene file found on their FTP site as well as 

multiple disease portal gene lists which were manually copied from the RGD disease 

portal page.  It then creates separate output files for the Disease Portals results, Variant 

Visualizer results, and Attie Diabetes Expression Database results and analysis using two 

Perl modules.  The Perl module WWW::Mechanize was used to access and extract 

information from a website’s URL when needed [8].  For example, the 

WWW::Mechanize module can be used to take a particular URL and obtain that URL 

page’s resulting source code and content.  From there, manual operations can be 

programmed to modify that page’s source code and carry out a task, such as clicking the 

‘Download File’ button.  The Perl module WriteExcel::UseSpreadsheet was used to 

create one excel spreadsheet output with multiple sheets of analysis [15].  All of the 

results files that were originally created separately were incorporated into one excel 

analysis file with each file being represented by a separate sheet. 
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Figure 1: Schematic Summary of Computational Pipeline 

 

In order to detect all known genes found within each QTL, the GENES_RAT.txt 

file generated by RGD was obtained via their FTP site and saved on our Dale server [9].  

This file uses rat genome build version 3.4 and contains information for all of the active 
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genes known in the rat genome.  As stated before, the chromosome number and start/stop 

locations of the QTL from the command line are used as filtering parameters to extract all 

of the genes found within that interval, along with obtaining a brief description for what 

each gene has been shown to encode and/or interact with.  This gene information is saved 

under the “Gene Info” sheet in the excel analysis file. 

 To identify if a particular gene has been shown to be previously associated with 

diabetes or obesity, lists of genes that were found on RGD’s disease portals web page 

were manually copied and saved into separate files on our Dale server for use 

(Diabetes_Biological_Processes.txt, Diabetes_Disease.txt, Diabetes_Pathways.txt, 

Diabetes_Phenotypes.txt, Obesity_Biological_Processes.txt, Obesity_Disease.txt, 

Obesity_Pathways.txt, and Obesity_Phenotypes.txt).  These files were used within the 

Perl script to identify if any of the genes within a particular QTL have been shown to be 

associated with the diseases of diabetes or obesity.  For each disease, these files were 

comprised of gene names that have been shown to be associated with the General 

Disease, Phenotype, Biological Processes, or Pathways related to that disease category. 

The genes identified from the GENES_RAT.txt file were used to determine if there was a 

match against any of these gene lists.  This was done in Perl using hash keys and a 

foreach statement.  Genes that found a match were printed out in the excel analysis file 

under the sheet “Portal Info” in addition to indicating which gene list there was a match 

with.   Otherwise, ‘no genes’ was printed if there were no matches found within that list.   

 To utilize the Variant Visualizer tool from RGD’s website, the Perl module 

WWW::Mechanize was used.  For our analysis, we were interested in downloading a file 

that contains non-synonymous sequence polymorphism changes in HS founder strains for 
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genes found within a particular QTL. The HS rat strains are ACI/N, BN/Ssn, Buf/N, 

F344/N, M520/N, MR/N, WKY/N, and WN/N.  Therefore, the names of these strains 

along with just non-synonymous polymorphism changes were selected on RGD’s web 

page so that they were included within that particular URL so that the script downloaded 

a file with only this information.  The URL was then modified within the Perl script so 

that the chromosome number and start/stop location command line arguments could be 

entered and applied to the URL in order to obtain that desired QTL’s information.  A 

particular QTL’s Variant Visualizer results were then saved as a separate file as well as 

printed out in the “Variant Visualizer Results” sheet in the excel analysis file.  In addition, 

a “High Probability Variants” sheet was created where genes had a conservation score 

greater than 0.8 or their PolyPhen prediction was either ‘possibly damaging’ or ‘probably 

damaging’. 

 The results from the Attie Diabetes Expression Database website were obtained in 

a similar manner by utilizing the Perl module WWW::Mechanize.  However, instead of 

manipulating the website’s URL to account for the QTL’s chromosome number and 

start/stop locations, a manual operation was performed to just enter in all of the genes 

found in a particular QTL into the page’s source code as a Perl array.  This array was 

obtained from an earlier process involving the extraction of gene information from the 

GENES_RAT.txt file.  From here, code in the Perl script selected only intensity2 data 

(intensity of the transcript on the expression array) from an expression analysis done by 

the Attie lab and then clicked the “Download File” button.  The resulting file has gene 

expression analysis for 6 key tissues that are evaluated in mice that differ in body weight 

(lean or obese), strain (B6 or BTBR mouse strains) and age (4 or 10 weeks).  The BRTB 
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strain is susceptible and the B6 mouse is resistant to Type 2 diabetes.  The six tissues are 

Islet, Adipose, Liver, Soleus, Gastrocnemius, and Hypothalamus.  The results contain 

separate intensity2 data for B6 and BTBR tissue expression at 4 and 10-week time 

intervals.  At each of these time intervals are data points from five individual animals.  

The results are saved in a separate file. 

To determine if there are genes within each QTL that are differentially expressed 

between strains, the second part of the pipeline is made up of an R script to perform 

statistical testing on expression data from the Attie Diabetes Expression file described 

above.  This R script is called from within the Perl script using the system() function.  We 

used the Wilcox Test, which is a non-parametric statistical hypothesis test for the 

comparison of the means between 2-paired samples [14].  In our case, the 2-paired 

samples are between lean and obese mice for B6 and BTBR tissue expression at the 4 and 

10-week time intervals.  The script’s analysis provides the means for each of the 5 data 

points for B6 and BTBR tissue expression at the 4 and 10-week time intervals for both 

lean and obese mice as well as the p value for the hypothesis test comparison.  In 

addition, means and p values were provided for combined B6 and BTBR tissue 

expression at both of the 4 and 10-week time periods.  This analysis is saved as a separate 

file and is also incorporated in the “Attie Analysis” sheet in the excel analysis file.  

Another sheet named “Significant Attie Analysis” was created which includes genes that 

have a p value lower than 0.05 for any of the B6 and BTBR tissue expression at 4 and 10-

week time intervals.  

Finally, a comparison for all the genes found within each of the results was 

performed to highlight which genes are potential high priority candidate genes associated 
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with Type 2 diabetes and obesity.  These comparisons were performed by comparing hash 

keys corresponding to gene names found within each of the respective result categories.  

Multiple combinations of comparisons were done to indicate which genes are more 

noteworthy. 
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RESULTS 

 

The present study yielded a computational pipeline, comprised of Perl and R 

written scripts that provided informational output regarding disease portals, non-

synonymous variants and expression analysis for all genes within each QTL.  This 

resulting excel file contains multiple sheets that provide all of the desired information.  

Each analysis file is made up of 7 excel sheets, which are Gene Info, Portal Info, Variant 

Visualizer Results, High Probability Variants (described below), Attie Analysis, 

Significant Attie Analysis (described below) and Gene Comparisons. 

The Gene Info sheet provides information for all of the genes found within a 

particular QTL of interest.  This information consists of the RGD gene ID number, gene 

symbol, chromosome, start location, stop location and a general description (see Figure 

2).  The general description is particularly helpful because it describes what the gene 

encodes, interacts with, is associated with, is involved in and/or what it participates in. 

The Portal Info sheet indicates which genes in a certain QTL have been shown to 

be associated with diabetes or obesity and/or related pathways and the disease process.  It 

does this by listing which genes are associated with the general disease, phenotype, 

biological processes or pathways for that specific disease (see Figure 3).  If no genes have 

been shown to be associated with that disease, then ‘no genes’ will be listed instead.   

The Variant Visualizer sheet lists all of the genes in the QTL that have non-

synonymous amino acid changes in one or more of the HS founder strains.  In addition, 

this sheet also provides the chromosome, position, conservation score, gene symbol, 

reference nucleotide, founder strain nucleotides, accession ID, reference amino acid, 
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variant amino acid and PolyPhen prediction for each variant (see Figure 4).  The 

conservation score helps determine how much a particular gene is conserved, with the 

scores ranging from 0-1 and 1 being highly conserved.  The reference nucleotide and 8-

founder strain nucleotide information indicate exactly which founders have the variants.  

Finally, the PolyPhen prediction helps determine which of those variants could be 

potentially damaging. 

 The High Probability Variants sheet provides the genes that more likely to be 

candidate genes.  The genes listed on this sheet have either a conservation score greater 

than 0.8 or their PolyPhen prediction is possibly/probably damaging (see Figure 5).   

 The Attie Analysis sheet provides a list of genes within a QTL and their Wilcox 

Test results for tissue expression in B6 and BTBR tissue at 4 and 10 week time periods in 

lean and obese mice as well as combined B6 and BTBR tissue at the 4 and 10 week time 

periods.  For each gene, there is an average score for lean and obese mice at each tissue 

and time period as well as a p value indicating the significance of the expression 

differences.  In addition, each gene is further categorized by tissue as well as its particular 

start location in case multiple locations were used (see Figure 6).   

 The Significant Attie Analysis is similar to the High Probability Variants sheet in 

that it provides quick look into the noteworthy differential expression results from the 

Attie Analysis sheet.  This sheet provides a list of genes that have a p value lower than 

0.05 for lean and obese mice expression in the B6 and BTBR tissues at the 4 and 10 week 

time periods.  Underneath each tissue and time period combination lists the genes and 

specific tissues that are significant (see Figure 7).  
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 The Gene Comparisons sheet indicates which genes appear in more than one of 

the analysis sheets.  The lists of genes from each of the analysis sheets are compared to 

one another to determine which genes have multiple lines of evidence suggesting they are 

involved in the phenotype.  The comparisons of these genes lists are between the High 

Probability Variants, Portal Info and Attie Significant Analysis sheets (see Figure 8).    

The genes found in all three outputs are genes that our lab finds particularly interesting 

for future research.   

 This computational pipeline was used to analyze the 85 QTL that our lab was 

interested in. The program identified 63 high priority candidate genes for future follow-

up.  Out of the 63 genes identified, 44 were associated with adiposity phenotypes (see 

Table 1) and 19 with diabetic phenotypes (see Table 2).  This program has made it 

possible to rapidly identify genes associated with diabetes and obesity.  
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Figure 2: Gene Info Sheet 
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Figure 3: Portal Info Sheet 
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Figure 4: Variant Visualizer Results Sheet 
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Figure 5: High Probability Variants Sheet 
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Figure 6: Attie Analysis Sheet 
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Figure 7: Significant Attie Analysis Sheet 
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Figure 8: Gene Comparisons Sheet 
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Table 1: Results for 66 Adiposity QTL Confidence Intervals 
 

Phenotypes Chromosome 

Start 

Location 

(Mb) 

Stop 

Location 

(Mb) 

Number 

of Genes 

in QTL 

Number of 

Significant 

Genes 

Variant Visualizer, 

Attie Results and 

Diabetes Portal 

Variant Visualizer, 

Attie Results and 

Obesity Portal 

BMI_Butt 13 42.47 44.23 26 0   

BMI_Butt/BMI_Tail 
17 5.7 10.94 54 0   

        

BMI_Tail 1 262.9 266.46 31 1 Pnlip Pnlip 

BMI_Tail 2 62.23 70.54 23 0   

BMI_Tail 3 37.82 40.32 14 0   

BMI_Tail 6 14.64 19.11 8 1 Nrxn1 Nrxn1 

BMI_Tail 6 39.8 44.78 43 2 Ywhaq, Odc1  

BMI_Tail 6 111.68 113.91 19 1 Snw1 Snw1 

BMI_Tail 7 36.44 40.32 21 0   

BMI_Tail 7 112.74 113.87 39 0   

BMI_Tail 8 123.18 123.91 3 1 Itga9  

BMI_Tail 10 28.72 29.23 7 1 Adra1b Adra1b 

BMI_Tail 10 50.07 51.2 5 0   

BMI_Tail 10 83.78 84.76 22 0   

BMI_Tail 13 72.22 73.11 8 0   

BMI_Tail 15 98.81 105.6 31 1 Abcc4  

BMI_Tail 17 40.12 44.15 39 1 Uqcrfs1  

BMI_Tail 18 66.33 69.91 17 2 Mbd2, Tcf4 Mbd2, Tcf4 

BMI_Tail 20 34.43 35.42 5 0   

BMI_Tail X 53.04 55.93 24 1 Pdha1 Pdha1 

        

BW_Gained 2 75.27 76.16 1 0   

        

Cholesterol 3 117.89 119.99 49 2 Cdc25b, Ptpra  

Cholesterol 5 114.48 115.25 7 0   

Cholesterol 7 102.94 106.54 21 1 Ndrg1 Ndrg1 

Cholesterol 13 54.1 59.46 21 0   

Cholesterol 14 105.28 106.71 3 0   

Cholesterol 19 41.54 42.46 18 1 Bcar1  

Cholesterol 20 40.69 44.22 30 1 Hs3st5  

Cholesterol X 38.04 40.25 26 0   

        

EpiFatg_to_sacBWg 2 235.7 236.32 16 3 Adh7, Adh4 Adh7, Adh4, Adh1 

EpiFatg_to_sacBWg 3 31.02 32.55 9 0   

EpiFatg_to_sacBWg 3 117.1 117.29 4 0   

EpiFatg_to_sacBWg 5 38.5 39.58 5 0   

EpiFatg_to_sacBWg 5 169.5 172.1 39 2 Pank4, Prkcz Prkcz 

EpiFatg_to_sacBWg 6 22.44 24.41 17 0   
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EpiFatg_to_sacBWg 7 69.06 70.71 15 1 Pop1  

EpiFatg_to_sacBWg 7 103.63 104.64 10 1 Ndrg1 Ndrg1 

EpiFatg_to_sacBWg 8 83.06 84.1 15 0   

EpiFatg_to_sacBWg 8 97.78 98.31 1 0   

EpiFatg_to_sacBWg 8 116.03 117.6 6 0   

EpiFatg_to_sacBWg 10 39.55 40.81 24 1 Gm2a Gm2a 

EpiFatg_to_sacBWg 10 52.94 53.67 8 0   

EpiFatg_to_sacBWg 10 102.64 103.62 12 1 Cog1 Cog1 

EpiFatg_to_sacBWg 11 86.89 87.08 3 1 Prkdc Prkdc 

EpiFatg_to_sacBWg 13 86.77 88.37 64 4 
Atp1a2, Usp21, 
Ndufs2, B4galt3 

Atp1a2, Usp21, 
Ndufs2, B4galt3 

EpiFatg_to_sacBWg 15 0.67 1.72 2 1  Kcnma1 

EpiFatg_to_sacBWg 15 32.77 38.27 151 2 Myh6, Pck2 Myh6, Pck2 

EpiFatg_to_sacBWg 15 98.28 99.49 3 0   

EpiFatg_to_sacBWg 19 25.44 27.07 46 1 Gipc1  

EpiFatg_to_sacBWg 20 49.14 50.34 7 0   

EpiFatg_to_sacBWg X 37.89 40.25 27 0   

        

RetroFatg_to_sacBWg 3 30.76 31.68 11 0   

RetroFatg_to_sacBWg 4 18.92 20.42 3 0   

RetroFatg_to_sacBWg 6 99.61 101.1 10 2 Gphn, Fut8 Gphn, Fut8 

RetroFatg_to_sacBWg 8 84.49 85.8 12 1 Col12a1  

RetroFatg_to_sacBWg 10 7.5 8.82 2 0   

RetroFatg_to_sacBWg 13 11.93 18.86 42 1 Serpinb7 Serpinb7 

RetroFatg_to_sacBWg 13 30.33 34.34 35 0   

RetroFatg_to_sacBWg 17 83.5 84.06 3 0   

RetroFatg_to_sacBWg 19 23.43 25.8 84 1 Cacna1a Cacna1a 

RetroFatg_to_sacBWg 19 38.64 39.64 11 1 Hp Hp 

        

SacBWg 12 3.68 5.05 18 1 Brca2 Brca2 

SacBWg 14 22.59 23.47 16 0   

SacBWg 15 104.44 108.42 40 0   

SacBWg 19 47.73 50.2 20 2 Plcg2, Mlycd Plcg2, Mlycd 

        

Triglycerides 8 49.26 50.98 9 0   
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Table 2: Results for 18 Diabetic Confidence Intervals  
 

Phenotypes Chromosome 

Start 

Location 

(Mb) 

Stop 

Location 

(Mb) 

Number 

of Genes 

in QTL 

Number of 

Significant 

Genes 

Variant Visualizer, 

Attie Results and 

Diabetes Portal 

Variant Visualizer, 

Attie Results and 

Obesity Portal 

Gluc0 9 78.65 79.97 14 1 Mrpl44 Mrpl44 

Gluc1 18 68.5 69.91 1 0   

        

GTotalAUC 1 209.36 213.37 136 3 Mta2, Cox8a, Bad Bad 

GTotalAUC 10 46.94 53.41 70 2 Ncor1, Akap10 Ncor1 

GTotalAUC 19 47.73 49.52 4 1 Plcg2 Plcg2 

        

IGI15 3 67.17 68.02 16 0   

IGI15 7 115.58 117.12 42 0   

IGI15 13 57.75 59.46 7 0   

IGI15 18 25.44 29.28 50 2 Apc, Brd8  

        

        

Ins0 1 174.8 176.59 9 0   

Ins0 1 199.9 203.48 139 4 Dusp8, Paox, Ctsd Cd81, Ctsd 

Ins0 2 158.1 158.7 1 0   

Ins0 9 16.83 21.56 35 0   

Ins0 18 26.7 27.9 22 2 Apc, Brd8  

        

ITotalAUC 1 263.39 266 20 1 Pnlip Pnlip 

ITotalAUC 5 41.43 43.05 3 0   

ITotalAUC 6 22.44 24.41 17 0   

ITotalAUC 18 27.11 28.14 12 0   

        

QUICKI 1 174.8 176.4 7 0   

QUICKI 1 202.81 203.48 13 1  Cd81 

QUICKI 2 158.1 158.7 1 0   

QUICKI 9 16.83 21.56 35 0   

QUICKI 18 26.7 28.14 22 2 Apc, Brd8  
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DISCUSSION 

 

Identifying candidate genes that underlie each of the 85 QTL will aid in 

identifying novel genes involved in Type 2 diabetes and obesity.  Utilizing the present 

work’s computational pipeline, our laboratory was able to rapidly identify 66 genes 

located within these QTL that we consider to be high priority candidate genes.  We used 

criteria consisting of : 1) containing a highly conserved non-synonymous variant changes 

in one of the founder strains (Variant Visualizer), 2) have been shown to be associated 

with diabetes or obesity in prior research (RGD portal information) and 3) are 

differentially expressed in obese versus lean mice (Attie database).  Having identified 66 

candidate genes associated with adiposity and diabetic traits, future work in the lab will 

consist of determining which of these genes play a causal role in the phenotype, followed 

by understanding the exact underlying genetic mechanisms and roles these genes have in 

the development of diabetes and obesity.   

The computational pipeline created for this present study was created with 

diabetes and obesity traits in mind.  However, future work could also be implemented on 

the code to modify it so that it could identify potential candidate genes for any complex 

trait and not just diabetic or obesity traits.  Future steps could also include other on-line 

information such as gene ontologies or expression and sequence information from other 

databases.    
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