
Bloomfield, R. E., Chozos, N., Popov, P. T., Stankovic, V., Wright, D. & Howell-Morris, R. (2010).

Preliminary Interdependency Analysis (PIA): Method and tool support (Report No. D/501/12102/2

v2.0). London: Adelard LLP and City University London.

City Research Online

Original citation: Bloomfield, R. E., Chozos, N., Popov, P. T., Stankovic, V., Wright, D. & Howell-

Morris, R. (2010). Preliminary Interdependency Analysis (PIA): Method and tool support (Report

No. D/501/12102/2 v2.0). London: Adelard LLP and City University London.

Permanent City Research Online URL: http://openaccess.city.ac.uk/3091/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/19486093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

FINAL

Unclassified

D/501/12102/2 v2.0 15 November, 2010

Preliminary Interdependency
Analysis (PIA): Method and tool

support

© Adelard LLP and City University London, 2010

Produced for Technology Strategy Board, under contract number BK030F

FINAL

Unclassified

Page 2 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

FINAL

Unclassified

Page 3 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

Summary

This report is the second deliverable of the TSB-funded PIA:FARA project. The report presents

a method called Preliminary Interdependency Analysis (PIA) which can be used to conduct

interdependency analyses in complex systems such as Critical Infrastructures. The method is

supported by a toolkit which can be used to conduct qualitative and quantitative analyses of

interdependencies between complex systems.

Authors

R Bloomfield

N Chozos

P Popov

V Stankovic

D Wright

R Howell-Morris

FINAL

Unclassified

Page 4 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Document control

Reference: D/501/12102/2

Status: FINAL

VERSION REVIEW NO./ISSUED DATE

v0.1D issued in draft 19 May, 2010

v0.1J R/1890/12102/4 21 June, 2010

v1.0 issued 23 June, 2010

v1.1A R/1969/12102/5 11 November, 2010

v2.0 issued 15 November, 2010

Approved: Robin Bloomfield

Verified: Fan Ye

Distribution

Alan Bennett, Technology Strategy Board Monitoring Officer

Paul Lewis, Technology Strategy Board

Rhys Williams, Centre for the Protection of National Infrastructure

FINAL

Unclassified

Page 5 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

Contents

1 Introduction... 7

2 Method: Preliminary Interdependency Analysis (PIA) .. 8
2.1 PIA model architecture: two levels of abstraction.. 9
2.2 PIA stages ... 10

2.2.1 Stage 1: Critical infrastructure / Service description 13
2.2.2 Stage 2: Service-model development .. 16
2.2.3 Stage 3: DBMS model development ... 17
2.2.4 Stage 4: Identification of dependencies between the services............... 17
2.2.5 Stage 5: Probabilistic parameterisation ... 18
2.2.6 Stage 6: (optional) Adding deterministic models of behaviour............. 19
2.2.7 Stage 7: Exploratory interdependency analysis.................................... 20

3 Tool support: PIA Toolkit .. 21
3.1 PIA Toolkit Usage Patterns .. 22
3.2 Overview of PIA workflow .. 22
3.3 PIA Toolkit Execution Engine.. 25
3.4 PIA Toolkit Architecture .. 26
3.5 Tool support for the service-level model .. 29

3.5.1 Interconnectivity matrix plug-in .. 29
3.5.2 Google Earth plug-in ... 30

4 Conclusions .. 30

5 Glossary .. 32

6 Bibliography ... 33

Appendix A An overview of the ASCE and Möbius tools.. 34
A.1 Assurance and Safety Case Environment (ASCE) ... 34
A.2 Möbius .. 34

Appendix B Rome case-study – an example of applying the PIA method............................ 36

Appendix C PIA Designer User Manual ... 40
C.1 Part 1 – Create PIA Project ASCE network.. 41
C.2 Part 2 – Populate the State Transitions network view .. 45
C.3 Part 3 – Populate Physical Network (PN) views .. 47

C.3.1 Populate Intra PN views .. 47
C.3.2 Populate Inter PN view.. 48

C.4 Part 4 – Populate Stochastic Association (SA) network views............................. 50
C.4.1 Populate Intra SA views .. 50
C.4.2 Populate Inter SA view.. 51

C.5 Part 5 – Configuration of the Simulation Plug-ins.. 52
C.6 Part 6 – Creation and configuration of the PIA simulation study......................... 55

FINAL

Unclassified

Page 6 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Figures

Figure 1: Overview of PIA method and toolkit... 9
Figure 2: PIA method stages ... 12
Figure 3: Example views used in PIA... 14
Figure 4: A Coupling point as a link between services in PIA ... 16
Figure 5: UML component diagram of the PIA toolkit... 28
Figure 6: Interconnectivity matrix plug-in .. 29
Figure 7: Google Earth plugin... 30
Figure 8: A state machine diagram for a local telephone exchange and the links status-

fields editor plug-in ... 37
Figure 9: Part of the intra-service PN view of the Power Transmission service......................... 37
Figure 10: A part of the SAN of the Telco SDH service... 38
Figure 11: The “Node search” plug-in .. 38
Figure 12: The Network status-field editor plug-in... 42
Figure 13: The HTML form used for the validation when creating a new PIA project 42
Figure 14: The Link status-field editor plug-in ... 45
Figure 15: The Generate State Space values plug-in... 46
Figure 16: The status-fields for the node MVC1 of an Intra_PN ASCE network....................... 47
Figure 17: The Inter-service links (coupling points) plug-in .. 49
Figure 18: The Physical Network views import plug-in ... 51
Figure 19: The plug-in used for configuration of the Möbius-based simulation study............... 53
Figure 20: The plug-in used for specifying the particular execution order of

Deterministic plug-ins in a PIA project... 53
Figure 21: The plug-in for mapping entities defined in a Deterministic plug-in to entities

from the PIA project.. 54
Figure 22: The plug-in for generation of the Möbius-based simulation project 56

Tables

Table 1: CI/service definitions for an information infrastructure ... 14
Table 2: PIA elements ... 15

FINAL

Unclassified

Page 7 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

1 Introduction

One of the greatest challenges in enhancing the protection of Critical Infrastructures (CIs)

against accidents, natural disasters, and acts of terrorism is establishing and maintaining an

understanding of the interdependencies between infrastructures and the dynamic nature of these

interdependencies. Interdependency can be a source of “unforeseen” threat when failure in one

infrastructure may cascade to other infrastructures, or it may be a source of resilience in times of

crisis, e.g., by re-allocating resources from one infrastructure to another [1].

Understanding interdependencies is a challenge both for governments and for infrastructure

owners/operators. Both, to a different extent, have an interest in services and tools that can

enhance their risk assessment and management to mitigate large failures that may propagate

across infrastructures. However, cost of investment in infrastructure modelling and

interdependency analysis tools and methods, including the supporting technology, may reach

millions of pounds, depending on the size of the system to be modelled, on the level of detail

and on the mode of modelling (real-time or off-line). These factors will determine the software,

hardware, data and personnel requirements.

It is therefore very important to understand what the scope and the overall requirements of an

interdependency analysis service are going to be, before proceeding with such an investment.

However, the decision on what modelling and visualisation capabilities are needed is far from

simple. Detailed requirements may not be understood until some modelling and simulation has

been conducted already, in order to identify critical dependencies and decide what level of

fidelity is required to investigate them further.

This report presents an approach to interdependency analysis that attempts to address these

challenges. The approach—Preliminary Interdependency Analysis (PIA)—starts off at a high-

level of abstraction, supporting a cyclic, systematic thought process that can direct the analysis

towards identifying lower-level dependencies between components of CIs. Dependencies can

then be analysed with probabilistic models, which would allow one to conduct studies focussed

on identifying different measures of interests, e.g. to establish the likelihood of cascade failure

for a given set of assumptions, the weakest link in the modelled system, etc. If a high-fidelity

analysis is required, PIA can assist in making an informed decision of what to model in more

detail. The method is applicable as both i) a lightweight method and accessible to Small-to-

Medium Enterprises (SMEs) in support of their business continuity planning (e.g., to model

information infrastructure dependencies, or dependencies on external services such as postal

services, couriers, and subcontractors); and ii) a heavyweight method of studying with an

increasing level of detail the complex regional and nationwide CIs combining probabilistic and

deterministic models of CIs.

This deliverable illustrates the use of PIA on a case study (Appendix B): a regional system of

two CIs namely the power grid and telecommunication network around Rome, Italy (i.e. Rome
case-study).

PIA is supported by a toolkit. The PIA Toolkit consists of two software applications:

● The PIA Designer, which allows a modeller to define a model of interdependent CIs and

define the parameters needed for any quantitative study. For visual representation the tool

uses a proprietary tool ASCE [4].

FINAL

Unclassified

Page 8 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

● The Execution engine, which allows for executing a model developed with the PIA

Designer, i.e. a simulation study based on the model to be conducted and the measures of

interest to be collected. The Execution engine uses Möbius [12], customised extensively

with a bespoke proprietary development.

The current version of the toolkit allows for two main categories of models:

● Model of interdependent CIs at a fairly high level of abstraction (i.e. without detailed

modelling of the networks used by the respective services). The model can be parameterised

and then the simulation executable can be deployed on the Execution Engine.

● As above but adding any degree of detail that the modeller may consider necessary

including high fidelity deterministic models available as 3rd party software modules.

This report presents the PIA method and offers a detailed description of how the PIA Toolkit

can be used.

2 Method: Preliminary Interdependency Analysis (PIA)

Preliminary Interdependency Analysis (PIA) is an analysis activity that seeks to understand the

range of possible interdependencies and provide a justified basis for further modelling and

analysis. Given a collection of CIs, the objectives of PIA are to develop, through a continuous,

cyclical process of refinement, an appropriate service model for the infrastructures, and to

document assumptions about resources, environmental impact, threats and other factors.

PIA has several benefits. In particular, PIA can

● help one to discover and better understand dependencies which may be considered as

“obvious” and as such are often overlooked (e.g. telecommunications need power)

● support the need for agile and time-efficient analyses (cannot always wait for the high

fidelity simulation)

● be also used by Small-to-Medium Enterprises (SMEs) and not just infrastructure owners

and government

PIA allows for the creation and refinement of interdependency models, in a focused manner, by

revisiting earlier stages in the PIA process in the light of the outcomes of latter stages. For

example, an initial application of PIA should result in a sufficiently concrete and clearly defined

model of CIs (and their dependencies). However, following the first design iteration, an analysis

of the model could cause us to question the assumptions made earlier on in the design process.

As a consequence, the model may be revised and refined; as we shall see later on, revisiting

previous phases of the development process is a key aspect of the PIA method and philosophy

overall.

PIA consists of two parts:

● Qualitative analysis. The modelling exercise begins with a definition of the boundaries of

the system to be studied and its components. Starting off at a high level, the analyst may go

through a cyclical process of definitions, but may also be focused on a particular service, so

the level of detail may vary between the different parts of the overall model. The

identification of dependencies (service-based or geographical) will start at this point.

● Quantitative analysis. The models created during the qualitative PIA are now used to

construct an executable, i.e. a simulator of the model behaviour in the presence of failures

FINAL

Unclassified

Page 9 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

of the modelled entities for the chosen model parameterisation. The model parameterisation

may be based either on expert judgement or on analysis of incident data. Examples of such

data analyses and fitting the available data to plausible probabilistic data models was

presented in the recent WP1 deliverable [2].

The PIA Toolkit provides support for both the qualitative and quantitative analyses. Figure 1

illustrates an overview of the method and the toolkit.

Quantitative PIA- Setting system boundaries
- Service definition (inputs, output
external resources)
- Identification of service parts
(components, assets, internal
resources)
- Identification of dependencies
between services and their parts

- Definition of state-machines
(states and transitions)
- Parameterisation of stochastic
associations
- (optional) Adding and
configuring plug-ins
- Deploying model on the
execution engine
- interdependency study via
simulation

Scope and boundaries Threat models Incident data

 Run-time Model Description
- A complete Möbius project
- A set of text files
- Utilities, plug-ins

Execution Engine
A Möbius compatible

simulation environment

Qualitative PIA

PIA Designer
Graphical model

development with the
ASCE tool

PIA
Method

PIA
Toolkit

Deployment

Figure 1: Overview of PIA method and toolkit

The interdependency models, of course, have to be related to a purpose and this should be

captured in terms of a scenario and related requirements. The narrative aspect of the scenario is

enormously important as it provides the basis for asking questions and discovering

interdependencies as the starting point for more formal models.

Typically the systems of interdependent CIs of interest are complex: include many services

which in turn consist of many parts. Given the complexity and size of the analysed systems tool

support is essential. The aim of WP2 is therefore to produce a toolkit that supports PIA

(including both qualitative and quantitative stages).

2.1 PIA model architecture: two levels of abstraction

PIA models broadly operate at two distinct levels of abstraction.

FINAL

Unclassified

Page 10 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

● Model of interacting services (service-level model). The modelled CIs are represented by a

set of interdependent services. Here, the view is purposefully abstract, so that we can reason

about dependencies among the services (i.e. data centre X depends on power plant Y).

Service-level dependencies are elicited by the defined lower-level dependencies among each

service’s constituent entities (physical components, resources etc.). These associations

among components are referred to within PIA as coupling points. The coupling points

incoming to a service can be associated with the resources that the service requires (e.g., a

telecommunication service consumes “commodities” supplied by a power service). The

resources consumed by a service can be obtained from the organisation’s reserves (internal
resources) or provided by another organisation (external resources). The outgoing coupling

points instead define how the outputs from a service get consumed by other services (as

either inputs or resources).

● Detailed service behaviour model (DSBM). Implementation details are provided for an

individual service, e.g. the networks upon which a particular service relies. For instance a

Global System for Mobile (GSM) telecommunication operator typically relies on a network

of devices deployed to cover a particular area (e.g. masts, etc.). Via DSBM we can choose

the level of detail used to model these networks. In the example above DSBM may range

from a connectivity graph – which cells of the network are connected with each other to a

high fidelity model of the protocols used in the GSM network. We tend to think of DSBM

as the networks owned (at least partially and/or maintained) by the respective service

operator, i.e. an organisation. Although such a view is not necessary, it allows one to model

several important aspects via DSBM. For instance the level of investment and the culture

(strong emphasis on engineering vs. outsourcing the maintenance) within the organisation

will affect how well the network is maintained (i.e. frequency of outages and speed of

recovery). Thus, the process of recovery (a parameter used in DSBM) can be a useful proxy

of the level of investment. Thus, through DSBM one can study scenarios which at first may

seem outside the scope of PIA. An example of such a scenario would be comparing the

deregulation with tight regulation in critical CIs.

2.2 PIA stages

PIA is carried out in seven stages (Figure 2):

Stage 1. CI description and scenario context (Section 2.2.1). A CI description provides a

concrete context and concept of operation. This is the first level of scoping for the

analysis task; the CI description gives the first indications of analysis boundaries.

DSBM entities are identified and recorded.

Stage 2. Model development (Section 2.2.2). A model of the services (resources, inputs,

outputs, system states) and the operational environment and system boundaries are

developed, based on the CI description. Model boundary definitions are used at this

stage to further restrict the scope of the analysis. Dependencies between the services

are identified and the coupling points are defined: these refer on the one hand to the

inputs and resources required by each of the services and on the other hand to the

outputs that each of the services produces.

Stage 3. DSBM model development (Section 2.2.3). DSBMs are defined by selecting the

right level of abstraction for the services: some of the services may be treated as

black-boxes; in this case their representation in the DSBM will require no

refinement in comparison with Stage 2. For those services, which are modelled in

more detail one starts by defining explicitly their components and the assets

including resort to using existing models of the underlying physical networks used

FINAL

Unclassified

Page 11 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

by the services or use other formalisms, e.g. such as PVS [9]. A level of consistency

is achieved between the service model and DSBM: the coupling points appear in

both Views.

Stage 4. Initial dependency and interdependency identification (Section 2.2.4). While some

of the service dependencies have already been identified and recorded in Stage 2

(via input/output/resource identification), at this stage the modeller looks for

additional sources of dependence (e.g. common components/assets), which may

make several services vulnerable to common faults or threats. These can be derived

by examining the service-level model, taking into account other contextual

information (e.g. scenarios, threat models, attacker profile). The captured

dependencies are modelled as stochastic association between the services or

components thereof. Each stochastic association is seen as a relationship between a

parent and a child: the state of the parent affects the modelled behaviour of the

child.

Stage 5. Probabilistic model development (Section 2.2.5). Since we are dealing with risk, we

take the view that, given the state space formed by the modelled entities (MEs), a

stochastic process must be constructed upon it that captures the unpredictable nature

of the states of the MEs, their changes and the interactions between CIs over time.

In this stage probabilistic models of the MEs are defined. These are state-machines,
a well known formalism in software engineering, modelled after the formalism used

in the Stochastic Activity Networks (SANs).

Stage 6. (optional) Adding deterministic models of behaviour (Section 2.2.6). At this stage

the modeller may decide to extend the behaviour of the probabilistic model adding

deterministic models of behaviour. Such a step may be useful when the modeller is

seeking to extend the fidelity of the simulation beyond the standard mechanisms

possible with a pure probabilistic model.

Stage 7. Exploratory interdependency analysis (Section 2.2.7). A Monte Carlo simulation

[10] is used to quantify the impact of interdependencies on the behaviour of the

system under study and draw more conclusions about the probability of

interdependency-related risk.

FINAL

Unclassified

Page 12 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Stage 1
CI description /

Scenario context

Scenarios

Stage 7
Exploratory

Interdependency
Analysis

Stage 6
Deterministic

Models
Configuration

Stage 4
Identification of
dependencies

between
services

Stage 2
Service level

model
development

PIA stages

Incident
description

Threat or
attack model

Model of threat
agent

Stage 5
Probabilistic

parameterisation

Stage 3
DSBM level

model
development

Deterministic
Models

No

Yes

Figure 2: PIA method stages

During these stages we found that the narrative information coming from the following sources

was relevant and useful:

FINAL

Unclassified

Page 13 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

● Scenarios: PIA is a scenario-driven approach. Once the system has been modelled, “what-

if” questions will be used to explore vulnerabilities and failure cascade possibilities.

Scenarios can be developed from a variety of assumptions or experiences. For instance, one

can begin by asking a question as abstract as “what happens if there is a flood”, or “if power

plant X fails”. Such questions form the basis for scenarios, which focus the analysis on

particular conditions, exploring potential vulnerabilities.

● Incident description: PIA can be used to model an incident that has already occurred. This

can be used as a baseline for generating and exploring variations of the same scenario or

simply further exploring a system that has been compromised, or has failed, as the incident

revealed unpredicted vulnerabilities and failures.

● Threat or attack model: Here, we are considering modelling assumptions based on

malicious attacks.

● Model of threat agent: The above (scenarios, incident description, threat or attack model)

are elements that will shape the profile of a threat that is modelled in our system. This can

be a malicious agent (e.g. a terrorist) or a source of natural disaster (e.g. flood).

The seven stages are described in more detail in the following sections.

2.2.1 Stage 1: Critical infrastructure / Service description

2.2.1.1 Definitions

A service provider (typically an organisation or a company) provides a service. Typically the

service provider utilises a network, which in turn consists of components that use resources to

provide an output. The relationship ‘whole-parts’ between a service and its parts (components,

internal resources and assets) is explicitly modelled at this stage.

Loss events occur when the service is interrupted, either by a component failure or by

exhaustion of resources. Measures of interest which will be studied are also identified and

recorded at this stage.

The definition of the service and of its parts alone will be a useful process as it will help identify

the boundaries of the system to be modelled, and the usually abstract initial understanding of

some obvious dependencies will begin to become clearer. However, these definitions need to be

coherent, as the subsequent modelling and analyses will be based on them. We would expect

that the definitions would be developed by a team of experts, possibly from various levels

within the service organisation; this is because during the development of definitions we

consider both high-level views (e.g., production of energy) and low-level views (e.g.,

identification of specific physical components), and most importantly, how they are related.

Similarly to other modelling approaches (most notably UML1) PIA uses different views which

allow the modeller to deal with complexity (i.e. separate concerns) and switch easily the focus

of analysis from dealing with the whole to dealing with its parts and from modelling the entities

of concrete critical infrastructures (with their concrete engineering meaning) or to the

description of the probabilistic behaviour. The figure below gives an example of views which

we found to be useful in practice (Figure 3).

1 Unified Modelling Language (UML) is a standardised general-purpose language for modelling

software engineering artefacts.

FINAL

Unclassified

Page 14 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Service-level view
(the service that the infrastructure is providing)

Implementation-level view
(the sum of components that make up the

infrastructure)

Application-level view
(the utilisation of the infrastructure in order to

provide the service)

Figure 3: Example views used in PIA

Below we elaborate further on the use of the views listed in Figure 3, based on the work on an

ongoing case study which considers the information infrastructure of an SME.

View Description

Services ● Production and delivery of reports

● Help-desk

● Licensing

● Invoicing

Application ● Access to data and information (read-only)

● Modification of data and information (create, modify,

delete, save)

● Communication (face-to-face, telephone, email etc)

Implementation ● Hardware

● Software

● Data

● People

Table 1: CI/service definitions for an information infrastructure

What is presented in this table is the first layer of definitions for the three views. Following

several iterations this leads to a rather detailed list of individual components, such as servers,

hubs, databases and people. As mentioned previously, this process will require the involvement

of people from various levels of the service organisation, so that the link between the service-

level view and the implementation-level view can be achieved.

Section 2.2.1.2 describes a typical set of types of elements that are to be identified and defined

during a PIA. These may be different depending on the project.

FINAL

Unclassified

Page 15 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

2.2.1.2 PIA elements

Component Definition

Service
organisation

A service with certain characteristics is provided by a service organisation. The

service is essentially a label for the process of transforming the resources into a

saleable commodity.

This is the highest level of abstraction for defining physical components.

Service organisations may be power plants, data centres, airports, etc.

Component A component is a commodity, part of the service, which is used in the

transformation of resources into a product. Components may fail in operation,

either as a result of wear and tear (physical hardware elements) or design faults

(software, hardware, procedures), in which case the service output may be

affected. Whether the component failure will affect the service output depends

on the service’s internal resilience (its ability to withstand component failures,

e.g. as a result of fault-tolerant design).

An important aspect to consider when dealing with components is that they

may be geographically dispersed, forming a distributed network of

components. In addition, in many cases, considering people as components in

the model is a sensible strategy.

Asset An information asset (e.g. technical know-how, data, procedures, algorithms) is

used either directly or indirectly to produce a product. The information assets

may be stolen, misused or corrupted as a result of accidental failure or

malicious behaviour, in which case the supplying organisation may be

adversely affected. Assets can be electronic or paper-based records and files, or

softer aspects such as trust and reputation.

Resource Resources are being consumed. They are supplied by internal reserves or

external services. External resources are commodities which are normally

consumed in the process which leads to the supply of a product at the service

output. This consumption is important as it can be a source of hidden

dependencies. Electrical power, air conditioning as well as consumables would

fall under this category.

Input The input to a service is the demand for a given product. Demands can come

from other services, the public, legislation, governmental directives, etc. The

demand is seen here as a request for a service based on an agreement of some

sort (such as a contract between the supplying organisation and the consumer).

Output An output is a product of a modelled component.

Environment In most cases, under “environment” we would expect to see aspects of weather

and other natural phenomena (e.g., earthquakes).

Table 2: PIA elements

Producing a set of coherent definitions may require several iterations. We recommend that these

are recorded in a systematic, clear manner, as these definitions will determine the outcome of

the rest of the modelling and analysis.

2.2.1.3 Service state

The state space of a modelled service is defined either explicitly or implicitly. The explicit

definition of the service space is applied when the service is modelled as a black-box, i.e. no

FINAL

Unclassified

Page 16 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

further refinements detailing its parts are used. In this case the modeller would associate the

service with a state machine in which the possible service states are spelled out.

We found that in the case of explicit definition of a service it might be useful to consider a

minimalistic state space {OK, impaired, failed} so that the modeller can distinguish between the

possible degrees of operability (from fully operational (OK), to totally non-operational {failed},

impaired denoting partial operability).

In the case a DSBM is associated with a service, the service state is implicitly defined by the

state spaces of its parts: components, internal resources and assets. In this case the modeller is

expected to define the state of the parts, but no explicit definition of state machine associated

with the entire service is required; the service state space is the Cartesian product of the state

spaces of its parts.

2.2.1.4 Scope and boundaries

Building a model of interdependent CIs typically requires multiple iterations of refinement:

starting with the definition of the services and how they are interdependent (input, output,

resources) at a higher level of abstraction and then gradually progressing by adding details, e.g.

DSBMs for the services judged to require a more detailed description. DSBMs themselves can

be refined multiple times – possibly driven by the results obtained from the previous iterations

of refinement.

Our practical experience with PIA has been with geographically compact studies – a critical

information infrastructure of an SME and a regional study of two interdependent CIs. The

particular types of modelled entities are dictated by the context of the study. These may include

a set of hardware components, e.g. the ones used in the telecommunication and in the power

grid CIs in the case of the regional system case that we started studying in IRRIIS [6] and the

entities of the information infrastructure of an SME in an ongoing case study.

2.2.2 Stage 2: Service-model development

In this phase, the dependence between the services modelled are identified: input/external

resource – output relationships, the components (e.g. of the same type such as a PC running the

same OS and application software) which may be subject to common mode/cause failure, or

stochastic associations are identified and marked as coupling points(see Figure 4) between the

services.

Figure 4: A Coupling point as a link between services in PIA

This stage is primarily concerned with the development of the inter-service models, i.e.

dependencies between the services. Some initial steps in defining the intra-service models,

however, may also be undertaken in this stage such as identifying the components, the internal

resources and assets of some services.

FINAL

Unclassified

Page 17 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

2.2.3 Stage 3: DBMS model development

This stage is focussed on developing the DSBM models (i.e. detailed inter-service models) for

those services chosen to be modelled in detail. The parts that make up the service (components,

assets, internal resources) defined in Stage 2 are now scrutinised and their associations

(deterministic and stochastic) are identified and represented in the DSBM.

At this stage we define the state-machines used to model the behaviour of the modelled entities.

The services for which no DSBM is defined will be associated with a state-machine which will

define the states and the state changes of the entire service.

In case a DSBM is associated with a service, the modeller is expected to define a separate state-

machine for each of the service’s parts. The state of a service in this case is represented by the

Cartesian product of the states of its parts.

2.2.4 Stage 4: Identification of dependencies between the services

At this stage the analysts proceeds by asking ‘what-if’ questions and exploring particular threat

models and scenarios which may cross the service boundaries.

Apart from the obvious dependencies (e.g., telecoms need power), which may be observed by

considering the functional association between entities, there are some other aspects of CIs that

need to be taken into account. The following are some key concepts that should be considered in

threat models and scenarios:

● Geographical dependencies. Vulnerabilities may lie not only in functional dependencies

between components, but also in the risk of, for example, an explosion occurring in a

nearby site. Recording the geographical information for each element is done in the stage of

Service Description (Section 2.2.1.3). At design time we can identify and record, e.g. using

a special link type “near to”. However, such an approach will be of limited value. It will

identify some and will miss many interdependencies due to geographical proximity. Our

experience indicates that a systematic study of the impact that geographical proximity will

have on interdependencies between the services will require a combination of static analysis

and (simulated) stochastic modelling whereby the anticipated disruptions (earthquakes,

flooding, sabotage, etc.) are instantiated at randomly chosen location and with a random

severity (e.g. magnitude of the earthquake). Implementing such an approach via static

analysis may be less effective than using a simulation with a randomly generated location of

the disruption and a randomly generated area affected by the disruption.

● Competition for resources. During a crisis, dependencies may become apparent between

entities that share the same resource(s). When more than one element reallocate their

resources (e.g. maintenance personnel), there may be competition between them. This may

lead to starvation of the particular resource, or the accumulation of dependencies to one

element, which will then be bearing the risk of causing multiple disruptions, should that fail

too.

● Resilience perspective. The failure of one element may have an indirect effect on another

during a crisis if it compromises a resource, a component or an asset that are critical to its

recovery. This is the kind of dependency that may not be visible during normal operation.

● Common mode/cause models. The modeller should also look for additional sources of

dependence such as common vulnerability between the components of services. An

FINAL

Unclassified

Page 18 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

example of common vulnerability is the use of several PCs of exactly the same type (the

same hardware specs, OS and set of applications). In this case one is justified in making a

modelling assumption that an actual failure or compromise of a component of the particular

type in one of the services implies that the other components of the same type in either the

same service or in other services become more likely to fail or be compromised than before

the failure of the first component occurred2.

The captured dependencies get modelled probabilistically in the form of stochastic associations,

which can occur between the services or components thereof depending on the level of

abstraction used. Each stochastic association is seen as a relationship between a parent and a

child: the state of the parent via the stochastic association affects the modelled stochastic

behaviour of the child. The stochastic association is characterised by its strength. For example,

using a stochastic association between parent A and child B, the modeller can define that the

rate of failure of B will increase 10-fold (in this case we say that the strength of the association

is set equal to 10) when A is in a failed state in comparison with the rate of failure B when A is

working correctly.

When considering modes of behaviour (i.e., how a failed or impaired element impacts the rest of

the model), the temporal aspect needs to be taken into account. Dependencies, especially when

considering competition for resources or recovery, may arise over time. Vulnerabilities may

start becoming obvious as resources or the capacity of a system reach their limits. Modelling

these temporal aspects is important.

Incident history should be taken into account when asking what-if questions, as previous

incidents can help unveil similar and/or related scenarios.

2.2.5 Stage 5: Probabilistic parameterisation

Our method of quantifying interdependencies is based on a combination of techniques outlined

in greater detail in [6]. A key problem is to define mechanisms of association between distinct

MEs, whereby the model is given a structure that is realistically different from the rather limited

concept of a number of state-holding MEs, embedded in a common simulated time line,

behaving independently, as parallel stochastic functions of simulated time. Rather, we require a

definition of a multivariate stochastic process of states of the MEs, representing the MEs’

interactions with one another: interaction which may be deterministic (discussed in stage 7), or

which may be probabilistic in the sense that the states of MEs, and perhaps also transient

environmental stresses and perturbations, will influence the risks to which other MEs are subject

in precisely defined ways. Every event that an ME may manifest, will take the form of a

transition between two states of its assigned state space. As a result, the stochastic process to be

modelled is of significant complexity, which makes Monte Carlo simulation [10] the preferred

model analysis technique. We have built a generic tool, based around the simulation solver of

the Möbius SAN tool [3][12] (see Appendix A for an overview of the tool), augmented by

additional code of our own design, to conduct such simulations. These take the form of

continuous time, discrete event driven simulations of CI behaviour and interaction, represented

as sequences of changing states of MEs.

We use the notion of a type of modelling entity (TME). A separate state-machine is defined for

every TME. The modelled system, however, may include multiple instances of the same TME,

2 We note in passing that elsewhere we provided an extensive justification of the plausibility of this

assumption. It is common knowledge in safety-critical area to consider common-mode/cause failures,

which informed the concept of stochastic association deployed in PIA.

FINAL

Unclassified

Page 19 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

which will share the same state-machine (number of states and transitions between the states).

The probabilistic description of the instances, however, may be unique – the SAN model

associated with the instances of TME may be different (i.e. the probability distributions

associated with the transitions of the state-machines) for the different instances.

At this stage the modeller provides probabilistic parameters related to the transition parameters

of the state-machines which model the behaviour of the modelled entities. The modeller can

specify a unique set of parameters even if two modelling entities are of the same type (i.e. share

the same TME). The following set of parameters must be provided:

● the model of transitions (competing risks is the default for SAN) and unless there are good

reasons to use a different model we would use the default

● the type of distributions which characterise the transitions from the current state to any

possible next state (exponential, Weibull, or other probability distributions)

● the parameters of the specified distribution (e.g. the rate parameter of an exponential

distribution).

Also parameterised at this stage are the stochastic associations between the MEs, i.e. the

associations’ strengths. In the current implementation of the toolkit we assume that the effects

of multiple parents of the same child are independent of each other. The design of the toolkit,

however, allows for implementing non-independent stochastic associations.

Once the parameterisation is completed, the modeller can study the effect of systematic

parameter variation on the behaviour of the model as a whole. For each assignment of parameter

values, an experiment is undertaken. This allows the effect of the parameter on the variability of

defined CIs properties, e.g. such as the frequency of large incident cascades or outages of

service, to be obtained.

2.2.6 Stage 6: (optional) Adding deterministic models of behaviour

At this stage the modeller may decide to extend the model description by adding deterministic

models which increase the fidelity of simulation and will be difficult to represent using the

stochastic model only. For instance, the use of such models will allow for propagating in detail

the consequences of failures or repairs of the modelled entities. Good examples of deterministic

models are the flow models (e.g. DC/AC power flow models, various telecommunication traffic

models, etc.).

There are many ways of adding deterministic models to a Monte Carlo simulator. In the past we

used tight coupling between the probabilistic and the deterministic models [6] – the code

implementing the different models was linked in the same simulation application. In PIA:FARA

we designed a pluggable architecture of the executables (i.e. simulators which can be deployed

on the Execution Engine). The executable only contains the functionality of the probabilistic

model, but offers API for adding at run-time any number of pre-existing pluggable modules

(available as shared loadable libraries). A deterministic model, developed to be compliant with

the pluggable API can be added to the list of modules to be loaded and used by the executable at

run time. Details on the architecture and a more detailed description of how the modeller can

configure an executable to use a set of plug-ins are given further in this document (see Sections

3.3 and 3.4).

FINAL

Unclassified

Page 20 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

A point worth mentioning here is that although the pluggable architecture was designed with

deterministic plug-ins in mind, it can be used to implement any functionality, including

probabilistic extensions, which are difficult to define statically. For instance, the model of

environmental disturbances (earthquakes, flooding, etc.) discussed in Section 2.2.4 may be

modelled using plug-ins which would determine at random the location and the magnitude of

the event, thus making it possible to model the disturbance with a simple state-machine with

states (active, inactive).

2.2.7 Stage 7: Exploratory interdependency analysis

In order to carry out the exploratory interdependency analysis, Monte Carlo simulations [10] are

used. For each experiment, a number of replications of the evolution of the model, using

identical parameters, over a defined interval of simulated time, may be conducted. One

replication of an experiment differs from another solely in that the random number generator is

seeded at a different starting point. Then statistical sampling theory may be used to study the

distribution properties of system measures of particular interest for each set of assigned

parameter values.

The focus of the studies is defined in the so called reward variables, the values of which are

computed at simulation time over the states of the SAN model implemented by a Monte Carlo

simulator. The same model can be executed with a number of rewards. There are two groups of

simulation activities:

● Calculating statistics on the defined rewards based on multiple repetitions of a simulation,

e.g. comparison of distributions of important CI dependability summary statistics between

experiments with different parameterisations and/or level of abstraction. Typical examples

here are:

● Sensitivity analysis with respect to a particular model parameter (e.g. how the variation

of the strength of stochastic association affects the results)

● Distribution of cascades (i.e. outages that include more than one modelling entity)

● Using the simulation traces obtained from the history of a single experiment over a long

interval of simulated time may be searched for interesting features. Examples of analyses of

this kind include:

● Searching for cascade failures and scrutinise these to understand better the

“mechanisms” of cascades or use these in training.

● Visualisation of the trace (e.g. with the Google Earth application [8]) so that one can

“get a feel” about how the behaviour/operability of the modelled system might vary

over time.

FINAL

Unclassified

Page 21 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

3 Tool support: PIA Toolkit

The qualitative part of the method described in this document could be applied without the use

of tools. However, such an activity would be both more resource intensive and failure prone,

since e.g., the application of the method will need to be performed specifically for each new

PIA study without a possibility of reuse. In any case, the quantitative part does require the use

of tools.

In the past we relied on two separate tools: ASCE for the qualitative part of the analysis and

Möbius SAN for the quantitative part (a short description of each tool is given in Appendix A).

The main objective for WP2 in the PIA:FARA project was to develop a toolkit which would

allow a modeller to progress seamlessly from qualitative to quantitative interdependency

analysis. More specifically, in WP2 we set out to achieve the following:

● Development of models of interdependency between CIs in a graphical environment. This is

achieved with the PIA Designer tool which:

1. allows the modeller to switch between different views dealing with the different stages

of modelling as described in Section 2. This includes being able to easily change the

modelling assumptions and the model parameters used for the quantitative analysis.

2. offers support of the pluggable architecture of the run-time engine (i.e., execution

engine, see the following paragraph) whereby an executable (to conduct quantitative

interdependency analysis by simulation) would be configured to use the simulation

plug-ins needed in a study before deployment of the simulation executable on the run-

time engine.

● Performance of probabilistic analyses based on the graphical models developed with the

PIA Designer. This is achieved with the software tool referred to as Execution Engine,
which has an architecture that separates the quantitative analysis tasks common to all PIA

studies (such as SAN models of the modelled entities and their stochastic associations) from

the specifics of the particular study (e.g., optional add-ons needed only in some PIA studies,

specific parameterisations of the stochastic associations, etc.). This objective was achieved

by adopting a pluggable architecture in which software modules compliant with the

architecture can be easily added to a study by configuring the simulation study.

Below are some of the ways in which the PIA Toolkit can enhance the application of the PIA

approach:

● Visualisation. PIA models are enhanced with graphical representation. Visualisation can

assist in the visual exploration of system dependencies and, when combined with

geographical information, support the thought process for considering disaster scenarios

such as flood or earthquake. ASCE has a powerful and flexible graphical modelling

environment; in addition, PIA Designer has the capability to export the modelled system to

Google Earth [9] application if geographical coordinates have been entered as attributes

(status fields in ASCE terminology) of the constituent model entities. Visualisation can also

be used to facilitate communication among different analysts and other stakeholders as they

are looking at the graphical models. Model views created in PIA Designer are hereafter also

referred to as ASCE networks (adopting the jargon used by the ASCE tool developers and

modellers).

FINAL

Unclassified

Page 22 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

● Analysis automation. Mathematical modelling is aided, and parts of it are automated

through the integration of the tools for qualitative and quantitative analysis in the PIA

Toolkit.

A significant part of the PIA Toolkit development has involved the work on integration of the

PIA Designer and the Execution Engine. This work aims to deliver a seamless integration

between the two parts of the toolkit—the user interacts with PIA Designer as the front-end of

the toolkit, with only the minimal need for interaction with the Möbius-based execution engine.

After the user finishes with the PIA model development in PIA Designer, the necessary

information is communicated to the Execution Engine, so that probabilistic model is initialised

and the simulation is executed.

In this section we give a description of how the PIA Toolkit is used to support the PIA method

with the benefits of visualisation and enhanced analysis features, as well as present the

architecture of the toolkit.

3.1 PIA Toolkit Usage Patterns

In general, we envisage two approaches to development of PIA models:

● Interactive analysis performed “from scratch”, whereby the analyst is building the PIA

model afresh by going through the PIA stages as described in Section 2.2. In this way, the

PIA Toolkit user would generate the model views manually, in a step-by-step manner:

creating the necessary physical entities belonging to the CI services under scrutiny,

assigning the required parameter values to these entities, creating and parameterising

stochastic associations etc.

● Automated analysis, whereby the analyst is using pre-existing data sets about the modelled

system to programmatically produce initial graphical representations of it. This approach is

suitable when, for example, a description of a real incident is available. In such cases, some

software utilities that are part of the PIA Toolkit can help generate ASCE networks

belonging to a particular PIA study.

In both cases, the PIA stages as defined in Section 2.2 are followed. However, depending on the

amount and the format of the data sets available, the analyst will have to go through a series of

steps where interaction with the tools will be required. It should be noted that these two PIA

development approaches are not necessarily mutually exclusive, i.e. the Interactive and

Automated analysis might be combined inside a single PIA study.

3.2 Overview of PIA workflow

This sub-section provides a software-centred description of the steps taken when using the PIA

Designer to accomplish a series of tasks necessary for the development of a PIA model. It

explains typical usage of the PIA Designer software.

The user of PIA Designer, PIA Analyst, can generate two broad categories of the PIA model

representations, i.e. model views: Intra- and Inter-CI service views. The former depicts the

associations between the entities of the same CI service, while the latter depicts the associations

across CI service boundaries. An orthogonal categorisation of the model views is as follows:

● Physical Network (PN) view, which depicts the physical entities (physical nodes or physical

links) of the interacting CI services (e.g. when modelling a PN view of an electrical power

FINAL

Unclassified

Page 23 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

transmission service, we would for example include high-voltage cabins as nodes and high-

voltage trunks as links among the other kinds of entities the service might consist of).

● Stochastic Associations (SA) view, which is a representation of the stochastic associations

(see Section 2.2 for an explanation of the term) between the model entities.

The interaction between the PIA Designer software and its user consists of the following

sequence of steps:

Step 1. Create Notational Schemas. By executing this step the PIA Analyst creates the

necessary ASCE schemas that are used as the basis for developing ASCE networks

(see Appendix A) used in the PIA model. For example, a notation for describing the

Intra-PN view of each service modelled in the PIA study will need to be developed.

Step 2. Create PIA Project network. PIA Analyst then creates PIA Project network which is

used to maintain the references to all ASCE networks belonging to a particular PIA

model. Every PIA Project has a default set of ASCE networks. The set of default

networks includes: Inter-PN, Inter-SA, StateTransitions and SimulationPlugins
networks. For more information see sub-section C.1 in Appendix C.

Step 3. Populate State Transitions network. The user creates the state machines for all the

entity kinds, i.e., all TMEs (see Stage 5 in Section 2.2) used in the particular PIA

model. For example, if the PIA was applied to a Public Switched Telephone Network

(PSTN) CI, then the set of TMEs could include the following: Backbone Exchange,

Transit Exchange, Local Exchange etc.

A state machine for each TME consists of the set of states and the associated state

transitions. Each state transition needs to be parameterised. The state transition

parameters include the i) Function_type – the family of functions this state transition

belongs to, ii) Function_name – the particular function used for the state transition and

iii) Function_parameters – the parameters that the state transition function accepts.

Initially, every entity instance of a particular TME takes on the default state transitions

values. The PIA Analyst can, however, specify a set of parameters for a particular

entity instance which is different than the default one. For more information see sub-

section C.2 in Appendix C.

Step 4. Populate Physical Network (PN) networks. This step consists of the following two

activities:

Populate Intra PN networks. This is the central point of the development, or

refinement, of the PIA model of any of the services: it processes the topology

information of physical networks of each modelled CI service to create respective

graphical representations (i.e., ASCE networks). Each such network is based on the

notation, i.e., ASCE schema, created in Step 1. These networks consist of a possibly

large number of entities and thus the visual representation aids in comprehending their

complexity.

Populate Inter PN networks. This activity is based on the definition of the coupling

points – the model entities which represent interfaces between different CI services

(e.g., a high-voltage-cabin is a coupling point of a Power Transmission service

supplying the power to a base transceiver station of a Telecommunication GSM

service). The coupling points are defined for both PN and SA model views. According

to the PIA method, there are two interpretations of the term coupling point: when

considering PN view the term defines if an entity is physically connected to, or more

FINAL

Unclassified

Page 24 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

precisely causally affects, at least one entity from another service, while in an SA

ASCE network the attribute defines if an entity is stochastically associated with at

least one entity from another service (see Section 2.1 for further explanation of the

coupling points term).

For more information about this step see sub-section C.3 in Appendix C.

Step 5. Populate Stochastic Associations (SA) networks. This step includes the following:

Populate Intra SA networks. During the execution of this step the stochastic

associations between the entities of the particular, i.e., “native”, CI service are

identified and the values of the parameters of each association are specified. In

addition, in the Intra-SA view the stochastic associations affecting entities belonging to

other, i.e. “foreign” CI services are identified if an entity, say EN, from the native CI

stochastically affects an entity, say EF, from a foreign service, i.e., EN is stochastic

“parent” of EF (see Section 2.2). Each service from the underlying PIA model has its

own Intra-SA view. The underlying ASCE schema of any Intra-SA view is, however,

general-purpose – it is shared among all PIA studies.

Populate Inter SA networks. Please see the description of the sub-step Populate Inter

PN networks (Step 4) above.

For more information see sub-section C.4 in Appendix C.

Step 6. Configuration of the Simulation Plug-ins. This step allows for parameterisation of the

simulation plug-ins which can be embedded in the probabilistic model execution.

A simulation plug-in3 is a standalone piece of code, i.e., a dynamically linked library,

which extends the functionality of the PIA simulation model template, which is the

central part of the PIA Toolkit execution engine. The categories of simulation plug-ins

are as follows: Initialisation, Deterministic, Trace, Rate and Reward. In each PIA

model there must exists one, and only one, Initialisation plug-in, and there are zero to

many simulation plug-ins belonging to the other categories. The Initialisation plug-in

is used for the initialisation of the PIA simulation model template according to the

needs of the particular PIA study.

For more information see sub-section C.5 in Appendix C.

Step 7. Creation and configuration of the PIA simulation study. The data about the PIA model

is gathered from the respective model views, by examining the corresponding ASCE

networks, and passed to the Möbius-based execution engine. These data are supplied

in a particular format and serve the purpose of inputs to the probabilistic model

simulation.

Examination and data gathering from the model views (ASCE networks) is performed

using a separate PIA Toolkit component developed in Java programming language.

For more information see sub-section C.6 in Appendix C.

Further explanation of the use of the PIA Designer tool is given in its User Manual document in

the Appendix C.

3 The term plug-in is used for describing different parts of the PIA Toolkit. Beside the simulation plug-ins

there are ASCE-based PIA Designer plug-ins, which are standalone pieces of a scripting language code

that enhance the functionality of the ASCE engine. These ASCE-based plug-ins have been used

extensively for implementing the functionality of the PIA Designer tool.

FINAL

Unclassified

Page 25 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

3.3 PIA Toolkit Execution Engine

The back-end part of the PIA Toolkit consists of the custom-built execution engine which is

based on Möbius tool simulation solver (see Appendix A, as well as the deliverables produced

as part of the IRRIIS project [6], for details about the Möbius tool). The execution engine is

based on the concept of continuous time, discrete event driven Monte Carlo simulation.

The central part of the execution engine is the PIA simulation template, a general-purpose

probabilistic model implemented in the Möbius tool, which is used as the basis for generating an

arbitrary PIA probabilistic model. The data obtained from the qualitative part of the PIA model,

developed in the PIA Designer, is used to initialise the PIA simulation template in the specific

way. These data include information about particular topology, stochastic associations and state

transitions of the underlying PIA model.

The main characteristic of the PIA simulation template is its pluggable architecture. Using this

kind of architecture the functionality of the template is enhanced and augmented through

simulation plug-ins – additional pieces of standalone code distributed in the form of

dynamically shared libraries (in the terminology adopted by Microsoft Windows they are

referred to as dynamically linked libraries (dlls)). Each simulation plug-in has an associated data

file with it, which is used for the configuration of the respective dll. There exist different

categories of simulation plug-ins, differentiated based on its purpose. Simulation plug-ins are

used for:

● initialising the probabilistic model in the way specific to a particular PIA model. This type

of simulation plug-ins belongs to the Initialisation category.

● augmenting and/or enhancing the functionality of the simulation template. There are several

categories of this type of simulation plug-ins: Deterministic, Trace and Reward. A short

description of each category is provided below.

Deterministic plug-ins implement engineering /deterministic models which are embedded in the

generic model of stochastic dependence – they can influence the “dynamics” of a subset of

model entities in a specified way. For example, a deterministic model describes how a subset of

model entities instantaneously change state values of another subset of model entities (see Stage

6 of the PIA method described in Section 2 for further description of the deterministic models).

Examples of deterministic plug-ins are as follows: Direct Current (DC) approximates power

flow model for power flow components, or “flattening” of the electrical battery after a fixed

period of time, etc.

Trace plug-ins augment the functionality of generating the simulation traces of particular failure

scenarios. The simulation traces are computer generated formalised text descriptions of a

sequence of discrete events in simulated time. They are occasionally found to contain complex

cascading event sequences. The trace generation feature can be enhanced with the

complementary visualisation of the simulation event sequences, in order to aid the

understanding of model behaviour. Also, the trace and the associated visualisation should help

in examining the (large-scale) interdependency effects between CIs. After a careful review, for

the current purposes, we decided to use the Google Earth application to visualise these traces.

Google Earth [8] offers a rich feature set for displaying 2D and 3D images of varying resolution

of the Earth's surface and as such it enables a powerful graphical interface for showing state

changes of each of the CI model entities.

FINAL

Unclassified

Page 26 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Reward simulation plug-ins enhance the functionality of the template in regard to Möbius

reward variables. The Möbius-based execution engine analyses the constructed models to

estimate parameters of so-called reward function. Analysts are free to define an infinite variety

of reward functions (or rewards) once a model has been defined and implemented using the

Möbius-based execution engine. These rewards are functions on the simulator event sequence

for one replication of a Möbius simulation of a model built using this tool. Essentially most such

reward functions will usually either count transitions between subsets of the model’s state

space; or accumulate the total simulated time spent within some subset of the input space; or

integrate some step function of time defined as a function of the current model state.

3.4 PIA Toolkit Architecture

A schematic representation of the PIA Toolkit architecture is given in Figure 5, as a UML

Component diagram. The component diagram displays the software execution environment of

the whole PIA toolkit. It models the software with concrete elements in the physical world that

are the result of a development process and reveals software configuration issues through

dependency relationships.

PIA Designer consists of the following components:

● An instance of the ASCE tool executable,

● 15 PIA ASCE plug-ins which implement the functionally necessary for the qualitative PIA.

The plug-ins are implemented using JavaScript programming language, with the exception

of one of them, PIA_InterServiceLinks.xml, which is implemented using VBscript language.

The plugins enable the PIA analyst to create the PIA model views, each one of which uses a

PIA ASCE schema as its underlying notation. The ASCE plug-in referred to as

PIA_SimulationPluginsConfigurator.xml is used for the creation of a subset of the files used

as inputs to the PIA execution environment – these files are used for the configuration of the

simulation plug-ins used in the simulation model. There are 3 such files: Plugin paths and
names, Legacy Initialize Nodes Plugin Data, and Plugins ID mappings.

● Seven PIA ASCE schema files which are used as the underlying notations for the various

PIA model views (ASCE networks):

● PIA.xml, PIA_InterCIPN.xml, PIA_InterCISA.xml, PIA_IntraSA.xml, PIA_Project.xml,
PIA_SimulationPlugins.xml, PIA_StateTransitions.xml.

These ASCE schemas are general–purpose. They are to be used in an arbitrary PIA study. In

addition to these 7 schemas, PIA assumes that a separate schema for Intra-PN view is

created for each service modelled in a particular PIA study. In one of the case-studies used

throughout the PIA:FARA project, we have created 2 such schemas: PIA_PowerPN.xml and
PIA_TelcoPN.xml, which are used for graphically representing Power and Telco CI service,

respectively, of the Rome case-study.

● The PIA Simulation Study Generator utility, which examines the ASCE networks created by

the PIA ASCE plug-ins and creates 3 input files necessary for the execution of the PIA

simulation: i) ServiceTimesGen file – this file contains the data about the entities used in the

PIA study and the corresponding topology, the data about the state transitions of each entity

instance, and the values of the parent scaling factors for each entity instance; ii)

RomeCMGen – this file contains the information about the direction of the stochastic

associations between the entities of the PIA study – for each model entity (“parent”) the set

FINAL

Unclassified

Page 27 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

of entities it stochastically influences (“children”) is provided; and iii) ServiceKinds – this

file contains the information about the TMEs (types of the modelling entities), i.e., entity

kinds, used in the PIA study.

The PIA Execution Engine uses the files generated by the PIA Designer as its inputs. This part

of the PIA toolkit includes the following components:

● PIA simulation model template, which is initialised in the specific way for each PIA study.

The initialisation data are obtained from the 3 input files generated by the PIA Designer:

ServiceTimesGen, RomeCMGen and ServiceKinds.

● Exactly one simulation plug-in belonging to the Initialisation category. This plug-in

implements the initialisation of the PIA simulation model template for a particular PIA

study according to the information supplied in the three input files. The data file for the

initialisation plug-in contains the absolute path to the directory of the simulation model

where the three input files are located.

● (Optional) A set of simulation plug-ins belonging to the other categories. Each of these

plug-ins has a data file associated to it. Also, there is another file specific to the simulation

plug-ins belonging to the Deterministic category. The file, titled Plugins ID mappings,
contains the mappings between the entities used in the PIA study and the entities used in

each of the deterministic plug-ins.

FINAL

Unclassified

D/501/12102/2 v2.0 15 November, 2010

Figure 5: UML component diagram of the PIA toolkit

FINAL

Unclassified

D/501/12102/2 v2.0 15 November, 2010

3.5 Tool support for the service-level model

In addition to the ASCE plug-ins used for the development of the PIA Designer tool (see

Section 3.4), we have implemented a couple of ASCE plug-ins which aid the creation of the

model of interacting services (service-level model).

As discussed in Section 2.2.4, the identification of dependencies between CIs lies upon the

careful consideration of the relationships between model entities, and a thoughtful process of

asking what-if questions and applying scenarios to the model.

Here, the tool and the effort placed in providing the definitions and the service model begin to

produce results: assisted by the visualisation of ASCE’s graphical environment, the user can

explore dependencies by examining the network and can communicate scenarios and findings

with colleagues. In addition, the PIA Toolkit also comes with two ASCE plug-ins that can be

used to enhance this investigation. These are discussed in the following sub-sections.

3.5.1 Interconnectivity matrix plug-in

Figure 6 shows a screenshot of the Interconnectivity matrix plugin. The plugin can be used to

present in a tabular format the various links between the model entities devised in service-level

model. This can be used to improve the visualisation of associations and dependencies between

services.

Figure 6: Interconnectivity matrix plug-in

Furthermore, the blank cells in the matrix indicate that there is no dependency recorded between

the entities in the corresponding pair. The user can comment on the justification for why there is

no dependency between the two entities.

The interconnectivity matrix can be exported to a Microsoft Excel spreadsheet.

FINAL

Unclassified

Page 30 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

3.5.2 Google Earth plug-in

In order to consider the aspect of geographical dependencies, Geographical Information

Systems (GIS) need to be used. Having entered the geographical coordinates for each entity

modelled in the ASCE network, invoking the Google Earth plug-in will result in a map being

produced which represents nodes in the model and their service status (see Figure 7).

Figure 7: Google Earth plugin

These two plug-ins, along with the ASCE graphical environment, can facilitate the qualitative

examination and investigation of dependencies. Once the system has been built, the analyst can

begin to ask what-if questions, and reconfigure the model parameters to observe changes in the

system behaviour. As discussed in Section 2.2, the information about the system, previous

incidents and the threat agents will shape a threat model that can drive this exercise.

4 Conclusions

This report presented the PIA approach and described how the associated toolkit is to be used to

carry out a PIA study. This section summarises the benefits of using this approach.

PIA is a lightweight, fairly quick and easy, affordable approach to identifying and analysing

interdependencies in complex systems. The analyst, with very low start-up costs, can model the

entire system under investigation, starting from a high level of abstraction, and taking a modular

approach to model development. With PIA, the analyst will be able to identify, analyse and

quantify the risk of interdependency down to a physical component level.

Given the complexity and size of CI systems and the high costs required for such analyses, a

preliminary, affordable approach such as PIA can become very useful in identifying further

modelling and analysis requirements: for instance, a PIA may identify a critical vulnerability in

a segment of the infrastructure which will need to be modelled with high fidelity and/or real

time. This may not be a requirement, however, for the entire inter-service model. PIA can

FINAL

Unclassified

Page 31 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

identify further requirements for specific elements of the system, whilst maintaining a good

understanding of the entire system within the wider scope of the models. Given the costs of such

modelling, carefully deciding what to model will support making the right decisions in terms of

resource allocation, hardware performance requirements and investment overall.

The WP2 of the PIA:FARA project delivered a tool-supported method, along with supporting

guidance for CI interdependency analysis. Besides the use of the method on a case study based

on the incident near Rome, Italy (see Appendix B), the method has also been applied internally

within the project on another case-study which models an SME’s information infrastructure.

The case studies were important since they served as a validation for the method and the tools.

They also helped the PIA developers to identify the areas of improvement and further

development.

FINAL

Unclassified

Page 32 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

5 Glossary

Term /
abbreviation

Explanation

AFI Abstract Functional Interface

API Application Programming Interface

ASCE Assurance and Safety Case Environment, Adelard

http://www.adelard.com/web/hnav/ASCE/index.html

CI Critical Infrastructure

Coupling point A model entity that represents an interface between different CI services

Dependency Single direction dependencies of one infrastructure on another

DSBM Detailed Service Behaviour Models

GIS Geographical Information Systems

IA Interdependency analysis

II Information Infrastructure

IRRIIS Integrated Risk Reduction of Information-based Infrastructure Systems

LLP Limited Liability Partnership

Möbius A software tool for modelling the behaviour of complex systems, developed

by the PERFORM research group from the University of Illinois at Urbana-

Champaign www.mobius.illinois.edu/

PC Personal Computer

PERFORM Performability Engineering Research Group

PIA Preliminary Interdependency Analysis

PIA Toolkit A set of software tools to support the PIA method

PSTN Public Switched Telephone Network

PVS PVS is a specification language integrated with support tools and a theorem

prover. See http://pvs.csl.sri.com

SAN Stochastic association networks are mathematical modelling formalism

which provide stochastic extensions to Petri nets and are typically used for

performance and dependability evaluation.

SMEs Small-to-Medium Enterprises

State Model entities can have a variety of states that i) describe their different

phases of operation (e.g. start-up, operating, shutdown, maintenance), ii)

describe their level of operability (e.g. OK, impaired, failed), iii) indicate

characteristics of the commodities supplied (e.g. power phase angle for

electrical power services). The definition of the possible states/modes that a

PIA model entity can occupy is necessary for the identification and analysis

of (inter)dependencies between model entities.

State machine A mathematical abstraction which describes the behaviour of model (entity)

and is composed of a finite number of states and state transitions.

State transition The event of a state change of a particular model entity

TSB Technology Strategy Board, see www.innovateuk.org/

FINAL

Unclassified

Page 33 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

UML Unified Modelling Language is a standardised general-purpose modelling

language in the field of software engineering. http://www.uml.org/

XML Extensible Mark-up Language

6 Bibliography

[1] Bloomfield R, Chozos N, and Nobles P, “Infrastructure interdependency analysis:

Requirements, capabilities and strategy”. Adelard document reference: d418/12101/3,

issue 1, 2009, available for download at http://www.csr.city.ac.uk/projects/cetifs.html

[2] PIA: FARA project, WP 1 deliverable, “Industrial Sector-Based Modelling of 1337

Critical Infrastructure Incidents in the European Union”, Adelard document reference

D/496/12102/1, Issue 1, April 2010

[3] Courtney T, Derisavi S, Lam V, and Sanders WH. “The Möbius Modeling

Environment”. Tools of the 2003 Illinois International Multiconference on Measurement,

Modelling, and Evaluation of Computer-Communication Systems, Universität Dortmund,

Fachbereich Informatik, 2003

[4] Adelard LLP, Assurance and Safety Case Environment (ASCE) tool,

http://www.adelard.com/web/hnav/ASCE/index.html

[5] Idaho National Laboratory, “Critical Infrastructure Interdependency Modeling: A Survey

of U.S. and International Research”, 2006,

www.inl.gov/technicalpublications/Documents/3489532.pdf

[6] EU project IRRIIS, “Integrated Risk Reduction of Information-based Infrastructure

Systems, EU project”, 2006–2009, http://www.irriis.org

[7] Ciancamerla, E. and M. Minichino, A Mini, Telco-blackout Impacting Other

Infrastructures, Including ACEA Power Grid, 2007, ENEA.Ciancamerla, E. and M.

Minichino 2007

[8] Google, Google Earth, http://earth.google.co.uk/

[9] Computer Science Laboratory, PVS Specification and Verification System,

http://pvs.csl.sri.com

[10] Hammersley, JM, Handscomb, DC Monte Carlo Methods. London: Methuen, 1975

[11] Object Oriented Group, http://www.bpmn.org/

[12] University of Illinois at Urbana-Champaign, Mobius, http://www.mobius.illinois.edu/

FINAL

Unclassified

Page 34 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Appendix A An overview of the ASCE and Möbius tools

A.1 Assurance and Safety Case Environment (ASCE)

ASCE is an information management and representation tool that provides a flexible, dynamic

and customisable graphical environment with highly extensible analytical capability. The tool is

an industry standard for the UK Ministry of Defence, used widely among nuclear and aviation

industries for the creation and management of safety cases.

ASCE is highly customisable software product: on top of its underlying engine lies a flexible

graphical environment, which can be used to design or modify graphical notations (referred to

as ASCE schemas). These schemas allow ASCE to be used in a wide range of business contexts

where there is a benefit in explicitly structuring information into meaningful parts according to a

particular notation. ASCE networks are collections of nodes and links created according to a

particular ASCE schema, and visualised using the ASCE display engine.

Creating nodes and links is made simple and intuitive through the use of a drag-and-drop

feature. ASCE has a powerful, easy-to-use node editor which allows users to import text from

standard word processing applications. It supports text formatting, tables and heading styles to

show the logical structure of the document.

In addition, the functionality can be extended with the use of “plugins”– pieces of additional

code, written in scripting languages such as VBscript or JavaScript, which are configurable by

the user: a plugin is either loaded or disabled depending on the needs of the particular user.

Examples of what functionality is achievable with the plugins are as follows:

● connecting to third party tools and file formats, interrogate them and importing the data

● exporting data about ASCE networks

● popup windows to present and collect information from the user

● analysing the structure of ASCE networks

A comprehensive description of the ASCE tool can be found on the Adelard website [4].

ASCE-based support in the PIA Designer consist of a set schemas and associated networks

which model the various views of interdependent CIs, e.g. physical network view, stochastic

association view etc., each one of which is represented with a particular ASCE network. Also a

number of ASCE plug-ins have been developed to support the application of the PIA method.

A.2 Möbius

Möbius™ is a software tool for modelling the behaviour of complex systems. The tool is based

on the framework which allows for formal mathematical specification of model construction

and execution. The tool is extensible in the sense that new modelling formalisms and model

solution methods can be easily integrated in this broad framework. The core of the

implementation of this framework is abstract functional interface (AFI), which includes a set of

functions that enables both the communication between models, as well as the communication

between models and model solvers.

Models can be solved either analytically/numerically or by simulation. Source code in C++

programming language is generated and compiled for each model, and the object files are

FINAL

Unclassified

Page 35 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

packaged to form a library archive. These libraries are linked together along with the tool's base

libraries to form the executable for the solver. The executable is run to generate the results. The

base libraries implement the components of the particular model formalism, the AFI, and the

solver algorithms.

Although the tool was originally developed for studying the reliability, availability, and

performance of computer and network systems, its use has expanded significantly. Time- and

space-efficient discrete-event simulation and numerical solution, based on Markov processes,

are both supported.

The tool was developed, and is maintained, by the Performability Engineering Research Group

(PERFORM) in the Centre for Reliable and High-Performance Computing at the University of

Illinois at Urbana-Champaign. More information about the tool can be obtained from the

webpage at [12].

FINAL

Unclassified

Page 36 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Appendix B Rome case-study – an example of applying the PIA method

One of the case-studies used in the PIA:FARA project for further development and validation of

the PIA method is based on the real incident that occurred in Rome, Italy. The incident affected

telecommunications, and subsequently the power, CI. The case-study is referred to as Rome
scenario. Further information about the incident can be found in [6][7].

One of the purposes of this analysis is to carry out an in-depth analysis of a major, nationwide,

complex incident, and identify other likely failure modes that could have emerged in this case.

There are two critical infrastructures modelled in the Rome scenario: Power and Telco. Power

CI consists of 2 CI services: Transmission and Distribution, while the Telco contains 3 services:

Public Switched Telephone Network (PSTN), Global System for Mobile Communications

(GSM) network and Synchronous Digital Hierarchy (SDH) network. For each of the CI services

two ASCE networks are created:

• The first depicts Intra-service Physical Network view; a part of one such network, the

Power Transmission PN, is given in Figure 9.

• The second depicts Intra-service Stochastic Association view; one such example, the

Telco SDH SA network, is given in Figure 10.

In Figure 9 some of the entity types of Power CI service are shown: hvc – high voltage cabin

(represented by the blue square), swt – power switch (represented by the purple square), high

voltage trunk (represented by the blue link), copper cable (represented by the orange link). The

window on the right presents the attributes, i.e. ASCE status-fields, of one of the depicted nodes

– P13hvc.

The entity types of Telco CI service, which are depicted in Figure 10 as ASCE nodes, are as

follows: physical nodes (such as T16adm, an add-drop multiplexer) and physical links (such as

ring6-T28adm-T30adm, an add-drop multiplexer ring). The ASCE links indicate the stochastic

associations between the entities of the SDH service. The associations are all reciprocal for

depicted subset of entities of the particular CI service – this indicates interdependency between

the nodes of each node pair. But, surely, there is a possibility of unidirectional stochastic

associations. The window on the right presents the attributes, i.e. ASCE status-fields, of one of

the depicted nodes – T16adm.

Besides showing a CI service, it is also possible to generate an ASCE network representing a

PN model view or an SA model view of the whole CI (Power or Telco).

Each of the model entities has an associated set of state transitions based on the corresponding

state space definition. State transitions of every model entity are represented with a state

machine diagram implemented in ASCE (one such state machine is given in Figure 8), in which

the nodes represent state values and links represent state transitions. Each state transition is

characterised with the following attributes: a function that calculates the probability of that state

transition, the type/family of the particular function, and the parameter values needed for the

calculation of the function. In this example, the size of the entity’s state space is 2 (the state

values are “Failed” and “OK”). The “OK-to-Failed” state transition (pointed from by the red

arrow) has the attribute values as follows: the type of the function is: CompetingRisks, the

function name is: Telco_node_sojourn_time and the function parameter values are:

5,4:4.56308e-06.

FINAL

Unclassified

Page 37 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

st

ststhas

st

has
T23lex

ENTITY

OK

STATE

Failed

STATE

st

ststhas

st

has
T23lex

ENTITY

OK

STATE

Failed

STATE

Figure 8: A state machine diagram for a local telephone exchange and the links status-
fields editor plug-in

An ASCE plug-in has been developed to provide the option of editing the state transition

parameters (see Figure 8). The plug-in is named Links status-fields editor and is an example of

use of the powerful ASCE plug-ins, which add functionality beyond that provided by the core

ASCE product. This plug-in analyses the structure of the underlying ASCE network and the

associated schema, and displays the status field values of the selected link.

Figure 9: Part of the intra-service PN view of the Power Transmission service

FINAL

Unclassified

Page 38 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Figure 10: A part of the SAN of the Telco SDH service

Figure 11: The “Node search” plug-in

Beside the plug-in Links status-fields editor, several other ASCE plug-ins have been

implemented to facilitate the development and refinement of probabilistic models. Some of the

plug-ins are as follows:

● “Node search” (see Figure 11) – it allows for the ASCE nodes’ collection to be examined

based on a search term of choice, such as userID, or userTitle. After the PIA analyst enters

the value to be searched, the nodes of the underlying network are examined and, if a match

is found, the matched node is navigated to and selected. This plug-in, thus, allows for easier

interactive analysis of large topologies.

FINAL

Unclassified

Page 39 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

● “Propagate network change” – it allows for a change in one ASCE network to be

propagated to another. For example, when the PIA analyst creates a new node in an intra-

service physical network, this change is automatically reflected in the corresponding state

transition network by creating the state machine for the newly introduced model entity.

FINAL

Unclassified

Page 40 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Appendix C PIA Designer User Manual

This Appendix describes the necessary steps for creating an arbitrary study in ASCE-based PIA
Designer tool.

The prerequisites for creating a PIA Project using the PIA Designer tool are as follows:

● A compatible ASCE version needs to be installed. The oldest compatible ASCE version is

v4.0.77.

● The PIA ASCE schemas are installed in the schemas’ directory located in the user’s

Application Data directory (i.e., in the schemas sub-directory of the ASCE User Settings
directory). An example of the absolute path of the schemas subdirectory is given below:

C:\Documents and Settings\< username> \Application Data\Adelard\ASCE\4.0\schemass

● The PIA ASCE plug-ins are installed in the plug-ins’ directory located in the user’s

Application Data directory (i.e., in the plugins sub-directory of the ASCE User Settings
directory). An example of the absolute path of the plug-ins subdirectory is given below:

C:\Documents and Settings\< username> \Application Data\Adelard\ASCE\4.0\plugins

● The PIA ASCE plug-ins are enabled. This is achieved using the ASCE Plugin Manager,
which can be started from the Tools menu item in ASCE.

FINAL

Unclassified

Page 41 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

C.1 Part 1 – Create PIA Project ASCE network

The first phase in the process of creating a PIA Project is to build a PIA Project ASCE network.

The following steps describe this initial phase.

1. Start the ASCE tool

2. Using the option New from the File menu item, create a new ASCE network using the

PIA_Project ASCE schema.

3. Save the network using the ASCE tool Save option. The network is to be saved in the

folder where all PIA projects are to be stored, under a name of choice. After saving the

new project, a folder with the chosen project name will be created as a subfolder in the

PIA projects folder. The saving of the PIA project ASCE network will set the project’s

attributes PIA_Project_Name and PIA_Projects_Location, which are modelled as

ASCE network status-fields.

NB: The GUI of the ASCE tool does not allow the user to create a PIA project in the same

absolute path that already exists.

4. Start the ASCE plug-in PIA – Edit network status-fields from the File menu option

(Figure 12). Fill in the values for the PIA project attributes, which are modelled as

network status-fields, to take on the values corresponding to the newly created project.

The status-fields are as follows:

● PIA_Project_Name – the value of this status-field has been already set when saving

the ASCE network.

● PIA_Projects_Location – the value of this status-field has been already set by

saving the ASCE network.

● Mobius_Projects_Location – this status-field specifies the absolute path of the

folder where all Möbius projects are saved. This path is not necessarily the same as

the path where the PIA Designer projects are saved. If the default value of this

status-field exists (i.e., if it has been specified in the PIA_Project schema), it needs

to be overridden.

● Simulator_Template_Location – this status-field specifies the absolute path of the

Möbius template model. The simulation model of every new PIA project is created

based on this template model. If the default value of this status-field exists (i.e., if it

has been specified in the PIA_Project schema), it needs to be overridden.

● Simulator_Input_Files_Folder_Name – this status-field specifies the name of the

folder where the inputs to the Möbius simulation model of the newly created PIA

project are to be stored. The default value of this status-field is D226inputs.

● Simulation_Plugins_Conf_Folder – this status-field specifies the name of the folder

where the configuration files of the simulation plug-ins are stored. Simulation plug-

ins are self-contained pieces of code that enhance the functionality of the Möbius

template model. Each simulation plug-in is a dynamically linked library which has

an associated data file. The accepted file types of the simulation plug-ins’ data files

are .txt and .xml.

FINAL

Unclassified

Page 42 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Figure 12: The Network status-field editor plug-in

5. Click anywhere on the ASCE modelling area for the helper HTML form, and the

associated ASCE plug-in will be started (the title of the form is PIA tools – PIA Project
validation, Figure 13).

Figure 13: The HTML form used for the validation when creating a new PIA project

6. Create the default set of PIA ASCE nodes by pressing the Create PIA Project default
nodes button. These nodes represent the ASCE networks that are necessary in any non-

trivial PIA project. The default PIA Project nodes are as follows:

● A node representing default Intra_PN network (named initially Default_IntraPN) is

created. The Intra_PN ASCE network will not be created in the project folder until

the node in the project view is renamed (a meaningful name, such as Power1 if a

power critical infrastructure is being modelled, is supposed to be given).

FINAL

Unclassified

Page 43 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

Every time a node representing Intra_PN network is created in the PIA Project

ASCE network, the corresponding Intra_SA node will be created programmatically

(the convention is that the name of the Intra_SA node will be composed of the name

of the Intra_PN network and the suffix “SA”). In this way, the user is not expected

to create any of the Intra_SA nodes manually.

● A node representing StateTransitions network. The StateTransitions.axml network

will be created in the project’s folder. The name of this network is assumed to be

the same for all PIA projects.

● A node representing SimulationPlugins network. The SimulationPlugins.axml

network will be created in the project’s folder. The name of this network is assumed

to be the same for all PIA projects.

● A node representing InterCIPN network. The InterCIPN.axml network will be

created in the project’s folder. The name of this network is assumed to be the same

for all PIA projects.

● A node representing InterCISA network. The InterCISA.axml network will be

created in the project’s folder. The name of this network is assumed to be the same

for all PIA projects.

7. The user is expected to confirm the creation of each of the default ASCE networks

before them being created in the project folder.

8. The ASCE networks created in the project folder will have some of their respective

network status-fields automatically set, e.g. network status-fields for the project path

and the project name will be set programmatically.

9. The user creates an Intra_PN node for each service organisation modelled in the

particular PIA project.

● The user specifies the name of the network in the UserTitle property of the

corresponding node.

● For each Intra_PN network the user specifies the corresponding ASCE schema, by

choosing a value from the list given in the Schema_Name status-field. By

convention, the names of the Intra_PN schemas end with the suffix “PN”.

● Once the name of the node representing an Intra_PN network is given, and the

name of the corresponding schema specified, the empty Intra_PN ASCE network

will be created in the project’s subfolder.

● The addition, as well as the update, of a node in the PIA project network is

supported by the event-handling procedures of the following events thrown by the

ASCE tool: AfterNodeAdd and AfterNodeUpdate. For further information see the

ASCE tool documentation.

10. Once a user deletes a node, say an Intra_PN node, from the PIA project network, the

corresponding Intra_PN network from the project folder will be deleted.

● The deletion of an Intra_PN network node will be followed by the programmatic

deletion of the corresponding Intra_SA node – the user will be asked if the

Intra_SA node is to be deleted or not.

● The deletion of the ASCE nodes is supported by the handling of the following event

thrown by the ASCE engine: AfterNodeDelete. For further information see the

ASCE tool documentation.

FINAL

Unclassified

Page 44 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

11. After the user has specified all the networks for the particular PIA project, he/she closes

the PIA project ASCE network and commences the building of the individual ASCE

networks saved in the project folder.

FINAL

Unclassified

Page 45 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

C.2 Part 2 – Populate the State Transitions network view

The next phase in building a PIA Project is used to define the state transitions and associated

parameterisations i.e. create state machines, for all entity kinds used in the study. This phase

consists of the following steps:

1. Open the empty StateTransitions network, which was created as part of the phase Part 1

– Create PIA Project ASCE network.

2. Create an Entity_Kind node for each entity kind modelled in the PIA Project (for

example, if we are modelling two service organisations, a power and a

telecommunications service, a set of entity kinds could be: HighVoltageCabin,
MediumVoltageCabin, AddDropMultiplexer, HighVoltageTrunk and MVtoTelcoSite)

3. For each Entity_Kind create the set of State nodes, each of which represents a state

value associated with that entity kind. For example, the state space of an entity kind

might consist of the following state values: OK and Failed.

4. Create state transitions between state nodes – for each state transition an ASCE link

connecting a pair of nodes should be drawn. This includes self-referential state

transitions (characterising the cases when no state change occurs).

5. Parameterise the state transition values, using the ASCE plug-in PIA Tools – Link status
fields editor (Figure 14). The plug-in can be started from the list of options offered from

a context of an ASCE link (this list of options is displayed once the user right-clicks the

chosen ASCE link).

● These state transition parameterisations represent the default values for the

corresponding entity kind. All instances of a particular kind take on these values, if

not specified differently.

Figure 14: The Link status-field editor plug-in

6. Make sure that the value of the node status-field State_Space for each entity kind node

is populated with a comma-separated list of the state names associated to the entity

FINAL

Unclassified

Page 46 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

kind. For example, if there are two states (e.g. Failed and OK, as in a minimal case) in

the state space of an entity kind, enumerate these two state values as Failed, OK in the

status-field value.

● The values of the State_Space status-field have to take exactly the same values as

the names of the corresponding states, i.e. the capitalisation is significant. The

ASCE plug-in named PIA – Generate State Space values (Figure 15) should be

used to automate this task. This ASCE plug-in can be started from the Edit menu

item of the ASCE tool.

● Please note that the State_Space status-field is meaningful only for the nodes of

type Entity_kind.

Figure 15: The Generate State Space values plug-in

FINAL

Unclassified

Page 47 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

C.3 Part 3 – Populate Physical Network (PN) views

C.3.1 Populate Intra PN views

For each Intra_PN network defined in the PIA project perform the following:

1. Open up the Intra_PN network. An Intra_PN network displays a topology associated

with a particular critical infrastructure service modelled in the PIA project.

● Make sure that nodes which are coupling points have the value of True set for the

status-field IsInterCICouplingPoint (Figure 16). This value must be set to False by

default for any type of entity.

 Similarly, of course, make sure that the nodes that are not coupling points

have the value of the status-field IsInterCICouplingPoint set to False.
 For the nodes belonging to another critical infrastructure service the node

type of which is foreign_ci_node, the value of the status-field

IsInterCICouplingPoint is always False.
● Make sure that links which are coupling points have the value of True set for the

status-field IsInterCICouplingPoint (this value must be set to False by default for

any type of entity).

 Similarly, make sure that the links that are not coupling points have the

value of the status-field IsInterCICouplingPoint set to False.
 No links belonging to different, i.e. foreign, services are shown in the

Intra_PN networks.

Figure 16: The status-fields for the node MVC1 of an Intra_PN ASCE network

FINAL

Unclassified

Page 48 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

● Using the plug-in PIA_PropagateNetworkChange.xml 4, the addition of new nodes,

as well as deletion of the obsolete ones, is automatically propagated to the project’s

state transition ASCE network.

 For this plug-in to work as intended, the set of Intra_PN network schemas

defined in the project have to be specified in the plug-in’s list of applicable

ASCE schemas – the tag <applicable-schemas> in the plug-in’s header

needs to be updated.

C.3.2 Populate Inter PN view

After all the Intra_PN networks have been populated, open the empty InterCIPN network,

which was created as one of the project’s default nodes in the PIA project network (see Part 1 –

Create PIA Project ASCE network). Populate the InterCIPN ASCE network using all services

that are part of the study. In a minimalist example every service is represented by a single

physical entity, which is defined as a coupling point. The following steps are to be performed

when populating the InterCIPN network:

1. Create an ASCE node of type Service for each critical infrastructure service

organisation modelled in the PIA project (e.g. if we are modelling a power service we

will create a service node in the InterCIPN network and give it a name, for example,

Power1).
2. Define the cross-references between the InterCIPN and the corresponding Intra_ PN

views, i.e. define the value for the IntraPNNetworkName node status-field of each node

of type Service in the InterCIPN view.

3. Execute the plug-in PIA – Inter Service Links (Figure 17) for each service node in order

to display its corresponding coupling points5. The plug-in can be started from the Edit

menu item of the ASCE tool.

4. Connect manually the coupling points between the services, using the link type labelled

Supplies.

NB: Creation and population of the InterCIPN network, as well as the InteCISA network, is not

essential for execution of the simulation model. This is because the data supplied as input to the

simulation model can be extracted from the Intra_PN and Intra_SA networks belonging to the

PIA project.

4 The ASCE plug-in PIA_PropagateNetworkChange.xml does not have an associated GUI. Instead, once

the ASCE plug-in is enabled, it listens to the events thrown by the ASCE engine, such as AfterNodeAdd
and AfterNodeDelete.
5 Using the latest version of the PIA ASCE plug-in PIA – Inter Service Links, only the nodes from the

Intra_PN networks can be shown to be the coupling points belonging to a particular service. In a future

version of the ASCE plug-in, the functionality will be enhanced so that physical links can be shown as

coupling points of a service.

FINAL

Unclassified

Page 49 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

Figure 17: The Inter-service links (coupling points) plug-in

FINAL

Unclassified

Page 50 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

C.4 Part 4 – Populate Stochastic Association (SA) network views

C.4.1 Populate Intra SA views

For each Intra_SA network defined in the PIA project perform the following:

1. Open up the Intra_SA network. An Intra_SA network displays a stochastic associations’

view for a particular critical infrastructure service modelled in the PIA project.

● As a starting point, use the topology as defined in the corresponding Intra_PN view.

The user can programmatically import the entities, both nodes and links, from the

PN view when generating the SA view – this activity is supported by the PIA ASCE

plug-in PIA – Import PN view entities (Figure 18). An ASCE node in the Intra_SA

view represents either a physical node or a physical link from the corresponding

Intra_PN view. For the intended functioning of this plug-in, it is necessary that the

meaningful values for UserTitles of the PN nodes and PN links have been specified

in the Intra_PN network. If, for example, one of the links in the Intra_PN view has

an empty UserTitle, this entity will not be imported in the Intra_SA view.

● Create the SA links in the ASCE network. An ASCE link, in an Intra_SA network,

represents a stochastic association between two physical entities.

 Parameterise scaling factors: a stochastic association can be unidirectional,

represented by the Intra_SA link type affects, or bidirectional (reciprocal),

represented by the Intra_SA link type interdependent. A link of type affects
displays a single parent-child relationship, and thus only the status-field

Src_ScalingFactor is to be populated. A link of type interdependent

displays a two-way parent-child relationship between a pair of physical

entities, and thus both Src_ScalingFactor and Dst_ScalingFactor status-

fields are to be populated. The values of the Src_ScalingFactor and

Dst_ScalingFactor are set using the PIA ASCE plug-in PIA tools – Link
status fields editor.

● Make sure that nodes from the Intra_SA network (please note these nodes represent

either physical nodes or physical links defined in the corresponding Intra_PN

network) which are coupling points have the status-field IsInterCICouplingPoint6
set to True. This value is set to False by default for any type of entity.

 Similarly, of course, make sure that the nodes that are not coupling points

have the value of the status-field IsInterCICouplingPoint set to False.
 For the nodes belonging to another critical infrastructure service, the node

type of which is foreign_ci_node, the value of the status-field

IsInterCICouplingPoint is always False.

6 The attribute, i.e. the status-field in ASCE tool terminology, named IsInterCICouplingPoint is defined

for the ASCE nodes in an Intra_PN networks too. There are, thus, two interpretations of the term coupling
point: in Intra_PN networks the attribute defines if an entity is physically connected to at least one entity

from another service, while in an Intra_SA network the attribute defines if an entity is stochastically

associated with at least one entity from another service.

FINAL

Unclassified

Page 51 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

Figure 18: The Physical Network views import plug-in

C.4.2 Populate Inter SA view

After all Intra_SA networks have been populated, open the empty InterCISA view, which was

created as one of the project’s default nodes in the PIA project network (see Part 1 – Create PIA

Project ASCE network). Then populate the InterCISA view with the nodes representing all

critical infrastructure services that are part of the PIA project. In a minimalist example, every

service is represented by a single SA entity, which is defined as a coupling point. The following

steps are to be followed when populating the InterCISA network:

1. Create an ASCE node of type Service for each critical infrastructure service

organisation modelled in the PIA project (e.g. if we are modelling a power service we

will create a service node in the InterCISA network and give it a name, for example,

Power1SA).
2. Define cross-reference between the InterCISA view and the corresponding Intra_SA

network view, i.e. define the value of the IntraSANetworkName node status-field for

each service in the InterCISA view.

3. Execute the plug-in PIA – Inter Service Links for each service node to create the

corresponding SA coupling points. The plug-in can be started from the Edit menu item

of the ASCE tool.

4. Connect manually the SA coupling points between the services. Use an appropriate link

type for this activity: use the link type labelled Affects for the unidirectional relationship

between the coupling points, or the link type labelled Interdependent for the reciprocal

relationships between the coupling points.

NB: Creation and population of the InterCIPN network, as well as the InterCISA network, are

not essential for execution of the simulation model. This is because the data supplied as input to

the simulation model can be extracted from the Intra_PN and Intra_SA networks belonging to

the PIA project.

FINAL

Unclassified

Page 52 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

C.5 Part 5 – Configuration of the Simulation Plug-ins

Each PIA project uses a set of simulation plug-ins. A simulation plug-in7 is a standalone piece

of code, i.e. a dynamically linked library, which extends the functionality of the PIA simulation

model template. The categories of simulation plug-ins are as follows: Initialisation,

Deterministic, Trace, Rate and Reward. In each PIA project there must exists one, and only one,

Initialisation plug-in, and there are zero to many simulation plug-ins belonging to the other

categories.

The ASCE engine plug-ins PIA – Configure Simulation Plug-ins and PIA – Simulation Plug-in
Entities Mapping are used for the configuration of the simulation plug-ins for a particular PIA

project. Each PIA Project contains a subfolder named Simulation_Plugins_Configuration – it is

the default location where the configuration files of simulation plug-ins are stored. The steps for

populating the SimulationPlugins ASCE network are as follows:

1. Open the SimulationPlugins ASCE network, which was created as one of the project’s

default nodes in the PIA project ASCE network (see Part 1 – Create PIA Project ASCE

network). Each PIA Project has one SimulationPlugins ASCE network located in the

project’s folder.

2. For each simulation plug-in repeat the following:

● Create an ASCE node representing the simulation plug-in (e.g. of type Initialisation

plug-in).

 Specify the values for the status-fields DLL_Path and Data_File_Name.
The former determines the absolute path to the dynamically linked library

of the simulation plug-in (the dll name is specified by the UserTitle of the

ASCE node representing the simulation plug-in), while the latter specifies

the name of the data file associated with the particular simulation plug-in –

every simulation plug-in has a data/initialisation file associated with it.

This data file is produced by the simulation plug-in developer.

● Execute the ASCE plug-in PIA – Configure Simulation Plugins (Figure 19) by

choosing the corresponding option from the ASCE Edit menu item. As a result, the

file conventionally named Plugin Paths and Names.txt will be created in the

project’s subfolder Simulation_Plugins_Configuration. This file contains the list of

absolute paths to all the simulation plug-ins used in the particular PIA project, and

for each plug-in the absolute path to its data file is specified.

● The execution order of the simulation plug-ins belonging to the Deterministic

category is significant. PIA Designer user specifies the particular ordering of

Deterministic plug-ins by using the GUI shown in Figure 20. The GUI is displayed

once the PIA Designer user presses the button labelled Deterministic plugins
ordering from the HTML form of the PIA ASCE plug-in PIA – Configure
Simulation Plug-ins.

7 The term plug-in is used for describing different parts of the PIA toolkit. Beside the simulation plug-ins

there are ASCE tool plug-ins, which are standalone pieces of a scripting language code that enhance the

functionality of the ASCE engine. ASCE plug-ins have been used extensively for building the

functionality of the PIA Designer tool.

FINAL

Unclassified

Page 53 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

Figure 19: The plug-in used for configuration of the Möbius-based simulation study

Figure 20: The plug-in used for specifying the particular execution order of Deterministic

plug-ins in a PIA project

3. For each simulation plug-in belonging to the Deterministic category, a mapping

between the entities used in the plug-in and the entities used in the PIA Project has to be

established. The ASCE plug-in named PIA – Simulation Plugin Entities Mapping

(Figure 21) is used for creation of such a mapping.

● Specify the value for the status-field IDs_File_Name. This status-field, which is

relevant for the deterministic simulation plug-ins only, indicates the name of the

XML file that contains the IDs and names of the entities used by the deterministic

plug-in. By convention, the file is stored in the Project’s subfolder

Simulation_Plugins_Configuration. Each such file is assumed to have been

produced by the developer of the Deterministic plug-in and PIA Designer user

places it in the dedicated project folder. This file is used to enumerate the entities of

the particular Deterministic plug-in in the GUI of the ASCE plug-in PIA –
Simulation Plugin Entities Mapping.

FINAL

Unclassified

Page 54 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

● Execute the PIA – Simulation Plugin Entities Mapping plug-in by choosing the

corresponding option after right-clicking on the ASCE node representing a

deterministic plug-in. An HTML form with the entities used in the deterministic

plug-in will be loaded. Create a mapping between entities used in the plug-in and

the entities belonging to the specific PIA project – this is achieved by the PIA

Designer user who pairs a deterministic plug-in entity, displayed in the left column

of the HTML form, with the corresponding PIA Project entity, displayed in the right

column of the HTML form. In a general case, not all plug-in entities will

necessarily be mapped to a PIA project entity.

 The entity mappings for all deterministic simulation plug-ins are stored in a

single file (conventionally named Plugins ID Mappings.txt) in the project’s

subfolder Simulation_Plugins_Configuration. The file contains the pairs of

mapped ID values for each Deterministic plug-in: the first ID value

represents the entity’s ID as used in the deterministic plug-in, and the

second value represents the ID value as used in the PIA project.

Figure 21: The plug-in for mapping entities defined in a Deterministic plug-in to entities

from the PIA project

FINAL

Unclassified

Page 55 of 56

Adelard D/501/12102/2 v2.0 15 November, 2010

Unclassified

C.6 Part 6 – Creation and configuration of the PIA simulation study

1. Open the PIA project ASCE network. Use the ASCE plug-in PIA – Generate
Simulation Study (Figure 22) to create the Möbius-based simulation study for this PIA

project. The simulation study is based on the ASCE networks defined in the PIA

project. Before the simulation study is created, the plug-in makes the project’s

StateTransitions network consistent with all the Intra_PN networks defined for the

particular project.

● When the user chooses the option Generate simulation study the following is

performed:

 The PIA ASCE plug-in assigns unique UserID values to all physical entities

defined in the PIA project, stepping through each Intra_PN network.

 The consistency between the StateTransitions network and the underlying

Intra_PN networks is enforced automatically – the StateTransitions network

is updated to contain the data consistent with the information modelled in

the Intra_PN networks.

 The Möbius-based simulation project is created together with the necessary

input files. The Möbius project is based on the PIA template model.

● It should be noted that the PIA Designer user can perform a check to examine if

inconsistencies between the StateTransitions and Intra_PN networks exist without

choosing the option Generate simulation study. This is performed using the Check
button. Additionally, the user can explicitly force the consistency between the

StateTransitions network and the project’s Intra_PN network by pressing the

Reconcile button.

● It is necessary that the StateTransitions network contains a set of default parameter

values for state transitions of each entity kind.

 The parameters are F_Type, F_Name and F_Params

FINAL

Unclassified

Page 56 of 56

15 November, 2010 D/501/12102/2 v2.0 Adelard

Unclassified

Figure 22: The plug-in for generation of the Möbius-based simulation project

