12 research outputs found

    Transceiver Design with Iterative Decoding of Capacity-Approaching codes over Fading channels

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Cooperative Distributed Transmission and Reception

    Get PDF
    In telecommunications, a cooperative scheme refers to a method where two or more users share or combine their information in order to increase diversity gain or power gain. In contrast to conventional point-to-point communications, cooperative communications allow different users in a wireless network to share resources so that instead of maximizing the performance of its own link, each user collaborates with its neighbours to achieve an overall improvement in performance. In this dissertation, we consider different models for transmission and reception and explore cooperative techniques that increase the reliability and capacity gains in wireless networks, with consideration to practical issues such as channel estimation errors and backhaul constraints. This dissertation considers the design and performance of cooperative communication techniques. Particularly, the first part of this dissertation focuses on the performance comparison between interference alignment and opportunistic transmission for a 3-user single-input single- output (SISO) interference channel in terms of average sum rate in the presence of channel estimation errors. In the case of interference alignment, channel estimation errors cause interference leakage which consequently results in a loss of achievable rate. In the case of opportunistic transmission, channel estimation errors result in a non-zero probability of incorrectly choosing the node with the best channel. The effect of these impairments is quantified in terms of the achievable average sum rate of these transmission techniques. Analysis and numerical examples show that SISO interference alignment can achieve better average sum rate with good channel estimates and at high SNR whereas opportunistic transmission provides better performance at low SNR and/or when the channel estimates are poor. We next considers the problem of jointly decoding binary phase shift keyed (BPSK) messages from a single distant transmitter to a cooperative receive cluster connected by a local area network (LAN). An approximate distributed receive beamforming algorithm is proposed based on the exchange of coarsely- quantized observations among some or all of the nodes in the receive cluster. By taking into account the differences in channel quality across the receive cluster, the quantized information from other nodes in the receive cluster can be appropriately combined with locally unquantized information to form an approximation of the ideal receive beamformer decision statistic. The LAN throughput requirements of this technique are derived as a function of the number of participating nodes in the receive cluster, the forward link code rate, and the quantization parameters. Using information-theoretic analysis and simulations of an LDPC coded system in fading channels, numerical results show that the performance penalty (in terms of outage probability and block error rate) due to coarse quantization is small in the low SNR regimes enabled by cooperative distributed reception. An upper/lower bound approximation is derived based on a circle approximation in the channel magnitude domain which provides a pretty fast way to compute the outage probability performance for a system with arbitrary number of receivers at a given SNR. In the final part of this dissertation, we discuss the distributed reception technique with higher- order modulation schemes in the forward link. The extension from BPSK to QPSK is straightforward and is studied in the second part of this dissertation. The extension to 8PSK, 4PAM and 16QAM forward links, however, is not trivial. For 8PSK, two techniques are proposed: pseudobeamforming and 3-bit belief combining where the first one is intuitive and turns out to be suboptimal,the latter is optimal in terms of outage probability performance. The idea of belief combining can be applied to the 4PAM and 16QAM and it is shown that better/finer quantizer design can further improve the block error rate performance. Information-theoretic analysis and numerical results are provided to show that significant reliability and SNR gains can be achieved by using the proposed schemes

    Distortion-Tolerant Communications with Correlated Information

    Get PDF
    This dissertation is devoted to the development of distortion-tolerant communication techniques by exploiting the spatial and/or temporal correlation in a broad range of wireless communication systems under various system configurations. Signals observed in wireless communication systems are often correlated in the spatial and/or temporal domains, and the correlation can be used to facilitate system designs and to improve system performance. First, the optimum node density, i.e., the optimum number of nodes in a unit area, is identified by utilizing the spatial data correlation in the one- and two-dimensional wireless sensor networks (WSNs), under the constraint of fixed power per unit area. The WSNs distortion is quantized as the mean square error between the original and the reconstructed signals. Then we extend the analysis into WSNs with spatial-temporally correlated data. The optimum sampling in the space and time domains is derived. The analytical optimum results can provide insights and guidelines on the design of practical WSNs. Second, distributed source coding schemes are developed by exploiting the data correlation in a wireless network with spatially distributed sources. A new symmetric distributed joint source-channel coding scheme (DJSCC) is proposed by utilizing the spatial source correlation. Then the DJSCC code is applied to spatial-temporally correlated sources. The temporal correlated data is modeled as the Markov chain. Correspondingly, two decoding algorithms are proposed. The first multi-codeword message passing algorithm (MCMP) is designed for spatially correlated memoryless sources. In the second algorithm, a hidden Markov decoding process is added to the MCMP decoder to effectively exploit the data correlation in both the space and time domains. Third, we develop distortion-tolerant high mobility wireless communication systems by considering correlated channel state information (CSI) in the time domain, and study the optimum designs with imperfect CSI. The pilot-assisted channel estimation mean square error is expressed as a closed-form expression of various system parameters through asymptotic analysis. Based on the statistical properties of the channel estimation error, we quantify the impacts of imperfect CSI on system performance by developing the analytical symbol error rate and a spectral efficiency lower bound of the communication system

    Power allocation and signal labelling on physical layer security

    Get PDF
    PhD ThesisSecure communications between legitimate users have received considerable attention recently. Transmission cryptography, which introduces secrecy on the network layer, is heavily relied on conventionally to secure communications. However, it is theoretically possible to break the encryption if unlimited computational resource is provided. As a result, physical layer security becomes a hot topic as it provides perfect secrecy from an information theory perspective. The study of physical layer security on real communication system model is challenging and important, as the previous researches are mainly focusing on the Gaussian input model which is not practically implementable. In this thesis, the physical layer security of wireless networks employing finite-alphabet input schemes are studied. In particular, firstly, the secrecy capacity of the single-input single-output (SISO) wiretap channel model with coded modulation (CM) and bit-interleaved coded modulation (BICM) is derived in closed-form, while a fast, sub-optimal power control policy (PCP) is presented to maximize the secrecy capacity performance. Since finite-alphabet input schemes achieve maximum secrecy capacity at medium SNR range, the maximum amount of energy that the destination can harvest from the transmission while satisfying the secrecy rate constraint is computed. Secondly, the effects of mapping techniques on secrecy capacity of BICM scheme are investigated, the secrecy capacity performances of various known mappings are compared on 8PSK, 16QAM and (1,5,10) constellations, showing that Gray mapping obtains lowest secrecy capacity value at high SNRs. We propose a new mapping algorithm, called maximum error event (MEE), to optimize the secrecy capacity over a wide range of SNRs. At low SNR, MEE mapping achieves a lower secrecy rate than other well-known mappings, but at medium-to-high SNRs MEE mapping achieves a significantly higher secrecy rate over a wide range of SNRs. Finally, the secrecy capacity and power allocation algorithm (PA) of finite-alphabet input wiretap channels with decode-and-forward (DF) relays are proposed, the simulation results are compared with the equal power allocation algorithm

    Transmit and receive techniques for MIMO-OFDM systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Coherent and Non-coherent Techniques for Cooperative Communications

    Get PDF
    Future wireless network may consist of a cluster of low-complexity battery-powered nodes or mobile stations (MS). Information is propagated from one location in the network to another by cooperation and relaying. Due to the channel fading or node failure, one or more relaying links could become unreliable during multiple-hop relaying. Inspired by conventional multiple-input multiple-output (MIMO) techniques exploiting multiple co-located transmit antennas to introduce temporal and spatial diversity, the error performance and robustness against channel fading of a multiple-hop cooperative network could be significantly improved by creating a virtual antenna array (VAA) with various distributed MIMO techniques. In this thesis, we concentrate on the low-complexity distributed MIMO designed for both coherent and non-coherent diversity signal reception at the destination node. Further improvement on the network throughput as well as spectral efficiency could be achieved by extending the concept of unidirectional relaying to bidirectional cooperative communication. Physical-layer network coding (PLNC) assisted distributed space-time block coding (STBC) scheme as well as non-coherent PLNC aided distributed differential STBC system are proposed. It is confirmed by the theoretical analysis that both approaches have the potential for offering full spatial diversity gain.    Furthermore, differential encoding and non-coherent detection techniques are generally associated with performance degradation due to the doubled noise variance. More importantly, conventional differential schemes suffer from the incapability of recovering the source information in time-varying channels owing to the assumption of static channel model used in the derivation of non-coherent detection algorithm. Several low-complexity solutions are proposed and studied in this thesis, which are able to compensate the performance loss caused by non-coherent detection and guarantee the reliable recovery of information in applications with high mobility. A substantial amount of iteration gain is achieved by combining the differential encoding with error-correction code and sufficient interleaving, which allows iterative possessing at the receiver

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore