1,514 research outputs found

    Development of quality standards for multi-center, longitudinal magnetic resonance imaging studies in clinical neuroscience

    Get PDF
    Magnetic resonance imaging (MRI) data is generated by a complex procedure. Many possible sources of error exist which can lead to a worse signal. For example, hidden defective components of a MRI-scanner, changes in the static magnetic field caused by a person simply moving in the MRI scanner room as well as changes in the measurement sequences can negatively affect the signal-to-noise ratio (SNR). A comprehensive, reproducible, quality assurance (QA) procedure is necessary, to ensure reproducible results both from the MRI equipment and the human operator of the equipment. To examine the quality of the MRI data, there are two possibilities. On the one hand, water or gel-filled objects, so-called "phantoms", are regularly measured. Based on this signal, which in the best case should always be stable, the general performance of the MRI scanner can be tested. On the other hand, the actually interesting data, mostly human data, are checked directly for certain signal parameters (e.g., SNR, motion parameters). This thesis consists of two parts. In the first part a study-specific QA-protocol was developed for a large multicenter MRI-study, FOR2107. The aim of FOR2107 is to investigate the causes and course of affective disorders, unipolar depression and bipolar disorders, taking clinical and neurobiological effects into account. The main aspect of FOR2107 is the MRI-measurement of more than 2000 subjects in a longitudinal design (currently repeated measurements after 2 years, further measurements planned after 5 years). To bring MRI-data and disease history together, MRI-data must provide stable results over the course of the study. Ensuring this stability is dealt with in this part of the work. An extensive QA, based on phantom measurements, human data analysis, protocol compliance testing, etc., was set up. In addition to the development of parameters for the characterization of MRI-data, the used QA-protocols were improved during the study. The differences between sites and the impact of these differences on human data analysis were analyzed. The comprehensive quality assurance for the FOR2107 study showed significant differences in MRI-signal (for human and phantom data) between the centers. Occurring problems could easily be recognized in time and be corrected, and must be included for current and future analyses of human data. For the second part of this thesis, a QA-protocol (and the freely available associated software "LAB-QA2GO") has been developed and tested, and can be used for individual studies or to control the quality of an MRI-scanner. This routine was developed because at many sites and in many studies, no explicit QA is performed nevertheless suitable, freely available QA-software for MRI-measurements is available. With LAB-QA2GO, it is possible to set up a QA-protocol for an MRI-scanner or a study without much effort and IT knowledge. Both parts of the thesis deal with the implementation of QA-procedures. High quality data and study results can be achieved only by the usage of appropriate QA-procedures, as presented in this work. Therefore, QA-measures should be implemented at all levels of a project and should be implemented permanently in project and evaluation routines

    Interplay between Loewner and Dirichlet energies via conformal welding and flow-lines

    Full text link
    The Loewner energy of a Jordan curve is the Dirichlet energy of its Loewner driving term. It is finite if and only if the curve is a Weil-Petersson quasicircle. In this paper, we describe cutting and welding operations on finite Dirichlet energy functions defined in the plane, allowing expression of the Loewner energy in terms of Dirichlet energy dissipation. We show that the Loewner energy of a unit vector field flow-line is equal to the Dirichlet energy of the harmonically extended winding. We also give an identity involving a complex-valued function of finite Dirichlet energy that expresses the welding and flow-line identities simultaneously. As applications, we prove that arclength isometric welding of two domains is sub-additive in the energy, and that the energy of equipotentials in a simply connected domain is monotone. Our main identities can be viewed as action functional analogs of both the welding and flow-line couplings of Schramm-Loewner evolution curves with the Gaussian free field.Comment: 28 pages, 3 figures. Minor revision according to referees' repor

    The Translocal Event and the Polyrhythmic Diagram

    Get PDF
    This thesis identifies and analyses the key creative protocols in translocal performance practice, and ends with suggestions for new forms of transversal live and mediated performance practice, informed by theory. It argues that ontologies of emergence in dynamic systems nourish contemporary practice in the digital arts. Feedback in self-organised, recursive systems and organisms elicit change, and change transforms. The arguments trace concepts from chaos and complexity theory to virtual multiplicity, relationality, intuition and individuation (in the work of Bergson, Deleuze, Guattari, Simondon, Massumi, and other process theorists). It then examines the intersection of methodologies in philosophy, science and art and the radical contingencies implicit in the technicity of real-time, collaborative composition. Simultaneous forces or tendencies such as perception/memory, content/ expression and instinct/intellect produce composites (experience, meaning, and intuition- respectively) that affect the sensation of interplay. The translocal event is itself a diagram - an interstice between the forces of the local and the global, between the tendencies of the individual and the collective. The translocal is a point of reference for exploring the distribution of affect, parameters of control and emergent aesthetics. Translocal interplay, enabled by digital technologies and network protocols, is ontogenetic and autopoietic; diagrammatic and synaesthetic; intuitive and transductive. KeyWorx is a software application developed for realtime, distributed, multimodal media processing. As a technological tool created by artists, KeyWorx supports this intuitive type of creative experience: a real-time, translocal “jamming” that transduces the lived experience of a “biogram,” a synaesthetic hinge-dimension. The emerging aesthetics are processual – intuitive, diagrammatic and transversal

    Langmuir and Langmuir-Blodgett films revisited

    Get PDF
    A review on Langmuir and Langmuir-Blodgett filmsThe Langmuir and Langmuir-Blodgett (LB) technique has been applied for a long time. It exist several books and reviews on the subject. Also, a big number of works and papers have been made. This work only intends to afford a revision of the subject under the point of view of the author, and centered mostly in new references.Preprin

    Abstract Model Specification Using the Mobius Modeling Tool

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryDefense Advanced Research Projects Agency, Information Technology Office (DARPA) / DABT63-96-C-0069National Science Foundation / EIA 99-75019U of I OnlyRestricted to UIUC communit

    The SSSA-MyHand: a dexterous lightweight myoelectric hand prosthesis

    Get PDF
    The replacement of a missing hand by a prosthesis is one of the most fascinating challenges in rehabilitation engineering. State of art prostheses are curtailed by the physical features of the hand, like poor functionality and excessive weight. Here we present a new multi-grasp hand aimed at overcoming such limitations. The SSSA-MyHand builds around a novel transmission mechanism that implements a semi-independent actuation of the abduction/adduction of the thumb and of the flexion/extension of the index, by means of a single actuator. Thus, with only three electric motors the hand is capable to perform most of the grasps and gestures useful in activities of daily living, akin commercial prostheses with up to six actuators, albeit it is as lightweight as conventional 1-Degrees of Freedom prostheses. The hand integrates position and force sensors and an embedded controller that implements automatic grasps and allows inter-operability with different human-machine interfaces. We present the requirements, the design rationale of the first prototype and the evaluation of its performance. The weight (478 g), force (31 N maximum force at the thumb fingertip) and speed of the hand (closing time: <370 ms), make this new design an interesting alternative to clinically available multi-grasp prostheses
    • …
    corecore