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Summary 

This report is the second deliverable of the TSB-funded PIA:FARA project. The report presents 

a method called Preliminary Interdependency Analysis (PIA) which can be used to conduct 

interdependency analyses in complex systems such as Critical Infrastructures. The method is 

supported by a toolkit which can be used to conduct qualitative and quantitative analyses of 

interdependencies between complex systems. 
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1 Introduction 

One of the greatest challenges in enhancing the protection of Critical Infrastructures (CIs) 

against accidents, natural disasters, and acts of terrorism is establishing and maintaining an 

understanding of the interdependencies between infrastructures and the dynamic nature of these 

interdependencies. Interdependency can be a source of “unforeseen” threat when failure in one 

infrastructure may cascade to other infrastructures, or it may be a source of resilience in times of 

crisis, e.g., by re-allocating resources from one infrastructure to another [1].  

Understanding interdependencies is a challenge both for governments and for infrastructure 

owners/operators. Both, to a different extent, have an interest in services and tools that can 

enhance their risk assessment and management to mitigate large failures that may propagate 

across infrastructures. However, cost of investment in infrastructure modelling and 

interdependency analysis tools and methods, including the supporting technology, may reach 

millions of pounds, depending on the size of the system to be modelled, on the level of detail 

and on the mode of modelling (real-time or off-line). These factors will determine the software, 

hardware, data and personnel requirements.  

It is therefore very important to understand what the scope and the overall requirements of an 

interdependency analysis service are going to be, before proceeding with such an investment. 

However, the decision on what modelling and visualisation capabilities are needed is far from 

simple. Detailed requirements may not be understood until some modelling and simulation has 

been conducted already, in order to identify critical dependencies and decide what level of 

fidelity is required to investigate them further.  

This report presents an approach to interdependency analysis that attempts to address these 

challenges. The approach—Preliminary Interdependency Analysis (PIA)—starts off at a high-

level of abstraction, supporting a cyclic, systematic thought process that can direct the analysis 

towards identifying lower-level dependencies between components of CIs. Dependencies can 

then be analysed with probabilistic models, which would allow one to conduct studies focussed 

on identifying different measures of interests, e.g. to establish the likelihood of cascade failure 

for a given set of assumptions, the weakest link in the modelled system, etc. If a high-fidelity 

analysis is required, PIA can assist in making an informed decision of what to model in more 

detail. The method is applicable as both i) a lightweight method and accessible to Small-to-

Medium Enterprises (SMEs) in support of their business continuity planning (e.g., to model 

information infrastructure dependencies, or dependencies on external services such as postal 

services, couriers, and subcontractors); and ii) a heavyweight method of studying with an 

increasing level of detail the complex regional and nationwide CIs combining probabilistic and 

deterministic models of CIs.  

This deliverable illustrates the use of PIA on a case study (Appendix B): a regional system of 

two CIs namely the power grid and telecommunication network around Rome, Italy (i.e. Rome 
case-study). 

PIA is supported by a toolkit. The PIA Toolkit consists of two software applications:  

● The PIA Designer, which allows a modeller to define a model of interdependent CIs and 

define the parameters needed for any quantitative study. For visual representation the tool 

uses a proprietary tool ASCE [4].  
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● The Execution engine, which allows for executing a model developed with the PIA 

Designer, i.e. a simulation study based on the model to be conducted and the measures of 

interest to be collected. The Execution engine uses Möbius [12], customised extensively 

with a bespoke proprietary development.  

The current version of the toolkit allows for two main categories of models: 

● Model of interdependent CIs at a fairly high level of abstraction (i.e. without detailed 

modelling of the networks used by the respective services). The model can be parameterised 

and then the simulation executable can be deployed on the Execution Engine.  

● As above but adding any degree of detail that the modeller may consider necessary 

including high fidelity deterministic models available as 3rd party software modules. 

This report presents the PIA method and offers a detailed description of how the PIA Toolkit 

can be used.  

2 Method: Preliminary Interdependency Analysis (PIA) 

Preliminary Interdependency Analysis (PIA) is an analysis activity that seeks to understand the 

range of possible interdependencies and provide a justified basis for further modelling and 

analysis. Given a collection of CIs, the objectives of PIA are to develop, through a continuous, 

cyclical process of refinement, an appropriate service model for the infrastructures, and to 

document assumptions about resources, environmental impact, threats and other factors. 

PIA has several benefits. In particular, PIA can 

● help one to discover and better understand dependencies which may be considered as 

“obvious” and as such are often overlooked (e.g. telecommunications need power) 

● support the need for agile and time-efficient analyses (cannot always wait for the high 

fidelity simulation) 

● be also used by Small-to-Medium Enterprises (SMEs) and not just infrastructure owners 

and government 

PIA allows for the creation and refinement of interdependency models, in a focused manner, by 

revisiting earlier stages in the PIA process in the light of the outcomes of latter stages. For 

example, an initial application of PIA should result in a sufficiently concrete and clearly defined 

model of CIs (and their dependencies). However, following the first design iteration, an analysis 

of the model could cause us to question the assumptions made earlier on in the design process. 

As a consequence, the model may be revised and refined; as we shall see later on, revisiting 

previous phases of the development process is a key aspect of the PIA method and philosophy 

overall. 

PIA consists of two parts:  

● Qualitative analysis. The modelling exercise begins with a definition of the boundaries of 

the system to be studied and its components. Starting off at a high level, the analyst may go 

through a cyclical process of definitions, but may also be focused on a particular service, so 

the level of detail may vary between the different parts of the overall model. The 

identification of dependencies (service-based or geographical) will start at this point. 

● Quantitative analysis. The models created during the qualitative PIA are now used to 

construct an executable, i.e. a simulator of the model behaviour in the presence of failures 
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of the modelled entities for the chosen model parameterisation. The model parameterisation 

may be based either on expert judgement or on analysis of incident data. Examples of such 

data analyses and fitting the available data to plausible probabilistic data models was 

presented in the recent WP1 deliverable [2]. 

The PIA Toolkit provides support for both the qualitative and quantitative analyses. Figure 1 

illustrates an overview of the method and the toolkit. 

Quantitative PIA- Setting system boundaries
- Service definition (inputs, output 
external resources)
- Identification of service parts 
(components, assets, internal 
resources)
- Identification of dependencies 
between services and their parts

- Definition of state-machines 
(states and transitions)
- Parameterisation of stochastic 
associations 
- (optional) Adding and 
configuring plug-ins
- Deploying model on the 
execution engine
- interdependency study via 
simulation

Scope and boundaries Threat models Incident data

    Run-time Model Description 
- A complete Möbius project
- A set of text files 
- Utilities, plug-ins

Execution Engine 
A Möbius compatible 

simulation environment

Qualitative PIA

PIA Designer
Graphical model 

development with the 
ASCE tool

PIA 
Method

PIA 
Toolkit

Deployment

  

Figure 1: Overview of PIA method and toolkit 

The interdependency models, of course, have to be related to a purpose and this should be 

captured in terms of a scenario and related requirements. The narrative aspect of the scenario is 

enormously important as it provides the basis for asking questions and discovering 

interdependencies as the starting point for more formal models.  

Typically the systems of interdependent CIs of interest are complex: include many services 

which in turn consist of many parts. Given the complexity and size of the analysed systems tool 

support is essential. The aim of WP2 is therefore to produce a toolkit that supports PIA 

(including both qualitative and quantitative stages).  

2.1 PIA model architecture: two levels of abstraction 

PIA models broadly operate at two distinct levels of abstraction.  
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● Model of interacting services (service-level model). The modelled CIs are represented by a 

set of interdependent services. Here, the view is purposefully abstract, so that we can reason 

about dependencies among the services (i.e. data centre X depends on power plant Y). 

Service-level dependencies are elicited by the defined lower-level dependencies among each 

service’s constituent entities (physical components, resources etc.). These associations 

among components are referred to within PIA as coupling points. The coupling points 

incoming to a service can be associated with the resources that the service requires (e.g., a 

telecommunication service consumes “commodities” supplied by a power service). The 

resources consumed by a service can be obtained from the organisation’s reserves (internal 
resources) or provided by another organisation (external resources). The outgoing coupling 

points instead define how the outputs from a service get consumed by other services (as 

either inputs or resources).  

● Detailed service behaviour model (DSBM). Implementation details are provided for an 

individual service, e.g. the networks upon which a particular service relies. For instance a 

Global System for Mobile (GSM) telecommunication operator typically relies on a network 

of devices deployed to cover a particular area (e.g. masts, etc.). Via DSBM we can choose 

the level of detail used to model these networks. In the example above DSBM may range 

from a connectivity graph – which cells of the network are connected with each other to a 

high fidelity model of the protocols used in the GSM network. We tend to think of DSBM 

as the networks owned (at least partially and/or maintained) by the respective service 

operator, i.e. an organisation. Although such a view is not necessary, it allows one to model 

several important aspects via DSBM. For instance the level of investment and the culture 

(strong emphasis on engineering vs. outsourcing the maintenance) within the organisation 

will affect how well the network is maintained (i.e. frequency of outages and speed of 

recovery). Thus, the process of recovery (a parameter used in DSBM) can be a useful proxy 

of the level of investment. Thus, through DSBM one can study scenarios which at first may 

seem outside the scope of PIA. An example of such a scenario would be comparing the 

deregulation with tight regulation in critical CIs. 

2.2 PIA stages 

PIA is carried out in seven stages (Figure 2): 

Stage 1. CI description and scenario context (Section 2.2.1). A CI description provides a 

concrete context and concept of operation. This is the first level of scoping for the 

analysis task; the CI description gives the first indications of analysis boundaries. 

DSBM entities are identified and recorded. 

Stage 2. Model development (Section 2.2.2). A model of the services (resources, inputs, 

outputs, system states) and the operational environment and system boundaries are 

developed, based on the CI description. Model boundary definitions are used at this 

stage to further restrict the scope of the analysis. Dependencies between the services 

are identified and the coupling points are defined: these refer on the one hand to the 

inputs and resources required by each of the services and on the other hand to the 

outputs that each of the services produces.  

Stage 3. DSBM model development (Section 2.2.3). DSBMs are defined by selecting the 

right level of abstraction for the services: some of the services may be treated as 

black-boxes; in this case their representation in the DSBM will require no 

refinement in comparison with Stage 2. For those services, which are modelled in 

more detail one starts by defining explicitly their components and the assets 

including resort to using existing models of the underlying physical networks used 
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by the services or use other formalisms, e.g. such as PVS [9]. A level of consistency 

is achieved between the service model and DSBM: the coupling points appear in 

both Views. 

Stage 4. Initial dependency and interdependency identification (Section 2.2.4). While some 

of the service dependencies have already been identified and recorded in Stage 2 

(via input/output/resource identification), at this stage the modeller looks for 

additional sources of dependence (e.g. common components/assets), which may 

make several services vulnerable to common faults or threats. These can be derived 

by examining the service-level model, taking into account other contextual 

information (e.g. scenarios, threat models, attacker profile). The captured 

dependencies are modelled as stochastic association between the services or 

components thereof.  Each stochastic association is seen as a relationship between a 

parent and a child: the state of the parent affects the modelled behaviour of the 

child.   

Stage 5. Probabilistic model development (Section 2.2.5). Since we are dealing with risk, we 

take the view that, given the state space formed by the modelled entities (MEs), a 

stochastic process must be constructed upon it that captures the unpredictable nature 

of the states of the MEs, their changes and the interactions between CIs over time. 

In this stage probabilistic models of the MEs are defined. These are state-machines, 
a well known formalism in software engineering, modelled after the formalism used 

in the Stochastic Activity Networks (SANs).  

Stage 6. (optional) Adding deterministic models of behaviour (Section 2.2.6). At this stage 

the modeller may decide to extend the behaviour of the probabilistic model adding 

deterministic models of behaviour. Such a step may be useful when the modeller is 

seeking to extend the fidelity of the simulation beyond the standard mechanisms 

possible with a pure probabilistic model.  

Stage 7. Exploratory interdependency analysis (Section 2.2.7). A Monte Carlo simulation 

[10] is used to quantify the impact of interdependencies on the behaviour of the 

system under study and draw more conclusions about the probability of 

interdependency-related risk.  
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Service level 
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Figure 2: PIA method stages 

During these stages we found that the narrative information coming from the following sources 

was relevant and useful: 
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● Scenarios: PIA is a scenario-driven approach. Once the system has been modelled, “what-

if” questions will be used to explore vulnerabilities and failure cascade possibilities. 

Scenarios can be developed from a variety of assumptions or experiences. For instance, one 

can begin by asking a question as abstract as “what happens if there is a flood”, or “if power 

plant X fails”. Such questions form the basis for scenarios, which focus the analysis on 

particular conditions, exploring potential vulnerabilities.    

● Incident description: PIA can be used to model an incident that has already occurred. This 

can be used as a baseline for generating and exploring variations of the same scenario or 

simply further exploring a system that has been compromised, or has failed, as the incident 

revealed unpredicted vulnerabilities and failures.  

● Threat or attack model: Here, we are considering modelling assumptions based on 

malicious attacks.  

● Model of threat agent: The above (scenarios, incident description, threat or attack model) 

are elements that will shape the profile of a threat that is modelled in our system. This can 

be a malicious agent (e.g. a terrorist) or a source of natural disaster (e.g. flood).  

The seven stages are described in more detail in the following sections. 

2.2.1 Stage 1: Critical infrastructure / Service description 

2.2.1.1 Definitions 

A service provider (typically an organisation or a company) provides a service. Typically the 

service provider utilises a network, which in turn consists of components that use resources to 

provide an output. The relationship ‘whole-parts’ between a service and its parts (components, 

internal resources and assets) is explicitly modelled at this stage.  

Loss events occur when the service is interrupted, either by a component failure or by 

exhaustion of resources. Measures of interest which will be studied are also identified and 

recorded at this stage.  

The definition of the service and of its parts alone will be a useful process as it will help identify 

the boundaries of the system to be modelled, and the usually abstract initial understanding of 

some obvious dependencies will begin to become clearer. However, these definitions need to be 

coherent, as the subsequent modelling and analyses will be based on them. We would expect 

that the definitions would be developed by a team of experts, possibly from various levels 

within the service organisation; this is because during the development of definitions we 

consider both high-level views (e.g., production of energy) and low-level views (e.g., 

identification of specific physical components), and most importantly, how they are related. 

Similarly to other modelling approaches (most notably UML1) PIA uses different views which 

allow the modeller to deal with complexity (i.e. separate concerns) and switch easily the focus 

of analysis from dealing with the whole to dealing with its parts and from modelling the entities 

of concrete critical infrastructures (with their concrete engineering meaning) or to the 

description of the probabilistic behaviour. The figure below gives an example of views which 

we found to be useful in practice (Figure 3). 

                                                      
1 Unified Modelling Language (UML ) is a standardised general-purpose language for modelling 

software engineering artefacts. 
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Service-level view 
(the service that the infrastructure is providing)

Implementation-level view
(the sum of components that make up the 

infrastructure)

Application-level view
(the utilisation of the infrastructure in order to 

provide the service)

 

Figure 3: Example views used in PIA 

Below we elaborate further on the use of the views listed in Figure 3, based on the work on an 

ongoing case study which considers the information infrastructure of an SME. 

View Description 

Services ● Production and delivery of reports 

● Help-desk 

● Licensing 

● Invoicing 

Application ● Access to data and information (read-only) 

● Modification of data and information (create, modify, 

delete, save) 

● Communication (face-to-face, telephone, email etc) 

Implementation ● Hardware 

● Software 

● Data 

● People 

Table 1: CI/service definitions for an information infrastructure 

What is presented in this table is the first layer of definitions for the three views. Following 

several iterations this leads to a rather detailed list of individual components, such as servers, 

hubs, databases and people. As mentioned previously, this process will require the involvement 

of people from various levels of the service organisation, so that the link between the service-

level view and the implementation-level view can be achieved. 

Section 2.2.1.2 describes a typical set of types of elements that are to be identified and defined 

during a PIA. These may be different depending on the project.  
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2.2.1.2 PIA elements 

Component Definition 

Service 
organisation 

A service with certain characteristics is provided by a service organisation. The 

service is essentially a label for the process of transforming the resources into a 

saleable commodity. 

This is the highest level of abstraction for defining physical components. 

Service organisations may be power plants, data centres, airports, etc.  

Component A component is a commodity, part of the service, which is used in the 

transformation of resources into a product. Components may fail in operation, 

either as a result of wear and tear (physical hardware elements) or design faults 

(software, hardware, procedures), in which case the service output may be 

affected. Whether the component failure will affect the service output depends 

on the service’s internal resilience (its ability to withstand component failures, 

e.g. as a result of fault-tolerant design).  

An important aspect to consider when dealing with components is that they 

may be geographically dispersed, forming a distributed network of 

components. In addition, in many cases, considering people as components in 

the model is a sensible strategy. 

Asset An information asset (e.g. technical know-how, data, procedures, algorithms) is 

used either directly or indirectly to produce a product. The information assets 

may be stolen, misused or corrupted as a result of accidental failure or 

malicious behaviour, in which case the supplying organisation may be 

adversely affected. Assets can be electronic or paper-based records and files, or 

softer aspects such as trust and reputation. 

Resource Resources are being consumed. They are supplied by internal reserves or 

external services. External resources are commodities which are normally 

consumed in the process which leads to the supply of a product at the service 

output. This consumption is important as it can be a source of hidden 

dependencies. Electrical power, air conditioning as well as consumables would 

fall under this category.   

Input The input to a service is the demand for a given product. Demands can come 

from other services, the public, legislation, governmental directives, etc. The 

demand is seen here as a request for a service based on an agreement of some 

sort (such as a contract between the supplying organisation and the consumer). 

Output An output is a product of a modelled component. 

Environment In most cases, under “environment” we would expect to see aspects of weather 

and other natural phenomena (e.g., earthquakes). 

Table 2: PIA elements 

Producing a set of coherent definitions may require several iterations. We recommend that these 

are recorded in a systematic, clear manner, as these definitions will determine the outcome of 

the rest of the modelling and analysis.  

2.2.1.3 Service state 

The state space of a modelled service is defined either explicitly or implicitly. The explicit 

definition of the service space is applied when the service is modelled as a black-box, i.e. no 
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further refinements detailing its parts are used. In this case the modeller would associate the 

service with a state machine in which the possible service states are spelled out.  

We found that in the case of explicit definition of a service it might be useful to consider a 

minimalistic state space {OK, impaired, failed} so that the modeller can distinguish between the 

possible degrees of operability (from fully operational (OK), to totally non-operational {failed}, 

impaired denoting partial operability).  

In the case a DSBM is associated with a service, the service state is implicitly defined by the 

state spaces of its parts: components, internal resources and assets. In this case the modeller is 

expected to define the state of the parts, but no explicit definition of state machine associated 

with the entire service is required; the service state space is the Cartesian product of the state 

spaces of its parts.  

2.2.1.4 Scope and boundaries 

Building a model of interdependent CIs typically requires multiple iterations of refinement: 

starting with the definition of the services and how they are interdependent (input, output, 

resources) at a higher level of abstraction and then gradually progressing by adding details, e.g. 

DSBMs for the services judged to require a more detailed description. DSBMs themselves can 

be refined multiple times – possibly driven by the results obtained from the previous iterations 

of refinement.  

Our practical experience with PIA has been with geographically compact studies – a critical 

information infrastructure of an SME and a regional study of two interdependent CIs. The 

particular types of modelled entities are dictated by the context of the study. These may include 

a set of hardware components, e.g. the ones used in the telecommunication and in the power 

grid CIs in the case of the regional system case that we started studying in IRRIIS [6] and the 

entities of the information infrastructure of an SME in an ongoing case study. 

2.2.2 Stage 2: Service-model development 

In this phase, the dependence between the services modelled are identified: input/external 

resource – output relationships, the components (e.g. of the same type such as a PC running the 

same OS and application software) which may be subject to common mode/cause failure, or 

stochastic associations are identified and marked as coupling points(see Figure 4) between the 

services. 

 

Figure 4: A Coupling point as a link between services in PIA  

This stage is primarily concerned with the development of the inter-service models, i.e. 

dependencies between the services. Some initial steps in defining the intra-service models, 

however, may also be undertaken in this stage such as identifying the components, the internal 

resources and assets of some services. 
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2.2.3 Stage 3: DBMS model development 

This stage is focussed on developing the DSBM models (i.e. detailed inter-service models) for 

those services chosen to be modelled in detail. The parts that make up the service (components, 

assets, internal resources) defined in Stage 2 are now scrutinised and their associations 

(deterministic and stochastic) are identified and represented in the DSBM.  

At this stage we define the state-machines used to model the behaviour of the modelled entities. 

The services for which no DSBM is defined will be associated with a state-machine which will 

define the states and the state changes of the entire service.  

In case a DSBM is associated with a service, the modeller is expected to define a separate state-

machine for each of the service’s parts. The state of a service in this case is represented by the 

Cartesian product of the states of its parts.  

2.2.4 Stage 4: Identification of dependencies between the services 

At this stage the analysts proceeds by asking ‘what-if’ questions and exploring particular threat 

models and scenarios which may cross the service boundaries.  

Apart from the obvious dependencies (e.g., telecoms need power), which may be observed by 

considering the functional association between entities, there are some other aspects of CIs that 

need to be taken into account. The following are some key concepts that should be considered in 

threat models and scenarios: 

● Geographical dependencies. Vulnerabilities may lie not only in functional dependencies 

between components, but also in the risk of, for example, an explosion occurring in a 

nearby site. Recording the geographical information for each element is done in the stage of 

Service Description (Section 2.2.1.3). At design time we can identify and record, e.g. using 

a special link type “near to”. However, such an approach will be of limited value. It will 

identify some and will miss many interdependencies due to geographical proximity. Our 

experience indicates that a systematic study of the impact that geographical proximity will 

have on interdependencies between the services will require a combination of static analysis 

and (simulated) stochastic modelling whereby the anticipated disruptions (earthquakes, 

flooding, sabotage, etc.) are instantiated at randomly chosen location and with a random 

severity (e.g. magnitude of the earthquake). Implementing such an approach via static 

analysis may be less effective than using a simulation with a randomly generated location of 

the disruption and a randomly generated area affected by the disruption.  

● Competition for resources. During a crisis, dependencies may become apparent between 

entities that share the same resource(s). When more than one element reallocate their 

resources (e.g. maintenance personnel), there may be competition between them. This may 

lead to starvation of the particular resource, or the accumulation of dependencies to one 

element, which will then be bearing the risk of causing multiple disruptions, should that fail 

too. 

● Resilience perspective. The failure of one element may have an indirect effect on another 

during a crisis if it compromises a resource, a component or an asset that are critical to its 

recovery. This is the kind of dependency that may not be visible during normal operation.  

● Common mode/cause models. The modeller should also look for additional sources of 

dependence such as common vulnerability between the components of services. An 
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example of common vulnerability is the use of several PCs of exactly the same type (the 

same hardware specs, OS and set of applications). In this case one is justified in making a 

modelling assumption that an actual failure or compromise of a component of the particular 

type in one of the services implies that the other components of the same type in either the 

same service or in other services become more likely to fail or be compromised than before 

the failure of the first component occurred2.  

The captured dependencies get modelled probabilistically in the form of stochastic associations, 

which can occur between the services or components thereof depending on the level of 

abstraction used. Each stochastic association is seen as a relationship between a parent and a 

child: the state of the parent via the stochastic association affects the modelled stochastic 

behaviour of the child. The stochastic association is characterised by its strength. For example, 

using a stochastic association between parent A and child B, the modeller can define that the 

rate of failure of B will increase 10-fold (in this case we say that the strength of the association 

is set equal to 10) when A is in a failed state in comparison with the rate of failure B when A is 

working correctly.  

When considering modes of behaviour (i.e., how a failed or impaired element impacts the rest of 

the model), the temporal aspect needs to be taken into account. Dependencies, especially when 

considering competition for resources or recovery, may arise over time. Vulnerabilities may 

start becoming obvious as resources or the capacity of a system reach their limits. Modelling 

these temporal aspects is important.  

Incident history should be taken into account when asking what-if questions, as previous 

incidents can help unveil similar and/or related scenarios. 

2.2.5 Stage 5: Probabilistic parameterisation 

Our method of quantifying interdependencies is based on a combination of techniques outlined 

in greater detail in [6]. A key problem is to define mechanisms of association between distinct 

MEs, whereby the model is given a structure that is realistically different from the rather limited 

concept of a number of state-holding MEs, embedded in a common simulated time line, 

behaving independently, as parallel stochastic functions of simulated time. Rather, we require a 

definition of a multivariate stochastic process of states of the MEs, representing the MEs’ 

interactions with one another: interaction which may be deterministic (discussed in stage 7), or 

which may be probabilistic in the sense that the states of MEs, and perhaps also transient 

environmental stresses and perturbations, will influence the risks to which other MEs are subject 

in precisely defined ways. Every event that an ME may manifest, will take the form of a 

transition between two states of its assigned state space. As a result, the stochastic process to be 

modelled is of significant complexity, which makes Monte Carlo simulation [10] the preferred 

model analysis technique. We have built a generic tool, based around the simulation solver of 

the Möbius SAN tool [3][12] (see Appendix A for an overview of the tool), augmented by 

additional code of our own design, to conduct such simulations. These take the form of 

continuous time, discrete event driven simulations of CI behaviour and interaction, represented 

as sequences of changing states of MEs. 

We use the notion of a type of modelling entity (TME). A separate state-machine is defined for 

every TME. The modelled system, however, may include multiple instances of the same TME, 

                                                      
2 We note in passing that elsewhere we provided an extensive justification of the plausibility of this 

assumption. It is common knowledge in safety-critical area to consider common-mode/cause failures, 

which informed the concept of stochastic association deployed in PIA.  
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which will share the same state-machine (number of states and transitions between the states). 

The probabilistic description of the instances, however, may be unique – the SAN model 

associated with the instances of TME may be different (i.e. the probability distributions 

associated with the transitions of the state-machines) for the different instances.  

At this stage the modeller provides probabilistic parameters related to the transition parameters 

of the state-machines which model the behaviour of the modelled entities. The modeller can 

specify a unique set of parameters even if two modelling entities are of the same type (i.e. share 

the same TME). The following set of parameters must be provided: 

● the model of transitions (competing risks is the default for SAN) and unless there are good 

reasons to use a different model we would use the default  

● the type of distributions which characterise the transitions from the current state to any 

possible next state (exponential, Weibull, or other probability distributions)   

● the parameters of the specified distribution (e.g. the rate parameter of an exponential 

distribution). 

Also parameterised at this stage are the stochastic associations between the MEs, i.e. the 

associations’ strengths. In the current implementation of the toolkit we assume that the effects 

of multiple parents of the same child are independent of each other. The design of the toolkit, 

however, allows for implementing non-independent stochastic associations. 

Once the parameterisation is completed, the modeller can study the effect of systematic 

parameter variation on the behaviour of the model as a whole. For each assignment of parameter 

values, an experiment is undertaken. This allows the effect of the parameter on the variability of 

defined CIs properties, e.g. such as the frequency of large incident cascades or outages of 

service, to be obtained. 

2.2.6 Stage 6: (optional) Adding deterministic models of behaviour 

At this stage the modeller may decide to extend the model description by adding deterministic 

models which increase the fidelity of simulation and will be difficult to represent using the 

stochastic model only. For instance, the use of such models will allow for propagating in detail 

the consequences of failures or repairs of the modelled entities. Good examples of deterministic 

models are the flow models (e.g. DC/AC power flow models, various telecommunication traffic 

models, etc.).  

There are many ways of adding deterministic models to a Monte Carlo simulator. In the past we 

used tight coupling between the probabilistic and the deterministic models [6] – the code 

implementing the different models was linked in the same simulation application. In PIA:FARA 

we designed a pluggable architecture of the executables (i.e. simulators which can be deployed 

on the Execution Engine). The executable only contains the functionality of the probabilistic 

model, but offers API for adding at run-time any number of pre-existing pluggable modules 

(available as shared loadable libraries). A deterministic model, developed to be compliant with 

the pluggable API can be added to the list of modules to be loaded and used by the executable at 

run time. Details on the architecture and a more detailed description of how the modeller can 

configure an executable to use a set of plug-ins are given further in this document (see Sections 

3.3 and 3.4). 
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A point worth mentioning here is that although the pluggable architecture was designed with 

deterministic plug-ins in mind, it can be used to implement any functionality, including 

probabilistic extensions, which are difficult to define statically. For instance, the model of 

environmental disturbances (earthquakes, flooding, etc.) discussed in Section 2.2.4 may be 

modelled using plug-ins which would determine at random the location and the magnitude of 

the event, thus making it possible to model the disturbance with a simple state-machine with 

states (active, inactive). 

2.2.7 Stage 7:  Exploratory interdependency analysis 

In order to carry out the exploratory interdependency analysis, Monte Carlo simulations [10] are 

used. For each experiment, a number of replications of the evolution of the model, using 

identical parameters, over a defined interval of simulated time, may be conducted. One 

replication of an experiment differs from another solely in that the random number generator is 

seeded at a different starting point. Then statistical sampling theory may be used to study the 

distribution properties of system measures of particular interest for each set of assigned 

parameter values.  

The focus of the studies is defined in the so called reward variables, the values of which are 

computed at simulation time over the states of the SAN model implemented by a Monte Carlo 

simulator. The same model can be executed with a number of rewards. There are two groups of 

simulation activities: 

● Calculating statistics on the defined rewards based on multiple repetitions of a simulation, 

e.g. comparison of distributions of important CI dependability summary statistics between 

experiments with different parameterisations and/or level of abstraction. Typical examples 

here are: 

● Sensitivity analysis with respect to a particular model parameter (e.g. how the variation 

of the strength of stochastic association affects the results) 

● Distribution of cascades (i.e. outages that include more than one modelling entity)  

● Using the simulation traces obtained from the history of a single experiment over a long 

interval of simulated time may be searched for interesting features. Examples of analyses of 

this kind include: 

● Searching for cascade failures and scrutinise these to understand better the 

“mechanisms” of cascades or use these in training.  

● Visualisation of the trace (e.g. with the Google Earth application [8]) so that one can 

“get a feel” about how the behaviour/operability of the modelled system might vary 

over time. 
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3 Tool support: PIA Toolkit 

The qualitative part of the method described in this document could be applied without the use 

of tools. However, such an activity would be both more resource intensive and failure prone, 

since e.g., the application of the method will need to be performed specifically for each new 

PIA study without a possibility of reuse. In any case, the quantitative part does require the use 

of tools.  

In the past we relied on two separate tools: ASCE for the qualitative part of the analysis and 

Möbius SAN for the quantitative part (a short description of each tool is given in Appendix A). 

The main objective for WP2 in the PIA:FARA project was to develop a toolkit which would 

allow a modeller to progress seamlessly from qualitative to quantitative interdependency 

analysis. More specifically, in WP2 we set out to achieve the following: 

● Development of models of interdependency between CIs in a graphical environment. This is 

achieved with the PIA Designer tool which: 

1. allows the modeller to switch between different views dealing with the different stages 

of modelling as described in Section 2. This includes being able to easily change the 

modelling assumptions and the model parameters used for the quantitative analysis. 

2. offers support of the pluggable architecture of the run-time engine (i.e., execution 

engine, see the following paragraph) whereby an executable (to conduct quantitative 

interdependency analysis by simulation) would be configured to use the simulation 

plug-ins needed in a study before deployment of the simulation executable on the run-

time engine. 

● Performance of probabilistic analyses based on the graphical models developed with the 

PIA Designer. This is achieved with the software tool referred to as Execution Engine, 
which has an architecture that separates the quantitative analysis tasks common to all PIA 

studies (such as SAN models of the modelled entities and their stochastic associations) from 

the specifics of the particular study (e.g., optional add-ons needed only in some PIA studies, 

specific parameterisations of the stochastic associations, etc.). This objective was achieved 

by adopting a pluggable architecture in which software modules compliant with the 

architecture can be easily added to a study by configuring the simulation study. 

Below are some of the ways in which the PIA Toolkit can enhance the application of the PIA 

approach: 

● Visualisation. PIA models are enhanced with graphical representation. Visualisation can 

assist in the visual exploration of system dependencies and, when combined with 

geographical information, support the thought process for considering disaster scenarios 

such as flood or earthquake. ASCE has a powerful and flexible graphical modelling 

environment; in addition, PIA Designer has the capability to export the modelled system to 

Google Earth [9] application if geographical coordinates have been entered as attributes 

(status fields in ASCE terminology) of the constituent model entities. Visualisation can also 

be used to facilitate communication among different analysts and other stakeholders as they 

are looking at the graphical models. Model views created in PIA Designer are hereafter also 

referred to as ASCE networks (adopting the jargon used by the ASCE tool developers and 

modellers). 
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● Analysis automation. Mathematical modelling is aided, and parts of it are automated 

through the integration of the tools for qualitative and quantitative analysis in the PIA 

Toolkit. 

A significant part of the PIA Toolkit development has involved the work on integration of the 

PIA Designer and the Execution Engine. This work aims to deliver a seamless integration 

between the two parts of the toolkit—the user interacts with PIA Designer as the front-end of 

the toolkit, with only the minimal need for interaction with the Möbius-based execution engine. 

After the user finishes with the PIA model development in PIA Designer, the necessary 

information is communicated to the Execution Engine, so that probabilistic model is initialised 

and the simulation is executed. 

In this section we give a description of how the PIA Toolkit is used to support the PIA method 

with the benefits of visualisation and enhanced analysis features, as well as present the 

architecture of the toolkit. 

3.1 PIA Toolkit Usage Patterns 

In general, we envisage two approaches to development of PIA models:  

● Interactive analysis performed “from scratch”, whereby the analyst is building the PIA 

model afresh by going through the PIA stages as described in Section 2.2. In this way, the 

PIA Toolkit user would generate the model views manually, in a step-by-step manner: 

creating the necessary physical entities belonging to the CI services under scrutiny, 

assigning the required parameter values to these entities, creating and parameterising 

stochastic associations etc. 

● Automated analysis, whereby the analyst is using pre-existing data sets about the modelled 

system to programmatically produce initial graphical representations of it. This approach is 

suitable when, for example, a description of a real incident is available. In such cases, some 

software utilities that are part of the PIA Toolkit can help generate ASCE networks 

belonging to a particular PIA study.  

In both cases, the PIA stages as defined in Section 2.2 are followed. However, depending on the 

amount and the format of the data sets available, the analyst will have to go through a series of 

steps where interaction with the tools will be required. It should be noted that these two PIA 

development approaches are not necessarily mutually exclusive, i.e. the Interactive and 

Automated analysis might be combined inside a single PIA study. 

3.2 Overview of PIA workflow 

This sub-section provides a software-centred description of the steps taken when using the PIA 

Designer to accomplish a series of tasks necessary for the development of a PIA model. It 

explains typical usage of the PIA Designer software. 

The user of PIA Designer, PIA Analyst, can generate two broad categories of the PIA model 

representations, i.e. model views: Intra- and Inter-CI service views. The former depicts the 

associations between the entities of the same CI service, while the latter depicts the associations 

across CI service boundaries. An orthogonal categorisation of the model views is as follows: 

● Physical Network (PN) view, which depicts the physical entities (physical nodes or physical 

links) of the interacting CI services (e.g. when modelling a PN view of an electrical power 
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transmission service, we would for example include high-voltage cabins as nodes and high-

voltage trunks as links among the other kinds of entities the service might consist of).  

● Stochastic Associations (SA) view, which is a representation of the stochastic associations 

(see Section 2.2 for an explanation of the term) between the model entities. 

The interaction between the PIA Designer software and its user consists of the following 

sequence of steps: 

Step 1. Create Notational Schemas. By executing this step the PIA Analyst creates the 

necessary ASCE schemas that are used as the basis for developing ASCE networks 

(see Appendix A) used in the PIA model. For example, a notation for describing the 

Intra-PN view of each service modelled in the PIA study will need to be developed. 

Step 2. Create PIA Project network. PIA Analyst then creates PIA Project network which is 

used to maintain the references to all ASCE networks belonging to a particular PIA 

model. Every PIA Project has a default set of ASCE networks. The set of default 

networks includes: Inter-PN, Inter-SA, StateTransitions and SimulationPlugins 
networks. For more information see sub-section C.1 in Appendix C. 

Step 3. Populate State Transitions network. The user creates the state machines for all the 

entity kinds, i.e., all TMEs (see Stage 5 in Section 2.2) used in the particular PIA 

model. For example, if the PIA was applied to a Public Switched Telephone Network 

(PSTN) CI, then the set of TMEs could include the following: Backbone Exchange, 

Transit Exchange, Local Exchange etc. 

A state machine for each TME consists of the set of states and the associated state     

transitions. Each state transition needs to be parameterised. The state transition 

parameters include the i) Function_type – the family of functions this state transition 

belongs to, ii) Function_name – the particular function used for the state transition and 

iii) Function_parameters – the parameters that the state transition function accepts. 

Initially, every entity instance of a particular TME takes on the default state transitions 

values. The PIA Analyst can, however, specify a set of parameters for a particular 

entity instance which is different than the default one. For more information see sub-

section C.2 in Appendix C. 

Step 4. Populate Physical Network (PN) networks. This step consists of the following two 

activities: 

Populate Intra PN networks. This is the central point of the development, or 

refinement, of the PIA model of any of the services: it processes the topology 

information of physical networks of each modelled CI service to create respective 

graphical representations (i.e., ASCE networks). Each such network is based on the 

notation, i.e., ASCE schema, created in Step 1. These networks consist of a possibly 

large number of entities and thus the visual representation aids in comprehending their 

complexity. 

Populate Inter PN networks. This activity is based on the definition of the coupling 

points – the model entities which represent interfaces between different CI services 

(e.g., a high-voltage-cabin is a coupling point of a Power Transmission service 

supplying the power to a base transceiver station of a Telecommunication GSM 

service). The coupling points are defined for both PN and SA model views. According 

to the PIA method, there are two interpretations of the term coupling point: when 

considering PN view the term defines if an entity is physically connected to, or more 
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precisely causally affects, at least one entity from another service, while in an SA 

ASCE network the attribute defines if an entity is stochastically associated with at 

least one entity from another service (see Section 2.1 for further explanation of the 

coupling points term). 

For more information about this step see sub-section C.3 in Appendix C. 

Step 5. Populate Stochastic Associations (SA) networks. This step includes the following: 

Populate Intra SA networks. During the execution of this step the stochastic   

associations between the entities of the particular, i.e., “native”, CI service are 

identified and the values of the parameters of each association are specified. In 

addition, in the Intra-SA view the stochastic associations affecting entities belonging to 

other, i.e. “foreign” CI services are identified if an entity, say EN, from the native CI 

stochastically affects an entity, say EF, from a foreign service, i.e., EN is stochastic 

“parent” of EF (see Section 2.2). Each service from the underlying PIA model has its 

own Intra-SA view. The underlying ASCE schema of any Intra-SA view is, however, 

general-purpose – it is shared among all PIA studies. 

Populate Inter SA networks. Please see the description of the sub-step Populate Inter 

PN networks (Step 4) above.  

For more information see sub-section C.4 in Appendix C. 

Step 6. Configuration of the Simulation Plug-ins. This step allows for parameterisation of the 

simulation plug-ins which can be embedded in the probabilistic model execution.  

A simulation plug-in3 is a standalone piece of code, i.e., a dynamically linked library, 

which extends the functionality of the PIA simulation model template, which is the 

central part of the PIA Toolkit execution engine. The categories of simulation plug-ins 

are as follows: Initialisation, Deterministic, Trace, Rate and Reward. In each PIA 

model there must exists one, and only one, Initialisation plug-in, and there are zero to 

many simulation plug-ins belonging to the other categories. The Initialisation plug-in 

is used for the initialisation of the PIA simulation model template according to the 

needs of the particular PIA study. 

For more information see sub-section C.5 in Appendix C. 

Step 7. Creation and configuration of the PIA simulation study. The data about the PIA model 

is gathered from the respective model views, by examining the corresponding ASCE 

networks, and passed to the Möbius-based execution engine. These data are supplied 

in a particular format and serve the purpose of inputs to the probabilistic model 

simulation. 

Examination and data gathering from the model views (ASCE networks) is performed 

using a separate PIA Toolkit component developed in Java programming language. 

For more information see sub-section C.6 in Appendix C. 

Further explanation of the use of the PIA Designer tool is given in its User Manual document in 

the Appendix C.  

                                                      
3 The term plug-in is used for describing different parts of the PIA Toolkit. Beside the simulation plug-ins 

there are ASCE-based PIA Designer plug-ins, which are standalone pieces of a scripting language code 

that enhance the functionality of the ASCE engine. These ASCE-based plug-ins have been used 

extensively for implementing the functionality of the PIA Designer tool. 
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3.3 PIA Toolkit Execution Engine 

The back-end part of the PIA Toolkit consists of the custom-built execution engine which is 

based on Möbius tool simulation solver (see Appendix A, as well as the deliverables produced 

as part of the IRRIIS project [6], for details about the Möbius tool). The execution engine is 

based on the concept of continuous time, discrete event driven Monte Carlo simulation. 

The central part of the execution engine is the PIA simulation template, a general-purpose 

probabilistic model implemented in the Möbius tool, which is used as the basis for generating an 

arbitrary PIA probabilistic model. The data obtained from the qualitative part of the PIA model, 

developed in the PIA Designer, is used to initialise the PIA simulation template in the specific 

way. These data include information about particular topology, stochastic associations and state 

transitions of the underlying PIA model. 

The main characteristic of the PIA simulation template is its pluggable architecture. Using this 

kind of architecture the functionality of the template is enhanced and augmented through 

simulation plug-ins – additional pieces of standalone code distributed in the form of 

dynamically shared libraries (in the terminology adopted by Microsoft Windows they are 

referred to as dynamically linked libraries (dlls)). Each simulation plug-in has an associated data 

file with it, which is used for the configuration of the respective dll. There exist different 

categories of simulation plug-ins, differentiated based on its purpose. Simulation plug-ins are 

used for: 

● initialising the probabilistic model in the way specific to a particular PIA model. This type 

of simulation plug-ins belongs to the Initialisation category.  

● augmenting and/or enhancing the functionality of the simulation template. There are several 

categories of this type of simulation plug-ins: Deterministic, Trace and Reward. A short 

description of each category is provided below. 

Deterministic plug-ins implement engineering /deterministic models which are embedded in the 

generic model of stochastic dependence – they can influence the “dynamics” of a subset of 

model entities in a specified way. For example, a deterministic model describes how a subset of 

model entities instantaneously change state values of another subset of model entities (see Stage 

6 of the PIA method described in Section 2 for further description of the deterministic models). 

Examples of deterministic plug-ins are as follows: Direct Current (DC) approximates power 

flow model for power flow components, or “flattening” of the electrical battery after a fixed 

period of time, etc. 

Trace plug-ins augment the functionality of generating the simulation traces of particular failure 

scenarios. The simulation traces are computer generated formalised text descriptions of a 

sequence of discrete events in simulated time. They are occasionally found to contain complex 

cascading event sequences. The trace generation feature can be enhanced with the 

complementary visualisation of the simulation event sequences, in order to aid the 

understanding of model behaviour. Also, the trace and the associated visualisation should help 

in examining the (large-scale) interdependency effects between CIs. After a careful review, for 

the current purposes, we decided to use the Google Earth application to visualise these traces. 

Google Earth [8] offers a rich feature set for displaying 2D and 3D images of varying resolution 

of the Earth's surface and as such it enables a powerful graphical interface for showing state 

changes of each of the CI model entities. 
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Reward simulation plug-ins enhance the functionality of the template in regard to Möbius 

reward variables. The Möbius-based execution engine analyses the constructed models to 

estimate parameters of so-called reward function. Analysts are free to define an infinite variety 

of reward functions (or rewards) once a model has been defined and implemented using the 

Möbius-based execution engine. These rewards are functions on the simulator event sequence 

for one replication of a Möbius simulation of a model built using this tool. Essentially most such 

reward functions will usually either count transitions between subsets of the model’s state 

space; or accumulate the total simulated time spent within some subset of the input space; or 

integrate some step function of time defined as a function of the current model state. 

3.4 PIA Toolkit Architecture 

A schematic representation of the PIA Toolkit architecture is given in Figure 5, as a UML 

Component diagram. The component diagram displays the software execution environment of 

the whole PIA toolkit. It models the software with concrete elements in the physical world that 

are the result of a development process and reveals software configuration issues through 

dependency relationships. 

PIA Designer consists of the following components: 

● An instance of the ASCE tool executable, 

● 15 PIA ASCE plug-ins which implement the functionally necessary for the qualitative PIA. 

The plug-ins are implemented using JavaScript programming language, with the exception 

of one of them, PIA_InterServiceLinks.xml, which is implemented using VBscript language. 

The plugins enable the PIA analyst to create the PIA model views, each one of which uses a 

PIA ASCE schema as its underlying notation. The ASCE plug-in referred to as 

PIA_SimulationPluginsConfigurator.xml is used for the creation of a subset of the files used 

as inputs to the PIA execution environment – these files are used for the configuration of the 

simulation plug-ins used in the simulation model. There are 3 such files: Plugin paths and 
names, Legacy Initialize Nodes Plugin Data, and Plugins ID mappings. 

● Seven PIA ASCE schema files which are used as the underlying notations for the various 

PIA model views (ASCE networks): 

● PIA.xml, PIA_InterCIPN.xml, PIA_InterCISA.xml, PIA_IntraSA.xml, PIA_Project.xml, 
PIA_SimulationPlugins.xml, PIA_StateTransitions.xml. 

These ASCE schemas are general–purpose. They are to be used in an arbitrary PIA study. In 

addition to these 7 schemas, PIA assumes that a separate schema for Intra-PN view is 

created for each service modelled in a particular PIA study. In one of the case-studies used 

throughout the PIA:FARA project, we have created 2 such schemas: PIA_PowerPN.xml and 
PIA_TelcoPN.xml, which are used for graphically representing Power and Telco CI service, 

respectively, of the Rome case-study. 

● The PIA Simulation Study Generator utility, which examines the ASCE networks created by 

the PIA ASCE plug-ins and creates 3 input files necessary for the execution of the PIA 

simulation: i) ServiceTimesGen file – this file contains the data about the entities used in the 

PIA study and the corresponding topology, the data about the state transitions of each entity 

instance, and the values of the parent scaling factors for each entity instance; ii) 

RomeCMGen – this file contains the information about the direction of the stochastic 

associations between the entities of the PIA study – for each model entity (“parent”) the set 
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of entities it stochastically influences (“children”) is provided; and iii) ServiceKinds – this 

file contains the information about the TMEs (types of the modelling entities), i.e., entity 

kinds, used in the PIA study. 

The PIA Execution Engine uses the files generated by the PIA Designer as its inputs. This part 

of the PIA toolkit includes the following components: 

● PIA simulation model template, which is initialised in the specific way for each PIA study. 

The initialisation data are obtained from the 3 input files generated by the PIA Designer: 

ServiceTimesGen, RomeCMGen and ServiceKinds. 

● Exactly one simulation plug-in belonging to the Initialisation category. This plug-in 

implements the initialisation of the PIA simulation model template for a particular PIA 

study according to the information supplied in the three input files. The data file for the 

initialisation plug-in contains the absolute path to the directory of the simulation model 

where the three input files are located. 

● (Optional) A set of simulation plug-ins belonging to the other categories. Each of these 

plug-ins has a data file associated to it. Also, there is another file specific to the simulation 

plug-ins belonging to the Deterministic category. The file, titled Plugins ID mappings, 
contains the mappings between the entities used in the PIA study and the entities used in 

each of the deterministic plug-ins.
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Figure 5: UML component diagram of the PIA toolkit 
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3.5 Tool support for the service-level model 

In addition to the ASCE plug-ins used for the development of the PIA Designer tool (see 

Section 3.4), we have implemented a couple of ASCE plug-ins which aid the creation of the 

model of interacting services (service-level model). 

As discussed in Section 2.2.4, the identification of dependencies between CIs lies upon the 

careful consideration of the relationships between model entities, and a thoughtful process of 

asking what-if questions and applying scenarios to the model. 

Here, the tool and the effort placed in providing the definitions and the service model begin to 

produce results: assisted by the visualisation of ASCE’s graphical environment, the user can 

explore dependencies by examining the network and can communicate scenarios and findings 

with colleagues. In addition, the PIA Toolkit also comes with two ASCE plug-ins that can be 

used to enhance this investigation. These are discussed in the following sub-sections. 

3.5.1 Interconnectivity matrix plug-in 

Figure 6 shows a screenshot of the Interconnectivity matrix plugin. The plugin can be used to 

present in a tabular format the various links between the model entities devised in service-level 

model. This can be used to improve the visualisation of associations and dependencies between 

services. 

 

Figure 6: Interconnectivity matrix plug-in 

Furthermore, the blank cells in the matrix indicate that there is no dependency recorded between 

the entities in the corresponding pair. The user can comment on the justification for why there is 

no dependency between the two entities.  

The interconnectivity matrix can be exported to a Microsoft Excel spreadsheet. 
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3.5.2 Google Earth plug-in 

In order to consider the aspect of geographical dependencies, Geographical Information 

Systems (GIS) need to be used. Having entered the geographical coordinates for each entity 

modelled in the ASCE network, invoking the Google Earth plug-in will result in a map being 

produced which represents nodes in the model and their service status (see Figure 7). 

 

Figure 7: Google Earth plugin 

These two plug-ins, along with the ASCE graphical environment, can facilitate the qualitative 

examination and investigation of dependencies. Once the system has been built, the analyst can 

begin to ask what-if questions, and reconfigure the model parameters to observe changes in the 

system behaviour. As discussed in Section 2.2, the information about the system, previous 

incidents and the threat agents will shape a threat model that can drive this exercise. 

4 Conclusions 

This report presented the PIA approach and described how the associated toolkit is to be used to 

carry out a PIA study. This section summarises the benefits of using this approach. 

PIA is a lightweight, fairly quick and easy, affordable approach to identifying and analysing 

interdependencies in complex systems. The analyst, with very low start-up costs, can model the 

entire system under investigation, starting from a high level of abstraction, and taking a modular 

approach to model development. With PIA, the analyst will be able to identify, analyse and 

quantify the risk of interdependency down to a physical component level.   

Given the complexity and size of CI systems and the high costs required for such analyses, a 

preliminary, affordable approach such as PIA can become very useful in identifying further 

modelling and analysis requirements: for instance, a PIA may identify a critical vulnerability in 

a segment of the infrastructure which will need to be modelled with high fidelity and/or real 

time. This may not be a requirement, however, for the entire inter-service model. PIA can 
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identify further requirements for specific elements of the system, whilst maintaining a good 

understanding of the entire system within the wider scope of the models. Given the costs of such 

modelling, carefully deciding what to model will support making the right decisions in terms of 

resource allocation, hardware performance requirements and investment overall. 

The WP2 of the PIA:FARA project delivered a tool-supported method, along with supporting 

guidance for CI interdependency analysis. Besides the use of the method on a case study based 

on the incident near Rome, Italy (see Appendix B), the method has also been applied internally 

within the project on another case-study which models an SME’s information infrastructure. 

The case studies were important since they served as a validation for the method and the tools. 

They also helped the PIA developers to identify the areas of improvement and further 

development. 
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5 Glossary 

Term / 
abbreviation 

Explanation 

AFI Abstract Functional Interface 

API Application Programming Interface 

ASCE Assurance and Safety Case Environment, Adelard 

http://www.adelard.com/web/hnav/ASCE/index.html 

CI Critical Infrastructure 

Coupling point A model entity that represents an interface between different CI services 

Dependency Single direction dependencies of one infrastructure on another 

DSBM Detailed Service Behaviour Models 

GIS Geographical Information Systems 

IA Interdependency analysis 

II Information Infrastructure 

IRRIIS Integrated Risk Reduction of Information-based Infrastructure Systems 

LLP Limited Liability Partnership 

Möbius A software tool for modelling the behaviour of complex systems, developed 

by the PERFORM research group from the University of Illinois at Urbana-

Champaign www.mobius.illinois.edu/ 

PC Personal Computer 

PERFORM Performability Engineering Research Group 

PIA Preliminary Interdependency Analysis 

PIA Toolkit A set of software tools to support the PIA method 

PSTN Public Switched Telephone Network 

PVS PVS is a specification language integrated with support tools and a theorem 

prover. See http://pvs.csl.sri.com 

SAN  Stochastic association networks are mathematical modelling formalism 

which provide stochastic extensions to Petri nets and are typically used for 

performance and dependability evaluation. 

SMEs Small-to-Medium Enterprises 

State Model entities can have a variety of states that i) describe their different 

phases of operation (e.g. start-up, operating, shutdown, maintenance), ii) 

describe their level of operability (e.g. OK, impaired, failed), iii) indicate 

characteristics of the commodities supplied (e.g. power phase angle for 

electrical power services). The definition of the possible states/modes that a 

PIA model entity can occupy is necessary for the identification and analysis 

of (inter)dependencies between model entities. 

State machine A mathematical abstraction which describes the behaviour of model (entity) 

and is composed of a finite number of states and state transitions. 

State transition The event of a state change of a particular model entity 

TSB Technology Strategy Board, see www.innovateuk.org/ 
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UML Unified Modelling Language is a standardised general-purpose modelling 

language in the field of software engineering. http://www.uml.org/ 

XML  Extensible Mark-up Language 
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Appendix A An overview of the ASCE and Möbius tools 

A.1 Assurance and Safety Case Environment (ASCE) 

ASCE is an information management and representation tool that provides a flexible, dynamic 

and customisable graphical environment with highly extensible analytical capability. The tool is 

an industry standard for the UK Ministry of Defence, used widely among nuclear and aviation 

industries for the creation and management of safety cases.  

ASCE is highly customisable software product: on top of its underlying engine lies a flexible 

graphical environment, which can be used to design or modify graphical notations (referred to 

as ASCE schemas). These schemas allow ASCE to be used in a wide range of business contexts 

where there is a benefit in explicitly structuring information into meaningful parts according to a 

particular notation. ASCE networks are collections of nodes and links created according to a 

particular ASCE schema, and visualised using the ASCE display engine. 

Creating nodes and links is made simple and intuitive through the use of a drag-and-drop 

feature. ASCE has a powerful, easy-to-use node editor which allows users to import text from 

standard word processing applications. It supports text formatting, tables and heading styles to 

show the logical structure of the document. 

In addition, the functionality can be extended with the use of “plugins”– pieces of additional 

code, written in scripting languages such as VBscript or JavaScript, which are configurable by 

the user: a plugin is either loaded or disabled depending on the needs of the particular user. 

Examples of what functionality is achievable with the plugins are as follows: 

● connecting to third party tools and file formats, interrogate them and importing the data  

● exporting data about ASCE networks 

● popup windows to present and collect information from the user 

● analysing the structure of ASCE networks 

A comprehensive description of the ASCE tool can be found on the Adelard website [4]. 

ASCE-based support in the PIA Designer consist of a set schemas and associated networks 

which model the various views of interdependent CIs, e.g. physical network view, stochastic 

association view etc., each one of which is represented with a particular ASCE network. Also a 

number of ASCE plug-ins have been developed to support the application of the PIA method.  

A.2 Möbius 

Möbius™ is a software tool for modelling the behaviour of complex systems. The tool is based 

on the framework which allows for formal mathematical specification of model construction 

and execution. The tool is extensible in the sense that new modelling formalisms and model 

solution methods can be easily integrated in this broad framework. The core of the 

implementation of this framework is abstract functional interface (AFI), which includes a set of 

functions that enables both the communication between models, as well as the communication 

between models and model solvers. 

Models can be solved either analytically/numerically or by simulation. Source code in C++ 

programming language is generated and compiled for each model, and the object files are 
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packaged to form a library archive. These libraries are linked together along with the tool's base 

libraries to form the executable for the solver. The executable is run to generate the results. The 

base libraries implement the components of the particular model formalism, the AFI, and the 

solver algorithms. 

Although the tool was originally developed for studying the reliability, availability, and 

performance of computer and network systems, its use has expanded significantly. Time- and 

space-efficient discrete-event simulation and numerical solution, based on Markov processes, 

are both supported. 

The tool was developed, and is maintained, by the Performability Engineering Research Group 

(PERFORM) in the Centre for Reliable and High-Performance Computing at the University of 

Illinois at Urbana-Champaign. More information about the tool can be obtained from the 

webpage at [12]. 
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Appendix B Rome case-study – an example of applying the PIA method 

One of the case-studies used in the PIA:FARA project for further development and validation of 

the PIA method is based on the real incident that occurred in Rome, Italy. The incident affected   

telecommunications, and subsequently the power, CI. The case-study is referred to as Rome 
scenario. Further information about the incident can be found in [6][7]. 

One of the purposes of this analysis is to carry out an in-depth analysis of a major, nationwide, 

complex incident, and identify other likely failure modes that could have emerged in this case. 

There are two critical infrastructures modelled in the Rome scenario: Power and Telco. Power 

CI consists of 2 CI services: Transmission and Distribution, while the Telco contains 3 services: 

Public Switched Telephone Network (PSTN), Global System for Mobile Communications 

(GSM) network and Synchronous Digital Hierarchy (SDH) network. For each of the CI services 

two ASCE networks are created: 

• The first depicts Intra-service Physical Network view; a part of one such network, the 

Power Transmission PN, is given in Figure 9. 

• The second depicts Intra-service Stochastic Association view; one such example, the 

Telco SDH SA network, is given in Figure 10. 

In Figure 9 some of the entity types of Power CI service are shown: hvc – high voltage cabin 

(represented by the blue square), swt – power switch (represented by the purple square), high 

voltage trunk (represented by the blue link), copper cable (represented by the orange link). The 

window on the right presents the attributes, i.e. ASCE status-fields, of one of the depicted nodes 

– P13hvc. 

The entity types of Telco CI service, which are depicted in Figure 10 as ASCE nodes, are as 

follows: physical nodes (such as T16adm, an add-drop multiplexer) and physical links (such as 

ring6-T28adm-T30adm, an add-drop multiplexer ring). The ASCE links indicate the stochastic 

associations between the entities of the SDH service. The associations are all reciprocal for 

depicted subset of entities of the particular CI service – this indicates interdependency between 

the nodes of each node pair. But, surely, there is a possibility of unidirectional stochastic 

associations. The window on the right presents the attributes, i.e. ASCE status-fields, of one of 

the depicted nodes – T16adm. 

Besides showing a CI service, it is also possible to generate an ASCE network representing a 

PN model view or an SA model view of the whole CI (Power or Telco). 

Each of the model entities has an associated set of state transitions based on the corresponding 

state space definition. State transitions of every model entity are represented with a state 

machine diagram implemented in ASCE (one such state machine is given in Figure 8), in which 

the nodes represent state values and links represent state transitions. Each state transition is 

characterised with the following attributes: a function that calculates the probability of that state 

transition, the type/family of the particular function, and the parameter values needed for the 

calculation of the function. In this example, the size of the entity’s state space is 2 (the state 

values are “Failed” and “OK”). The “OK-to-Failed” state transition (pointed from by the red 

arrow) has the attribute values as follows: the type of the function is: CompetingRisks, the 

function name is: Telco_node_sojourn_time and the function parameter values are: 

5,4:4.56308e-06. 
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Figure 8: A state machine diagram for a local telephone exchange and the links status-
fields editor plug-in 

An ASCE plug-in has been developed to provide the option of editing the state transition 

parameters (see Figure 8). The plug-in is named Links status-fields editor and is an example of 

use of the powerful ASCE plug-ins, which add functionality beyond that provided by the core 

ASCE product. This plug-in analyses the structure of the underlying ASCE network and the 

associated schema, and displays the status field values of the selected link. 

 

Figure 9: Part of the intra-service PN view of the Power Transmission service  
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Figure 10: A part of the SAN of the Telco SDH service 

 

 

Figure 11: The “Node search” plug-in 

Beside the plug-in Links status-fields editor, several other ASCE plug-ins have been 

implemented to facilitate the development and refinement of probabilistic models. Some of the 

plug-ins are as follows: 

● “Node search” (see Figure 11) – it allows for the ASCE nodes’ collection to be examined 

based on a search term of choice, such as userID, or userTitle. After the PIA analyst enters 

the value to be searched, the nodes of the underlying network are examined and, if a match 

is found, the matched node is navigated to and selected. This plug-in, thus, allows for easier 

interactive analysis of large topologies. 
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● “Propagate network change” – it allows for a change in one ASCE network to be 

propagated to another. For example, when the PIA analyst creates a new node in an intra-

service physical network, this change is automatically reflected in the corresponding state 

transition network by creating the state machine for the newly introduced model entity. 
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Appendix C PIA Designer User Manual 

This Appendix describes the necessary steps for creating an arbitrary study in ASCE-based PIA 
Designer tool. 

The prerequisites for creating a PIA Project using the PIA Designer tool are as follows: 

● A compatible ASCE version needs to be installed. The oldest compatible ASCE version is 

v4.0.77. 

● The PIA ASCE schemas are installed in the schemas’ directory located in the user’s 

Application Data directory (i.e., in the schemas sub-directory of the ASCE User Settings 
directory). An example of the absolute path of the schemas subdirectory is given below: 

C:\Documents and Settings\< username> \Application Data\Adelard\ASCE\4.0\schemass 

● The PIA ASCE plug-ins are installed in the plug-ins’ directory located in the user’s 

Application Data directory (i.e., in the plugins sub-directory of the ASCE User Settings 
directory). An example of the absolute path of the plug-ins subdirectory is given below: 

C:\Documents and Settings\< username> \Application Data\Adelard\ASCE\4.0\plugins 

● The PIA ASCE plug-ins are enabled. This is achieved using the ASCE Plugin Manager, 
which can be started from the Tools menu item in ASCE. 
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C.1 Part 1 – Create PIA Project ASCE network 

The first phase in the process of creating a PIA Project is to build a PIA Project ASCE network. 

The following steps describe this initial phase. 

1. Start the ASCE tool 

2. Using the option New from the File menu item, create a new ASCE network using the 

PIA_Project ASCE schema. 

3. Save the network using the ASCE tool Save option. The network is to be saved in the 

folder where all PIA projects are to be stored, under a name of choice. After saving the 

new project, a folder with the chosen project name will be created as a subfolder in the 

PIA projects folder. The saving of the PIA project ASCE network will set the project’s 

attributes PIA_Project_Name and PIA_Projects_Location, which are modelled as 

ASCE network status-fields. 

NB: The GUI of the ASCE tool does not allow the user to create a PIA project in the same 

absolute path that already exists. 

4. Start the ASCE plug-in PIA – Edit network status-fields from the File menu option 

(Figure 12). Fill in the values for the PIA project attributes, which are modelled as 

network status-fields, to take on the values corresponding to the newly created project. 

The status-fields are as follows: 

● PIA_Project_Name – the value of this status-field has been already set when saving 

the ASCE network. 

● PIA_Projects_Location – the value of this status-field has been already set by 

saving the ASCE network. 

● Mobius_Projects_Location – this status-field specifies the absolute path of the 

folder where all Möbius projects are saved. This path is not necessarily the same as 

the path where the PIA Designer projects are saved. If the default value of this 

status-field exists (i.e., if it has been specified in the PIA_Project schema), it needs 

to be overridden. 

● Simulator_Template_Location – this status-field specifies the absolute path of the 

Möbius template model. The simulation model of every new PIA project is created 

based on this template model. If the default value of this status-field exists (i.e., if it 

has been specified in the PIA_Project schema), it needs to be overridden. 

● Simulator_Input_Files_Folder_Name – this status-field specifies the name of the 

folder where the inputs to the Möbius simulation model of the newly created PIA 

project are to be stored. The default value of this status-field is D226inputs. 

● Simulation_Plugins_Conf_Folder – this status-field specifies the name of the folder 

where the configuration files of the simulation plug-ins are stored. Simulation plug-

ins are self-contained pieces of code that enhance the functionality of the Möbius 

template model. Each simulation plug-in is a dynamically linked library which has 

an associated data file. The accepted file types of the simulation plug-ins’ data files 

are .txt and .xml.  
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Figure 12: The Network status-field editor plug-in 

5. Click anywhere on the ASCE modelling area for the helper HTML form, and the 

associated ASCE plug-in will be started (the title of the form is PIA tools – PIA Project 
validation, Figure 13). 

 

 
Figure 13: The HTML form used for the validation when creating a new PIA project 

6. Create the default set of PIA ASCE nodes by pressing the Create PIA Project default 
nodes button. These nodes represent the ASCE networks that are necessary in any non-

trivial PIA project. The default PIA Project nodes are as follows: 

● A node representing default Intra_PN network (named initially Default_IntraPN) is 

created. The Intra_PN ASCE network will not be created in the project folder until 

the node in the project view is renamed (a meaningful name, such as Power1 if a 

power critical infrastructure is being modelled, is supposed to be given). 
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Every time a node representing Intra_PN network is created in the PIA Project 

ASCE network, the corresponding Intra_SA node will be created programmatically 

(the convention is that the name of the Intra_SA node will be composed of the name 

of the Intra_PN network and the suffix “SA”). In this way, the user is not expected 

to create any of the Intra_SA nodes manually.  

● A node representing StateTransitions network. The StateTransitions.axml network 

will be created in the project’s folder. The name of this network is assumed to be 

the same for all PIA projects.  

● A node representing SimulationPlugins network. The SimulationPlugins.axml 

network will be created in the project’s folder. The name of this network is assumed 

to be the same for all PIA projects. 

● A node representing InterCIPN network. The InterCIPN.axml network will be 

created in the project’s folder. The name of this network is assumed to be the same 

for all PIA projects. 

● A node representing InterCISA network. The InterCISA.axml network will be 

created in the project’s folder. The name of this network is assumed to be the same 

for all PIA projects. 

7. The user is expected to confirm the creation of each of the default ASCE networks 

before them being created in the project folder. 

8. The ASCE networks created in the project folder will have some of their respective 

network status-fields automatically set, e.g. network status-fields for the project path 

and the project name will be set programmatically. 

9. The user creates an Intra_PN node for each service organisation modelled in the 

particular PIA project. 

● The user specifies the name of the network in the UserTitle property of the 

corresponding node. 

● For each Intra_PN network the user specifies the corresponding ASCE schema, by 

choosing a value from the list given in the Schema_Name status-field. By 

convention, the names of the Intra_PN schemas end with the suffix “PN”. 

● Once the name of the node representing an Intra_PN network is given, and the 

name of the corresponding schema specified, the empty Intra_PN ASCE network 

will be created in the project’s subfolder. 

● The addition, as well as the update, of a node in the PIA project network is 

supported by the event-handling procedures of the following events thrown by the 

ASCE tool: AfterNodeAdd and AfterNodeUpdate. For further information see the 

ASCE tool documentation. 

10. Once a user deletes a node, say an Intra_PN node, from the PIA project network, the 

corresponding Intra_PN network from the project folder will be deleted. 

● The deletion of an Intra_PN network node will be followed by the programmatic 

deletion of the corresponding Intra_SA node – the user will be asked if the 

Intra_SA node is to be deleted or not. 

● The deletion of the ASCE nodes is supported by the handling of the following event 

thrown by the ASCE engine: AfterNodeDelete. For further information see the 

ASCE tool documentation. 
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11. After the user has specified all the networks for the particular PIA project, he/she closes 

the PIA project ASCE network and commences the building of the individual ASCE 

networks saved in the project folder. 
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C.2 Part 2 – Populate the State Transitions network view 

The next phase in building a PIA Project is used to define the state transitions and associated 

parameterisations i.e. create state machines, for all entity kinds used in the study. This phase 

consists of the following steps: 

1. Open the empty StateTransitions network, which was created as part of the phase Part 1 

– Create PIA Project ASCE network. 

2. Create an Entity_Kind node for each entity kind modelled in the PIA Project  (for 

example, if we are modelling two service organisations, a power and a 

telecommunications service, a set of entity kinds could be: HighVoltageCabin, 
MediumVoltageCabin, AddDropMultiplexer, HighVoltageTrunk and MVtoTelcoSite) 

3. For each Entity_Kind create the set of State nodes, each of which represents a state 

value associated with that entity kind. For example, the state space of an entity kind 

might consist of the following state values: OK and Failed. 

4. Create state transitions between state nodes – for each state transition an ASCE link 

connecting a pair of nodes should be drawn. This includes self-referential state 

transitions (characterising the cases when no state change occurs).  

5. Parameterise the state transition values, using the ASCE plug-in PIA Tools – Link status 
fields editor (Figure 14). The plug-in can be started from the list of options offered from 

a context of an ASCE link (this list of options is displayed once the user right-clicks the 

chosen ASCE link).   

● These state transition parameterisations represent the default values for the 

corresponding entity kind. All instances of a particular kind take on these values, if 

not specified differently. 

 
Figure 14: The Link status-field editor plug-in 

6. Make sure that the value of the node status-field State_Space for each entity kind node 

is populated with a comma-separated list of the state names associated to the entity 
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kind. For example, if there are two states (e.g. Failed and OK, as in a minimal case) in 

the state space of an entity kind, enumerate these two state values as Failed, OK in the 

status-field value. 

● The values of the State_Space status-field have to take exactly the same values as 

the names of the corresponding states, i.e. the capitalisation is significant. The 

ASCE plug-in named PIA – Generate State Space values (Figure 15) should be 

used to automate this task. This ASCE plug-in can be started from the Edit menu 

item of the ASCE tool. 

● Please note that the State_Space status-field is meaningful only for the nodes of 

type Entity_kind. 

 
Figure 15: The Generate State Space values plug-in 
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C.3 Part 3 – Populate Physical Network (PN) views  

C.3.1 Populate Intra PN views 

For each Intra_PN network defined in the PIA project perform the following:  

1. Open up the Intra_PN network. An Intra_PN network displays a topology associated 

with a particular critical infrastructure service modelled in the PIA project. 

● Make sure that nodes which are coupling points have the value of True set for the 

status-field IsInterCICouplingPoint (Figure 16). This value must be set to False by 

default for any type of entity. 

 Similarly, of course, make sure that the nodes that are not coupling points 

have the value of the status-field IsInterCICouplingPoint set to False. 
 For the nodes belonging to another critical infrastructure service the node 

type of which is foreign_ci_node, the value of the status-field 

IsInterCICouplingPoint is always False. 
● Make sure that links which are coupling points have the value of True set for the 

status-field IsInterCICouplingPoint (this value must be set to False by default for 

any type of entity). 

 Similarly, make sure that the links that are not coupling points have the 

value of the status-field IsInterCICouplingPoint set to False. 
 No links belonging to different, i.e. foreign, services are shown in the 

Intra_PN networks. 

 
Figure 16: The status-fields for the node MVC1 of an Intra_PN ASCE network 
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● Using the plug-in PIA_PropagateNetworkChange.xml 4, the addition of new nodes, 

as well as deletion of the obsolete ones, is automatically propagated to the project’s 

state transition ASCE network. 

 For this plug-in to work as intended, the set of Intra_PN network schemas 

defined in the project have to be specified in the plug-in’s list of applicable 

ASCE schemas – the tag <applicable-schemas> in the plug-in’s header 

needs to be updated. 

C.3.2 Populate Inter PN view 

After all the Intra_PN networks have been populated, open the empty InterCIPN network, 

which was created as one of the project’s default nodes in the PIA project network (see Part 1 – 

Create PIA Project ASCE network). Populate the InterCIPN ASCE network using all services 

that are part of the study. In a minimalist example every service is represented by a single 

physical entity, which is defined as a coupling point. The following steps are to be performed 

when populating the InterCIPN network: 

1. Create an ASCE node of type Service for each critical infrastructure service 

organisation modelled in the PIA project (e.g. if we are modelling a power service we 

will create a service node in the InterCIPN network and give it a name, for example, 

Power1). 
2. Define the cross-references between the InterCIPN and the corresponding Intra_ PN 

views, i.e. define the value for the IntraPNNetworkName node status-field of each node 

of type Service in the InterCIPN view. 

3. Execute the plug-in PIA – Inter Service Links (Figure 17) for each service node in order 

to display its corresponding coupling points5. The plug-in can be started from the Edit 

menu item of the ASCE tool. 

4. Connect manually the coupling points between the services, using the link type labelled 

Supplies. 

NB: Creation and population of the InterCIPN network, as well as the InteCISA network, is not 

essential for execution of the simulation model. This is because the data supplied as input to the 

simulation model can be extracted from the Intra_PN and Intra_SA networks belonging to the 

PIA project. 

 

                                                      
4 The ASCE plug-in PIA_PropagateNetworkChange.xml does not have an associated GUI. Instead, once 

the ASCE plug-in is enabled, it listens to the events thrown by the ASCE engine, such as AfterNodeAdd 
and AfterNodeDelete. 
5 Using the latest version of the PIA ASCE plug-in PIA – Inter Service Links, only the nodes from the 

Intra_PN networks can be shown to be the coupling points belonging to a particular service. In a future 

version of the ASCE plug-in, the functionality will be enhanced so that physical links can be shown as 

coupling points of a service. 
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Figure 17: The Inter-service links (coupling points) plug-in 
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C.4 Part 4 – Populate Stochastic Association (SA) network views 

C.4.1 Populate Intra SA views 

For each Intra_SA network defined in the PIA project perform the following: 

1. Open up the Intra_SA network. An Intra_SA network displays a stochastic associations’ 

view for a particular critical infrastructure service modelled in the PIA project. 

● As a starting point, use the topology as defined in the corresponding Intra_PN view.  

The user can programmatically import the entities, both nodes and links, from the 

PN view when generating the SA view – this activity is supported by the PIA ASCE 

plug-in PIA – Import PN view entities (Figure 18). An ASCE node in the Intra_SA 

view represents either a physical node or a physical link from the corresponding 

Intra_PN view. For the intended functioning of this plug-in, it is necessary that the 

meaningful values for UserTitles of the PN nodes and PN links have been specified 

in the Intra_PN network. If, for example, one of the links in the Intra_PN view has 

an empty UserTitle, this entity will not be imported in the Intra_SA view. 

● Create the SA links in the ASCE network. An ASCE link, in an Intra_SA network, 

represents a stochastic association between two physical entities. 

 Parameterise scaling factors: a stochastic association can be unidirectional, 

represented by the Intra_SA link type affects, or bidirectional (reciprocal), 

represented by the Intra_SA link type interdependent. A link of type affects 
displays a single parent-child relationship, and thus only the status-field 

Src_ScalingFactor is to be populated. A link of type interdependent 

displays a two-way parent-child relationship between a pair of physical 

entities, and thus both Src_ScalingFactor and Dst_ScalingFactor status-

fields are to be populated. The values of the Src_ScalingFactor and 

Dst_ScalingFactor are set using the PIA ASCE plug-in PIA tools – Link 
status fields editor. 

● Make sure that nodes from the Intra_SA network (please note these nodes represent 

either physical nodes or physical links defined in the corresponding Intra_PN 

network) which are coupling points have the status-field IsInterCICouplingPoint6 
set to True. This value is set to False by default for any type of entity. 

 Similarly, of course, make sure that the nodes that are not coupling points 

have the value of the status-field IsInterCICouplingPoint set to False.  
 For the nodes belonging to another critical infrastructure service, the node 

type of which is foreign_ci_node, the value of the status-field 

IsInterCICouplingPoint is always False. 

 

                                                      
6 The attribute, i.e. the status-field in ASCE tool terminology, named IsInterCICouplingPoint is defined 

for the ASCE nodes in an Intra_PN networks too. There are, thus, two interpretations of the term coupling 
point: in Intra_PN networks the attribute defines if an entity is physically connected to at least one entity 

from another service, while in an Intra_SA network the attribute defines if an entity is stochastically 

associated with at least one entity from another service. 
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Figure 18: The Physical Network views import plug-in 

C.4.2 Populate Inter SA view 

After all Intra_SA networks have been populated, open the empty InterCISA view, which was 

created as one of the project’s default nodes in the PIA project network (see Part 1 – Create PIA 

Project ASCE network). Then populate the InterCISA view with the nodes representing all 

critical infrastructure services that are part of the PIA project. In a minimalist example, every 

service is represented by a single SA entity, which is defined as a coupling point. The following 

steps are to be followed when populating the InterCISA network: 

1. Create an ASCE node of type Service for each critical infrastructure service 

organisation modelled in the PIA project (e.g. if we are modelling a power service we 

will create a service node in the InterCISA network and give it a name, for example, 

Power1SA). 
2. Define cross-reference between the InterCISA view and the corresponding Intra_SA 

network view, i.e. define the value of the IntraSANetworkName node status-field for 

each service in the InterCISA view. 

3. Execute the plug-in PIA – Inter Service Links for each service node to create the 

corresponding SA coupling points. The plug-in can be started from the Edit menu item 

of the ASCE tool. 

4. Connect manually the SA coupling points between the services. Use an appropriate link 

type for this activity: use the link type labelled Affects for the unidirectional relationship 

between the coupling points, or the link type labelled Interdependent for the reciprocal 

relationships between the coupling points. 

NB: Creation and population of the InterCIPN network, as well as the InterCISA network, are 

not essential for execution of the simulation model. This is because the data supplied as input to 

the simulation model can be extracted from the Intra_PN and Intra_SA networks belonging to 

the PIA project. 
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C.5 Part 5 – Configuration of the Simulation Plug-ins 

Each PIA project uses a set of simulation plug-ins. A simulation plug-in7 is a standalone piece 

of code, i.e. a dynamically linked library, which extends the functionality of the PIA simulation 

model template. The categories of simulation plug-ins are as follows: Initialisation, 

Deterministic, Trace, Rate and Reward. In each PIA project there must exists one, and only one, 

Initialisation plug-in, and there are zero to many simulation plug-ins belonging to the other 

categories. 

The ASCE engine plug-ins PIA – Configure Simulation Plug-ins and PIA – Simulation Plug-in 
Entities Mapping are used for the configuration of the simulation plug-ins for a particular PIA 

project. Each PIA Project contains a subfolder named Simulation_Plugins_Configuration – it is 

the default location where the configuration files of simulation plug-ins are stored. The steps for 

populating the SimulationPlugins ASCE network are as follows: 

1. Open the SimulationPlugins ASCE network, which was created as one of the project’s 

default nodes in the PIA project ASCE network (see Part 1 – Create PIA Project ASCE 

network). Each PIA Project has one SimulationPlugins ASCE network located in the 

project’s folder. 

2. For each simulation plug-in repeat the following: 

● Create an ASCE node representing the simulation plug-in (e.g. of type Initialisation 

plug-in). 

 Specify the values for the status-fields DLL_Path and Data_File_Name. 
The former determines the absolute path to the dynamically linked library 

of the simulation plug-in (the dll name is specified by the UserTitle of the 

ASCE node representing the simulation plug-in), while the latter specifies 

the name of the data file associated with the particular simulation plug-in – 

every simulation plug-in has a data/initialisation file associated with it. 

This data file is produced by the simulation plug-in developer. 

● Execute the ASCE plug-in PIA – Configure Simulation Plugins (Figure 19) by 

choosing the corresponding option from the ASCE Edit menu item. As a result, the 

file conventionally named Plugin Paths and Names.txt will be created in the 

project’s subfolder Simulation_Plugins_Configuration. This file contains the list of 

absolute paths to all the simulation plug-ins used in the particular PIA project, and 

for each plug-in the absolute path to its data file is specified. 

● The execution order of the simulation plug-ins belonging to the Deterministic 

category is significant. PIA Designer user specifies the particular ordering of 

Deterministic plug-ins by using the GUI shown in Figure 20. The GUI is displayed 

once the PIA Designer user presses the button labelled Deterministic plugins 
ordering from the HTML form of the PIA ASCE plug-in PIA – Configure 
Simulation Plug-ins. 

                                                      
7 The term plug-in is used for describing different parts of the PIA toolkit. Beside the simulation plug-ins 

there are ASCE tool plug-ins, which are standalone pieces of a scripting language code that enhance the 

functionality of the ASCE engine. ASCE plug-ins have been used extensively for building the 

functionality of the PIA Designer tool. 
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Figure 19: The plug-in used for configuration of the Möbius-based simulation study 

 

 
Figure 20: The plug-in used for specifying the particular execution order of Deterministic 

plug-ins in a PIA project 

3. For each simulation plug-in belonging to the Deterministic category, a mapping 

between the entities used in the plug-in and the entities used in the PIA Project has to be 

established. The ASCE plug-in named PIA – Simulation Plugin Entities Mapping 

(Figure 21) is used for creation of such a mapping.  

● Specify the value for the status-field IDs_File_Name. This status-field, which is 

relevant for the deterministic simulation plug-ins only, indicates the name of the 

XML file that contains the IDs and names of the entities used by the deterministic 

plug-in. By convention, the file is stored in the Project’s subfolder 

Simulation_Plugins_Configuration. Each such file is assumed to have been 

produced by the developer of the Deterministic plug-in and PIA Designer user 

places it in the dedicated project folder. This file is used to enumerate the entities of 

the particular Deterministic plug-in in the GUI of the ASCE plug-in PIA – 
Simulation Plugin Entities Mapping. 
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● Execute the PIA – Simulation Plugin Entities Mapping plug-in by choosing the 

corresponding option after right-clicking on the ASCE node representing a 

deterministic plug-in. An HTML form with the entities used in the deterministic 

plug-in will be loaded. Create a mapping between entities used in the plug-in and 

the entities belonging to the specific PIA project – this is achieved by the PIA 

Designer user who pairs a deterministic plug-in entity, displayed in the left column 

of the HTML form, with the corresponding PIA Project entity, displayed in the right 

column of the HTML form. In a general case, not all plug-in entities will 

necessarily be mapped to a PIA project entity. 

 The entity mappings for all deterministic simulation plug-ins are stored in a 

single file (conventionally named Plugins ID Mappings.txt) in the project’s 

subfolder Simulation_Plugins_Configuration. The file contains the pairs of 

mapped ID values for each Deterministic plug-in: the first ID value 

represents the entity’s ID as used in the deterministic plug-in, and the 

second value represents the ID value as used in the PIA project. 

 
Figure 21: The plug-in for mapping entities defined in a Deterministic plug-in to entities 

from the PIA project 
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C.6 Part 6 – Creation and configuration of the PIA simulation study 

1. Open the PIA project ASCE network. Use the ASCE plug-in PIA – Generate 
Simulation Study (Figure 22) to create the Möbius-based simulation study for this PIA 

project. The simulation study is based on the ASCE networks defined in the PIA 

project. Before the simulation study is created, the plug-in makes the project’s 

StateTransitions network consistent with all the Intra_PN networks defined for the 

particular project. 

● When the user chooses the option Generate simulation study the following is 

performed: 

 The PIA ASCE plug-in assigns unique UserID values to all physical entities 

defined in the PIA project, stepping through each Intra_PN network. 

 The consistency between the StateTransitions network and the underlying 

Intra_PN networks is enforced automatically – the StateTransitions network 

is updated to contain the data consistent with the information modelled in 

the Intra_PN networks. 

 The Möbius-based simulation project is created together with the necessary 

input files. The Möbius project is based on the PIA template model. 

● It should be noted that the PIA Designer user can perform a check to examine if 

inconsistencies between the StateTransitions and Intra_PN networks exist without 

choosing the option Generate simulation study. This is performed using the Check 
button. Additionally, the user can explicitly force the consistency between the 

StateTransitions network and the project’s Intra_PN network by pressing the 

Reconcile button. 

● It is necessary that the StateTransitions network contains a set of default parameter 

values for state transitions of each entity kind. 

 The parameters are F_Type, F_Name and F_Params 
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Figure 22: The plug-in for generation of the Möbius-based simulation project 


