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Summary

This thesis is concerned in general with the transmit andivecechniques for multiple-input
multiple-output (MIMO) orthogonal frequency-division ttiplexing (OFDM) systems in wideband fre-
guency selective fading channels. In particular we addessges such as the space-time-frequency pre-
coding schemes to achieve optimal or near-optimal capaaitlydiversity performance in MIMO-OFDM
channels, optimal and efficient detection and decodingaokimitted sequence at the receiver, and optimal
training signal design and low-complexity channel estiorato support coherent detection and optimal

decoding.

In rich-scattering environments, a MIMO channel createdé&yloying multiple antenna arrays at
both the transmitter and the receiver of a wireless link cawige both multiplexing gain and diversity
gain. For a MIMO channel with fixed dimensions, i.e., fixed fn@mof transmit and receive antennas,
there is a tradeoff between the multiplexing gain and therdity gain. A high diversity gain can only
be achieved at the cost of reduced multiplexing gain. Wheatogled in wideband frequency selective
channels, MIMO can be combined with OFDM to efficiently méiig the intersymbol interference. To
further exploit the frequency diversity inherent in frequg selective channels, error control coding or
pre-transform can be used with OFDM. Therefore, how to aehtbe required multiplexing gain and
diversity gain from the spatial and frequency domains israpartant design issue for MIMO-OFDM

systems.

For wireless communication systems, an asymmetric MIMOnobhwith more transmit than
receive antennas is typically created for downlink trarssion, due to the size and power limitation of the
mobile terminal. We address the multiplexing and divergdins of asymmetric MIMO-OFDM channels

through space-time-frequency precoding, which can maprfespatial data streams to more transmit

XVii



Summary Xviii

antennas. Both linear and nonlinear precoding schemesoasidered. A unified linear system model
for the precoding schemes considered is established, witbhwve obtain the capacity and diversity
performance of the precoded MIMO-OFDM channels in a unifipgreach. A two-dimensional linear
pre-transformed MIMO-OFDM system is proposed in this theghich achieves full capacity and full
diversity simultaneously when the number of spatial dateashs is equal to the number of transmit
antennas, and full diversity and maximum capacity of a sytimMIMO channel when the number of

spatial streams is less than the number of transmit antennas

Exploitation of the diversity and multiplexing gains in tMIMO-OFDM channel relies on not
only the precoding scheme at the transmitter, but also eptand efficient receiver algorithms. For re-
ceiver design, we dedicate our effort in this thesis to teeattve algorithms. In particular, a Bayesian
minimum mean squared error turbo receiver is proposed. @mdpvith the conventional turbo receivers
in the literature which make use of only the extrinsic infatian from the decoder for interference estima-
tion and cancelation, the proposed Bayesian turbo receses both the decoder extrinsic informatzrd
the detector decision statistic for interference estiomatiAs a result, the estimation accuracy is greatly
improved, especially in low to medium SNR regions. This asnotributes to the 1.5 dB improvement at

BER performance of0~?, and the better convergence behavior of the turbo process.

To further analyze the performance of the proposed Bayésibn receivers, the extrinsic informa-
tion transfer chart is derived and compared with that of threventional turbo receivers, in both fixed and
random MIMO channels. A much higher output mutual informatis demonstrated from the Bayesian
turbo detector, proving its superior performance. Wherit@iowith the extrinsic information transfer
chart of the decoder, the trajectories of the Bayesianverealso exhibit much faster convergence than

the conventional receivers.

Effective realization of the capacity and diversity poiainih the MIMO-OFDM channels requires
efficient space-time-frequency precoding and optimalivecelesign. For the turbo receivers discussed
in the thesis, accurate channel state information is neatldte receiver. Four training signal schemes
are proposed, two of which to support frequency-domain ebbestimation, and the other two to support
time-domain channel estimation. All the training signakide schemes are optimized to achieve the

minimum mean squared error performance.
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Chapter 1

Introduction

1.1 Background

The last decade has seen tremendous growth in wireless aoigations. The data rate of mobile com-
munication networks has evolved from 9.6 kilobits per sec@ps) of the early second generation GSM
(Global System for Mobile Communications) network, to 2&bps of GPRS (General Packet Radio Ser-
vice), and 69.2 kbps of Extended GPRS (EGPRS) using EDGEafitrtdl Data Rate for GSM Evolution)
technology. GPRS and EDGE are also classified as 2t& Generatiohh mobile networks in contrast
to the third generation (3G) code division multiple acc&SBNKA) networks which can offer 384 kbps
for high mobility users and 2 megabits per second (mbps) édieptrians. The 3GPP (Third Generation
Partnership Project) is working on the standard specifindir delivering data services up to 10 mbps
for data users, and it is predicted that for fourth genenatiobile networks, the data rate has to reach 100
mbps for high mobility users and one gigabits per secondqgimp users in hot spots. The technology and
bandwidth advancement has also attracted significantdeerim the number of subscribers. According to
the International Telecommunication Union (ITU) recotte tvorldwide mobile phone subscribers by the
middle of 2004 have reached 1.5 billion, which is about 25%hefworld’s population.

Similar to the cellular mobile communications, the data affered by wireless local area network
(WLAN) has also grown by about 50 times over the last decade; lmbps of the early IEEE (Institute

of Electrical & Electronic Engineers) 802.11 [1], to 11 mbifsIEEE 802.11b [1], and to 54 mbps of
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today’s IEEE 802.11a [2] and 119 [3] systems. Currently,|EtfeE 802.11 task group n (TGn) is working

toward a standard to offer as high as 600 mbps WLAN system [4].

Wireless communication has become a seamless (or inséggpakt of people’s life style. Getting
connected anywhere and anytime is no longer just a dream.

Wireless communication system design, however, remaialiectying. As predicted by the Ed-
holm’s law of data rates [5], the bandwidth of a communigaggstem, wireless or wireline, is to increase
exponentially with time until some fundamental human linfar example, number of pixels per second
the human eyeball can process, is reached at some point @f fiime radio frequency (RF) bandwidth
allocated by regulatory agencies, on the other hand, isdiirand can not increase at a matched pace with
the data rate requirement. Increasing the working signabise ratio (SNR) is another way of increasing
data rate, as suggested by the Shannon channel capacildo®h Wireless communication systems,
however, are transmission power limited. Hence SNR can edhdreased unlimitedly. Furthermore,
data rate is a logarithm function of SNR. In the high SNR rag&very 3dB SNR increase, or two times’
transmission power, leads to an additional capacity of aribps/Hz. Therefore, other means have to be
found to fulfill the data rate demand.

In the mid 1990’s, independent work from Foschini [7] andatat [8] showed that in a rich scat-
tering environment, deploying multiple antenna arraysogi lthe transmitter and the receiver can create a
multiple-input multiple-output (MIMO) channel. The MIMChannel capacity is linearly increased with
the minimum number of the transmit and receive antennashitsalso recommended the Diagonal Bell
LAboratories Space-Time (DBLAST) [9] and Vertical Bell LAkatories Space-Time (VBLAST) [10]
systems to realize the capacity potential in the MIMO channe

In addition to the continuously growing demand for highetadiaate, another big challenge for
wireless communications is the hostile channel the infeionas transmitted through. With reflections,
diffractions, scattering in the radio propagation chanwehstructive and destructive superposition of
the reflected, diffracted or scattered paths results invedeignal strength experiencing the phenomenon

called “fading” [11]. Fading can be frequency selectivendiselective, or doubly selective in both time and
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frequency. For wideband channglthe transmitted signals are further distorted by “muttipaMultiple
replicas of the transmitted signals arrive at the receivir different time delays and experience different
attenuation and phase distortion. The detrimental inteb®) interference (ISI) caused by multipath
is traditionally mitigated by equalization techniques][1Due to its effective ISI mitigation capability
and its simple implementation, orthogonal frequency @wvisnultiplexing (OFDM) [13] [14] [15] has
been widely adopted in wideband and broadband wireless comneations. The wireless LAN IEEE
802.11a[2] and 802.11g [3], ETSI (European TelecommuigicatStandards Institute) HiperLAN/2 [16]
all specify to use OFDM as the physical layer (PHY) solution.

To combat fading and provide reliable and robust perforragaavireless communication system

has to rely on various “diversity” techniques. Traditiodalersity techniques include:

Time Diversity Time diversity can be exploited from a time selective fadamgnnel. Forward error
correction (FEC) coding with interleaving is one populandidiversity scheme in which additional
information (redundancy) is transmitted at different timstances that the channel is experiencing
independent (or close to independent) fading. Diversiipgare achieved through de-interleaving
and decoding [12]. Another time diversity technique whiekess referred to is the automatic repeat
request (ARQ) scheme [17] in which re-transmission is retpeeby the receiver to the transmitter
through a feedback channel when it detects incorrect degaafi information. Depending on the
ARQ schemes adopted by the network, either the same setasfriafion or the re-encoded and
re-packetized information is re-transmitted. The reaewd then perform either code combining
or diversity combining [18] to recover the information. Timeremental redundancy (IR) ARQ
scheme [19] is also a time diversity scheme which transmiitianal redundant information of an

error correction code word to help correctly decode theimaignformation sequence.

Frequency Diversity Frequency diversity is available for exploitation when dh@nnel is experiencing
frequency selective fading. Spread spectrum modulatighoés the frequency diversity through
transmitting the raw information over a wide frequency inietheach subbands experience in-

dependent fading. The receiver can achieve the diversity theough maximal ratio combining

1Channels with bandwidtBW wider than the coherence bandwidth is considered as “Wiakbhannels” [11].
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(MRC) the independently faded signals over each subbar@i]s br OFDM modulated signals,

the frequency diversity is exploited by using FEC coding emerleaving [15].

(Receive) Space DiversityTraditionally, space diversity is exploited at the receilig using multiple
receive antenna elements and combining algorithms suchRaS, Mqual gain combining (EGC),
receive antenna selection (RAS), or receive antenna swiicMacro-cell diversity or soft handoff
used in CDMA systems [21] is also a space diversity technidRifferent combining algorithms
have different level of complexity and lead to differentdewf diversity gains. As these techniques

are realized solely at the receiver, we call theweivespace diversity.

A system can exploit more than one type of diversity gains.eéxample, an OFDM system can use FEC
coding and interleaving to exploit frequency diversity, @Rcheme to exploit time diversity, and multiple
receive antenna to exploit space diversity.

Time and frequency diversity techniques are realized atdiseof additional redundancy, be it the
additional redundancy introduced by FEC coding in singleieaand OFDM systems, or the additional
redundancy by transmitting a narrowband signal over a aklanith much wider bandwidth in spread
spectrum systems. Receiving space diversity does not ogsadditional redundancy. Its realization,
however, will depend on the availability of multiple antenelements at the receiver, which may some-
times not be possible due to the size limitation of the wagleerminal. The base station, on the other
hand, is not so size-constrained and hence can accommodateamenna elements. Therefore, space
diversity exploitation at the transmitter have to be exgdbr

In 1991, Wittneben proposed a base station modulationsityexpproach in [22] to achieve diver-
sity gains through transmitting the same information fraffecent base stations. He further extended this
work to transmit antenna diversity gain in [23]. J. Wintetgd$ed the transmit diversity gains in Rayleigh
fading channels in [24] and showed that transmit diversity achieve the same gain as the receive diver-
sity. Publication of Taroklet. al. on space-time code design in [25] started the years of aetsearch in

space-time code design and realizatiortrahsmitspace diversities.
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1.2 Focus of This Thesis

This thesis is concerned with in general the design of tréresmd receive techniques for a MIMO-OFDM
system in wideband frequency selective MIMO channels, anderspecifically the appropriate space-
time precoding schemes and transmitter and receiver defaga MIMO-OFDM system in block fading
multipath frequency selective channels. Several spateire-coding schemes are studied. Their ergodic
and outage capacity performances are analyzed and thagoffdbetween capacity and diversity gains is
investigated. A two-dimensional linearly transformed MDMDFDM system is proposed to maximize the
frequency and space diversity gains.

For the receiver, we focus on the iterative turbo receivgor@hms. Simplification of the soft
decision functions have been proposed which introduce ovayginal performance degradation. More
importantly, a family of Bayesian minimum mean squared refldMSE) turbo receivers are proposed.
The proposed Bayesian turbo receivers can significantlyaugthe BER and FER performance over con-
ventional turbo receivers, especially when punctured hégé error correction code (ECC) is used in the
system. The proposed Bayesian turbo receivers can alsowre convergence speed, hence effectively
reducing the processing delay. The extrinsic informatrangfer (EXIT) chart of the proposed Bayesian
turbo receiver is derived and compared with the conventiamo receivers. The EXIT chart analysis
results verify the superior performance of the proposedeBiay turbo receiver over the conventional
receivers.

For coherent detection, channel state information is ¢iséat the receiver. To accurately acquire
the channel estimates, efficient training signal is reguiréhe preamble design for training sequence
assisted channel estimation is studied. Both the time domuad frequency domain channel estimation
algorithms are looked into, and the corresponding preamiésign is proposed which can optimize the

mean squared error (MSE) of the channel estimates.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chaptdi€etgodic and outage capacity of the MIMO
channel is reviewed, under the condition of perfect chastede information (CSI) available at either
only the receiver but not at the transmitter, or both thedmaitter and the receiver. Then an overview is
given on the various space-time coding schemes, with théagigpon the orthogonal space-time block
codes (STBC), space-time trellis codes (STTC), and quélségonal space-time block codes (QSTBC).
We also show analytically that when FEC code is serially atertated with orthogonal STBC, additional
diversity gain can be exploited if the channel is fast fadiogalternatively when the channel is slow
fading, additional coding gain can be exploited. A briefcdission of the capacity and diversity tradeoff
is also given in Chapter 2.

In Chapter 3, we formulate the linear signal model for MIMO [QNF systems. Various space-
time-frequency precoding (STFP) techniques are congiddBg combining precoding with the MIMO
propagation channel, all the precoding schemes considaretie expressed by the common linear signal
model. This unifies the capacity and diversity analysis iaj@ér 4. It has also made the derivation of the
turbo receiver algorithms in Chapter 5 applicable to alsthprecoded MIMO-OFDM systems.

Chapter 4 is dedicated to the capacity and diversity arsmlysthe various space-time precoded
MIMO-OFDM channels. Both the ergodic capacity and the oeitegpacity with unconstrained com-
plex Gaussian input signals are studied. The mutual infoomeof the precoded channels for fixed-
order modulation signals is also investigated. The mutofrmation knowledge will provide more
realistic guidance for precoding scheme selection in malcsystems. A two-dimensional linear pre-
transformed (2DLPT) MIMO-OFDM system is proposed which eahieve full capacity and full diver-
sity.

Chapter 5 is focussed on the study of iterative turbo receifer coded MIMO-OFDM systems.

It is further divided into two parts. The first part is dedmdtto simplification of soft decision func-
tions (SDF’s) in conventional turbo receivers. In order fieaively realize the huge capacity of the
MIMO-OFDM channels, higher order modulation, e.g., 8PSBQAM, or 64QAM, signals need to be

transmitted. The estimation of these high-order modutasignals with the soft output extrinsic infor-
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mation from the decoder, however, requires calculationegésal exponential terms, hence complex in
practical implementation. In view of this, simplified lime&DF’s are derived which introduce negligible
BER performance degradation, as demonstrated from simmdat

In the second part of Chapter 5, we propose a family of Bagpdsidoo receivers. Different from
the conventional turbo receivers, Bayesian signal esiimaheory is used to estimate the interference
signals. Hence both the priori information, i.e., the extrinsic information from the deleo, and the
observation, i.e., the received signal or filter output &f ititerference canceller, is used. As a result, the
estimation accuracy of the interference signals is graaifyroved. The improved estimation accuracy
can lead to significant performance improvement, as shovaugfn our simulated BER and FER results.
Two types of filtering schemes have been considered in tleefémence cancellation (IC) process of the
Bayesian turbo receiver, namely, the matched filtering (ME), the maximal ratio combining (MRC)
filtering, and the linear MMSE (LMMSE) filtering. These twapgs of turbo receivers are referred to as
theIC-MRCturbo receiver and theMMSE-ICturbo receiver, respectively.

In Chapter 6, we derive the extrinsic information transteX{(T) chart of the proposed Bayesian
turbo receivers and compare with that of the conventiorrélotueceivers. Our EXIT chart analysis shows
that the Bayesian IC-MRC turbo receiver has superior pevéoce to not only the conventional IC-MRC
turbo receiver, but also the conventional LMMSE-IC turboeiger. The performance improvement lies in
two ways - the much higher output mutual information of the/&aan detector, and the reduced number
of iterations to achieve convergence in the turbo receilbis result makes the Bayesian IC-MRC turbo
receiver practically appealing. This is because MRC filigperforms only multiplication and summation,
whereas the LMMSE filtering, on the other hand, required thehmmore complex operations of complex-
valued matrix inversion for each signal stream at eachtitera

The capacity and diversity analysis of precoded MIMO-OFidrnels in Chapter 4, the Bayesian
turbo receiver studies in Chapter 5 and Chapter 6 are aldo@s¢he assumption of perfect CSl available
at the receiver. In Chapter 7, we study training signal-8a38I estimation. Both frequency domain and
time domain channel estimation schemes are considered gdsgning the preamble sequence. Their

corresponding mean squared error (MSE) is derived and st @bjective function for optimal training
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signal design. Two optimal training signal schemes aregseg for both the frequency and time domain
channel estimation, supporting very simple channel estitm&omputation and lead to minimum MSE.
Chapter 8 concludes the work reported in this dissertatR@tommendation for further continua-

tion of the research work in this dissertation is also givethis Chapter.

1.4 Contributions of This Thesis

The major original contributions of this thesis are sumzedibelow.

¢ Studied systematically the capacity and diversity perforoe of the various open-loop space-time-
frequency precoded MIMO-OFDM systems. In particular, weveie the ergodic capacity of spatial

spreading MIMO systems by making use of the random matriarthe

e Proved that cyclic delay transmission in MIMO-OFDM systetransfers the spatial diversity to

frequency diversity by making use of the linear algebraidetiof OFDM systems.

e Proposed a two-dimensional linear pre-transformed MIMER®™ system structure which can

achieve full capacity and full diversity;

e Proposed the linear soft decision functions for high-ondedulation signals in turbo receivers
which can significantly reduce the computational compleiitsignal estimation but at the same

time maintain the BER performance;

e Proposed the Bayesian turbo receivers which makes use lott@extrinsic information from the
soft output decoder and the soft output from the detectorbtain the Bayesian estimate of the
interference signals. The Bayesian signal estimationribdu extended to the LMMSE-IC turbo

receivers. Significant performance improvement is obthinem the Bayesian turbo receivers;

e Developed the EXIT chart analytical model of the Bayesiabdueceivers. With this model, the
EXIT chart is derived and compared with the conventionabaureceivers. From the EXIT chart
analysis, the superior performance in terms of both higlpwd mutual information and the re-

duced number of iterations for convergence is proved;
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e Systematically studied the training signal design for Bajuency-domain and time-domain chan-
nel estimation in MIMO-OFDM systems. With the objective ofnimum mean squared error, two
preambles schemes, i.e., the orthogonal training signdltlae switched-subcarrier training sig-
nal, are proposed for frequency domain channel estimagamilarly, two preambles schemes are
also derived for minimum mean squared error time-domaimmoélachannel estimation, i.e., the
switched-subcarrier training signal and cyclic delayedhing signal. All the four training signal

schemes involve very simple filtering calculation to obthi@ channel estimates.

1.5 Notations

Throughout the rest of the thesis, unless otherwise megdicimne time domain data are represented with
lower-case, frequency-domain data with upper-case, reend matrices with bold face letters. The
symbols(-)T, (-)#, and(-)~! represent matrix transposition, Hermitian, and inversiespectively, and

the delimiter(-)Y defines a space of dimensign All vectors are defined as column vectors with row

vectors represented by transposition.



Chapter 2

Introduction to MIMO

Space-time (ST) processing is one of the most active rdseaeas in wireless communications during
the last decade, covering the theoretical aspects of dggawit of a MIMO channel, performance limit
of a space-time system, ST coding/decoding and moduldiomddulation techniques, and solutions to
integrate the technology into practical systems. In thegptér, we give a general overview of the space-
time transmission techniques. We start from the definitiba MIMO channel model. We then derive
its capacity limit with CSI perfectly known at only the regei but not known at the transmitter. We also
briefly discuss the capacity limit when the CSl is perfectiypwn at both the transmitter and the receiver.
Following the capacity discussions, we give an introdurctio the MIMO diversity techniques. The var-
ious space-time codes are reviewed, and their decodingneshare compared. Finally we conclude the

chapter by discussing the capacity and diversity gain tcdflim the MIMO channels.

2.1 The MIMO Channel Model

A narrowband flat fading MIMO channel with transmit anch g receive antennas is defined as
y = hx +n, (2.2)

wherey € C™E andx € C"T are the complex-valued channel output and input sigmals,C"® denotes
the zero mean complex additive white Gaussian noise (AWGINY) variances? per real dimension, i.e.,

n ~ CN(0,20°1,,), andh € C"#*"T with its entries{h;; } denoting the complex-valued fading coeffi-

10
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cients corresponding to transmit antennand receive antenna Fig. 2.1 depicts a simple illustration of

such ant x ng MIMO channel.
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Figure 2.1: lllustration of a narrowband nr x nz MIMO channel model.

The MIMO channels can be divided into three categories:
Deterministic Channel. h;;’s are deterministic values.

Ergodic Channel. h;;’s are random variables, and each channel use correspoadsndependent real-

ization ofh;;’s.
Non-Ergodic Channel. h;;'s are random variables, but remain fixed once they are chosen

Among the three channels, the last two are of more interedVIfMO communication systems design.
Their corresponding suitable capacity measures are rigggcthe ergodic capacity and theoutage
capacity The reason to usergodic capacityto measure aprgodic channeis due to the fact that a long
enough code word transmitted in argodic channeWill experience all states of the channel and hence it
averages out the channel randomness. Asior-ergodic channel code word can only experience one
channel realization no matter how long it is. Towgtage capacitys therefore defined as the rate such that

there exists a code which can achieve with a pre-defined probrbility for a set of channels. In Chapter
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4, both ergodic capacity and outage capacity will be stutbegrecoded MIMO-OFDM channels.

2.2 Channel Capacity with CSI Perfectly Known Only at Receier

When the CSl is perfectly known at the receiver but not knowtha transmitter, we first look at the
capacity for each channel realization by performing siagublue decomposition (SVD) on the channel

matrix h as

h = QX1 (2.2)

whereQ) € C"r*"r andI’ € C"T*"T are unitary matrices, and
Y= diag{ah oy Ory 07 T O} € anRan

is the singular value matrix df whose rank is assumed to be= min{ng, nr}.

(2.1) can therefore be re-written as
y = QST +n. (2.3)
Pre-multiplying (2.3) withQ? | we have
y=3r'x +n, (2.4)

wherey = @y, andi = Q%n, andis ~ CN (0,20%I). If we further definex = I'*'x, (2.1) is turned
into

y = XX +n, (2.5)
which is effectivelynr parallel single-input single-output channels

glzaljl—i_ﬁu Z.:]-727"'7T7
(2.6)
Yi = Ny, i:T+1>"'7nR'
When the transmitter has no knowledge lonallocating the transmission power equally to the
np transmit antennas will lead to maximum capacity [26] [8]pBosing we normalize the total transmit

power to unity, we have

1
& {XXH} = EInT. (2.7)
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Each parallel single-input single-output channel willrtrechieve capacity when the channel inpyis

Gaussian [6]

Ci :1Og2(1+p2)? i = 1>27"' 3T

(2.8)
C; =0, i=r+1,---,ng,
2
wherep; = %j‘v— = %fv—o is the SNR at the channel output, akd= o7 is theith eigenvalue of matrix
hh* andhh.

The MIMO channel capacity for each channel realization usth

C= z;c = er;logzu +pi) = Zi;logQ <1 + - ;N> (bits/channel use) (2.9)
As matriceshh” andh h have the same eigenvalues, thg x nr MIMO channelh and thens x ng
MIMO channelh’ have the same capacity if tneceive SNRs set to the same. This property is called
“reciprocity” by Telatar [8].
As

. A . A 1 °
1 1 =1 1 = log,det (I+ ——hh
; ogg( +nTNo> 08y [H( +nTNO>] 0g, de < S~ :

i=1

the MIMO capacity per realization is also written as [7][8]

C'(h) = log, det (I + ;hhH> (bits/channel use) (2.10)
nTNO

2.2.1 Ergodic Capacity

The ergodic capacity is defined as

Cg = E{C(h)}, (2.11)

where the expectation is taken over all the realizationk.ofAnalytical evaluation ofCg requires the

statistics ofh, or eigenvalues{\;} of hh'. If the joint probability density function (pdf) ofh;},

p(hi1, hi2, -+, hngnp)s iS known, the ergodic capacity is obtained as
1
CE = / o / 10g2 det <I + hhH> p (h117 SRR hTLRynT) dhll “e dhnR’nT. (212)
hi1 hngnp nrN, ,
—_—

NRrXnrt
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Alternatively, if the joint pdf of{\;}, p (A1, ---, A;), is known, the ergodic capacity can also be

obtained as
T )\
C :// lo (1+—’> M, oo Ap)dAg - d 2.13
E N Ar; I23)) nr N, p (M ) dA ( )

For circularly symmetric complex Gaussian (CSCG) chanwéts /;; ~ CN (0, 1) [8], the joint
pdf of unordered eigenvaluds\; } is given in [27] as

27rs7rr(r71) 1 T T )
PO, A = e exp (—— /\i> AT v = Ap) (2.14)
P15, (3)1 () 2 ; E[l E !

wheres = max{ng,nr}, A\1 > A2 > -+ > A\, andfm(a) is the complex multivariate gamma function

defined by

Lp(a) = 7™ D2 T T(a - i+ 1),
=1

with I'(a) being the gamma function.
Based on (2.14), Telatar worked out the ergodic capacity;0k nr CSCG channel as

r—1

> A k! s—r 2 ys—r
/0 logs <1+ nTNo> kzo s (L5 ()] X exp(—A)dA, (2.15)

wherer = min{ng,nr}, s = max{ng,nr}, and

m—-n

LE" (@) = o exp(—a)a™ " (exp(r)

is the Laguerre polynomial of ordér[28].
In Appendix 2A of this Chapter, we give the Laguerre polynalsiand the ergodic capacity for-

mulas for the CSCG MIMO channels that are going to studiedhap@er 4.

Linear Increase of MIMO Capacity with » From the strong law of large numbers, we have for fixed

ngrand asny — oo

L.
%hh — I,
hence from (2.10), we have
1 1 .
C(h) = log,det (I + FI> = nplog, (1 + F) (bits/channel use) (2.16)

i.e., the capacity increases linearly witl.
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When we fixnp and makenyp — oo, in order to prove the linear relation between capa€lty
and the number of antennag:, we need to scale the channel matrixﬁ%h. Without this scaling, the

receive SNR will grow to infinity. The channel capacity isrthe

1 1 1
C(h) = log,det (I+———hh) =log,det (I+ ———hh | =log, det (I I
(h) og, de ( —I—nTnRNO ) og, de < —I—nTnRNO ) og, de < —I—nTNO >

) (bits/channel use) (2.17)

nr logy <1 +

nriNo

by making use of the fact th%f—hHh — I, whenng — oo, from the strong law of large numbers.
R

2.2.2 Outage Capacity

For non-ergodic channels, the Shannon capacity is zers.i§hecause no matter how long a code word
we can take, there is a non-zero probability that the redlizis incapable of supporting however a small
rate. Therefore, theutage capacitys a more appropriate measure which is defined as the trasismis

rate R that exceeds the instantaneous channel capacity

1
h) = log, det [ I hh’?
e

with probability P. P is defined as theutage probability[8], i.e.,
Pow(R) =p(R > C(h)). (2.18)

Equation (2.18) can be evaluated by Monte Carlo simulati®s approximation, the asymptotic
result ofC'(h) tending to a Gaussian random variable whegnandn grow to infinity, can be used. The

details can be referred to [29][30].

2.3 Channel Capacity with CSI Perfectly Known at Both Transmitter and

Receiver

When both the transmitter and the receiver have perfect I88lsing the result of Information Theory
concerning parallel Gaussian channels [26][6], from (2A& need to allocate the transmission power to

ther parallel channels via “water-filling”. Supposing the pova#located to théth parallel channel is

P; = 28{Re(i;)}? = 2&{Im(i;)}? (2.19)
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subject to the power constraint
T
St
=1

then the mutual information between the input and the ouipttie channel is

. : P
I(%;5) <) log, (1 TN > .

o

Maximization of the mutual information subject to the powenstraint leads to the channel capacity. It

can be solved by using the Lagrange multipliers, throughitefithe cost function

T T
P
J(Pl,Pg,---,PT):E log<1—|—nTN>+y(1—E P)
i=1 ° i=1

and differentiating with respect t8;, and we have

Ai
—— v =0
nrNo + P
leading to
1 nrN,
P==-- .
’ v Az

As P; needs to be non-negative, we therefore have the followiregéwfilling” solution

N\
P = <H_ ”i > (2.20)

satisfying the power constraidt;_, P, = 1. u is called the “water level” an¢z)* is defined as

x ifzx>0,
(z)" =
0 ifz<O.

The principle of water-filling for am = 4 MIMO channel is illustrated in Fig. 2.2.

2.4 MIMO Diversity and Space-Time Codes

Besides capacity gain, the MIMO channels can also be usexploiediversity gains and improve the
robustness of wireless communication systems againgtdadrihis is achieved by transmitting space-
time coded signals through the- antennas, and processing the received signals atghentennas by

maximal ratio combining (MRC) and maximum likelihood (ML&cbding.
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P

ntNo
ntNo

ntNo

Ps=0,Pi+P+P=1

Figure 2.2: lllustration of “water-filling” principle.

Supposing the space-time encoder taked/inbits and produce ath-symbol-long space-time
codeword, as

with x; = 277 272 - :z:l,nT]T, we have the corresponding received signal as
y; = hix; + ny (2.21)

for a fast fading channel and

y; =hx; +n (2.22)

for a quasi-static fading channel. Bfast fading”, we mean the channel coefficients remain constant
during one symbol interval, but vary randomly from one syirtibcanother; By‘quasi-static fading”,
we mean the channel coefficients remain constant duringnaeftzut vary randomly from one frame to
another. In other words, for a fast fading channel, the aafe® time is longer than the symbol interval
but shorter than the space-time codeword interval, and fjuasi-static fading channel, the coherence
time is longer than the space-time codeword duration.

When perfect CSl is available at the receiver, we have

L 1 ly; — hyx|?
pylx) = H W eXp T 92 (2.23)

=1
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for fast fading channel, and

p(ylx) =

:h

lyi — hx|°
1:1 271'02 <_ 202 (2.24)

for a slow quasi-static fading channel.

The ML decision of the transmitted space-time codeworddst-fading channel is thus

XML, = arg max p(y|x) (2.25)
xeQrrl
L 2
1 lyi — x|
_ — 2.26
e ngll?l);fl = (2mwa?)" R P ( 202 ( )
L
= arg max (— lyi — th1|2) (2.27)
xeQnrl =1
L
= arg min Z ly: — hyx)?, (2.28)
xeQnT

wheref) denotes the modulation signal set for the space-time codsen

Similarly, the ML decision of the transmitted space-timeeeord for quasi-static fading channel

L
% = arg min — hx|?. 2.29
ML gernTL ; Iy 1 ( )

Similar to error control codes, space-time codes can bgaated into block codes, trellis codes,
and turbo codes. Different codes have different diversity eoding gains, and different decoding com-
plexity. In this section, we will give a brief overview of brgonal space-time block codes (STBC),

space-time trellis codes (STTC), and quasi-orthogonal GT@STBC).

2.4.1 Orthogonal STBC

The “Orthogonal STBC", or OSTBC, encoding is a non-linear mapping, which takesitirggquence

{s1, s2, .-+, so} and maps to a row-orthogonal matsx . 1., i.e.,

Xnpxl = Mostsc (51, S2, -+, 5Q),

and

xx' = aol,,, (2.30)
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wherea is a constant that is related to the total signal power tréttesthby the STBC codeword. The
code rate of STBC is defined as

Rs1BC = % (2.31)

The most popular OSTBC is th&lamouti Code” (AC) for np = 2 [31], whose mapping is

defined as

Mac (51, 82) = (2.32)

for both real and complex signals. The code rate of ARjg: = 1. It has been proven in [32] that the
2 x 1 AC is capacity optimal.

While rate-1 OSTBC is available far; = 2 for both real and complex signals, it is not the case
for np > 2. Tarokhet. al. have constructed rate-1 real OSTBC's for < 8 with entries of the form
+s1, £s9, ---, £ g in[33]. Butthey showed that rate-1 complex OSTBC existy dot nr = 2,
i.e., the AC. Fomp = 3 andnp = 4 cases, raté and rateil OSTBC's are given by Tarokét. al.in [33].

The most attractive advantage of OSTBC is its full diversitger ofngny, and its simple ML
decoding by linear processing. As given in [34], the ML diesisnetric for each signal,, g =1, --- , Q,
can be decoupled and optimized individually. The drawbaclO8TBC is its limited “coding” gain.
But this can be remedied by concatenating a FEC code befer8 TBC encoding. Fig. 2.3 depicts a
concatenated bit-interleaved coded modulation (BICM)] BBBC transmission system. In Appendix
2B, we prove that when a FEC code is concatenated with the &lir6TBC, and when the channel is
quasi-static over the STBC codeword interval, but changidgpendently from one STBC codeword to
another, a diversity order ofd,,;,nr is achieved, of whicl2ny is from the spatial domain andg,;,,
which is also the minimum Hamming distance of the FEC codfoia the time domain (or FEC coding
domain). When the channel is quasi-static over both the SaB€the FEC codeword intervals, the

system achieves the diversity order2efr, and coding gain ofl ;.

242 STTC

OSTBC can achieve maximum diversity orderrgfn with simple linear decoding. However, OSTBC

alone does not have any or very limited coding gain. The SRGhe other hand, is designed to achieve



CHAPTER 2. INTRODUCTION TO MIMO 20

by, ba, -+, bu 1,62, ,cC _ S1,0+,8
Lo M FEC Do N interleaver mapper | e STBC

Figure 2.3: lllustration of a concatenated BICM-STBC transmitter.

both the maximum possible diversity gain and coding gain.[Zhe name of “trellis code” comes from
the fact that the encoding process can be represented Hiisa[8%].

The optimal STTC design is derived based on the pair-wiser gnrobability (PEP), which is
defined as the probability that the decoder selects an eusneodewordk instead of the transmitted
codewordx. If we assume perfect CSI at the receiver, we have the PERwaS

P(x, X[h) = Prob(p(y|x,h) < p(y[%,h)) = Prob (|ly  hx|* > [y - hx]?)

2
nR

L
= Prob Z Zhw L >ZZ Yi = Zhl,JAg

=1 i=1 =1 =1

o~

~

2 2
nR nrtr

L
= Prob | Zh” e I R >0

1=1 i=1 j=1 j=1

dj (x,%)

1 1
< Z —d? (x. %
= QeXp< h(x’x)4NonT>
1

whereE; = ;- is the symbol energy at each transmit antenna, @td is the complementary error
function [12].

Depending on the fading channel models, e.g., Rayleigh olaRifading, slow or fast fading,
number of receive antennas, etc., different criteria mag @ be used to maximize both the coding gain
and the diversity gain. In [25], Tarokét. al.first developed therank criterior’ to maximize the diversity
gain, and the determinant criterioh to optimize the coding gain for slow Rayleigh fading chalsné\s
for slow Rician fading channels, theghk criterion” and the ‘toding advantage criteridnis derived to

maximize the diversity and coding gains. For fast fading|Bigi channels, the design criteria become
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the “distancé and the ‘product criteria for diversity and coding gains, respectively. Angprehensive
summary of STTC design criteria in various channels can bedan [36].

As the STTC encoder structure can not guarantee the gecaiainiformity of the code [37],
the search for the optimal encoder trellis has to be condumter all possible pairs of paths in the code
trellis. The decoding complexity of STTC is exponentialtwtie code word length, the number of transmit
antennas, the modulation order, and the number of statbe imdllis. Due to all these issues, adoption of

STTC in practical systems falls behind OSTBC.

2.4.3 Quasi-Orthogonal STBC (QSTBC)

Orthogonal STBC has the advantage of full transmit diversitler, simple and decoupled decoding for
each symbol, and easy concatenation with FEC for furtheingogain and time-diversity exploitation.
However, rate-1 OSTBC is only available fof = 2 with complex signals. Therefore, quasi-orthogonal
STBC (QSTBC) was proposed by Jafarkhani in [38] which canexehfull-rate (rate-1) but only half the
maximum transmit diversity. Same as OSTBC, the QSTBC engogia non-linear mapping, which can

be written as

XnpxL = MaqstBc (51, 82, -+, 5Q),

where{s;, s2, -+, sg} is the input sequence ang,, 7, is the corresponding QSTBC codeword. The
original QSTBC proposed by Jafarkhani in [38] has the codatg of 1, i.e.Q = L, and full transmit
diversity.

The QSTBC decoding can be decoupled into groups of symbstiedd of single symbols. There-
fore the complexity is higher than OSTBC.

One example of a rate-1 Jafarkhani-QSTBCigr= 4 is given as follows:

r1 —T5 T3 —T)

Ty A w1y T A Ay
x = - , (2.33)

T3 —T; T1 —T Ay, Ay

T4 X3 T2 T
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whereA;, i = 1, 2 denotes theth Alamouti codeword. There are many variations of the Jétzmi-
QSTBC design in (2.33), as indicated in [38]. But they alldétve same performance.

In order to achieve full-rate and full-diversity simultansly, QSTBC based on constellation ro-
tation was proposed in [39] [40]. In this scheme, the two geoaf symbols are drawn from the original
constellation and the rotated constellation, respegtiv&lith the optimal rotation angle, full transmit
diversity can always be made possible.

If the restriction of full transmit diversity is relaxed,dhi-rate QSTBC can be designed, e.g., Yuen

et. al. proposed a rate-2 QSTBC far = 4in [41] as

r1+x3 —x5— T

1| z24+2x4 2] + 25 A+ A
x1—x3 —x5+x) A — A,
To—Tg T]— 3

and a rate-4 QSTBC fot = 4 as

T+ 3+ ai +ar —x) —xf + w6+ a3y
Ty + Xy + x5+ x5 x]+ a3 — a5 — X7 A+ Ax+ A3+ A
X — — , (2.35)
le—djg—i—{Eg—IE; —$§+xz+$6_$8 Al_A2+A§_AZ

*_

Tog — x4 + x5 — T3 T — T3 — Ts + X7

whereA;, 1 =1, 2, 3, 4 denotes théth Alamouti codeword.

These QSTBC codes are sometimes also referred as linearsiep codes (LDC) which were
first proposed by Hassibi and Hochwald [32] due to the fadt e signalsz,, | = 1, 2, ---, Q are
transmitted over all the transmit antennas within the QSTB@eword. In Chapter 4, the capacity and

diversity performance of the rate-2 QSTBC and LDC MIMO-OFBNannels will be studied in detail.

2.5 Diversity and Capacity Tradeoff in MIMO Channels

As reviewed in the previous sections in this chapter, a MIM@mmnel can provide two types of gains - the

diversity gain and the capacity gain. If the MIMO channel $&&d to transmit independent information
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streams in parallel (spatial multiplexing [42]), the daater(capacity) of the system increases. Schemes
to exploit the capacity potential include the various BLA&Thitectures [9, 10]. If the MIMO channel
is used to transmit signals that carry the same informatmmexample, OSTBC and STTC, the diversity
gain of the system increases. A MIMO channel can also be wsexiioit both the capacity and diversity
gains simultaneously. Hybrid systems, e.g., groupwise G{BSTBC) [43] [44] and groupwise STTC
systems [45][46], are the most straightforward approaahesich the transmit antennas are divided into
groups. Independent information is transmitted in difftrantenna groups to exploit the multiplexing
gain; Within each antenna group, STBC or STTC is applied piagixthe transmit diversity gain. Besides
the hybrid schemes, high-rate QSTBC and LDC [32][47] aresgiane block codes which were designed
based on some design criteria to achieve both multipleximbdiversity gains. For example, the LDC by
Hassibi and Hochwald [32] was designed to maximize a giveM®ichannel capacity. After the channel
capacity is maximized, the diversity order will then be opied.

In [48], Tse and Li provided a framework to show that therefisralamental tradeoff between the
capacity and diversity gains for a givenr x nr MIMO channel. Ifr < min(ny, ng) antennas are used
to exploit the spatial multiplexing gain, then only the rekthe antennas can be used to exploit diversity
gains. If higher diversity order is desired from the givenM@ channel, the transmission rate will have
to be reduced correspondingly.

In Chapter 4, the capacity and diversity performance ofgated MIMO-OFDM channels will be
studied. A 2DLPT precoding scheme for MIMO-OFDM systemd Wwé proposed. We will show that
when the 2DLPT transform in unitary, this precoding scherawe &achieve simultaneously full capacity

and full diversity.

Appendix 2A - Ergodic Capacity for i.i.d. CSCG MIMO Channels

2A.14 x 2

For a4 x 2i.i.d. CSCG MIMO channel, we have

ng=2, npr=4, m=2, n=4.
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We then have

_ _ k! _ 1
k=0, Lj(z)=1, Tl = 27
k=1, Li(z)=—z+3, W:%’

hence the ergodic capacity for thex 2 CSCG MIMO channel is

_ [ POLE 4 L= 3)2] e2exp(—
C4><2—/0 10g2<1—|—43:) [2+6(a: 3)}3: exp(—z)dx.

2A.28 x 4
For a8 x 4i.i.d. CSCG MIMO channel, we have
np=4, np=8, m=4, n=2_8.

We then have

k=0, Li(z)=1, Ty = 21
k=1, Liz)=—xz+5, ey = 00
k=2, Liz) = 1(30 — 12z 4 22), sy = 3607
k=3, Li(z) = §(210 — 126z + 212° — 2%), g =1,

hence the ergodic capacity for tRex 4 CSCG MIMO channel is

Csxa = /000 logy (1 + gx)

(210 — 1262 + 2122 — 2%)?]
840 x 36

L, (@=5* (30-12 +a2)”
24 120 1440

2A.34 x4

For a4 x 4i.i.d. CSCG MIMO channel, we have

ng=4, nr=4, m=4, n=4.

We then have

k=0, Lo(z)=1, (,mki’_m),:l
k=1, Li(z)=—z+]1, T = L
k=2, Lo(z)=3%(2—4a +2?), W:L
k=3, Ly(x)=§(6— 182+ 92> —2°), gy =1,

x” exp(—z)dx.

24

(2.36)

(2.37)
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hence the ergodic capacity for thex 4 CSCG MIMO channel is

o0 2 —dx + 22 2
Cyxg = / logy <1+££C) 1—1—(3:—1)2—i-Q
0 4 4
6 — 18z + 922 — 23)?
+( 36 z) exp(—x)dx.
2A.42 x 4
Fora2 x 4i.i.d. CSCG MIMO channel, we have
ng=4, nr=2, m=2, n=4.
We then have
O
k=1, L}@)=—¢+3, Goaty = 6

hence the ergodic capacity for thex 4 CSCG MIMO channel is
(e e}
_ PYIL L Z302] 22 exn(—
Caxy —/0 log, (1—1— 23:) [2 + 5 (z —3) }x exp(—z)dx.
2A.54 x 8
For a4 x 81.i.d. CSCG MIMO channel, we have
np=28, nr=4, m=4, n=2_8.

We then have

k=0, Lix)=1, s = 20

k=1, Liz)=—-z+5, ey = 0

k=2, Li(x)=1(30 - 12z +2?), sy = 3607
| k=3, Li(z) = §(210 — 126z + 212° — 2%), g =1,

and the ergodic capacity for tlex 4 CSCG MIMO channel is

Cyxg = /000 logy (1 + ga:)

(210 — 1262 + 2122 — 2%)*]
840 x 36

L, (@=5* (30-12 +a2)”
24 120 1440

x” exp(—z)dx.

25

(2.38)

(2.39)

(2.40)
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Appendix 2B - Performance Bound of BICM-STBC System

In this section, we derive the union bound of BICM-STBC sygsigith ML decision and ML decoding.
We first consider BPSK modulation and i.i.d. CSCG MIMO chdsnehich remain constant within each
STBC code word but change from one codeword to anothertheeMIMO channels are quasi-static with
respect to the STBC codeword interval, but fast fading wetkpect to the FEC codeword interval. We
then analyze the system performance in i.i.d. CSCG chamreth remain constant throughput the entire
FEC code word. These two channels are also terméasaandslow quasi-statidading channels.

Making use of the fact that the OSTBC designedigr transmit antennas provides exactly the
same performance as theny order receive MRC if the SNR normalization is taken care ®f@ven in

[33] and [34], we start the union bound derivation from théPRE a coded system with-branch MRC.

2B.1 Fast Fading Channel
Expressing the received signal at symbol inteivahd MRC branch as
rig = hijciv/ Ee +mng g,

wherec; is the BPSK modulated coded bit§;;} are i.i.d. complex Gaussian, amg; is the AWGN

noise with variance2, we have the MRC decision statistic as

L L L
Y = Z higrig = <Z h2271> ci\/fc + Z hiani.
=1 =1 =1

L
— Z 2
Qi = hit
1=1

we have that? is chi-square distributed withZ, degrees of freedom, with the pdf of

Defining

1 —h
h = —hL_l -
where2+? is the variance of, ;, [ = 1, 2,--- , L.

Scaling the decision statistig with «;, we have

Yi
zi = — = aici/ Ec + v,
3

o
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where
v — >y himiyg
(A al bl
E{UZ} = 0,
ZL: h7ln7l ZL: h"mn"m
(vt} = 5{ L B St B Bm 2
(A
We therefore have
p{zilci,a;} = exp i ciciV Bl
7r0'2 20'2

If we denote the transmitted code sequence of lendfior block code is the code word length)

asC, and the corresponding scaled MRC output sequenie a& have

_ - 1 ‘Zi—aicz‘\/E_cF
p{Z|C} = ZI_II W@XP <_ 202 )

_ 1 | Z?zl (|Zi|2 — 221‘041'02' \% Ec + OZ?EC)
T (nerE Y 707
[ n 2 2 "
_ # exp | — Zi:l (|zz| + a; EC) exp Zi:l 206C; /_Ec
(271'0'2)% 202 o2 .

We then have the PEP as

Py, (é|c) —  Prob {p{Z|é} > p{Z|C}}
S zlalcz\/E> - exp (2?1 ziaici\/E)}

= Prob exp< 5 5
o

{
= Prob{ZzZaz\/icz>ZzZa,\/_cz}
= Prob{Zalzl C; — >O}

If the Hamming distance betweddl and C is d,,,, i.e., (& — ¢;) = —2¢; for d,, symbols, and
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(¢; — ¢;) = 0 for n — d,,, symbols, we have the PEP as

dm,
P, <C|C) = Prob Zajzj(—%j) >0
j=1
dm,
= Prob Zajcj (ajcj\/Ec + vj) <0
j=1
dm dm
= Prob Za?x/Ec < —Zajcjvj
j=1 J=1
dm L dm
= Prob \/ECZZ \hjal? < — chvj
j=11=1 j=1
7
where
E{nt = 0,

dm L
Py = Y > |hal
i.e.,n is zero mean Gaussian.

We therefore have the PEP as

0 VB Sim S

P (dph) =
(o
dm L
2F, <~
= Q Nc SN hl? | (2.41)
0 j=11(=1
which has a diversity order af,, L.
The average PEP is therefore
. 1 dmLdml-1 [ g [ 14k 1 k
Pae(dm) = |5(1—p) ~(1+p)|
2 2
k=0 k
Ec 272&
— No _ No
wherey, = =\ et

For block code, we can therefore obtain the union bound of eaatd error rate as

n
P(code word error) < Z NaPs(d),
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where N, is the number of code word with Hamming weight
For convolutional code (CC)n, k) wherek is the number of input bits and is the number of
output bits per time interval, the union bound for soft decisdecoding is
[ee]
P(code word error) < Z BaPs,e(d),
d:df'ree
whered,.. is the minimum free distance of the cod@ } are obtained from expanding the first derivative

of the transfer functio’(D, N) [17] as follows

dT(D,N)' = J
— = B.D%.
N e 2
The bit error probability is obtained as
1 o0
Py < > BaPre(d). (2.42)

d=dfrce
Figure 2.4 depicts the simulated uncoded and coded perfmenas well as the derived bound for
fast-fading2 x 1 and2 x 2 Alamouti STBC system. The constraint length= 3 R. = % convolution
code is used. From the figure we can see clearly that FEC untesddiversity gain in fast fading channels,
exhibited by the slope change of the BER versus SNR curvesl$tiesee a very good match between the
simulation and the bound. We have therefore confirmed thatatenating FEC with STBC can exploit

the diversity gain in a fast fading channel.

2B.2 Slow Fading Channel

For slow fading channel whose coefficients remain unchamigeithg the code word interval, the MRC

gain coefficienty; remains constant forall=1, --- , n,i.e.

L
o= Zhlz
=1

The scaled MRC outpuy; is thus

z; = v/ Eeac; +v;
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with
X humag
vi = T
(67
E{UZ} = 0,
L L
E{luil} = 5{2121 dEX QZszl s, }202.
Making use of the results from the previous section, we cackfyuwrite the PEP for slow fading
channel as

Py, (é|c) —  Prob {p{Z|é} > p{Z|C}}
S ziozéi\/E> - exp <z$1 ziaci\/E)}

o2 o2

n n
= Prob Zzia\/ﬁéi > Zzia\/fccz}
i=1 i=1

dm dm
= Prob Za E. < chv]
Jj=1 Jj=1
~—_——

= Prob {7] > dma\/Ec} .

As 7 is Gaussian, and

E{nt = 0,

€{|Tl|2} = dmo—Qa

we have the PEP as

d2 o2E, 2E.d,, &
P2,6<dmh)Q( m )Q (J - Zhﬂ>, (2.43)
m [0 l:1
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which shows that the diversity gain is of ordefrom the orthogonal STBC, and coding gaindyf from
the FEC, in contrast to the full diversity gain of orded,,, in fast fading channel case.

The average PEP is therefore

B oy Bz
Y

wherey = , | N = —e

14 B 15 2d,72 L2

For block code, we can therefore obtain the union bound of @eatd error rate as

n
P(code word error) < Z NaPsc(d),
d=dmin

where N, is the number of code word with Hamming weight
For CC(n, k) wherek is number of input bits and is the number of output bits per time interval,
the union bound for soft decision decoding is
P(code word error) < i BaPs,e(d),
d=dfrce
whered ¢, is the minimum free distance of the cod@, } are obtained from expanding the first derivative
of the transfer functio’(D, N') [17] and the bit error probability is obtained as

1 [ee]
Py < Z ) dz BaPa.c(d). (2.44)
—Afree

Figure 2.5 depicts the uncoded and coded performance forfalding2 x 1 and2 x 2 Alamouti
STBC system. Same as in the study on fast fading channelssevihe constraint length = 3 R, = %
convolution code and QPSK modulation. From the figure we esnctearly that FEC introduces only

coding gain in slow fading channels, exhibited by the paralift of the curves.



CHAPTER 2. INTRODUCTION TO MIMO 32

Coded Alamouti STBC in fast fading channel, K=3, R=1/2, CC
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Figure 2.4: Convolutional coded STBC system performance. &ind analysis and simulation result. K=3,

R.=1,BPSK.

Coded Alamouti STBC in slow fading channel, K=3, R=1/2, CC
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Figure 2.5: Convolutional coded STBC system performance. &ind analysis and simulation result. K=3,

R. = 3, BPSK.



Chapter 3

An Overview of MIMO-OFDM

In this chapter, we will develop the MIMO-OFDM system modetlayive an overview of MIMO-OFDM.
We start with the signal model formulation for conventiosahgle-antenna cyclic prefix (CP)-based
OFDM systems, and extend it to the MIMO systems. We will thenegalize the linear signal model
and incorporate the various STFP schemes. The generailiez kignal model will facilitate the capac-
ity and diversity analysis of the various STFP schemes. E€beiver algorithms derived based on one

particular STFP scheme can be also easily extended to gtbtenss.

3.1 A General MIMO-OFDM System Model

In this section, we develop a mathematical model of MIMO-QFBystems withnp transmit andn g
receive antennas. The OFDM modulation is composed of twus b€ operation - inverse fast Fourier
transform (IFFT) and CP insertion. We dendteas the total number of subcarriers, or the FFT si2e,
as the number of subcarriers used to transmit data (andgigoals) whereP? < N, L the number of
sample-spaced multipaths in each of the MIMO channels d&fiyethe transmit-receive antenna pairs,
and Lcp the CP length in samples. Without loss of generality, we rassthatl, < Lcp, the inter-
symbol interference (I1SI) from the multipath channel cagréfiore be completely mitigated, as shown in

the following derivation.

33
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3.1.1 Signal Model for Single-Input Single-Output OFDM

The OFDM modulated signal for a single-antenna system can be written as
x = TepFAX, (3.1)

wherex is a column vector of dimensioflV + Lcp) x 1, F is the N x N Fourier transform matrix with
its elements defined g%,,, = \/LN exp [—jZ(m —1)(n—1)],m, n=1,2,--- ,N, andF* represents
the IFFT operation on the frequency domain signal ve®or Tcp is a circulant matrix [49] of size

(N + Lcp) x N with its first row written as:

(o0 - o0log .. 0)

N*ch chfl

Tcp adds CP to the IFFT outputX is of size N When P = N, X is the signal to be transmitted;
whenP < N, some subcarriers at the edges of the allocated bandwidthsad as the guard band. The
subcarrier allocation scheme defined in IEEE 802.11a WLANg2llustrated in Fig. 3.1. Out of the
sixty-four subcarriers, i.e., N=64, eleven subcarriers @wed as guard subcarriers, five of which at the
higher frequency band (compared to direct currenfjtbrsubcarrier), i.e., subcarrie2§ ~ 31, and six

at the lower frequency band, i.e., subcarrief32 ~ — 27. No data or pilot is transmitted at the direct

current (dc) subcarrier, either. In this casas formed as follows:
T _
X'=(0 xI of ., X))

whereX; denotes the frequency domain signal at the higher frequsmogarriers (in the IEEE 802.11a
case, subcarrieris ~ 26), X; denotes the signal at the lower frequency subcarriers éstbrs—26 ~ —

1inthe IEEE 802.11a case), afd,_p_; denotes the all zero vector with length (N-P-1).

Assuming a sample-spaced multipath channel Witbqually-spaced multipaths and thé ele-

ment having complex gain df;, we can write the received signal as

r; = hox; + hix; 1 + vy, (3.2)
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26 10 1 26
Subcarrier Numbers

Figure 3.1: lllustration of Subcarrier Allocation with Gua rd Bands

wherei represents th&h received block of datdy, andh; are both siz¢ N + Lcp) x (N + Lcp) Toeplitz

matrices [49] with(hg, h1, - -+ , hr—1,0,---,0)T as the first column antho, 0, - - - ,0) as the first row of
hy, and(0, - - - ,O)T as the first column an@, --- ,0,hr—1,hr—2,--- ,h1) as the first row oh,, i.e.,
ho 0 0 - 00
hi ho 0 -0 0
hO - ;
hp-1 hp—2 hp—gz --- 0 0
0 0 0 -+ hi hy
- - (N+LCP)X(N+LCP)
and _ -
0 hi_1 hr_o hy
hl = 0 0 hL,1 hg
.0 0 0
- 4 (N+Lcp)x(N+Lcp)

v; denotes the complex AWGN with zero mean and variariceThereforer; consists of three parts: the
desired signak;, the inter-OFDM symbol interference from the previous OFB¥nbolx; 1, and the
AWGN.

Frame synchronization process identifies the startingtdithe OFDM block, following which

the CP portion in the received signal is removed. This istemifs:
yi = Ropry, (3.3)
whereRcp is a circulant matrix of size&v x (N + Lcp) whose first row is written as

(o0 - 0lo - 0)

Lop N-1
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Therefore Rcph; = 0, the inter-OFDM symbol interference is removed from thesiead signal. Hence

we drop the index and rewrite (3.3) as:
y = Rophox + v, (3.4)
wherev is the AWGN vector with lengthv. Performing FFT ory, we have
Y = FRcphyx+Fv
= FRcphoTcpFAX +V, (3.5)

whereV represents the frequency domain noise which is still whaessian, an®R.,hy T, isaN x N

circulant matrix with the first column written as
h; = [ho, h1,- - ,hr1,0,---,0]" . (3.6)
Therefore R.,hoT., can be diagonalized and we have
FRephoTepF! = H = diag(Ho, Hy, -+, Hy 1),

whereH is the frequency response of the channel withittiediagonal element expressed as [50]

L—1
21 n
H, = ZZ; hy exp(—j 5pnl) = VNF"h,, (3.7)

whereF" is thenth row of the FFT matrix¥'.
Hence, we can rewrite (3.5) as

Y =HX + V. (3.8)

Theorem 1. The frequency domain channel respoiiggs, n = 0, 1, --- , N — 1 have the same sta-
tistical property for wide-sense stationary uncorrelatghttering (WSSUS) complex Gaussian multipath

channels in which only the first component may have non-zeemm
Proof: For WSSUS complex Gaussian multipath channels, we have ferh; re + jhi rm,
g{hIZ,Re} :g{h‘l?,lm}v l#oa
E{hipey = ag+E{ M}, 1=0,
E{hiim} =0, l=0,1,---,L—1,

E{hire} = aod(l), l=0,1,---,L—1
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whereqy is the Rician component which is assumed to appear in thepaeabfhg.

We also have

E{higehiim} = 0,
N 2 2 , 9
E{hi}y = E{hire — hirm + 20, rehim} = agd(l),

E{hihmz} 0

E{hht ) = O

From (3.7),H,, is complex Gaussian random variable (r.v.) when the timealoroefficientsy;,
l=0,1, ---, L —1, are complex Gaussian. Therefore, in order to prove Thedreme only need to
show that all thefZ,,’s have the same first order and second order statistics.

The first-order mean value éf,, is
1t} = £{VNF"h} = VNF"E {h} = VNF(n,0)€ {ho} = & {ho},

i.e., all H,’s have the same mean.

Now let’s look at the second order statistics.

E{|H, 2} = E{H,H}=E {NF"hth{f (F”)H} = NF"€ {hhf'} (F")1
L—1

-1
= NY Fn,DE{ImP} F(n,1)* =LY E{|f’},
1=0

=0

g{H?} = NE{(?Z:FW,Z)M)Q}

— NLle(n,l)Qé’ {ni}
~ ()
Var(H,) = E{(H,—E(Hy)) (Hy — E(Hy))™}
= E{|H, - E(H,)H; — H,E(H?) + |E(H,)[2)
= E{|H.]} - [E(H)]?
- LS e () - e ol

i.e., all H,,’s have the same second-order statistics.
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We hence prove thatl,,, n =0, 1, ---, N — 1 are statistically the same for WSSUS complex

Gaussian multipath channels. [ |

Theorem 2. The maximum frequency diversity order of an OFDM systefn wshereL is the number of

multipaths in the frequency selective channel.

Proof: From (3.8), assuming perfect CSI at the receiver, we havd &R of maximum likelihood

detection (MLD) as

PX—X.) = P(YIX,H) <p(Y[Xe, H))

= P(]Y -HX]>|Y - HX.|?)

_ 0 d2(HX,HX,)

- 2N,

_ [HX — HX,|?

= &P 4N0 ’

whereX is the transmitted sequence, aXd is the erroneously detected sequent¥g.= 202.
Defininge = diag (X — X, ), andH = diag (Fhy), we have
IHX — HX[* = |[eFh|?
= hi’FfefeFh,
= hF7QA.Q"Fh,,
whereee! = QA.Q" is the eigen-decomposition of the error vector covarianedrimee’. The
number of non-zero eigenvaludsis determined by the free distance of the FEC.

Definingh, = Q¥ Fh,, there arel, non-zero independent complex Gaussian elemeris, iand

we have
IHX - HX > = hffAh; = [f*)c
=0

where we assume thdt > L.

We therefore can write the PEP as
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and when the multipath componertgs are i.i.d. complex Gaussian with zero mean and varighcee

have the average PEP written as

_dl dl—l
P(X —X,) = (Ni()) (H Ae,l> , (3.9)
=0

whered; = min(L, d.) is thediversity order of the OFDM systerand we havenax(d;) = L, achieved

when the free distance of the FECis larger than the multipath order.

3.1.2 Signal Model for MIMO-OFDM

With the SISO-OFDM model defined in (3.8), we can now work tiet MIMO OFDM system model in

a very straight-forward manner, as:

Y=HX+YV, (3.10)

where X is a dimensiomp N column vector obtained by stacking the transmitted sigeatarsX,,,,
m =1, 2, ---, np from theny transmit antennagy is a dimensiomr N column vector obtained by
stacking the received signal vect®r,, n = 1, 2, ---, ng, from thenp receive antennas, arfd is the

frequency domain MIMO-OFDM channel of sizegrN) x (npN') which is written as

Hiy Hp, Hi
H>; Hyo H>,,,

H = ,
H"R,l HnR72 T H"RynT

whereH,, ,, is aN x N diagonal matrix corresponding to the single-antenna fagy domain channel
defined by thenth-transmitnth-receive antenna pai¥’ is the AWGN noise vector of dimensiang N
obtained by stacking the AWGN noise vector at thereceive antennas.

Therefore, for each receive antenmnahe received signal at subcarriecan be expressed as:

nr

Y = ZH(nfl)><N+k:,(m71)><N+I<:)X(m71)><N+k
m=1
nr

= > HumsXmp, (3.11)

m=1
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wheren=1,2, --- , ng,m=1,2, ---, np,andk =0, ,1, ---, N —1.
Defining
- T
Ri = ik Dok Vork | >
Hy i Hy ok Hi nrk 1,1,k 1,2,k Hiy ok
Horr  Hokok Hok nrk Hy1r  Hoop Hs ok
Hk pr— pr— 3
Han,k’ Han’,Zkz Han:,nTk HnR,l,k HnR, HnR,nT,k
N T ) ) }
Sk = X Xop Xnrk :| )
- T
Nk = Vk; ng VnTk: ] )
we can write (3.11) as
Ry = HiSi + Ny. (3.12)
Theorem 3. The frequency domain MIMO-OFDM channel respoftégs, k =0, 1, ---, N — 1 have

the same statistical property for spatially uncorrelate®8S complex Gaussian multipath channels in

which only the first component may have non-zero mean.

Proof: From Theorem 1, the elements,, ,, , are complex Gaussian and they are statistically the
same for differenk’s. Therefore, we only need to prove that the correlatiorffaments between elements

in H;, is independent of, as follows.

E{HpmniHy 1} E

—

(

L—

thnle_ﬂw}d) (th e g%kd) }
1L—1
DD hmnihyqae T N d)}
=0 d=0
-1

& {hmnlhpqd} 67]27"](:1 2

27
~k

n

——

h
»—\
h

™~ N
,_\ o
h &
H O
w\»—A

2
gy pr

=0

l 27
(m,p, D)pg (n,¢,1)5(1 — d)e I ¥ k=)

]

hN
LL
&.

1 1
ot p? (m,p,1)p7 (n,q,1) (3.13)

~
o
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with the assumption of WSSUS multipath models. Therefdre MIMO channelH;, have the same sta-
tistical properties for all the subcarriers. Hegén, ¢, 1) andp,.(m, p,1) denote the correlation coefficients
of thelth path at the transmitter and the receiver, which are déedrby the angle of departure and angle

of arrival respectively [51][52].

Corollary 1 The frequency domain channel is spatially uncorrelatetafttme-domain multipath com-

ponents are spatially uncorrelated.

Proof: This is straightforward from (3.13). ]
From now onward, unless otherwise stated, we will assuntetibee is no spatial correlation in
the channel. For signal notation, we will no longer diffarate the MIMO signals from the single-antenna

signals by using calligraphic letters unless otherwistedta

3.2 STFP and FEC Encoding in MIMO-OFDM Systems

In this section, we will generalize the signal model devetbp Section 3.1 by incorporating the various
STFP schemes and discuss application of FEC coding in sstrsyg.

A bit-interleaved coded and modulated STFP MIMO systemlusstitated in Fig. 3.2. In this
figure, the random information bits are first demultiplexetb iparallel streams (layers) by the “Spatial
DeMux” unit. In each parallel stream, information bits areeded, bit interleaved, and mapped to con-
stellation points of the adopted modulation scheme in tHENB’ unit, based on the bit-interleaved coded
modulation (BICM) principle [35]. BICM provides both a lasgdamming distance and a large Euclidean
distance, hence is a robust coded modulation scheme fdessrehannels. It also splits the coded modu-
lation design into two parts - selection of the encoder, axigh of the modulation scheme. In this thesis,
we consider Gray mapping rules to map the coded and intedehits to symbols. In order to achieve
“turbo” gain in iterative decoding of BICM (BICM-ID), othemapping rules have been proposed. The
details can be referred to works by Li and Ritcey [53] [54]][E#®], Schreckenbachkt. al.[57] [58].

The BICM outputs from the various parallel streams are &rriprocessed by the “Space-Time-
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Freg(uency)-Precoding”, i.e., the STFP unit. Dependinghensystem requirement and the transmit and
receive antennas available, different STFP schemes caddmeal. For example, if maximum capacity
is targeted from a system with no less receive than transménaas, and if no CSl is available at the
transmitter, simple spatial multiplexing, i.e., VertiddLAST (VBLAST) structure can be used. The
corresponding STFP processing is represented by a lirseefarm with identity matrix,, .. If maximum
transmit and receive diversity is desired from the MIMO aheln the full-diversity space-time coding
schemes, e.g., STBC [31] [33], STTC [25] [59], etc., can bedudA linear frequency-domain transform
can be applied to the BICM output before the STBC encodingpdod the frequency domain diversity
and improve the system performance, as suggested in [6@.lifiéar pre-transform can be applied to
a VBLAST-OFDM system following a similar approach in [60].0 Bchieve compliance with legacy
standard with multiple transmit antennas, cyclic delaysity (CDD) can be applied [61, 62, 63]. CDD
can also be combined with other multiple antenna processthgmes, e.g., transmit beamforming, as
shown in [64], or spatial spreading (SS), as will be discdssehis thesis. If both transmit diversity and
capacity gains are desired, groupwise STBC (GSTBC) [65C[66], QSTBC [38, 39], etc., can be used.
When the transmitter has no knowledge about the channed| egfie is assigned to the different spatial
streams, hence same BICM scheme should be used. Each spa#h should have the same power
allocation as well.

When perfect CSl is available at the transmitter, SVD-bdsesimforming in conjunction with
water-filling performed at each subcarrier is optimum iniegimg the channel capacity. In this case,
the STFP is a linear transform represented by maRias given in (2.2). To reduce the transmitter
complexity, subchannel grouping (SCG) and statisticakwhlling (SWF) was proposed in [67], and it
was proved that SCG and SWF can achieve ergodic capacity BIOMDFDM channels. With SCG,
the MIMO-OFDM channels are partitioned into several paftagBaussian channels with different SNR
and different diversity order. To realize the channel cédpaa multiple-codebook variable rate (MCVR)
coded modulation was proposed in [68] in which differentebchodulation scheme was used for different
parallel channel, and the power ratio among the paralletréla was also adjusted according to the SWF

principle in order to optimize the power utilization.
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Figure 3.2: A coded MIMO-OFDM transmitter.
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Figure 3.3: Block Diagram of A Generalized MIMO OFDM Receiver.

The output of STFP is then OFDM modulated and transmittediffigrent antennas.

Assuming perfect timing and frequency synchronizationyeveove the CP part from the received
data and then convert the signals to frequency domain by &-3hown in Fig. 3.3. Our aim here is the
develop a unified linear signal model for each subcarrieyugin the “Spatial Multiplexing” unit, written
as

R=HX+V, (3.14)

whereR, X, H andV denote the received and transmitted signals, the spaesftequency precoded
MIMO channel, and the complex AWGN noise, respectively. &epng on the STFP scheme adopted,
the dimensions oR, X, H andV may vary for the samer x nr MIMO channel. With such a general
signhal model, we can analyze the capacity and diversityopadnce within the same framework and
identify the best possible precoding scheme. The recelgerithms we develop in Chapter 5 can also be

applied to the various STFP MIMO-OFDM systems in a stragfwhrd manner.
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3.2.1 VBLAST-OFDM

For any x ngr VBLAST-OFDM system [65], the signalR, H, X andV are defined as

T
def
R = Ry Ry -+ Ry, ,
Hy1y Hip -+ Hipp
H < :
(3.15)
H"RJ H"R72 HnRJLT
def r
€:
X = [X1 Xy - XnT:| ,
def r
€
v = [Vl Vo e VnR],

where R; denotes the received signal at anteanal; ; denotes the channel response between transmit
antennaj and receive antenng X; denotes the transmitted symbol at anterinand V; denotes the
independent and identically distributed (i.i.d.) compl&GN at receive antenna V; has zero mean and
varianceo? per real dimension.

For VBLAST systems, generalized decision feedback eqeral@DFE) with no error propagation
is capacity lossless when the transmitter kn@ngriori the rate information for each streams [69]. For
linear receivers, VBLAST will have poor performance when < np due to lack of degree of free-
dom [10][70], hence it is in general required that the reeeimtenna number is no less than the transmit
antenna number. When this is the case, an iterative turlgivezownith capacity approaching FEC codes,
e.g., turbo codes, low-density parity check (LDPC) codes) ltave capacity approaching performance

without requirement for any CSl-related information oeratformation [71][72].

3.2.2 GSTBC-OFDM

In a GSTBC-OFDM system [44][73][65], the transmitted silgnare divided into groups. Spatial multi-
plexing is applied to signals among the groups; Within treugr Alamouti STBC is performed before the
OFDM modulation. Therefore, an even number of transmitramds is required to support GSTBC. How-
ever, even when the transmitter has an odd number of anteimeasoncept of GSTBC is still applicable.

In this case, the firstn — 1) antennas can be used to transmit GSTBC-signals, and ttreantenna
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transmit is used to transmit the non-STBC coded signal, asrime variable rate STBC's proposed in [43].
However, in such a system, either rate feedback or powest@nt is needed in order to have optimal
performance.

Another way of applying GSTBC in an odd-number transmit anéesystem is to combine the
GSTBC encoding with spatial spreading (SS) - encodﬁqigl streams of data by Alamouti STBC, and
then spreading thé:y — 1) STBC-coded streams by SSr#g antennas. The SS is modeled in 3.2.5.

Here we first assume an even-numbered transmit antennashes@nalsR, H, X andV are

defined as

- T
def
R = | Ry —-Riy, -+ Ruga —Ri, | -
Hi His -+ Hipp Hi
* * * *
_H1,2 H1,1 T _Hl,nT Hl,anl
def
H = ,
(3.16)
H"R,,l H"R72 e HnRv"T*1 HnRJLT
* * * *
L _H"R72 H"R,,l _H"RJLT HnR,anl i
det [ r
€
X = X Xo - Xpp ] ,
- T
V dﬁf * *
L - Via —V1,2 o Vaga _VnR,Q )

where subscripts o and V/ d_enote the receive antenna and OFDM symbol indices in eaamdti
STBC code wordf; ; and X; are defined the same as in a VBLAST-OFDM system.

In order to support linear detection, the number of receiteranas needs to satisfy the following
relation

min(ng) >

SE

Hybrid of GSTBC and VBLAST As we briefly mentioned, when the number of transmit anteimnas
not even, a hybrid of VBLAST and GSTBC precoding scheme caapipéied. In this case, the firatr — 1
antennas transmﬁ-’tTQ—*1 streams of GSTBC signals , and the last antenna transmiisdegendent stream
of signal. The number of receive antennas needs to satisfy

1
min(ng) > nT;_ .
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in order to support linear receivers.

The transmitted signal in the hybrid GSTBC-VBLAST system is

X1 —X3
X5 Xt
XnT -2 = X;;T —1
X”T -1 X;;T -2
L XnT X;:T-l—l

i.e., the first 4 — 1) rows denote the Alamouti STBC-coded signals, and the ¢tagidenotes the spatial
multiplexing signal.

Following the same way of manipulation as in GSTBC [44][ @&, can develop the corresponding
linear signal model. The signaR, X and V are defined the same as in a GSTBC system, but the

dimension ofX changes ta7 + 1, and the precoded chanridlis expressed as

| Hi, Hio -+ Hippo Hinr—1  Hing 0 _
_HT,Q Hil T _HinT—l Hik,nT—Q 0 _HinT
H ¢ : P : : : : . (317)
HTIRJ HTIRQ I{TIRJZT—2 HnR,nT—l HnRynT 0
| —Hupe Huypn oo —Hppap Hipnpo 0 —Hyn |

Obviously, due to lack of transmit diversity, the data ratpported by the last stream is lower than
the other”TT‘1 STBC-ed streams. One way to compensate for the diversiyiddsigher power allocation

to the non-STBC coded stream, as indicated in [43].

3.2.3 QSTBC-OFDM

For QSTBC, we focus on ther = 4 cases and consider the rate-1 code in (2.33) by Jafarkh@haftl

the rate-2 code by Yueet. al.in [41].
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For the rate-1 QSTBC coddad = 4) x nr system, the signalR, H, X andV are defined as

( r T

def
R = | Ry —-R}y, Rizg —Ri4y -~ Ruy,1 —R; Rnps —Ry.4 |

TLR,Q

Hyq Hyo Hy3 Hiy
* * * *
—-Hi, Hi, —Hi, Hij

Hy3 Hiy Hyq Hio

* * * *
—Hi, His —Hi, Hj,

H = ,
(3.18)
HnR’l HnR’2 HnR’3 HnR’4
* * * *
_HnR,Q HnR,l _HnRA HnR,B
HnR’3 HnR’4 HnR’l HnR’2
* * * *
L _HnRA HnR,3 _HRRQ HnR,l |
r T
x “
= X1 X9 X3 Xy )
r T
V déf * * * *
Vie =Vip Vizg =Viy - Vapa —Vino Vars —Viga | o

\ L

where subscripts ak andV” denote the receive antenna and OFDM symbol indices in eadBQ$ode
word, H; ; and X; are defined the same as in a VBLAST-OFDM system.
The rate-2 QSTBC in (2.34) can be generated by applyirgxa2 Walsh-Hadamard spatial-

spreading matrix onto the GSTBC codeword, as

A,
xQsTBC = WaxasTtBe = Wa , (3.19)
A,

where

111 1
war I

1 -1

is the2 x 2 Walsh-Hadamard matrixA;, i = 1, 2 denotes théth Alamouti codeword.
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We therefore have
def r
€
R = { Rii —Rj, Rnp1 —Ry,o | >
Hyi1+ Hy3 Hio+ Hyiy Hy1— Hyg Hio— Hyy
—H{,—Hj, Hi,+ Hj, —H{,+ Hj, Hi,—Hj,
H < /1 :
HnR,l + HTLR,?) HTLR,Q + HnR,4 HnR,l - HTLR,3 HTLR,2 - HnR,4
| —Hhpo—Hups Hypo+Hy, s —Hp o+H, o Hp o —Hp 3 |
def T
€
X = |: X1 Xo X3 Xy :| )
def r
€
\ v = [ Vipg =V o Vaga Voo ] ’
(3.20)

where subscripts oz and V' denote the receive antenna and OFDM symbol indices in eaainduti

STBC code wordf; ; and X; are defined the same as in a VBLAST-OFDM system.

Remark Comparing the GSTBC signal model in (3.16) and the rate-2 B&Smodel in (3.20), we can
see thaR, X andV are defined the same way in the two systems. A closer look aienel matrixH

definition for the two systems leads to the following lineglation:

Hqstee = Hestae T, (3.21)
whereT is a4 x 4 matrix defined as
1 0 1 0
1101 0 1
T = B =Wy ® I, (3.22)
1 0 -1 0
01 0 -1

whereW, is the2 x 2 Walsh-Hadamard matridy the2 x 2 identity matrix, and, the Kronecker product.

Taking note thal'T# = TH#T = I, we therefore have

HostecHstae = HasteeHlsae- (3.23)
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3.24 LDC-OFDM

We consider the LDC-OFDM system in which each subcarriendependently encoded by the same
linear dispersion matrices and the channel is quasi-stdttién the LDC codeword. We hence have a real

signhal model in which the equivalent signals in (3.14) aringe as follows ¢f. Eqns. (22) - (25 [66])

R !
- RRe,l le,l RRe,nRT le,nRT ’
Alﬂl Blﬂ1 T AQH1 BQﬂl
H ¢ :
(3.24)
AlﬂnR BlEnR U AQERR BQETLR
T
x “
= [XRe,l Xmm1 - XReQ XIm,Q:| ,
T
v
- |:VR6,1 Vlm,l VRe,nRT Vlm,nRT:| ’

where subscriptsRe” and “Im” denote real and imaginary parts of the sigrifllis the LDC codeword

interval, @ is the total number of symbols transmitted by one LDC codewand.4, and B,, ¢ =

1, 2, ---, Q are generated from the LDC encoding matrigesandB, as
Aq _ ARe,q _AIm,q ’
AIm,q ARe,q

Bq - )
BRe,q _BIm,q

that is,.4, and B, are both of dimension dingT" x 2nr, andH,, is a column vector of dimensidnr

generated from the channel response corresponding tathheceive antenna as
H

Iin = HRe,n,l HRe,n,Z HRe,n,nT HIm,n,l HIm,n,Q HIm,n,nT

The precoding rate of LDC iRp1pc = Q/T.

3.2.5 CDDSS-OFDM

Cyclic-delay diversity spatial spreading (CDDSS) is anrofm®p precoding scheme which can magp

streams of data tar transmit antennasyr > ng. It is a combination of SS and CDD. CDD was first
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proposed by Kaiser in [62] as a transmit diversity schem®©feDM systems, as an extension of the delay

diversity scheme proposed for single-carrier modulatigsiesns. Kaiser also proved in [62] that CDD is

equivalent to phase diversity (PD) and in [61] that the oppeneof CDD is transparent to the receiver.
Before proceeding to develop the signal model for CDDSS-MFRe first develop the CDD-

OFDM signal model fornr = 2 andng = 1 system.
CDD-OFDM
Denoting the IFFT output of the original transmitted sigagl
T
and the cyclic delay value aswe have the cyclic delayed signal sequence as

T
CDD _ _ _

= PCPDPx,. (3.25)

wherePCPP s a circulant matrix with its first row as

(0010 0)

i.e., only itssth element is “1” and all the other elements are “0".
Then CP is appended to both the original time domain sequenaad the cyclic delayed signal

sequence PP as

x = Tepx = TepFPX,

xCPP — PpxCPP — T PCPPRH X

The corresponding received signal after removing the CBqpois therefore written as

yPP = Rcpho 1% + Rephg 1 0x“PP 4+ v (3.26)

= Rcpho 11 TepF?X + Rephg 1 2 TcpPCPPFEX + v (3.27)

following (3.4). Herehg 1 ; andhy ; » are the Toeplitz channel matrices corresponding to receitenna

1, and transmit antenna 1 and 2, respectively.



CHAPTER 3. AN OVERVIEW OF MIMO-OFDM
From (3.26) and (3.27), it is obvious that CDD does not inawy i&!.

51

From Section 3.1(Rcphg 1,1 Tcp) and(Rcphg 1 2Top) are bothV x N circulant matrices with

their first column respectively written as
T
ht,l,l - [h071717 h17171’ ey hL7171717 07 s, O]

and

T
hi12="[ho12, h11,2," ", ho—112, 0,---, 0]" .

Matrix (Rcpho1 2 TepPCPP) is therefore also a circulant matrix and its first column & tth

column of(Rcphg 1 2Tcp), Written as

- T
0, ~-+,0ho12 hi12, -, hp—112, 0,---, 0] , s < (N —1L),
—_——— ~—_———
L s N—L—s
CDD -
ht,1,2 = T
hn—s12, === hr12,0, ~--, 0 hoio, hi12, -+, hn—s—112| , s> (N —L),
——
L+s—N N—-L N-—s
) (3.28)
i.e., elements of the first column of circulant mat(Rcpho 12 TcpP“PP) are written as
CDD/, \ _ _
hizg (n) =ht12[(n—s) mod NJ, n=0,1,---, N-1 (3.29)
We can therefore re-write (3.27) as
yPP = hiPhF/X +v (3.30)
whereh{DD is NV x N circulant matrix with its first column written as
(
ho,1s+ shs—11,1, Psi1+ho12,- - ho—111 + hr—1-s1.2,
hL—S,l,Qa"' 7hL—1,1,2> 0» 70]T> s < La
h?eDcBiv _J [hoaa hiit, hi—111,0,- - ,0,ho 1o, Piag,-+, hr—112, 0,---, 0", L<s<(N-L),
(hoii1+hN—s12: s hi4s—N-111+h—1,12, PL4s—N11," ",
hi-111,0,--,0,ho12, hito, -+ hy_s 112", s> (N — L),

(3.31)
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i.e., for0 < s < N, additional multipathshave been created through CDD. Therefore, higher frequency
diversity is made possible through CDD.

Making use of (3.29), we can alternatively write the eleraémthe first column of circulant matrix

hgq?l}g as
Mo () = hy11(n) + hiD5 (n)
= ht7171(n) + ht7172 [(n — 8) HlOd N] (332)
wheren =0, 1,---, N — 1.

Fornr = 2 system, we can see that to fully exploit the frequency dityepotential in CDD, the
cyclic delays is preferably in the rangé > s < N — L.

Performing FFT on (3.27), we obtain the frequency domainaighodel, as
YOPP — H X + HPPX +V, (3.33)
whereH;; andH{PP are N x N diagonal matrices, with thith diagonal element fdi1; as
L .
Hi g = Z hype I W
and thekth diagonal element faH P as

— - 27 - 27
Zh12l€—JNk(l+s) —JNk: Zh 206 —j 2kl _ e—jwkslek’ s < (N—L),

CDD  _ (I+s) 2 f(l+s—N
Hpyp = Z hige” iR k() Z hi2,e k(s —N)
|=N-—s
2T _ 27
= Zhwle INHIES) = eI NF oy, s> (N —L).

We hence have the frequency domain channel expressed as
H{PP = wH, (3.34)

where

\II - diag < 1’ e_j%s’ s, e_J%ks’ s, e_]%(N_l)s ) . (3-35)
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(3.33) can therefore be re-written as

YOPP = (Hy; + $H;5) X+ V, (3.36)

For each subcarrier, we have the received signal expressed a
Y, = (HHJ@ + e*j%"kSng,k) Xy + Vi = Hy @, WX + Vi, (3.37)

where

H, = [Hll,k Hia g, }v
b, = diag< 1, e ixks >,

1

1

Remark Matrix W can be seen as a spatial spreading matrix, which spreadstfhe stream transmit-
ted signalX;, to nr = 2 antennas.

Thenp = 2 time-domain channel model in (3.32) and frequency domaidehim (3.37) can be
extended tm > 2 CDD transmit diversity system in a straightforward man#esuming the incremen-
tal cyclic delay per antenna is then the cyclic delay applied to the'th antenna ign; — 1)7. We hence

have the time-domain equivalent channel as

REPD. () = i hian, [(n— (ne —1)7) mod N7, (3.38)

t,equiv
ntzl

and the frequency domain channel as
nr
YOPP =N w, Hyp, X +V, (3.39)
ntzl
whereW,,,’s are diagonal matrices with thigh diagonal element,,, (k) written as
Yy (k) = eI N e,

We hence have the signal model at each subcarrier as

Y. =H, ., WX, + 1V, (3.40)
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where
H, = [Hll,k Higp -+ Hl,nT,k:|’
P, = diag(L eTIRRT e—j%k(w—l)r),
_ 1 -
W =
L 1 .
CDDSS-OFDM

As we have shown, in a CDD system, the single-stream sigrfabkispread tov antennas with equal
energy. After that, a cyclic shift is applied to the time demsignals transmitted over; > 1 antennas
to transfer the spatial domain freedom to frequency ditserdiVvhen the number of transmitted spatial
streams of signals is larger than one but smaller than the number of transmérenats, orthonormal
spatial spreading with cyclic delay diversity, i.e., CDDQ$&n be used to map the streams of signals to
nr transmit antennas and to transfer the additional spatialaiio freedom to frequency diversity. In this

case, the signals in (3.14) are written as

- T
def
R = | R Ry -+ Rn, | -
Hi1 Hip Hipy
H & PW,
(3.41)
HnRJ H"R72 HnRJLT
def | T
€
X = )(1 X2 an:| 5
def : r
€
VvV = Vi Vo - VnR] ,

where® denotes therr x np diagonal phase rotation matrix introduced by CDD with thgh diagonal

¢7lt CX ( 1)k

with 7 being the incremental cyclic delay value, N the FFT size, fattte subcarrier index.
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Matrix W is the spatial spreading matrix of dimensiap x ng, corresponding to the firstg

columns of an X np unitary matrix.
Theorem 4. In a CDDSS-OFDM system, each individual data stream is tratisd through CDD.

Proof: From (3.41), the received signal corresponding to spatiedsn,, 1 < ns; < ng, is written as
RZS = Hk<I>anX,:‘5 + Vg,

whereW,,. denotes thesth column of W, and(W,,,)¥ W,,_ = 1.

Comparing with (3.40), the conclusion is straightforward. |

Theorem 5. The maximum frequency diversity order for each spatiabstran the CDDSS MIMO-OFDM
system isnin (Lnp, N), achieved when the cyclic delay= L, with L being the number of multipaths
in each transmit-receive antenna pair channe}; the number of transmit antennad] the number of

subcarriers in OFDM.

Proof: From Theorem 4, we only need to prove that the maximum frezyudiversity order for CDD-
OFDM ismin (Lny, N)whenrt = L.

From (3.38), whenr = L, andny L < N, we have the equivalent time-domain channel as

nr
him(m) =Y htan, [(n— (ng—1)L) mod N]
ne=1
(
hei1(n) 0<n<L-1
hiq2(n— L) L<n<2L-1

htingy(n—(npr—1)L) (np—1)L <n<npL-1

0 nrL <n

i.e., there arevy L multipaths in the equivalent time-domain channel.
WhennpL > N, the number of multipaths i&'.

Therefore, the maximum achievable frequency diversitgpisimin(ny L, N). [ |
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3.2.6 RAS-OFDM

When the receiver has a lot more antennas than the transmétteive antenna selection (RAS) can be
performed. Due to the fact that the exfrar — ny) receive antennas provide only higher diversity, and
that when the diversity order is getting higher, the adda@loSNR gain becomes smaller [9], RAS can
significantly reduce the hardware cost yet maintain a négdgigperformance loss. In [74], Moliscét. al.
further looked into the ergodic capacity of antenna sedectystem and showed that the achieved capacity
of theny x np RAS system is close to the full; x ng system where.g > ny.

For RAS spatial multiplexing systems selectibg “best” out ofn r available antennas, the corre-

sponding signals in (3.14) are written as

T
def
R = Ry Ry --- Ry, ,
Hyy Hip -+ Hing
H Y s ,
(3.42)
H"R,l HnR72 H"RynT
def T
€
X = [Xl Xy - XnT:| ,
def T
€
vV = [Vl Vo - VLR} ,

whereS denotes the receive antenna selection matrix of Bjzex ng. S is constructed from the rows of

thengr x ng identity matrixI,, ., i.e., only those rows corresponding to the selected aaterdices will

NR?

be taken to forn$s.

3.2.7 TAS-OFDM

Similar to RAS, transmit antenna selection (TAS) can begoeréd at the transmitter. Different from RAS,
TAS is a closed loop precoding scheme. Feedback informéioeeded from the receiver as to which
are the “best” antennas for transmission, based on thegiegrdined antenna selection criteria. For TAS

in spatial multiplexing systems [75, 76}z out of np antennas will be selected, and the corresponding
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signals in (3.14) are written as

- T
def
R = | R Ry -+ Ry | >
Hiy Hip Hip,
H ¢ S,
(3.43)
HnR,l HnR72 H"RynT
def | r
(S}
X = | X; Xy .- XnR] ;
def : T
(S}
VvV = Vi Vo oo Van ,

whereS denotes the transmit antenna selection matrix of gizex ng, andS is constructed from the
columns of thenr x npg identity matrixI,,, i.e., only those columns corresponding to the selected
antenna indices will be taken to foréh

For asymmetric downlink MIMO channels with more transméritreceive antennas due to the
size limitation and power consumption constraint of theniaal, TAS reduces the hardware cost yet

maintaining the same diversity order as a full-antennaesy$76][77].

3.2.8 SVD-OFDM

When CSil is perfectly known at the transmitter, SVD can bdiagpo fully decouple the MIMO channels.
For MIMO-OFDM systems, the suboptimal sub-channel grog@End statistical water-filling technique
proposed in [67] was proved to asymptotically achieve tlgodic channel capacity. For SVD-MIMO-

OFDM, the equivalent signals in (3.14) are written as

- T
def
R = Ry Ry -+ Ry, ,
Hiy Hip Hipn,
H & \2
(3.44)
HnR,l HTLR,2 HTLR,TLT
def [ T
€
X = Xl X2 . XnT :| 9
def : r
€
V = Vl ‘/2 . VTLR :| 9
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whereH = UDVZ is the SVD of the channel matrid.

For ordered MIMO-OFDM channels, the coded modulation s&hesading rate and modulation
order for each of the ordered channels needs to be changetivatiato maximize the achievable through-
put for a given power budget and bit error rate performangairement. The system depicted in Fig. 3.2
can be taken as a multiple codebook variable rate (MCVR) BEKoMtion in which each grouped channel
may use different coding scheme with different coding ratel different modulation order to adapt to the
corresponding available diversity order and SNR in the neanHowever, MCVR BICM solution may
suffer some performance loss from the highest order groapadnel, as suggested in [68]. This is due to
the fact that the highest order grouped channel has thestighersity order among all the groups, mak-
ing it close to a Gaussian channel. In this case, trellis @odedulation (TCM) which is optimized for
the AWGN channel will have better performance than BICM.iBes MCVR, another system structure,
called single codebook constant rate (SCCR) [78], can asaskd. In SCCR SVD-OFDM, the various
grouped-channels make use of the same coding and modutatien and the achievable throughput is

optimized through power loading.

3.3 Summary of the Chapter

A generalized linear system model has been developed faedpae-frequency coded MIMO-OFDM
systems. This generalized linear signal model will faaiétthe capacity analysis in Chapter 4 and the

receiver design in Chapter 5.



Chapter 4

Precoding in Asymmetric MIMO-OFDM

Channels

Based on the generalized linear signal model for the var®USP precoded MIMO-OFDM systems in
Chapter 3, we will study their capacity, diversity and bérhe error rate (BER/FER) performance in this
chapter. We will put our special focus on the asymmetric nb&nwith more transmit than receive anten-
nas. They are typically created for downlink transmissidrewthe terminal station can not accommodate
as many antennas as the base station or access point (AR) gize timitation and power consumption
constraints. Among such asymmetric channels, it has bemeipin [66] that the Alamouti STBC is both
capacity and diversity optimal fa x 1 configurations. However, for other MIMO configurations, we
will show that the known precoding schemes are either cgphdsy, or diversity lossy, or both capacity
and diversity lossy. We then propose a 2DLPT MIMO-OFDM systehich can fully exploit the spatial
and frequency diversities available in the MIMO-OFDM chalsn We will also prove that the proposed
2DLPT achieves full capacity when the number of spatialesire is set equal to the number of transmit

antennas.

59
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4.1 The Ergodic Capacity of MIMO-OFDM Systems

For annp x ng direct mapping MIMO-OFDM system modeled in (3.10), we cavehigs capacity written

as

ﬁ log, <I n %HHH> , (4.1)
when the channel inpuY is i.i.d. Gaussian. In the above equation, the capacitydossto the CP has
been taken into account and it has been assumed that &l gubcarriers are active. Hepés the receive
SNR at each subcarrier and each antenna.

Alternatively, we can use the signal model in (3.14) to degapacity of the DM and other pre-

coded MIMO-OFDM channels. Assuming

e no spatial correlation at both the transmitter and the vecki

zero-mean WSSUS CSCG multipath MIMO channels, i.e., Rglgléading channels;

perfect CSl at receiver but no CSI at transmitter;

i.i.d. Gaussian transmitted signals;

all N subcarriers used to transmit information;

e capacity loss due to CP not taken into account;

we have the MIMO-OFDM channel capacity written as [52]

=

C =

2=
= >
Ly

2

=i
I

1
B log, det (I + —HkHH>

1

%é

Il
E‘H
i M

M
Z ogs(1 + %/\k’i) bits/channel use

wherek is the subcarrier indexy;, ; is theith eigenvalue onHkH, pisthe receive SNR at each subcarrier

and each antennd/ is the rank ofH,, andg is the channel use per precoding interval. For the open-loop

This is possible for indoor wireless channels, which hds lacal scatterers at both the transmitter and receiver.n@ble

this condition, the antenna separation needs to be widegbresiwell.
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precoding schemes discussed in Chapter 3, we have

1, DM and CDDSS,
=14 2, GSTBCand QSTBC,
2T, LDC,
with T" being the number of symbol intervals per LDC code word.
From Theorem 3, the MIMO channels at different subcarriees statistically the same, hence
the capacity at each subcarriers are statistically the s&veetherefore have the ergodic capacity of the

MIMO-OFDM channel as [52]

M
1 p)\i :| .
Cg = —E & |logy(1 + bits/channel use
E 3 — [ g2( nr )

From Corollary 1 in Chapter 3, we have independent CSCG ahara each subcarrier when the
time-domain multipaths are WSSUS zero-mean complex Gaussid spatially uncorrelated. Therefore,
the ergodic capacity can be easily computed for the DM-OFR&tiesns with CSCG channels by making
use of the results from Appendix 2A.

Next we will prove that results in Appendix 2A can also be dileapplied to compute the ergodic
capacity of CDDSS CSCG MIMO channels. We will prove that thgodic capacity ofiy x ng X ng
(nr > nr > ng) CDDSS-MIMO channel is equal to that efs x ngr DM channel, when the MIMO

channel coefficients are CSCG with i.i.d. element€'df (0, 1).

4.1.1 Ergodic Capacity of CDDSS MIMO-OFDM Channels

Denoting thenr x ngr (nr < nr) propagation channel 8P where superscript )P stands for propaga-
tion, theng x ng CDDSS MIMO channel abI® = HPS with S being theny x ng orthonormal CDDSS
matrix, i.e.,S7S = I,,, and theng x ng DM channel adi4, and assuming thd? is CSCG with i.i.d.

elements of N (0, 1), thenH? = HP(:, 1 : ng)? is also CSCG with i.i.d. elements 6fN (0, 1).

2For N x M matrix A, notationA (:, Py : P») with P; > 1 andP> < M denotes submatrix oA with all its rows but only
columns ofP; to P2, and notationA (Q1 : Q2,:) with @1 > 1 andQ2 < N denotes submatrix oA with all its columns but

only rows of@Q: to Q.
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Whenng = nr, the CDDSS matriS = ®W is unitary, i.e..S”S = SS# = I,,.. Therefore,
matricesHP andH* are statistically the same. It is hence straightforward the CDDSS has the same
ergodic capacity asr x ng DM, i.e., CDDSS achieves full capacity.

Whenng < np, S is orthonormal but not unitary matrix. So we have to look & $atistical

properties of individual elemeni§*®(m, n) in H%, withm =1, ---, ng,andn =1, --- | ng. As
nr
H%(m,n) =Y HP(m,i)S(i,n),
=1

H®(m,n) is still complex Gaussian. Its statistical properties atednined by its first- and second-order

moments, which are derived as

E{H(m,n)} = S{ZHP )}:ZE{HP(m,i)}S(i,n)zo,
=1 =1

E{|H (m,n)} = 5{[ H*(m ”ZHP”” )H

=1

- {ZZHPW)S(M) (HP(m. )" 5 G, n)}

i=1 j=1

nT nr

= > > E{HP(m,i) (HP(m, )"} S(i,n)S*(j,n)
i=1 j=1

nr nr

= ZZ&Z—] (i,n)S*(4,n)

=1 j=1

nr
= > IS(i,n))* =
i=1

and

E{Re(H*(m,n))Im(H®*(m,n))} = 5{

Z Re(HP(m,i))Re(S(i,n)) — Im(HP(m,i))Im(S(3, n))]

=1

[Z Re(HP(m, j))Im(S(j,n)) + Im(HP(m, j)) Re(S(j, n))] }

j=1
= % > (Re(S(i,n)) Im(S(i,n)) — Im(S(i,n))Re(S(i,n)))
i=1

= 0.

Therefore,H*(m, n) is CSCG with mean zero and variance of 1, if¢¥(m,n) ~ CN(0, 1).
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We now look into the cross correlation between the diffestaiments oH*:
nr *
£ { [Z HP(m,i)S(i,n) }
=1

= £ {Z > HP(m,i)S(i,n) (HP(k, 1)) S*(j, l)}

i=1 j=1

E{H>(m,n) (H*(k,1))"}

[Z HP(k,)S(i,1)
=1

nr nr

= D E{HP(m, i) (HP(k,5)) "} S(i,n)S™ (5, 1)
i=1 j=1

= > 6(m—k)d(i — 5)S(i,n)S*(4,1)
i=1 j=1

= 0(m—k)D_ S(i,n)S*(i,1)

= 6(m— k:)éz(:ri -1,
i.e., elements iH® are independent.

Till now, we have proved thal® is ng x ng CSCG with i.i.d. elements af'N (0, 1), i.e., H®
is statistically the same as theg x nz DM channel matrixH?. The eigenvalues off (H%)” and
HA (Hd)H are hence alsstatisticallythe same, following the distribution given in (2.14).

Therefore, therr x ng x ng CDDSS channel has the same ergodic capacity asghenr DM

channel. Fong < ng < nr, we we hence have

CE,cDDSSnrxnpxng < CEVBLASTngxnp

the equality is true wheng = np.
Making use of (2.15), the ergodic capacityof x ng x ng, ng < ng < np, CDDSS-MIMO

CSCG channels can be evaluated as

00 P)\ ng—1 ~ )
C = / lo <1+ ) LIRS (\)] 7 APRTS o " A G\, 4.2
m.cppss = | g5 A 1;) (L} \)] (4.2)

4.1.2 Ergodic Capacity of GSTBC, QSTBC, and LDC Asymmetric MMO-OFDM Chan-

nels

For GSTBC, QSTBC, and LDC precoded MIMO-OFDM channglss no longer i.i.d. CSCG. To obtain
the ergodic capacity, we need to derive the statisticatibligton of the eigenvalues iETH”. This is,

however, non-trivial. So in this thesis, we use Monte Cairlausations to obtain their ergodic capacities.
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4.1.3 Numerical Results

We now present the numerical results. FFT sizéVof 64 is used, and all the 64 subcarriers are used to
transmit data. For CDDSS, we s&t = ng.

In Fig. 4.1, we depict the ergodic capacity versus SNR of @gous precoded x 2 MIMO-
OFDM channels. Eighti.i.d. zero mean complex Gaussianipaitt channels are used, and perfect spatial
uncorrelation is assumed. TBex 2 DM-OFDM capacity is also included for comparison. The LDC in
[66] was used in generating the result. From the channeixratation in (3.23), it is straightforward that
4 x 2 GSTBC and QSTBC have the same eigenvalues for each chamtightien and hence the same
ergodic capacity. But more interestingly, the figure shdved LDC also has the same ergodic capacity as
GSTBC and QSTBC. This can be implicitly explained by the thett the three schemes have the same
precoding rate, i.eRp1pc = RpastBc = Rpgstec = 2, and that the dispersion matricds, andB,,
satisfy the constraint oA A, = BI'B, = %IHT, hence dispersing the transmitted symbols with equal
energy in all spatial and temporal directions. This is dyabe same as what the rate-2 QSTBC does.

Ergodic Capacity Comparison of Precoding Schemes for Asymmetric MIMO Channels, 4 x 2
14

I
Cap
-9~ GSTBC
QSTBC
121 == LDC
=k= 2X2 DM
SS

Capacity(bits/sec/Hz

0 L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Average SNR per receive antenna (dB)

Figure 4.1: Ergodic capacity comparison for a4 x 2 system.

Comparing the implementation complexity of GSTBC, QSTB®&] &DC, however, LDC will be
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less preferable due to its higher implementation compjdriboth the encoding and decoding processes.
In terms of design flexibility, both LDC and QSTBC lose to GSTBue to the fact that with every
additional pair of transmit antennas, we can add one mornepgod Alamouti STBC if the number of
receive antennas satisfy; > =*. The coding rate is alwaysl'. A rate- QSTBC and LDC, on the
other hand, may have to be derived for differents.

From Fig. 4.1, we can also see that CDDSS has the same erggicity as thé x 2 DM-OFDM
channel, as proved in Section 4.1.1.

The ergodic capacity f& x 4 channels is depicted in Fig. 4.2. Only GSTBC, LDC, CDDSS, and
4 x 4 DM are considered in this case. Studying the results in thedigve can draw the same conclusion
as thed x 2 channel, that is, carefully designed precoding such as @Sdml LDC can make use of the
additional transmit antennas to introduce capacity im@noent ovemng x ng DM channel, and CDDSS
has the same ergodic capacity as thex nz DM channels. All these precoding schemes, however,
introduce capacity loss.

Ergodic Capacity Comparison of Precoding Schemes for Asymmetric MIMO-OFDM Channels, 8 x 4, L=8
25 T T T T T T T T T

—&— Cap
—&— 4X4 DM
—&— GSTBC
SS
LDC

20

15

Capacity(bits/sec/Hz

10

|

T Il Il Il Il Il Il Il

0 2 4 6 8 10 12 14 16 18 20
Average SNR per receive antenna (dB)

Figure 4.2: Ergodic capacity comparison for a8 x 4 system.
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4.2 Outage Capacity

Having compared the ergodic capacity, we now look at thegeutapacity of the precoded MIMO-OFDM
channels. As pointed out in [52], the outage properties aterchined by the number of spatial and
frequency diversity degrees of freedom in the channel. sy that a codeword spans only one OFDM

symbol, the outage probabilit§, for a given rateR is defined as

N-1
1
Pyt = prob <1 =+ I;) I, < R> , (4.3)

where/ is the mutual information of the MIMO-OFDM channel. The aygacapacity can be obtained
analytically if the statistical property dfis known.

From Theorem 3 in Chapter 3, the MIMO chand@}, at each subcarriek is statistically the
same. Hence, the mutual information of each subcarfjgrs statistically the same. The mean mutual

information of the MIMO-OFDM channel is thus written as

S{I}zé’{iNz_:lIk}:iNZ_IE{Ik}:E{Ik}:I (4.4)
Nz N 7

which is independent of the multipath channel charactesisiThe correlation of;, at different subcarri-
ers, however, is dependent on the frequency domain caarlat Hy's, which depends on the dispersive-
ness of the multipath channels. We now look at two extremescathe single-path flat fading channel,
and the highly dispersive frequency independent fading [@ter case is obtained with i.i.d. zero-mean
complex Gaussian N-path channel aivgp = V.

For the flat fading channel, each subcarrier has the $amdéence

Ik:Iﬂatu kZOu 17"'7N_]-7
I = Iﬂata
we therefore have
I_ - I_ﬂatu

Var(I) = E{I*} — (E{I})? = {13} — T = Var(Ipa).
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For the highly dispersive frequency independent fadingiokg the MIMO channels at different
subcarriers are statistically the same but are indeperdesgich other, i.e., i.i.d. The mutual information

of each subcatrrier is therefore also i.i.d. We hence have

N-1

) LN
ey = 5 5{fk}zﬁszsz,
k=0 k=0

LNl N | Nl 2
Var(I) = E{I*} - (£{1})° :5{N d I ~ > Im} - (N > Ik,>

k=0 =0 k=0

| [N=1N- B
BE) [Z > (E{Idn) - Ik:Im)]

k=0 m=0

- & [NZ an) —E%)]

k=0

1 N—-1
= 3 <Z VaT(Ik)>

k=0

1
= NVar(Ik)

From the above two extreme cases, we can make a qualitativéuston that the more dispersive
the multipath channel, the smaller the variance of the nutdarmation, hence the lower the outage
probability and the higher the outage capacity.

We next look at some numerical results with i.i.d. zero meammex Gaussian multipath chan-
nels. Same as the ergodic capacity study, 64 subcarriergsackin the OFDM channels, ard:p is

assumed to be long enough to achieve perfect ISI mitigation.

4.2.1 Numerical Results for Frequency-Domain Correlated Gannels

We now present the numerical results in frequency-domaireladed channels. Again spatial indepen-
dence is assumed among the channel coefficients for all theamiers. We first verify our qualitative
analysis that frequency correlation introduces degraddt the outage capacity. Presented in Fig. 4.3 is
the outage probability of x 4 DM-OFDM channels with the number of i.i.d. multipathslof= 3, L = 8,

L =16, andL = 64, respectively. The SNR is set to 10dB. It clearly shows thatricher the multipaths

in the channel, the higher the outage capacity. Compariegtiiage capacity of the four channels at

P, = 0.01, we can see that from the most correlated channél ef 3 to the fully uncorrelated channel
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of L. = 64, the outage capacity can increase by over 1 bit/channel use!

4 x 4 DM, SNR = 10dB
0.4 T T

L i
I (]

D= 00w

O

0.35M =

0.3

0.25-

Outage Probability
o
N
T

0.15

0.1

0.05

11
Rate in bits/sec/Hz

Figure 4.3: Outage Capacity of4 x 4 Direct Mapping MIMO-OFDM. SNR =10 dB.

Same observation can be made for the DM-OFDM outage cappeitprmance in asymmetric
MIMO channels, as shown in Fig. 4.4 for thex 2 setup at SNR of 10dB. Three multipath channels
are used for the comparison, namely, the i.i.d. multipathindel with, = 3, L. = 8, and L = 16,
respectively. AtP,,; = 0.01, the outage capacity increases from 5.05 bits/channel uded, = 3
channel, to 5.50 bits/channel use of the= 8 channel, and 5.7 bits/channel use of the- 16 channel.

We next look at the outage capacity of pre-coded asymmetifid®AOFDM channels. Depicted in
Fig. 4.5 are the outage probability versus mutual inforaratiurves for the x 2 GSTBC at SNR = 10dB.
Again three multipath channels are used for the comparisen. = 3, L = 8, andL = 16. Similarly,
the richer the multipath components, the higher the outagadty. For example, &, = 0.01, the
outage capacity increases from 4.65 bits/channel use df thed channel, to 5.08 bits/channel use of the
L = 8 channel, and 5.3 bits/channel use of the- 16 channel.

We summarize the outage capacity performance of all theopestt x 2 MIMO-OFDM channels

in Fig. 4.6 for, = 8i.i.d. zero mean complex Gaussian multipath channels. Ma@imental cyclic delay
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4 x2 DM, SNR = 10dB
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Figure 4.4: Outage Capacity of4 x 2 Direct Mapping MIMO-OFDM. SNR =10 dB.
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Figure 4.5: Outage Capacity of4 x 2 GSTBC MIMO-OFDM. SNR = 10 dB.
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values are used in CDDSS, i.e.,= 3 andT = 8. It can seen that different from the ergodic capacity
case, CDDSS has higher outage capacity thag the DM channels, which is attributed to the additional

frequency diversity introduced by CDD. As different cyctlelay values introduce different additional

frequency diversity, they also result in different outageacity. The figure also shows that GSTBC and
LDC have almost the same outage capacity.

Outage capacity comparison of precoding schemes for asymmetric MIMO—-OFDM channels, 4 x 2, L=8, snr = 10dB
N

T T T T Y
—v— Cap |
—<— GSTBC
SS,1=8
—b— SS,1=3
2X2 DM
LDC

0.25H

0.151-

Outage Probability

0.1

0.05

Outage Capacity(bits/sec/Hz

Figure 4.6: Outage Capacity of4 x 2 Precoded MIMO-OFDM. L = 8.

Fig. 4.8 summarizes the outage capacity of the prec8ded CDDSS MIMO-OFDM channels
with L = 8 i.i.d. zero-mean complex Gaussian multipaths, and 1, 3, 5 andr = 8. It again proves
that different cyclic delay values result in different aygecapacity.

Fig. 4.8 summarizes the outage capacity of the prec8ded MIMO-OFDM channels withl, =
16 i.i.d. zero-mean complex Gaussian multipaths, &yd = 1%. 7 = 16 is used for CDDSS channels.
From this figure, we can see that for GSTBC, the required SNIRSdB to achieve 4 bits/channel use,
7.07dB to achieve 8 bits/channel use; for CDDSS, the redueR is respectively 1.66dB and 7.29dB
to achieve 4 bits/channel use and 8 bits/channel use. Tnerehe outage capacity difference is getting
much smaller between GSTBC and CDDSS.

In Fig. 4.9, we compare the influence of power delay profil€3HFon the outage behavids.x 4
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Outage Capacity Comparison of Different SS-MIMO-OFDM Channels, 8 x 4, snr = 13dB, L=8
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Figure 4.7: Outage Capacity versus SNR o8 x 4 CDDSS MIMO-OFDM. L =8, 7 =1, 3, 5andt = 8.

Uniform power delay profiles.

GSTBC MIMO-OFDM channels witl, = 16 are used. Two PDF’s are considered, namely, the uniform
power delay profile (UPDP) with i.i.d. zero mean complex G#us multipaths, and exponential power
delay profile (EPDP) with zero mean complex Gaussian muktgand incremental power loss of 3dB
per multipath component. Obviously, UPDP leads to bettégriperformance.

From the qualitative analysis and the numerical resultseaed in this section, we have shown
that for MIMO-OFDM, the richer the diversity in the precodeldannel, the higher the outage capacity.
Therefore, the precoding scheme should be designed toieajlthe frequency and space diversities in

the channel.

4.3 The Mutual Information With Fixed-Order Modulation

Ergodic capacity is obtained when the channel inkus i.i.d. Gaussian. For practical systems, symbols
with fixed constellation, e.g., M-PSK or M-QAM, have to bertsanitted. Therefore, the ergodic capacity

in Section 4.1 is not achievable, and a more realistic iniineof the precoding optimality will be the
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Outage Capacity of 8x 4 Precoded MIMO-OFDM Channels, Poutzl%
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Figure 4.8: Outage Capacity versus SNR o8 x 4 Precoded MIMO-OFDM at P,,; = 1%. L = 16, Uniform

power delay profiles.

mutual information between the channel outRuaind the channel inpX, assuming that the elements in

X are i.i.d. from the modulation constellation. The mutu&imation is computed as [26]

I(X; R) = [H(R) — H(R[X)] /T, (4.5)
whereH (-) = —&log p(+) is the entropy function, and is the precoding interval. From the generalized
channel model in (3.14), we have

R - HX]?
202 ’

1
p(RIX) = W exp <
where d,," denotes the dimension of the complex AWGN in (3.14). Hence
H(R|X) = dy, log 2mo?e.

Calculation ofH (R) needs to take expectation over three random variablesH,eX, andV. Here we
obtain the numerical results through Monte Carlo simuretio
We depict the mutual information ofdax 2 precoded channel with QPSK modulation in Fig. 4.10,

and 16QAM modulation in Fig. 4.11. From the two figures, we ted¢ same as the ergodic capacity,
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8 x4 GSTBC, L=16, SNR = 10dB
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Figure 4.9: Outage Capacity of§ x 4 GSTBC MIMO-OFDM. L = 16, Uniform and exponential power delay

profiles, SNR = 10dB.

CDDSS has the same mutual information asZhe 2 DM for both the QPSK and 16QAM modulation

channel inputs, and LDC, GSTBC, and QSTBC have the same hiotoanation.

4.4 The Diversity Gain

As shown in Section 4.2, the richer the diversity in the pdszbchannels, the higher the outage capacity
that can be achieved. The diversity potential should tloeeelbe fully exploited. In this section, we will

study the diversity performance of the precoding schemsadan two assumptions:

Maximum receive antenna diversity ofnr. This can be achieved when the interference from the other
spatial streams is completely cancelled by advanced rerig.g., the MLD receivers, the iterative

turbo receivers to be discussed in Chapter 5, the BI-GDFEI1{§0][81], etc..

Full exploitation of frequency diversity. This can be achieved when a very powerful FEC is deployed.
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Mutual Information Comparison of Precoding Schemes for Asymmetric MIMO Channels, 4 x 2, QPSK
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Figure 4.10: Mutual information comparison for a 4 x 2 system, QPSK.

Mutual Information Comparison of Precoding Schemes for Asymmetric MIMO Channels, 4 x 2, 16QAM

15 T T T T T

Cap ‘

-9~ GSTBC
QSTBC

== 2X2 DM

== SS

10 . . -

Mutual Information(bits/sec/Hz

A
OI - Il Il Il

Il
5 10 15 20 25 30
Average SNR per receive antenna (dB)

Figure 4.11: Mutual information comparison for a 4 x 2 system, 16QAM.
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With the two assumptions, it has been proven in [44] that tagimum diversity order of GSTBC
is 2np, achieved with MLD or with perfect interference cancetiatiamong the different groups. Same
diversity order is achieved by the; = 4 QSTBC, as proven in [41]. In fact, [41] has shown that for
spatially uncorrelated channels, QSTBC and GSTBC havedme 8ER performance.

Similarly, we can haveir the maximum space-diversity order of CDDSS and DM. However,
the maximum frequency diversity order of DM Is the number of multipaths in the channel, whereas
additional frequency diversity is made available in CDDS®ge order is dependent on the delay value
T, the power delay profile of the fading channel, and the totehiper of transmit antennas [63]. The

maximum achievable frequency domain diversity is
min(npL, N).

As for LDC, although the BER union bound has been derived &}, [Bo explicit diversity order
can be obtained from it. We therefore depictin Fig. 4.12 thé\performance for the 16QAM-modulated
4 x 2 precoded system. No FEC coding is applied, so only spatialsity contributes to the BER versus
SNR slope. Naturally, SS has the lowest spatial diversitgmdompared with LDC and GSTBC. Between
LDC and GSTBC, we can see from the figure that LDC has slighgidr gain than GSTBC.

The frequency diversity gain effect of CDDSS is illustraiiedrig. 4.13 for ar8 x 4 convolutionally
coded (CC) CDDSS-OFDM system with 16QAM modulation. The GG hateR,. = % and minimum
free distance ofis,.. = 5. L-path UPDF is deployed in each MIMO multipath channel, ariglthe CDD
value. At the receiver, turbo processing is employed. Froenfigure, it can be seen that for low-order
multipath channelf = 3, L = 8), largerr will lead to higher diversity gain. For high-order multipat
channel, e.g.l. = 16, the different CDD values do not have much impact on the BEfopeance. This
is because the frequency diversity is realized by the saifsote decoding of the CC whose performance
is limited by itsdg.... TO maximize the frequency diversity gain of CDDSS-OFDMhei a stronger code

or a linear frequency domain transform [82] has to be usedeMetails will be given in Section 4.6.
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BER of 4 x 2 system, i.i.d. MIMO channel, sphere decoding detection, 16QAM
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Figure 4.12: BER performance of the different precoding sckemes for4 x 2 channels, ML detection, 16 QAM.
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Figure 4.13: BER performance of the8 x 4 CDD-CDDSS MIMO-OFDM with different channel order and

delay values.R, = % diree = 5 CC, turbo receiver, 16QAM.
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4.5 Bit Error Rate

The BER performance is related to the diversitshat the system can exploit as:
BER oc SNRY,

whered is determined by the precoding scheme deployed at the tidagnthe richness of multipath in
the channel, and optimality of the receiver algorithms.his section, we look into the BER performance
of the precoded® x 4 systems with thek, = % diee = 5 CC. For receiver, we use a five-iteration
turbo receiver whose details are given in Chapter 5. 16-talipath channel with UPDF is used in the
simulations. For CDDSS, we set= 16.

Depicted in Fig. 4.14 is the BER for QPSK, and Fig. 4.15 for A8@Qmodulated systems. From
the figures, it can be seen that GSTBC has the best BER perfoar@nong the three precoding schemes.
Compared with LDC, it is about 0.25dB better with QPSK, arfi@. better with 16QAM, at BER £0~°.
This should be due to the same turbo receiver structure hesiad for all the three precoded systems. As
recommended by [83], a widely linear filter can be used for LEy§tems to make use of both the original
signal and its conjugate in the turbo receiver detectiorenTihe performance advantage of LDC will be
better realized. But this also means additional implent@mtaomplexity.

Although CDDSS still loses to LDC and GSTBC, the performagag, however, becomes smaller
than the capacity performance and the uncoded performanbes is due to the additional frequency
diversity from CDDSS. For QPSK signals, CDDSS loses to GSBBOnly about 0.5dB at BER+)~?,
and for 16QAM, 0.7dB. However, it has to be pointed out that detection complexity of CDDSS is
lower than GSTBC, mainly due to its smallEr dimension than the GSTBC systems.

Presented in Fig. 4.16 and Fig. 4.17 are the FER performahtee® x 4 R, = % K =3
convolutionally coded MIMO-OFDM systems with QPSK and 18@Anodulation signals, respectively.
The frame length is set to one OFDM symbol with 64 subcarridis= 16 i.i.d. complex Gaussian
multipath channels are used, and= 16 for CDDSS. TheP,,; = 1% outage capacity is also included
in the figure for comparison. For QPSK modulated signalsesponding to 4 bits/channel use spectral

efficiency, we can see from Fig. 4.16 that the GSTBC is 7.34 wByafrom the outage capacity, and
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Figure 4.14: BER performance of the different precoding sckemes for8 x 4 MIMO-OFDM channels. QPSK.
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CDDSS is about 7.30dB away from its outage capacity. For Id@#odulated signals corresponding to
8 bits/channel use spectral efficiency, Fig. 4.17 shows@®&IBC and CDDSS are respectively 5.2dB
and 5.1dB away from their outage capacities. Therefore, EBI3 slightly better than GSTBC from the
view point of approaching the outage capacity limit.

Lastly, there is one point that needs to be pointed out. ResulFig. 4.16 and Fig. 4.17 are
generated with a very simple CC, which is selected to justvstyatimality of the precoding scheme. To
approach the capacity limit, a more powerful code, e.ghdwode or LDPC code, should be used.

8x 4 Precoded MIMO-OFDM, Rc=1/2, QPSK, It=5
10" = T = T T T

= = - ¢ —LDC

\ TS —6— GSTBC
= \

10

T
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10 “F

= = == GSTBC

Average SNR per receive antenna (dB)

Figure 4.16: FER performance of the different precoding sckemes for8 x 4 MIMO-OFDM channels. QPSK.

4.6 Two-dimensional Linear Pre-transformed MIMO-OFDM

We have shown that CDDSS is capacity lossless when the nuphipatial streams is equal the number
of transmit antennas. Otherwise, CDDSS and the other piregedhemes we have studied in the previous
sections are all capacity lossy. We have also proved that-CBPDM and CDDSS-OFDM transfer the

transmit diversity from the “extra” antennas to frequenietsity, and frequency diversity can be realized

by the FEC code. However, this also means that the realizidl®@esity order is limited by the free distance
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8x 4 Precoded MIMO-OFDM, Rc=1/2, 16QAM, It=5
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Figure 4.17: FER performance of the different precoding sclemes for8 x 4 MIMO-OFDM channels. 16QAM.

of the FEC code. A precoding scheme which is able to achidivedpacity and full diversity is therefore
desired.

Motivated by the works in [84] and [82] for single-transniiigle-receive OFDM systems, here we
propose a two-dimensional linear pre-transformed MIMORO®Fsystem, i.e., 2DLPT MIMO-OFDM, as
depicted in Fig. 4.18. Linear pre-transforms (LPT) are &gobin both frequency and spatial domains,
as shown in the figure. Th& x N linear unitary frequency domain LPT (FD-LPT) is applied &xle
individual spatial streams independently before the apddmain LPT (SD-LPT). The SD-LPT is applied
to the FD-LPT output, subcarrier by subcarrier, indepetigeWWhen the number of spatial streamg is
equal to the number of transmit antennas i.e.,ng = nr, the SD-LPT isny x np unitary transform.
Whenng < nr, the SD-LPT is orthonormal matrix. We will show that for thase ofng = nr,
the 2DLPT MIMO-OFDM can achieve full capacity and full diggy simultaneously; wheng < nr,
2DLPT is capacity lossy but achieves full diversity.

Following (3.10), the 2D-PT MIMO-OFDM system can still be deted as

Y=HTX+V, (4.6)
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—{ FO-LPT | Pis | — SIF [+ OFDM j

__,lsP SD-LPT
—> FD-LPT [ P/ [ — s/F |+ oFbm j

Figure 4.18: Transmitter block diagram of 2DLPT MIMO-OFDM.

where), X, H, andV are defined the same as in (3.10), &ndenotes the 2DLPT which is written as

T — TSTF (4.7)
T 0 -~ 0 ™ 0 -~ 0
0 TS ... 0 0 TF ... 0
~ Q P (4.9)
: : : 0 : : : 0
i 0O --- 0 T]é;f ] I o --- 0 TES |

whereQ andP are respectively row and column permutation matrices, thigr elements defined as

1, wheni = Lnij +(j mod nr) x N,
Qij = r (4.10)
0, otherwise

1, whenj=[-£]+ (i modnr)x N,
Py = ’ (4.11)

0, otherwise

fori, j=0,1,--- Nnp—1.
T7 denotes thery x ng SD-LPT matrix at subcarriek, T% denotes the FD-LPT for spatial

streamn with the total number of spatial streams definedhas

SD-LPT The CDDSS precoding matrices can be used for SD-LPT. Fronoréhe 5, the maximum
achievable frequency diversity for each spatial streamiiis(nL, N), when the incremental cyclic

delayr is set tor = L.

FD-LPT The linear transform proposed in [82] is used as FD-PTto exploit the frequency diversity.



CHAPTER 4. PRECODING IN ASYMMETRIC MIMO-OFDM CHANNELS 82

4.6.1 Ergodic Capacity

As we have proved in Section 4.1.1, the CDDSS MIMO-OFDM hasdhme ergodic capacity as the
ng x np DM MIMO-OFDM channels. For 2DLPT MIMO-OFDM, the FD-LPT matrT! is unitary,
henceTt X remains i.i.d. Gaussian if the input signdlis i.i.d. Gaussian. Therefore, 2DLPT MIMO-
OFDM achieves the same ergodic capacity as the CDDSS MIMOMXDFR.e., whenng < np, 2DLPT
has the same ergodic capacity as#thex n, DM MIMO-OFDM channels, and wheng = np, 2DLPT
has the same ergodic capacity asithex n DM MIMO-OFDM channels.

Below we provide a direct proof that when, = np, 2DLPT is capacity lossless, by making use

of the signal model in (4.6), and the fact th&f is unitary:

¢ = el o+ goumonn)}

- 5{1og2 det <I+ nﬁHTTHHHﬂ}
L T

= £ {10g2 det <I + i’H'HH>] } ;
i nr

i.e., 2DLPT MIMO-OFDM channel has the same ergodic capaastthe SDM MIMO-OFDM channel

defined byH. Herep is defined as the average signal to noise ratio (SNR) pemeeagiienna.

4.6.2 Diversity
Theorem 6. The maximum diversity order of the 2DLPT MIMO-OFDM systemgsnin (nynr, N).

Proof: From (4.6), assuming perfect CSI at the receiver, we have#febased on MLD as

PX—X.) = PpYX,H) <pYXeH))
= P(|Y-—HTX]>|Y-HTX.|?)

- E2(HTX, HTX,)
= Q 2N,

o (_IHTX - HTX,|?
p N ,

IN

whereX is the transmitted sequence, aXd is the erroneously detected sequence.
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Define
1
e=THX-X,)="TAzQ",

HS =H, TS = wr28"

whereH,,, denotes the submatrix @¢ corresponding to the,th receive antenna, i.€H,,, = H((n, —
1)N +1:n.N,:), andAe% andT' are respectively the singular value matricee afnngr.

The number of non-zero singular valuesAlé is determined by the distance property®f, dyr.
As TF is N x N unitary, we havelrr = N, i.e., the number of non-zero singular valuesAié is N.
ForT'z, the number of non-zero elementsiisn (npL, N), from Theorem 4.

We therefore have

HS e = OTEATAZQT = AIO,

andA: hasd, = min (npL, N') non-zero singular values.

Hence

nR
S
> IS ef?

ny=1

= i trace (HTSLTeeH (HET)H>

ny=1

nR nR
= Z trace (PAPT) = Z trace (A)

nyp=1 ny=1

[HTX — HTX,|?

nR do

= Z Z 5m,nr7

nr=1m=1

and the PEP as

ng do 5
Pox—x) = JJ TLew(-%).
ny=1m=1

When the multipath components are zero-mean i.i.d. comphassian, we have the average PEP

written as [12]
d—1 \ 1
P.(X — X,) (H 5z> , (4.12)
1=0
whered; = ngrd, = ngmin(Lny, N) is themaximum achievable diversity order of the 2DLPT MIMO-

OFDM system

WhenLny < N, the 2DLPT achieves full diversity ef; = ngnrL.
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4.6.3 Numerical Results

In this section, we present the simulation results. We fiosisgder2 x 2 and2 x 3 flat fading MIMO-
OFDM channels with FFT size oV = 8. As (npny = 2) < N, the overall diversity orders in the two
channels are respectivelyx 2 x 1 = 4 and2 x 3 x 1 = 6. We will show that the diversity can be fully
exploited by using the 2DLPT and MLD.

In addition to the 2DLPT system, we also consider the DM systégthout 2DLPT, the single
dimensional frequency domain PT (1D FD-LPT) system, andlsidimensional spatial domain PT (1D
FD-LPT) system. The intention of the performance comparisas follows.

For DM MIMO-OFDM without any PT, the frequency diversity ia&h single-input single-output
channel is of order one (flat fading), and the spatial ditersider is two from the receive diversity
achieved through MLD. When spatial domain transform is i@pplo the system, extra frequency diver-
sity is made available to each single-input single-outpngnmel. For thewy = 2 flat fading channels
considered, each single-input single-output channel #fie SD-LPT has frequency diversity order of
two. This extra frequency diversity, however, can only bplexed when a FD-LPT is applied in each
layer. Hence, for the 1D SD-LPT system, the maximum divemitler is two for2 x 2 and three for
2 x 3 systems, from the receive antennas and achieved through, bttbe as the DM system. For the 1D
FD-LPT MIMO-OFDM systems, the frequency diversity in eaaldr is order one, hence the maximum
diversity order of the systems remains as twoZor 2 and three foR x 3 systems. In summary, when
MLD is used, only the 2DLPT MIMO-OFDM system can achieve thaximum diversity order. The
other three schemes can only achieve the receive diversityder two for2 x 2, and order three fd x 3
configuration.

Besides MLD, we also demonstrate the performance of thescluemes using zero-forcing (ZF)
detection. In this case, all the foRrx 2 systems have diversity order of one, and the fbur 3 systems
have diversity order of two. The simulation scenarios aed:tirresponding achievable diversity order are
summarized in Table 4.1 f& x 2, and in Table 4.2 fo x 3.

The simulated BER performance fdrx 2 configuration with QPSK modulation is depicted in

Fig. 4.19. As expected, the four systems with ZF detectiasexactly the same performance, and the
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lowest diversity order. Then the DM system with no PT, as wslthe 1D SD-LPT and FD-LPT systems
with MLD have exactly the same performance, and higher diteorder than the ZF performance. The
2DLPT with MLD has the best performance and highest divemitler of all systems.

2 x 2 MIMO-OFDM, flat fading

10° E T T

3 —©&—no PT, MLD
101 FD-LPT, ML
t| —8— SD-LPT, ML|
F| —%— 2DLPT, MLD,
[| — * —noPT, ZF

[ FD-LPT, ZF
[| — * — SD-LPT, ZF
~ > — 2DLPT, ZF

107 T I I I
0 5 10 15 20 25

SNR per receive antenna (dB)

T U

Figure 4.19: BER performance of a2 x 2 2DLPT MIMO-OFDM system with MLD and ZF detection, flat-

fading Rayleigh channel.

The simulated BER performance f@rx 3 configuration with QPSK modulation is depicted in
Fig. 4.20. In this case, ZF detection results in diversigyeorof two for all the four schemes, which is the
lowest diversity order. Then the DM system with no PT, the IBLST and 1D FD-LPT systems with
MLD have exactly the same performance, with diversity omfethree. The 2DLPT with MLD has the

best performance and highest diversity order of all the soliemes.

4.6.4 BICM-2DLPT MIMO-OFDM

Same as the other precoding schemes we studied, BICM canptiecafo the 2DLPT MIMO-OFDM
systems. In Fig. 4.21, a BICM-2DLPT MIMO-OFDM transmittdotk diagram is presented.

At the receiver, interference-cancelation based itezatdceiver as presented in Chapter 5 can be
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2 x 3 MIMO-OFDM, flat fading

10° T T T

~ —©&—no PT,MLD
10°H 1D FD-LPT,MLD
t| —&— 1D SD-LPT,MLD
f| —¥— 2DLPT,MLD

[| — * —noPT,ZF

[ 1D FD-LPT,ZF

[| — * — 1D SD-LPT,ZF
~ > — 2DLPT,ZF
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Figure 4.20: BER performance of a2 x 3 2DLPT MIMO-OFDM system with MLD and ZF detection, flat-

fading Rayleigh channel.

Table 4.1: Summary of the Simulation Setup?2 x 2 Flat Fading Channel

Transmitter Setup Receiver Setup Achievable Diversity

2DLPT MLD 4
1D FD-LPT MLD 2
1D SD-LPT MLD 2
no PT (SDM) MLD 2

2DLPT ZF 1
1D FD-LPT ZF 1
1D SD-LPT ZF 1
no PT (SDM) ZF 1

implemented for the BICM-2DLPT MIMO-OFDM systems. Preszhin Fig. 4.22 is the simulated BER
performance fol = 3 R, = % convolutional coded QPSK-modulate@DLPT MIMO-OFDM system
at iteration 5. The results & 1D-SDLPT-OFDM, and that of the Alamouti STBC without PT atsoa
included in the figure for comparison. Obviously, the BICRLPT system can exploit the frequency

diversity much more effectively, resulting in steeper BE&sus SNR slope of the BER curves. From
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Table 4.2: Summary of the Simulation Setup?2 x 3 Flat Fading Channel

Transmitter Setup Receiver Setup Achievable Diversity
2DLPT MLD 6
1D FD-LPT MLD 3
1D SD-LPT MLD 3
no PT (SDM) MLD 3
2DLPT ZF 2
1D FD-LPT ZF 2
1D SD-LPT ZF 2
no PT (SDM) ZF 2
> RICM > S/ | LFIIDD'I: P/< —»‘M)j
\V4
— RIcM |—* siF > LFFI,D.IZ pIs o
— 2
i 3
— RICM [—> S/F | LFST' p/< —Wj

Figure 4.21: Transmitter block diagram of 2DLPT MIMO-OFDM w ith BICM.
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the figure, we can also see that 2DLPT-OFDM has equivalefionpeance as the STBC system, with a

performance difference of about 0.2dB. When we look at thB BErformance as depicted in Fig. 4.23,

we can see that the 2DLPT-OFDM and STBC have converged peaifare in the high SNR regions.

For the 1D-SDLPT system, however, due to the large frequei@rsity order available in the channel

(L = 16), and the limited effective free distance of the FElz{ = 5), the frequency diversity can not

be fully exploited, as exhibited by the slope of the BER/FERsus SNR performance curves.

4.7 Summary of the Chapter

In this chapter, we have studied the capacity and diversitiopnance of some precoded MIMO-OFDM

channels and showed that none of these known precoding sstaahieved optimal capacity and diversity
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10

2x 1 PT-CDD-OFDM vs. CDD-OFDM vs. STBC-OFDM, L=16,1=16

L Il

Il
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—-©—- PT-CDD ]
~)~ CDD w/o PT |]
= STBC
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Average receive SNR (dB)
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Figure 4.22: BER performance of2 x 1 PT-CDD-OFDM with K = 3 R, = % convolutional coded QPSK-

modulated BICM. L = 16, 7 = 16.

performance. We then proposed a two-dimensional lineatrarsformed MIMO-OFDM system which

achieves simultaneously full capacity and full diversitigem the number of spatial streams is equal to the

number of transmit antennas. For the asymmetric MIMO-OFDiginmel with more transmit than receive

antennas, the proposed 2DLPT system achieves full diyensd maximum capacity afr x nr channel.
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2x 1 PT-CDD-OFDM vs. CDD-OFDM vs. STBC-OFDM, L=16,1=16
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Figure 4.23: FER performance of2 x 1 PT-CDD-OFDM with K = 3 R, = % convolutional coded QPSK-

modulated BICM. L = 16, 7 = 16.



Chapter 5

Bayesian Iterative Turbo Receiver

5.1 Introduction

When FEC code is applied in a MIMO system, an iterative (“tlylveceiver in which soft information is
exchanged between the detector and the decoder can sigthjfitaprove decoding performance. There
have been many works on turbo receiver design. For exangedrliest literature on turbo receiver was
in the field of code division multiple access (CDMA) systetmg Wang and Poor [85], and Alexandetr

al. [86][87][88]. In the field of MIMO systems, Lt. al. proposed a linear minimum mean squared error
(LMMSE) interference cancellation (IC)-based turbo reeein [89] for multiuser STC systems (referred
as groupwise STC systems in this thesis), which was a stfarglard extension of Wang's work in [85] to
MIMO systems. Sellathurai and Haykin applied the LMMSE-Uthi receiver to coded BLAST systems
in [90] (the so called turbo BLAST, or T-BLAST), and furthevaduated its performance in correlated
Rayleigh fading channels [91]. The practical virtue of TART has also been verified in experiments
[92]. In [93], Caireet. al. developed a generalized framework on iterative receiar€DMA systems,
which is applicable to MIMO systems as well. Based on theofagtaph representation and the sum-
product algorithm (SPA) [94], they showed that the estimhat¢erference at each iteration is a function
of the decoders’ extrinsic information (EXT), rather thdritee decodersa posterioriprobability (APP).
The EXT is used to obtain the priori probability of the coded bits, from which tteatistical meanor

the prior estimate [95], of the transmitted signals areudated. IC is then performed and SISO decoding

90
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implemented. Different filtering schemes can be appliethénl€ step, for example, matched filter (MF)
or LMMSE. In a semi-tutorial paper [96], Bigliegt. al. discussed a class of iterative receivers for MIMO
systems that combine soft decoder and spatial interfereaceellers and analyzed their performances
using extrinsic information transfer (EXIT) charts. The-b@sed turbo receivers considered in these
papers are referred &sonventional” turbo receivers in this thesis.

In these conventional turbo receivers, only Phase Shifiire{PSK) modulation signals, e.g.,
BPSK, 8PSK, etc., were considered. However, to addressehedncern of spectral efficiency, higher
order modulation needs to be applied, e.g., Quadrature itudplModulation (QAM). The interference
statistical mean estimation using the SISO decoder EXTIdhmustudied. Due to the increase of number
of bits per modulation symbol, a number of exponential ten@sd to be computed in the soft decision
functions (SDF’s), complexity will therefore be a major cem in practical implementation. Simplified
SDF’s in which the exponential terms are converted to limadculations are desired.

When exacta priori probability is available, statistical mean provides thstkestimate of the
interference signals. However, when t@riori probability obtained from the SISO decoders has some
degree of inaccuracy, for example, at low to medium SNR loein the initial iterations in the turbo
receiver, or when punctured code is used in the system, theamy of the estimated interference mean
will be rather poor. Therefore, schemes have to be foundnwpensate for the estimation errors.

In this chapter, we study the above two problems in turboiveceWe first present the iterative
receiver design and derive the exact SDF’s for two commosigduMQAM modulation signals, i.e.,
16QAM and 64QAM, based on the estimategriori probability. We then proceed to derive the simplified
SDF’s using Maclaurin series. Performance comparisonesimplified and the exact SDF’s will show
that the simplified SDF’s introduce negligible performadegradations.

To improve the estimation accuracy of the interference agnwe propose a novel Bayesian
MMSE (BMMSE) turbo receiver that exploits EXT in tHgayesian estimation (BE)f the interference
signals. We start by deriving the BMMSE estimate [95] [97hieh is the mean of the posterior proba-
bility density function (pdf) of the desired signal, and shihat the BMMSE estimate conditioned on the

received signal and the estimated interference (from tbeiquis iteration) is a function dfothEXT and
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the IC-MRC decision statistic. We refer this receiver as Bayesian IC-MRC turbo receiveo differ-
entiate it from the conventional IC-MRC turbo receiver i8[9We show that the BMMSE estimate has
much smaller mean squared error (MSE) than the statistieahmThe improved MSE leads to better bit
error rate (BER) and frame error rate (FER) performance. Mthe same number of iterations are used,
the Bayesian turbo receiver can achieve at least 1 dB’s mpedgfoce gain over the receiver of [93] at BER
of 1072,

Using the Gaussian model developed in [98] for the outpubaf/entional LMMSE-IC detectors,
we further apply the BMMSE estimation to LMMSE-IC receivarsd refer this class of receiver as the
Bayesian LMMSE-IC turbo receiveiSimilar to IC-MRC receivers, the BMMSE estimate is a fuocti
of both EXT and the LMMSE-IC decision statistic. The Bayesian LMME&Eturbo receiver is desired
for a system deploying punctured code and high order mddul&b achieve high spectral efficiency, as
both accurate interference estimation by BMMSE and effedtiterference suppression by LMMSE filter
is required in order to guarantee convergence to the lowdonpeance bound. Simulation results show
performance gains over the conventional LMMSE-IC receiver

The EXT and decision statistic represent two types of infdfom from two different domains.
The decision statistic is obtained from spatial domain, kakimg use of the received signal and the
estimated interference from the interference layers. TKE€ I8 obtained from time domain (when single-
carrier transmission scheme is used) or frequency domdiar{unulti-carrier modulation is used) through
the knowledge of the other symbols in the same layer and samaid, by exploiting their correlation
produced by the encoder (and the modulation mapper). Tarerethe information is not repetitive but
complementary to interference estimation. This leads tohmuore accurate IC and thus improves the
turbo receiver performance, as will be demonstrated byawerl BER and FER values in the simulations
to be presented in this chapter, as well as the much highpubotutual information in the EXIT chart
analysis which will be presented in Chapter 6.

The rest of the chapter is organized as follows. In Secti@) Wwe dedicate our study to the
SDF simplification in conventional receivers. We will givebeef overview of the conventional turbo

receiver design and derive both the exact and simplified SB&Sed on the estimatagriori probability.
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The simulated performance of the proposed SDF’'s will be e with the exact SDF’s to show the
negligible degradation introduced in the proposed singatifon. In Section 5.3, we derive the Bayesian
IC-MRC turbo receiver, and extend it to the LMMSE-IC receiuge Section 5.4. The simulated BER
and FER performances of the Bayesian IC-MRC and LMMSE-I@ivets are presented in Section 5.6.
Finally in Section 5.7, we make our concluding remarks.

Throughout this chapter, we use the GSTBC OFDM system modieéiderivations unless pointed
out otherwise. The results can be extended to other systeangdry straightforward manner. We also use
the terms maximal ratio combining (MRC) and MF interchariyeaFor transmitted signaX, X, X, and
X represent its BMMSE estimate, statistical mean estimaig dacision statistic at the detector output,

respectively.

5.2 SDF Simplification in Conventional Turbo Receivers

5.2.1 The Conventional Turbo Receiver

Referring to the system block diagram in Fig. 3.2, and makisg of the signal model in (3.14), we will
first give a brief overview of the conventional turbo recejvaeaking use of the IC-MRC receiver depicted
in Fig. 5.1 as example.

In this figure, signalR denotes the received signal at each subcarrier, as defingdld) and
(3.16),Xnt andf(nt, ng = 1, 2, ---, np denotes the decision statistic from the IC-MRC detectad, an
the statistical mean estimate of signg},,, respectively. A\(I) and A\(O) denote the inpu& priori and
output extrinsic information of the SISO decoders.

At each iteration, an IC and MRC (“IC & MRC") unit is implemestt for each subcarrier to
cancel the estimated interference from other antenna greung then exploit the diversity from the spatial

domain by MRC, generating the following decision statistic
Xy, = Hf! (R - ik,z‘) ; (5.1)

where subscripté andi denote the transmitted signal index and the iteration nuspbespectivelyHj
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Figure 5.1: The iterative receiver for BICM GSTBC-OFDM systems. [] and [] ™" stand for interleaver and

deinterleaver, respectively.

denotes thé&th column ofH, andik.,i represents the estimated interference which is calcubsed
np
L., = Z H,X,; 1,
p=1
p#k
whereX,,;_ is the estimated statistical mean} at iteration(; — 1), as given later in (5.7).
An initial estimate ofX can be obtained through ZF interference suppression () ¢4pressed

as

Xo = H'R, (5.2)
where subscripb denotegth iteration (initialization), H' denotes the pseudo-inverse matrixbf
Alternatively, an LMMSE filter can be used, expressed as

X H 20% 1\ H
Xo=(H'H+—51| H'R, (5.3)

xT

wheres? is the AWGN noise variance defined in (3.14},is the signal power, anfis the identity matrix.
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The Soft Demodulator

The soft demodulator calculates the updated log-likelthoatio (LLR) of coded bits, i.e., the extrinsic

metric values, using the detector outrﬁfy;i, as

. = 1| X5,
AN (k1) = log p(cf | ~k’)
p(Ck~: 0|Xk:,z)
P (Xk,z'|Ci; = 1) p(c =1)
= log ——
D éXk7i62 =0 p(ci, =0)
P Xk7i|cl =1 I 1
= log — k + log p(cf )
P (X;m-|c§€ _ 0) p(c;, = 0)
A (kD)
> p (Xk,i|Sk) p (Sk‘cgc = 1)
Siea+ . (5.4)
= log — l + AL (kD)
o (Xk,i|5k) p (Sk:|ckz = 0)
SLEQ™
logy M .
Z p(Xk,i| Sk) H p(c)
SLeQt JJ;} )
= log og, +A§;1(k,l),
> p(XnilSk) ] »(ch)
SReQ— J;;
A (k1)
wherel =1, 2, ---, logy M, Q2= {Sj : ¢} =1}, i.e., the subset of modulation symbols whétbebit

is 1, and2™= {5 : ¢}, = 0} represents the signal subset whithebit is 0. p(c}) is the estimated priori
probability of ¢}, as given later in (5.5). At the initialization (iteratiol, @(cl,) = 3, andAd(k, 1) = 0. It
can be seen that the LLR is composed of two parts - the updétetetric value)’ (k, ) and thea priori
information 51 (k, 1).

{)\i(k,1)} are de-interleaved to generate the inpiit(C)} for the SISO decoder which produces
thea posterioriand extrinsic LLR informatioq Ao (C')} (EXT) for the coded bits.

The extrinsic information is then interleaved to generhteat priori information \, (k, 1) for the
“Soft Mapper” in which thea priori probability of the coded bits is first calculated as
exp(Ni (k. 1))

1+ exp(A, (K, 1))
exp ! (5.5)

1+ exp(N, (K, 1))
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from which the symboé priori probability is computed as

logy M
PiSut =TI P(ch)- (5.6)
=1
under the assumption th&t, is mapped from bitsc!,, ¢2,,- - ooz M ], and these bits are uncorrelated

with sufficient interleaving.

Finally, the modulated symbols are estimated as its statishean:

Xpi=E{Xpi} = Y SmP(Sm), (5.7)
Sm€EN

wheref? denotes the signal set for all the modulation symbols.
5.2.2 Exact SDF's

Applying the gray mapping rules as given in Table 5.1-5.8B6K, QPSK, 8PSK, 16QAM, and 64QAM

signals, respectively, we can obtain the exact SDF’s in timgentional turbo receivers, as

e BPSK
o Xa(m)
Xmi = (+1) x P(¢y, = 1) 4+ (1) x P(¢y, = 0) = tanh 5 (5.8)
e QPSK
; Ai(m, 1 AL (m, 2
Xomi = tanh (%) + jtanh <%> (5.9)
e 8PSK
o Ao(m,2)\ a+ beralmd) Al (m, 1)\ aeta(m3) 1 p
Xpm,i = tanh (— 5 ) T od) + jtanh | — 5 T o) (5.10)
whereq = Y2Y2 andp = V22
e 160AM
B Ai(m, 1)\ 34 etalm2) A (m,3)\ 34 etalm:d)
Xm,i = tanh < 5 > ) + j tanh 5 T o) (5.11)
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o 64QAM

R i i (m,3) AL (m,2) 4L (m,3) A% (m,2)
X, — tah ()\a(m, 1)> 7+ 5e +¢36 i +e
’ 2 (1 + eka(m?)) (1 + eka(m,?)))
)\g(m’ 4) 74 56)\Q(m,6) + 3€A;(m,5)+)\g(m,6) + e)\g(m,S)
2 ) (1 + eké(mf’)) (1 + eAé(mﬁ))

+4 tanh <

= tanh (W) F (/\;(m, 2),)\;(m,3))

i

+ jtanh <w> F (Ao(m,5), s (m,6)) , (5.12)

whereF(z,y) in (5.12) is defined as

7+ 5e¥ 4 3e®TY + ¢
= 5.13

The detailed derivation of (5.10) and (5.11) can be found ppéndix A. Following the same

procedure, the results in (5.8), (5.9), and (5.12) can baidd.

The SDF’s in (5.8) to (5.12) consist of a number of exponémtians. They are computationally

expensive in practical implementations. Simplified SDFé&stherefore desired.

Table 5.1: BPSK Gray Mapping Table.

INPUT BIT(by) | I-OUT | Q-OUT
0 -1 0
1 1 0

Table 5.2: QPSK Gray Mapping Table.

INPUT BITS(b1b2) | I-OUT | Q-OUT

00 -1 -1
01 -1 1
11 1 1

10 1 -1




CHAPTER 5. BAYESIAN ITERATIVE TURBO RECEIVER

Table 5.3: 8PSK Gray Mapping Table.

INPUT BITS(b1b2) | I-OUT | Q-OUT
000 a b
001 b a
011 -b a
010 -a b
110 -a -b
111 -b -a
101 b -a
100 a -b

a = \/2;_ﬁ, b — \/22_\/5

Table 5.4: 16QAM Gray Mapping Table.

INPUT BITS(b1b2) | I-OUT INPUT BITS(b3bs) | Q-OUT

00 -3 00 -3

01 -1 01 -1

11 1 11 1

10 3 10 3

Table 5.5: 64QAM Gray Mapping Table.
INPUT BITS(b1b2) | I-OUT INPUT BITS(b3bg) | Q-OUT

000 -7 000 -7
001 -5 001 -5
011 -3 011 -3
010 1 010 -1
110 1 110 1
111 3 111 3
101 5 101 5
100 7 100 7

5.2.3 Simplified SDF’s
Simplified SDF’s for BPSK and QPSK

As

e —e %

tanh(:z:) = m,

98
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we have

lim tanh(z) = 1,
T—+00
lim tanh(z) = -1,
and its Maclaurin series as
_ 15 2 5 s
tanh(z) = z 3% + T .zl < 5
we therefore can approximatenh(x) as
+1, z>1
tanh(z) ~ fi(x) =< 2, |2/ <1 - (5.14)
-1, z< -1
The simplified SDF’s for BPSK and QPSK are hence
e BPSK
o - (A (m
Xm,z’:f1< a(2 )>; (5.15)
e QPSK
v = ([ Ai(m, 1 = [ Ai(m,?2
Ko = o (B0 4 (a2 516

From our investigation on soft decision based iterativerfierence cancelation for uncoded GSTBC

OFDM systems [44], the above approximation introducesinear performance degradation.

Simplified SDF for 8PSK

i

In 8PSK modulation, there are two constant values Y22 p = Y22 ‘andg = (24 1) b. We

can therefore write its exact SDF as

Xomi = btanh (—A;(m’ 2)> < vz, 1) + jbtanh (—A;(?’ 1)> < vz, 1) .

2 1 4+ era(m,3) 1 4 e~ 2a(m;3)

(5.17)
Defining

fa(z) (5.18)

- 14 e®’
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we have

100

lim fo(x) =0, and lim fo(x)=1.
Tr— —00

r——+00

Making use of the Maclaurin series ¢f(z), we can have the following linear function to approx-

imate fa(z)

0, T >2
folw) = fole) =4 Loz |al<2 . (5.19)
1, < =2

Therefore, we have the simplified SDF for 8PSK signals as

s = i (-2 (Vg + 1) + 5 (-2 (VBN m 3 +1).

(5.20)
where i (z) is defined in (5.14), angh () is defined in (5.19).

Simplified SDF for 16QAM

Defining

_3+e”

o) =1e

we have

lim f3(z)=1, and lim f3(x)=3.

T——+00 Tr——00

Making use of the Maclaurin series ¢f(x), we can have its linear approximation as

fs(r)~ fa3(x) =4 2-2 —2<x<2 . (5.21)

and the following approximated linear SDF for 16QAM

K= 1 (B0 o im2) + 2 (202) o imaa), 622

where i (z) is defined in (5.14).
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Simplified SDF for 64QAM

In order to obtain the simplified linear SDF for 64QAM, we fidgcomposeF (z, y) as

Flz,y) = 3+2fa(z) = 2fa2(y) + 4fa(2) f2(v),

with fo(x) is defined in (5.18).

Making use of the result in (5.19), we have the following ap@mation forF(z,y)

Fz,y) =3+ 2f2(z) — 2fa(y) + 4f2(2) fo(y), (5.23)

The approximated linear SDF for 64QAM is then
% : (Aam, 1)\ = i i [ alm4)\ = i i
Xm,i = fl T F ()‘a(m7 2)7 )‘a(ma 3)) + .]fl T F ()‘a(m7 5)7 )‘a(ma 6)) . (524)
Fig. 5.2 and Fig. 5.3 depict the comparison of the exact amgplgied SDF’s for 16QAM and
64QAM signals, respectively. From these two figures, we emnasvery accurate approximation for the

simplified SDF.

3 T
N — exact SDF
N — — approx. SDF

25 4

soft estimate
o
T
|

~

7\

1
0 5 10 15 20 25 30
symbol index

Figure 5.2: Comparison of the exact and approximated SDF’sdr 16 QAM signals.
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Figure 5.3: Comparison of the exact and approximated SDF’sdr 64QAM signals.
5.2.4 Simulation Results

In this section, we present the simulated BER performandmthf the exact and the approximated SDF’s
for an8 x 4 GSTBC-OFDM system. Ratg. = % CC with constraint length 3 and generation function
of (5, T)octal iS Used. RateR. = % CC was obtained through puncturing according to the puimgiur
pattern given in [99] and [100]. Bit interleavers proposedEEE 802.11a standard are adopted [2] in
the simulations. Three modulation schemes are considegedely QPSK, 16QAM and 64QAM. 64
subcarriers and 16 symbols of CP are assumed in OFDM moalulaDf the 64 subcarriers, only 48
are used to transmit data, as specified in IEEE 802.11a sthfifa Sixteen independent multipaths
are generated in the channel, with each multipath havirdy izero mean complex Gaussian coefficient.
Unless otherwise stated, the IC-MRC filtering is used in teeations.
In Fig. 5.4, we present the performance of conventional IR@Ireceiver forkR, = % QPSK

performance. ZFIS is used in initialization. The simulapagiformance of soft decision Viterbi decoded
single group GSTBC-OFDM with four receive antennas is atetuded in the figure. It gives the lower

bound of the8 x 4 GSTBC-OFDM system, which is achieved with perfect IC. Frbmnfigure, we can see
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that the BER improves from iteration to iteration, and monpartantly, the slope of the BER versus SNR
curves gets steeper and steeper, suggesting that theitgiveder is getting higher and higher. However,
its convergence speed is rather slow. From iteration 5 ahviiae improvement from iteration to iteration

is within 0.2dB, and at iteration 8, it is about 0.8dB awaynfrthe lower bound at BER 0 7°.

LMMSE IS can improve the convergence performance and heridgebthe gap between the
turbo receiver and the lower bound, as shown in Fig. 5.5. TiHmtreceiver converges at iteration 4, and
it approaches the lower bound at SNR = 6dB, BER of 1075.

When puncturing is applied to the FEC for higher spectratiefficy, the EXT accuracy will be
degraded, which will lead to accuracy degradation in ieterice estimation and cancelation. In this case,
even with the better LMMSE IS initialization, the convemi# IC-MRC turbo receiver may not achieve
convergence, instead, divergence can be observed in therBERous iterations, as shown in Fig. 5.6.

One way to solve this problem is to use LMMSE-IC filtering stieein the iterations. As the
LMMSE filtering can mitigate the residual interference effeely, good convergence can be obtained, as
shown in Fig. 5.7. With this scheme, however, we need to coenpatrix inversion for each signal stream
at each subcarrier and in each iteration, therefore it ig eemplicated. Other schemes are therefore
desired. We will propose a Bayesian interference estimaditheme in Section 5.3 as an alternative
solution. The proposed scheme can also work with LMMSE-&yvea will show in Section 5.4.

In Fig. 5.8, we depict the simulation results for 16QAM syssewith the exact SDF. The lower
bound is also included in the figure to benchmark the perfaoea LMMSE IS is used in initialization,
and IC-MRC filtering is used in the iterations. From iteratio iteration, we can see higher and higher
diversity gains achieved, which is a result of improved aacw of interference estimation and cancelation.
As no puncturing is applied in the CC, the iterative receaaverges to the lower bound at BERIOf .

We next present in Fig. 5.9 the simulated performance forAM@vith the exact SDF. Same as in
Fig. 5.8, we depict the BER curves at the LMMSE IS, iteratib#s and the lower bound. We can see that
same as the 16QAM system, the iterative receiver convetgesirdh iteration, and it is approaching the
lower bound within the presented BER and SNR range. The toggoint to the lower bound, however,

lies at BER values lower thar0—>. This may be due to the denser constellation of 64QAM whidh wi
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Figure 5.4: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC OFDM system. R. = %

K = 3 CC, QPSK modulation, exact SDF, ZFIS initialization.

requires higher SNR for accurate interference estimation.

The receiver performance with the simplified SDF for QPSKualg is depicted in Fig. 5.10 and
compared with that with the exact SDF. We show only the resufiiteration 1, 3, and 4 in the figure
which prove that the simplification in the SDF introducesyamtgligible degradation.

We then present in Fig. 5.11 the receiver performance wélsitmplified SDF for 16QAM system.
Results at iteration 1, 3 and 4 are depicted in the figure amd@npared with those with the exact SDF.
It can be seen that very little degradation is introducednieySDF simplification.

In Fig. 5.12, we depict the receiver performance with thepsiied SDF for 64QAM at iterations
1, 3 and 4 and compare with those with the exact SDF. Simila6@AM, only marginal degradation is

introduced by the SDF simplification.
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Figure 5.5: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC OFDM system. R. = %

K = 3 CC, QPSK modulation, exact SDF, LMMSEIS initialization.
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Figure 5.6: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC OFDM system. R. = %

K = 3 CC, QPSK modulation, exact SDF, LMMSE IS initialization.
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Figure 5.7: Conventional LMMSE-IC turbo receiver performance for 8 x 4 GSTBC OFDM system. R, = %
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Figure 5.8: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC-OFDM. R. = 1 K = 3 CC,

16QAM modulation, exact SDF. LMMSEIS initialization.
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Figure 5.9: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC-OFDM. R. = % K =3CC,

64QAM modulation, exact SDF. LMMSEIS initialization.
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Figure 5.10: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC-OFDM. R. =
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Figure 5.11: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC-OFDM. R, = % K=3
CC, 16QAM modulation, approximated linear SDF. LMMSEIS ini tialization.
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Figure 5.12: Conventional IC-MRC turbo receiver performance for 8 x 4 GSTBC-OFDM. R, = % K=3

CC, 64QAM modulation, approximated linear SDF. LMMSEIS ini tialization.
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5.3 The Bayesian IC-MRC Turbo Receiver

5.3.1 Motivation

Conventional turbo receiver makes use of the EXT from previtteration to calculate the statistical
mean as the interference estimate. When puncturing isebpdi obtain higher code rate and higher
spectral efficiency, the accuracy of statistical mean walldegraded, and the turbo receiver may not be
able to converge to the lower bound, as exhibited in Fig. BréafR. = % QPSK GSTBC OFDM
system. Therefore, a better interference estimator isatksin this section, we propose a novel BMMSE
interference estimator which employs both the EXT from tt&(®decoder and the decision statistic from
the soft output detector in the interference estimatione @pplication of complementary information

improves the MSE of the estimated signals, and as a resydtpwas the BER and FER performance.

5.3.2 The Detector

The proposed Bayesian turbo receiver is depicted in Fig. 5imilar to the conventional turbo receiver
depicted in Fig. 5.1, a soft-output STFP detector is impleied at each iteration. The detector uses
either IC-MRC or LMMSE-IC scheme. The decision statistidhed transmitted signals is then delivered
to the soft-demodulator and the extrinsic bit metric valaescalculated and de-interleaved, using which
the SISO decoders compute the updated EXT. Different framctmventional turbo receiver in Fig. 5.1,
both the EXT from the SISO decoder and the decision stafisiia the detector is needed to compute
the Bayesian MMSE estimate of the transmitted signals, ba®tayesian MMSE estimate is used in the
STFP detector for the next iteration of IC.
The IC output for thé:th signal atith iteration is then

nr
Ry, =R — Z H,X,i1 = HpXg + Vi, (5.25)

p=1
p#k

whereH,, is thepth column ofH, X, ;_; is the BMMSE estimate of theth interference signal at iteration

1 —1, ande,i is the composite residual interference and white Gaussisei.e.,

nr
Vi =Y H, (X, - %1) + V.
=1

p;k
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Figure 5.13: The Bayesian turbo receiver for BICM STFP MIMO-OFDM.

Making use off{k,i, the decision statistic for thieth signal atith iteration,f(k,,», is thus
Xii = Fil Ry, (5.26)

whereF';, ; denotes the linear filter.
Same as the conventional turbo receiver, the two populaatifiltering schemes can be used in

the proposed Bayesian turbo receiver, namely, the MF (or MR€r with
F,=Hy (5.27)

and the LMMSE filter which will be discussed in detail in Seatb.4.

In the Bayesian turbo receiver, we take a different appraatte interference estimation. We start
from the optimal BMMSE estimate of the transmitted signafg] show that when expectation maximiza-
tion (EM) algorithm [101] is used to reduce computation ctexjpy, we obtain the same IC-MRC linear
filtering detector, as given in (5.26) and (5.27). Differ&oin the conventional turbo receiver which uses
the statistical interference mean given in (5.7), the BMMSEmMation of the interference signa}u@i_l
is used in IC. This leads to better accuracy, and hence bretteiver performance, as shown in the later

part of this chapter.
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5.3.3 Optimal BMMSE Estimate

In Bayesian parameter estimation we assume that the paatoebe estimated is a realization of the
random variablé with an assigned prior pgf(6). After the datay are observed, the state of knowledge
about# is given by the posterior pdf(f|y). The optimal BMMSE estimator that minimizes the MSE
averaged over all realizations é6fandy, i.e., the Bayesian MSE [95], is defined as the mean of the
posterior pdf,
0= B@ly) = [ op(61y)ao.

The BMMSE estimator depends on the prior knowledge as wéleasbservation data. If the prior
knowledge is weak relative to that of data, then the estimatibignore the prior knowledge. Otherwise,
the estimator will be “biased” towards the prior mean.

If we assume perfect CSI at the receiver, the BMMSE estimigectransmitted signals is

Xpuuse = E{XR} = > X, p(X;R), (5.28)
X,;eqQnr

where we assumer < (2ng) for GSTBC, andvr < np for VBLAST systems, hence the transmitted
signal dimension isp x 1in (3.14).

Using Bayes' rule, we obtain the posterior pdf, i.e., theditonal pdf of X; givenR as

p(Xj|R) _ p( j>R) _ p(R| ])p( ]) _ p(R] J)p( J) : (5.29)
P(R) P(R) >~ p(RIXi)p(X,)
X;eQnT
where
—HX,)" (R - HX,
p(R|X;) = aexp _(R J)Q 2(R ) (5.30)
g
from (3.14). Herex is a system-dependent constant, anet m for VBLAST, anda = 7(%021)2%
for GSTBC.
We can then compute the BMMSE estimateXagfas
Xpumse =, X pXR) = > X p(RIX,) p(X;)
X, et X, eQnt Z p(R[X;) p(Xy)
X;eQnT
> XipRIX;) p(X;)
- B . (5.31)

Z p(RIX;) p(Xi)

X, eQnr
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Computation of both the numerator and the denominator 8flj5ncurs a complexity oft/"7.
Simplification is thus desired. Here we adopt the expegctatiop of the EM algorithm [101] to reduce the

computational complexity of BMMSE estimation in (5.31).

5.3.4 Bayesian EM MMSE Estimate

The Bayesian EM MMSE estimate of ti¢h transmitted signal at iteratioh )V(,“ is derived based on

the received signdR, and the estimate of the interference signals at iteratioer, Xpﬂ-,l, p #k,as

X e {Xk\R, ik,i—l} (5.32)

- o o o o o T
WhereX;m-,l = |:X1,i—17 Xg,i_l, 7Xk71,i717 Xk:+1,7;717 BRI XnT,i—1:| . The bar on the vector
X i1 means the exclusion of thigh elementX}, ;_; from it.

Using Bayes’ rule, we can further write (5.32) as

Xpi = Y Smp (Xk = Sm|R, Xk,i—l)
Sm e

SmeQ p (R, Xk 171)
B Z S P (R\Xk = Smpfk,i—l) P (Xk = Smaik,i—1>

SmeQ " Z P (R, Xy = Sn,ikz,iq)

SneQ
3" Sup (R|Xk = Sy, fk,i_l) p(X), = Sp)

Sm e

B > p (R\Xk = Sp, ik,i—l) p(Xy =5 &3
SneQ

under the assumption th;at{Xk, %k,i,l} =p{Xi}p {%k,i,l}.

Remark 1 The computational complexity in the enumerator and denatuirof (5.33) is linear with the

modulation size.
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Remark 2 In conventional EM receivers as [101] [44], it was assumed #il the transmitted signals
are equally probable, hence (5.33) is simplified to

> S {RIXy = S, K1 }

Xy = 2mEl . (5.34)

Z P{R|Xk = Sn; gk,i—l}

Sn€eQ)

In a coded system, when turbo receiver is implementeda thvéori probability of the transmitted
signals is available from the previous iteration, as give(bi6). We thus can use it in (5.33) to obtain the
Bayesian EM MMSE estimate. This distinguishes the BayeBnestimate from the conventional EM
estimate in [101] [44].

Before proceeding to the derivation Efkl we first prove that the BMMSE EM estimate is unbi-

ased.
Theorem 7. The Bayesian EM MMSE estimakg, ; is unbiased.

Proof: From (5.32), we have
B{%} = B{e{xR X 1}]

— E{ Z Xip (XkR7Xk,il)}

XpeQ
= /p (R|§k,i_1> dR )~ Xy p (XkIR, ik,i—1>
XpeQ

- Y x, / p (R&k,i_l) p(Xk\R,fkviA) dR

Xpe

- Y x, / p (X RIXpi 1) dR

XpeQ

= Z Xip (Xk‘ik,i—l)

XeQ

= ) Xpp(Xp)

XeQ
— B{X.}.

For the modulation schemes considered here, we further have

£ {Xk} —0. (5.35)
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Now we proceed to derive the BMMSE estimdi’@i. We first assume perfect interference esti-
mation and cancelation. In this case, we have thepp[cﬁﬂXk, ikﬂ-,l} given in (5.30). With the result

from (5.56) in Appendix B, we have the Bayesian EM MMSE estéaras

— |HSom||? + 2Re (S;Xk,i)

> Smexp 5 p(Xy = Sp)
Sm€EN 20
Xk - . (5.36)
—|HLS, |2 + 2Re (S;;XM)
Z exp 20_2 p (Xk - Sn)
SneN

wheref(k,,» is the IC-MRC decision statistic, computed from (5.26) a8h@7).

Equation (5.36) implies that to obtain the Bayesian EM MMSEreate)u(k,i, we need to imple-
ment the IC-MRC detector so as to ha&f(@,». We also need to know the priori probability p { X} },
which are obtained from the SISO decoders, as illustratédgn5.13.

The assumption of perfect IC or zero-residual interferepoeer, however, is unrealistic. An
accurate knowledge (p‘{R\Xk, ik,i—l} is important to guarantee the estimation accuracy. To obtai

that, we proceed to analyze the statistical propertieseof@AMRC signal.

Statistics of The IC-MRC Signal

From (5.26) and (5.27), we have the IC-MRC decision statasi
Xii = guXn + Uk, (5.37)
where

g = HkHHk7
nr
ki = BV =Y HIH, (X, - %, 1) + BV,

p=1
p#k

Uy, Is Gaussian distributed from the central limit theorem. As/pn in Appendix C, it has mean
zero and variance
1 & ngR o 2
2= 52 ") <1 — ‘Xp,i—l‘ > + gro”
p=1 T
pF#k

for spatially uncorrelated WSSUS UPDF and EPDF multipagmoiels.
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We therefore have the following pdf

3 2
Xk — Xk

~ 1
p{Xk,i|Xk} =5z o | g |- (5.38)

IC-MRC Bayesian EM MMSE Estimate
With (5.38), we are ready to derive the IC-MRC Bayesian EM MM&timate, as

Xpilo-MRC = 5{Xk\f<k,i}

p{Xk,Asz = Sm}p{Xk: = Sm}

— Z S, _ . (5.39)
Smc DD {Xk,i‘Xk = Sn}p{Xk = Sn}
Sn€Q
For BPSK modulated signals with Gray mapping rule given inl@%.1, we have
y Ntk Xy
X1iBPSK,IC—MRC = tanh < 2( ) + 91221@, > : (5.40)

For QPSK signals with the Gray mapping rule in Table 5.2, weethea priori probability in (5.6)

and have

Atk | Re ()
V262

Ai—l(k,2) Im <9ka,i)
+jtanh | 22—~ +
’ 2 V22

For 8PSK signals with Gray mapping rule of Table 5.3, its Béye EM MMSE estimate is calcu-

tanh

G-

Xk,i,QPSKIC-MRC =

(5.41)

lated as

acosh (£1) sinh (£3) 4 bcosh (£2) sinh (£4) e e (k,3)

Xki 8PSK,IC-MRC =

cosh (#1) cosh (#3) + cosh (xg) cosh (d4) X (k:3)
+ a cosh (i#4) sinh (£3) e* *3) 4 bcosh (#3) sinh (#) (542
cosh (£1) cosh (#3) 4 cosh (£2) cosh (£4) eXa  (£:3)
where
. b9k Xiiom N '(k,1)
xry = 2 - )
S 2
, agkXnitm Aok, 1)
Tro9 = D) — s
S 2
& _ agr X i,Re )\ziil(kfv 2)
3 §2 2 9
. bgi Xiime  Ni'(k,2)
ty = 5
S 2
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For 16QAM signals following the mapping rule in Table 5.4, sve the Bayesian EM MMSE

estimate as
¥ 1 Re ka L _ _
Xk,i16QAM,IC-MRC = Vin) <J%J6QAM(%,§—2J\§1 32
. Im(gx Xii) P11
+jfx,16QAM(W7 §_27 Ac 7)\6 ) ) (543)
where

3¢~ 04~V sinh(3z + %) + sinh(x + %)
e~04v=7 cosh(3z + 3) + cosh(z + )’

Jz160AM(Z, Y, A, y) =

and for 64QAM signals following the mapping rule in Table ,5ve have the Bayesian EM MMSE

estimate as

g 1 Re(9eXki) Pl \61—5 \6i—4 \61—3

X ; _ = — : A A A

k,i,64QAM,IC—MRC N7 <fac,64QAM( o aaEte A A )
. Im(g9eX5:) P 62 \6i-1 6l
+]fx,64QAM(W7 2 Ao 5 T (5.44)
where
@y ) Tk7 sinh(7z + §) + 5ks sinh(52 + §) + 3k sinh(3z + 3) + sinh(z + 3)
'CC? b ) ) =
s AT k7 cosh(7z + %) + ks cosh(b5x + %) + ks cosh(3x + %) + cosh(x + %)

with

kr=e W0, ks =e 127 andky = e W

Discussions and Remarks

Comparing the Bayesian EM MMSE estimate in (5.40) and (5utt) that in [44] and [101] for uncoded
systems, we improve the original EM estimate by applyingabiémateda priori probability from the
SISO decoders, rather than simply assuming an egpaiori probability. As pointed out in [95], use of
prior information will always improve the estimation acaay.

In turbo receivers, the prior information is estimated frtira SISO decoders, hence has limited
accuracy especially in the low to medium SNR region. The @auis further degraded when punctured
code is used. Therefore, when only this estimated priorinédion is used to calculate the statistical mean

of the interference, as in conventional turbo receiveracdnrate IC ensues. The detrimental effect can
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lead to performance divergence under some circumstangesyen punctured code is used, as shown
by one of our simulation results presented in Fig. 5.18 otiSe&.6.

In BMMSE estimation we make use of not only the estimadggtiori information from the de-
coder, but also the decision statistic information fromdagector. While the prior information is estimated
by exploiting the correlation introduced through BICM, ti@&@MRC decision statistic is obtained using
the spatial domain information through STFP. The spatiataa information can effectively compensate
for the estimation errors due to theoriori information inaccuracy, as observed from the MSE compariso
depicted in Fig. 5.14 and Fig. 5.15 for a QPSK-moduladied 8 VBLAST system. ZFIS initialization
is used for the simulation of Fig. 5.14 and LMMSE IS is usedFiy. 5.15. The rate?, = 3 constraint
length K = 3 CC is used. It can be seen that for ZFIS initialization, BMM&iEimation leads to MSE
reduction of 14dB at iteration 3 anfg, /N,, = 4dB, and 22dB at’, /N, = 6dB. With LMMSE IS initial-
ization, about 12dB MSE reduction is obtained at iteratidoroth £, /N, = 4dB andE}, /N, =6dB.
This improved estimation accuracy leads to significant BER BER performance improvement, as will

be shown in Section 5.6.

5.3.5 The Soft Demodulator

The soft demodulator calculates the updated log-likelthoatio (LLR) of coded bits, i.e., the extrinsic

metric values, for the SISO decoder using the detector d)lﬁ'pgy, as described in (5.4). Applying results
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Figure 5.14: MSE comparison between BMMSE and statistical raan interference estimation for IC-MRC

turbo receiver with ZFIS initialization. 8 x 8 VBLAST, QPSK modulation, R, = % K =3CC.

in (5.5) and (5.38), we can further decompose the extrinkR b (k, ) as

logy M - i1 )
X ' Aa (K, 9)
Z P(Xk,i|Sk) H exp (2@/,1_1)61T
i SkEQ"' ‘z;% L
Aolhod) = log logy M ¢ N1k, 5)
X j ' J
Z, (X Sk) 111 exp (2017c _ 1)%]
SELEN ]];l
- 2
‘le’ — 9k Sk logg M Nk )]
: %))
Z XP| T3 H exp (2%_1)21T
SpeQt 32 L J
== lOg - 5 J
Xkl_gksk‘ logy M r ) )\i_l(ki N
: ¥)
> exp B — H exp | (2] — =2
Sk697 ]];% L |
Xk i~ ngk‘ logy M )\Z_l(k
: a (K, J)
Z exp 52 + Z (2¢) — 1) 5
Sk€Q+ Jj=1
= lOg = J#l .
i — g’“S’“‘ el N (k
: a (K, 7)
Z exp 52 + Z (2, — 1) 5
SkEQ_ ;;}
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Figure 5.15: MSE comparison between BMMSE and statistical raan interference estimation for IC-MRC

turbo receiver with LMMSEIS initialization. 8 x 8 VBLAST, QPSK modulation, R. = % K =3CC.

we hence have

~ logy M i—1 .
4 Xpi—anSi|’ ; A= HE,
Nk, 1) = maxf o, |-G Ly > (2 - 1) é J)
i
~ logy M i—1 .
Xei—gnSe|” ; Ao (k,
—max} o —%Jr > (2%—1)# , (5.45)
j=1
J#l

where themax*(-) function is defined as

L
a = max’ = log [Z exp (ai)] )
i=1

and

max (ar, az) = log (¢ + ¢2) = max(ar, az) + log (1 + %=1}
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5.4 The Bayesian LMMSE-IC Turbo Receiver

Similar to conventional LMMSE-IC turbo receivers in [85]caf89], LMMSE filtering can be applied in
(5.26) to further suppress the residual interference. Wardi Poor have proved in [98] that the LMMSE
filter can be modeled by an equivalent AWGN channel. We caretbe2 obtain the BMMSE estimate
of the signal for the LMMSE-IC turbo receiver in a very stfgigorward manner. The LMMSE filter
F}.; minimizes the MSE between the transmitted sighialand the filter outputf(kvi = FkHZRk, and is

obtained from the Wiener-Hopf equation as
AN A H 21\ !
Fo. = € {RMR,M} E {X;Rk,i} = (HTy;H" +20°T) ' H, (5.46)
whereI'; ; is a diagonal matrix with elements

1, p=k

'Yp,i = (5.47)

y 2 . 9 N
PIRLS AID ALERD I D CHED HED RS (I
Xp€Q
and X, ; and X,,; being the statistical mean and BMMSE estimateXof respectively. Please take note
that elementsy,.;. ; are computed differently from the conventional LMMSE-ICta receivers, which is

due to the use of Bayesian estimate in the IC process.

The LMMSE-IC decision statistic is thus
Xii = FiLRy; = pei Xk + i (5.48)
which is an equivalent AWGN model with [98]

pei = € {Xka} - {HH [HT, HY +20°1) H}kk (5.49)

e = Var{Xi} = i —ud (5.50)

and{-},; denotes the element &h row andjth column.
With the Gaussian model developed in (5.48) - (5.50), we eailyeobtain the BMMSE estimate

for BPSK signals as

y N—1(k X i
Xk,i BPSK,LMMSE—IC = tanh < = 2( ) + ”k’;g k’l> ; (5.51)
e
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and for QPSK signals as
% 1 L Airl(k,1) Re (Mka:)
; _ = —— [tan +
k,i,QPSK,LMMSE—IC 2 9 VarZ,
Al(k,2) Im (ﬂkz,iXk,i)
+jtanh | 2—"-~ + 5.52
J 5 N%) (5.52)

For 8PSK signals with Gray mapping rule of Table 5.3, its Bigte EM MMSE estimate is calcu-

lated as

acosh (£1) sinh (£3) 4 bcosh (£2) sinh (£4) e A (k,3)
cosh (41) cosh (3) + cosh (£2) cosh (£4) eXa  (5:3)
(£4) sinh (#5) e (£:3) 4 pcosh (£3) sinh (#1)
cosh (£1) cosh (£3) 4 cosh (#2) cosh (£4) e*a  (k:3)

X}k i 8PSK,LMMSE—IC =

h
.a.CoS . (553)

where

£ — bk i Xniam Ny '(k, 1)
Vi 2 ’
(

. o Xkim  Aa
Tro = P) - 2 9
Vi

apr,iXkire Ay (
2 b
Vi 2
. -
. bpkiXkire Ny (K,2)
fy = 5 — )
Viei

i3 =

For 16QAM signals following the mapping rule in Table 5.4, ave the Bayesian EM MMSE

estimate as
¢ 1 Re(piriXki) p,
Xk,i 16QAM,LMMSE-IC = T (fx,l(iQAM(W VQZ,X” N2y
ki kt
. Tm (g i X0 Al—1 4l
=+ AM(——————, JA s e , 5.54
J fz6QaMm( VI0Z, ng c ) (5.54)
where

3¢~ 04~V sinh(3z + %) + sinh(x + %)
e=04=7 cosh(3z + 3) + cosh(z + )’

Jr160AM(Z, Y, A, y) =

and for 64QAM signals following the mapping rule in Table 5vBe have the Bayesian EM MMSE
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estimate as
V 1 Re(uriXri) p 61—5 \6l—4 \6l—3
Xk,i,64QAM,LMMSE—-IC = —— <f:c,64QAM < A0 AL LA
\/@ \/EVZZ‘ 42Vk,i
. Im(uriXki) PU \61—2 \6i-1 \6l
+J fz,64QAM <W> %, Ao LA ) (5.55)
where
1 \ ) Tkr sinh(7z + §) + 5ks sinh(52 + §) + 3k sinh(3z + 3) + sinh(z + 3)
$7 M ) ) =
s AT k7 cosh(Tz + 3) + ks cosh(5z + 3) + k3 cosh(3z + 3) + cosh(z + 3)
with

kr = 6—24y—v’ ks = e—l2y—v—n7 ks = e~y .

5.5 SDF Simplification in Bayesian EM Estimate

Incorporation of both the SISO decoder EXT and the soft dudptector output in the interference estima-
tion will improve the estimation accuracy, as shown in theBf@rformance comparison in Fig. 5.15 and
Fig. 5.14, and the BER and FER performance comparison pgezb@m Section 5.6. However, as more
variables are included in the SDF, the computational coritylés higher than the conventional turbo
receiver. In this section, we will discuss the possible dificption of SDF’s in Bayesian EM estimate.
For BPSK and QPSK signals, the SDF’s are still a hyperbohction. Therefore, the clip function
given in (5.14) can be applied. For 8PSK, 16QAM and 64QAM aignthe corresponding simplified
SDF’s need to be re-derived. We propose this as one posaiflefwork for the Bayesian turbo receiver

study.

5.6 BER and FER Performance

In this section, we present the BER and FER performance ddyesian turbo receivers. Again the rate
R, = % constraint length’ = 3 CC is used as the mother code, and puncturing is applied tergien
the desired coding rate according to the puncturing pagien in [99] and [100]. Uniform power delay

profiles with sixteen i.i.d. complex Gaussian taps are usetht spatial channels corresponding to each
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transmit and receive antenna pair, which are assumed @tated in spatial domain. The FFT size is set
to 64, and 48 are assigned as data subcarriers. Coding feangih lof 96 is used foR, = % QPSK, and
216 is used folR,. = % 8PSK, in each parallel streams.

In Fig. 5.16 and Fig. 5.17, we depict the BER and FER perfooear IC-MRC Bayesian MMSE
receiver for ar8 x 4 GSTBC system witlR,. = % and QPSK modulation. ZFIS is used for initialization.
For comparison, the conventional IC-MRC turbo receivefgrerance using EXT and the lower bound
are also depicted in the figure. Several observations canaak rffirom the two figures. First, superior
performance is obtained by the Bayesian turbo receiveseltend iteratiorperformance is better than the
fifth iterationof the conventional receiver at low to medium SNR values,thecdsame as the conventional
one at high SNR. This is because of the improved accuracy iMBH interference estimation, as shown

in Section 5.3.

0
10 T T T T T T T T

BER

Ral
. . . N >
. O teration 1 Y v
10 "¢ O iteration 2 conventional IC=MRC: : :: | Ny 3
O iteration 3 : . . : iilsy ]
v iteration 4 ) ~
% iteration 5 — = = Bayesian IC-MRC : : Yo
107 I I I I I I I | I I S,
2 2.5 3 35 4 4.5 5 55 6 6.5 7 7.5

Eb/NO per receive antenna(d B)

Figure 5.16: BER performance of Bayesian IC-MRC receiver8 x 4 GSTBC, QPSK,R. = % K =3CC.

With the same number of iterations implemented for both thgd3ian and the conventional turbo

receivers, an SNR gain of 1.2 dB can be achieved from the Bayesceiver at iteration five, at BER =
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lower bound

O iteration 1 .
¢ iteration 2 conventional IC-MRC ‘s L
O iteration 3 ‘N
v iteration 4 . ‘N
 iteration 5 : == = Bayesian IC-MRC : : “
10'4 I I 1 I I I I I I I A
2 25 3 35 4 4.5 5 5.5 6 6.5 7 7.5

Eb/NO per receive antenna(dB)

Figure 5.17: FER performance of Bayesian IC-MRC receiverg x 4 GSTBC, QPSK, R, = % K =3CC.

10~° and FER =10—2. Convergence of the Bayesian receiver to the lower boundappat SNR = 4.5
dB, corresponding to BER &x 10~* and FER =3 x 10~2, while the conventional receiver does not show
obvious convergence in the range of our simulation setups.

Performance advantage of the Bayesian receiver is mor@wbwhen punctured code is used
in the system, as illustrated by the BER simulation result&ig. 5.18 for aR. = % QPSKS8 x 4
GSTBC system. In this figure, we present four simulationltesmamely, conventional IC-MRC receiver
with both ZFIS and LMMSE IS initialization, and Bayesian MRC receiver with ZFIS and LMMSE
IS initialization. For each of them, we show the BER at itienag 1, 3, and 5. From the figure, we can
see clearly the divergence behaviors of the conventioraivers. LMMSE IS initialization improves the
performance, but it can not solve the divergence problemb#lleve this is due to puncturing in the CC
that degrades the accuracy in the EXT. The Bayesian reseiméth the compensation of the detector’s
decision statistic, however, can very well avoid the peniance divergence. Furthermore, they achieves

5dB gain over the conventional ones with both ZFIS and LMMSHitialization, and more importantly,
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Figure 5.18: BER performance comparison of Bayesian IC-MRGCand conventional IC-MRC receivers, ZFIS

and LMMSE IS, 8 x 4 GSTBC, QPSK, R, = % K=3 CC.

the Bayesian receiver with LMMSE IS initialization convesgo the lower bound at BERI®~2 and SNR
= 6 dB. The additional complexity to achieve these signifiggains is only the summation of decision
statistic and the priori information in the hyperbolic tangent function, as show(G@0) and (5.41).

The BER and FER performances of the Bayesian LMMSE-IC receive depicted in Fig. 5.19
and Fig. 5.20, respectively for éhx 8 VBLAST system withR, = % 8PSK. Similar to the IC-MRC
Bayesian receivers, its second iteration performancetisithan the fifth iteration conventional receiver
at low to medium SNR values due to the improved accuracy imtieeference estimation, and approaches
the conventional receiver performance at high SNR valuegalthe dominance of the a priori information
in the Bayesian estimate. For all the five iterations preskint the figures, the Bayesian receiver achieves

at least 1dB gain over the conventional one.
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Figure 5.19: BER performance of Bayesian LMMSE-IC receiver8 x 8 VBLAST, 8PSK, R, = % K=3 CC.

5.7 Conclusions

We presented our study on turbo receivers for coded MIMO-MIFystems. In order to reduce the
complexity of SDF in conventional turbo receivers, Maciatgeries were used to derive the simplified
linear SDF’s for the popular MPSK and M-QAM signals. Simidatresults show negligible performance
degradation from the decision function simplification.

We also proposed a new class of Bayesian MMSE turbo recéiveroded MIMO-OFDM sys-
tems. Using EM algorithm, we derive the Bayesian MMSE ediinod the transmitted signals and show
that it is a function of both the linear detector decisiortistie and the extrinsic information from the
soft-input soft-output decoder. The EXT and decision stiatirepresent information from two different
domains, one from coding domain and the other from the ietenice domain. They are hence not repeti-
tive but complementary in interference estimation. Theddgn MMSE estimate effectively compensates

for the inaccuracy experienced by the statistical meamferEnce estimation usingnly the extrinsic in-
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Figure 5.20: FER performance of Bayesian LMMSE-IC receivey8 x 8 VBLAST, 8PSK, R, = % K=3 CC.

formation in conventional turbo receivers. This contrésuto the fewer number of iterations needed to
achieve convergence, and the SNR gains at same BER and Fiorpances.

The incorporation of more variables in the interferencéveste of Bayesian turbo receiver, how-
ever, does not introduce much additional complexity for BRSK and QPSK modulation signals. The
simplified linear SDF used in conventional turbo receiveas also be applied in the Bayesian turbo re-
ceivers in a straightforward manner for these two modutedichemes. For other modulation signals, e.g.,
8PSK, 16QAmM and 64QAM, more complexities will be incurredgitting the Bayesian EM estimate.
Simplification of the decision functions are therefore chki

In the next chapter, we will present the EXIT chart analy$ithe Bayesian turbo receivers.
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Appendix A: Detailed Derivation of (5.10), (5.11) and (5.1p

From (5.7), we can calculatﬁm,i following the 8PSK mapping table given in Table 5.3 as

A~

Xmi = (a4 gb)P(Smr1=a+jb)+ (b+ ja)P(Sm1r =0b+ ja)
+ (=b+ja)P(Sm, = —b+ ja) + (—a+ jb)P(Spm 1 = —a + jb)
+ (—a = jb)P(Sm1 = —a = jb) + (=b— ja)P(Sm1 = —b — ja)
+ (b—ja)P(Sm1 =b—ja) + (a — jb)P(Sym,1 = a — jb).

Hence we have the real partﬁtﬂ,i calculated as

—Aa(m,1)—Xa(m,2)—XAa(m,3) —Aa(m,1)+Xa(m,2)—Aa (m,3) Aa(m,1)+Aa(m,2)—Aa (m,3)
Pl Pl 2

Aa(m,1)=Xa(m,2)—Aa(m,3)
2

+e
Aa(m,1) ~ da(m,D Aa(m,2) ~ Xa(m,2) Xa(m,3) ~ Xa(m,3)
(e 2 +e 2 ) (e 2 +e 2 ) (e 2 +e P )

—da(m,1)—Xa(m,2)+Xa(m,3) —Aa(m,1)4+Xxa(m,2)+Xq(m,3)
2 —e 2

Aa(m,1)+Xa(m,2)4+Xa(m,3) Aa(m,1)—Xa(m,2)+Xa(m,3)
2 e 2

Aa(m,1) _Xa(m,1) Aa(m,2) _2Aa(m,2) Aa(m,3) _ 2Aa(m,3)
(e 2 +e 2 )(e 2 +e 2 )(e 2 +e 2 )

2 2

ae Aa(m,2) be Aa(m,2)
= Xa(m.3) ~xa(m.3) tanh (_ D) ) T Samm ~xa(ms) tanh (_72
2 +e 2 e +e 2

e 2
—Xa(m,3) Aa(m,3)
2

_ae +be = tanh (_ )\a(m,2)) ’

Aa(m,3) _Xa(m,3) 2
e 2 +e 2

+bE

and the imaginary part oXmZ calculated as

Xm,z Im —
—Aa(m.1)—Aa(m,2)—Aa(m,3) —Aa(m, D) +Aa(m,2)—Aa(m,3) Aa(m, 1)+ Aa(m,2)—Aga (m,3) Aa(m,1)—Aa(m,2)—Aa(m,3)
2 e 2 — P) —e )
b Aa(m,1) _Qda(m,1) Aa(m,2) _Qda(m,2) Aa(m,3) _da(m,3)
e 2 +e 2 e 2 +e 2 e 2 +e 2
—da(m,1)—Xa(m,2)+Xa(m,3) —da(m,D)+Xa(m,2)+Xaq(m,3) Aa(m,1)4+Xaq(m,2)4+Xaq(m,3) Aa(m,1)—Xa(m,2)+Xa(m,3)

e 2 +e 2 — 2 —e 2

+a

Aa(m,1) _Aa(m,1) Aa(m,2) _Aa(m,2) Aa(m,3) _Xa(m,3)
(e 2 +e 2 )(e 2 +e 2 ><e 2 +e 2 )

b —Xa(m,3) Na(m, 1) Xa(m,3) Nalm, 1)

e 2 a(m, ae” 2 ) a(m,

T T xam® —Sataay tanh (_ 2 ) t s —Saing tanh (_72 )
e 2 + e 2 e 2 +e )

Aa(m,3) —Xa(m,3)
b

_ae 2 +be 2 Aa(m, 1)
- Aa(m,3) _Xa(m,3) tanh (_ 2 :
e 2 +e 2

Similarly, we can calculate the real part Kf,m following the 16QAM mapping table given in
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Table 5.4 as
X ge = —3P(Smi=-3)—P(Smy=—1)+ P(Sms=1)+3P(Spns =3)
= —3P(c,=0)P(c2, =0)—P(c},=0)P(c; =1)
+ P (cy, =1) P(c3, =1) +3P (c;, =1) P(c;, = 0)

_3 _ eralm2) 4 ra(m1)+Aa(m2) | geda(m,l)
(1 + eralmD)) (14 eralm2))
(eAa(m,l)—l) (3+ 6>\a(m,2))
(1 + eralmD)) (14 eralm:2))
(eAa(m,l)/Q _ 6—,\a(m,1)/2) (3 + 6>\a(m,2))
(eAa(m,l)/Z + ean(m,l)/Z) (1 + eAa(m,Z))

Aa(m,2)
_ tanh Aa(m, 1)\ 3+e¢ .
2 1+ era(m;2)

Following the same procedure, we can derive the estimat@eoirhaginary part off(m for

16QAM, and the estimate of,,, ; for 64QAM.

Appendix B. Expansion of(R — HX)” (R — HX)

(R -HX)" (R - HX)|_ = RR -RPHX - X"H"R + X"H"HX|_

Xk,i—1 Xp,i—1
= R'R- ZR X,H, ZXH R+ZTZTH H, X, X,
p=1gqg=1 Xk i1
= R"R- ZR szlH—ZszlH R+iiHH X 1X,
p#k p#k 5#162#11»

C

nr
+ [HeXe|? - RYXGH - XPHR + 3 (BT LX) X+ Y H X X )

p=1
p#k

= C+|HuXk?—R Xka—XkaR+Z (H H X7, X, +H,f’HpX,:)“(p,i_1)

?..

#

H
nr nr
= C+ |H X:|* -HI X} (R— > Hpo,i_l) - (R— > Hpo,i_l) H, X,

ok

p=1 p=1
p#k p#k

p=1
p#k

nr
= C+ ||HiX:|* - 2Re [HEX,: (R -> Hp)“(p,il)

= C+ || HuXe|? - 2Re [ X} R0 (5.56)
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where(C is a constant term for all the hypotheses)of, “Re” denotes the real part of the signai

denotes thé&th column of channel matri¥, and

nrt
Xpi = HY (R -3 Hpr-_l)

p=1
p#k

is the IC-MRC decision statistic, as shown in (5.37).

Appendix C. Mean and Variance of the Interference at IC-MRC Output

Defining px, = H’H,, we have

nr
E{ot = €30 oy (X — Xpin) +HE'V

p=1

p#k

nr
= Z pkpg {Xp - Xp,i—l} + Hng {V}
p=1

p#k
= 0,
and
2
nr
£ {|@k|2} - £ Zpkp (Xp — Xm_l) +HIV
o
2
nr 9
= 1Y o (X = Kpar)| ¢ +E{IHEV]]
o
nr nr
= £ puriy (X0 = Ko ) (X5 = Xiih) 4+ 20%0
ity
nr nr
= 2.2 Elomrig} € { (Xp - Xp,H) (XJ - ;‘,H)} + 207 g
ity
nr ) y 9
= > &{lowl }(1 ~ |%pin] ) +20° gy
p=1

p;k
under the assumption that,, is independent o, and)?pvi_l.

For OFDM systems, we have the frequency domain channel ciegits
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wheren andk are the receive antenna and transmit antenna indicesl, 2, ---, ng, k=1, 2, ---, np,
m is the subcarrier index; = 0, 1, 2, ---, N — 1, N is the FFT size] is the multipath index,
l=0,1, ---, L —1with L being the number of multipaths in the channel correspontbrigansmit
antennan and receiver antennig andh,, (1) is the time-domain multipath coefficients.

Assuming wide sense stationary uncorrelated scatterin§SW6) multipath channel for each
(n, k) MIMO channel, and spatially uncorrelated for differént k) pairs, we will look into two channels:

uniform power delay (UPD) profile and exponentially decgymower delay (EPD) profile.

C.1 Uniform Power Delay Profile

For WSSUS UPD profile, each multipath is i.i.d. complex Garssvith zero mean and variange}l;.

We hence have fak # p
&{lpwl*} = & (B H, B H}
nR nRrR
= €9 Hyp(m)Hgy(m) Y Hyp(m)H;, ,(m)
g=1 n=1

= ¢ {Z > Hyp(m)Hy o (m)Hyp(m) H; | (m)

1=0 t=0 s=0

ng nrp [L-1 " L—-1 " 'L—l " L—1 "
- ¢ [Z RS b (eI 3 Dy () E S I (s)e s
L

E{N, (Db (i) hg ()R, (s)} €N (I—i—t+s)

9,

From [102], when?,, Z5, Z35 andZ, are zero-mean, stationary complex Gaussian, we have

E{Z1 252324} = E{Z{ Z3} E{Z5 24} + E{Z1 Z4} E{Z5 273},
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therefore,

ng nrp L—1L—-1L-1L-1

e{lowl’} = S S S [ {0 D)} € Ly (00550}

g=1n=11=0 =0 t=0 s=0

+& {h* »()}E {hn,k(i)h;p(s)}] o) Fm(l—i—t+s)

ng nr L—1L-1

= 2L2ZZZ LzlL

1
g=1n=11=0 i=0 t=0 s=0

ng nr L—1L—-1L-1L-1 1 Tm(l—i—t+s)
= ZZZZZZ Ln ) Z_Z)é(t_s)ejN
g=1 =0 =0 t=0 s=0
nr
2
np

o(l —1i)o(t —s)

=1n=1 (=0 T

9

whered(-) is the Dirac delta function.

We then have the composite interference and AWGN noise pfmwéne UPD profile as

2_lg{|~ .‘2}_15@ 1_
A UL R Paper)
p=1

p#k

o 2
Xp,i,l( ) + gro®. (5.57)

C.2 Exponential Power Delay Profile

For WSSUS EPD profile, we have the channel impulse respomsessed as

L-1 L-1
= Z hid(n —1) = Z ae 5(n
1=0 1=0

where( is the power loss law exponent ands the normalization factor such that the MIMO multipath

channel does not change the average SNR at its input andtoartypla is

1—e 28
a = —_— .
nr Zz 0 fem 2o

Same as the UPD channel, each multipiathis complex Gaussian with zero mean and variance

0'l2 = q2e 2P,
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Making use of the derivation result for UPD channels, we kdrave

&{lowl} = & (R, HIH,)
ng nr L—1L—-1L-1L-1

= D233 3 Y [E{haDhai(D} € {hgp(Oh ,(5)}

g=1n=1[=0 =0 t=0 s=0

+& {h;,k(l)hg,p(t)} E {hn,k(l)h;p(s)}} 6] Nm(l i—t+s)
1L-1L-1L-1

ngr ngr L
= Z Z Z Z Z [o10:01056(g —n)o(l —i)(t — s)
g=1

=1n=11=0 =0 t=0 s=0
+UlUiUt0's(5(k - p)5(l - t)&(l{: - p)(s(z - 5)] 6] ~n m(l—i—t+s)

ng ng L-1L-1L-1L-1
. 2m (i
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which is the same as the Uniform Power Delay Profile multigdidnnel.
The composite interference and AWGN noise power for the Bgptial Power Delay profile is

therefore also the same as Uniform Power Delay Profile nathiphannel, as given in (5.57).



Chapter 6

EXIT Chart Analysis

In this chapter we present the EXIT chart analysis of the gsed Bayesian MMSE turbo receivers.
EXIT chart was first proposed by S. ten Brink to trace the coyemce behavior of iterative decoding
of turbo codes [103] by observing the mutual informationesory of 7# and 7¢, the mutual informa-
tion between the inpud priori valuesL, to the SISO decoder and the coded bit8)( and the mutual
information between the output extrinsic valuesfrom the SISO decoder and the coded bity.( The
EXIT chart analysis was later applied to trace convergeficeher turbo processing algorithms, e.g., for
turbo-equalization in [104], for turbo receivers in MIMOstgms in [105], etc.. In [106], a good tutorial
is given on the EXIT chart analysis in iterative processing.

It is worth mentioning that for turbo and turbo-like codegy.eLDPC codes [107][108], serially
concatenated convolutional codes (SCCC) [109], etc.,hemanethod based on density evolution has
also been proposed to analyze the convergence behavioterativie decoding, see works by Divsalar
et. al. [110], Richardson and Urbanke [111][112]. The density etfoh analysis tracks the pdf of the
EXT as the density evolves from iteration to iteration. Ae tidf of the EXT can be approximated by
a Gaussian density function [113], the density evolutioalysis and the EXIT chart analysis share a lot
of commonalities. For other turbo processing algorithmg,, ¢urbo equalization and turbo receiver, the
EXT output from the soft-output equalizer (turbo equal@a)t or detector (turbo receiver) can not be
approximated by a Gaussian distribution [114]. In this c&kgenauer and Tlchler proposed to use the

time average to replace the statistical expectation in atutdormation calculation [114], making use

134
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of the ergodicity theorem. This is a very straightforwarglagement. The density evolution analysis,
however, will become a lot more complex.

The rest of the chapter is organized as follows. In Secti@nwBe give a general overview of the
mutual information of EXT and in Section 6.2, we present tXéTEchart derivation of the BMMSE detec-
tors. The numerical results of the BMMSE detector are piteseim Section 6.3. Finally the conclusions

are drawn in Section 6.4.

6.1 Mutual Information of Extrinsic Information

We have briefly discussed the mutual information definitiorsection 4.3. That discussion is more fo-
cussed on the mutual information between the MIMO chanraltiX with fixed modulation and the
unconstrained MIMO channel outpR. Here we focus on real binary input unconstrained outpuafieh
nels” with the coded bits as the input and the real-valued irif®rmation as the output. The LLR can be
either thea priori LLR information at the SISO detectors/decoders input, eeffirinsicLLR information
at the SISO modules output. We are interested in determthiagnutual information between the coded
bits and the inpua priori LLR, as well as the mutual information between the codedaits the output
extrinsicLLR.

Let X andY be two real valued r.v. with pdf(z) and f(y) and joint density functiory (z, y),

then the mutual information betweéhandY is defined as [6]

I(X;Y) = € {log ffci

e s
ylo

_ //f yle)f (z) log (( ))d:rdy.

For binary input unconstrained output AWGN chankiet= X + Z wherez € {+1, — 1}, andz

is statistically independent AWGN with zero mean and varéar?, we have

e fylz)
I(X;Y) xzj;l/ flylz)p(x)log @) dy,

with p(z) being the probability mass function (pmf). The maximum naliinformation is achieved for
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equally likely inputx [6], which is

1 oo f(ylz)
I(X;Y) =5 f(ylx)log dy,
2 xgl /oo f(y)
and
1 1
fly) = Sflyle=+1)+5f(ylz=-1)
11 ( _<z;2—12>2 N _<y2+12)2>
= 2—271-0- e e .

As extensively discussed in [113], [103], [104], [110], d&ad5], thea priori and extrinsic infor-
mation, i.e., the LLR valueé\|c) at the input and output of the SISO decoder can be well apmrted
by a conditionally independent and identically distriltit@aussian random variable satisfying the “con-

sistency” condition
2
g
ENe)| =2
£ = 22,
whereo? is its variance. The conditional pdf is therefore

2 2
(/\750-—' (7)\762
1 T2 1 ,722

= 208 e = f(=A|c)e™. 6.1

f(Ale) =

The mutual information betweef and the coded bit§’' is therefore only dependent en, and
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written as
1 oo f(Ale)
; = — Cc) 1o .
I(A;C) > f(\e)log d\ (6.2)
22 ) . 700
2\ 2
o2\ ? (A’%)
+o0 1 <A77d> 1 o 207
- - e 7 log V2174 A
2 |)o V270 2 ( 022 (,2>2
[e.e] a A__er A+—%
1 1 - - 1 -
2 27raae 23 + 270, 2od
21 2
()
oo g (M_%) L ¢ 202
+ e* 202 10g2 20, d\
—0o V2mo, <A7§>2 H%d)Q
1 1 722 1 72
Pl I - e
o2 2 o2 2
T 7 oy (0%)
1 ! 2 1 2 d\ + L 2 1 d\
= — e T3 [e) e %a O
2 ) s V2mo, B2 1+e A oo V2mo, 82 14 er
2
+o0 1 _ (A__QQ>
— [ 204 10g2 d
—0o V2mo, A
too 1 _ (A_T>
= 1- o e 2% log, (1 + e_)‘) d. (6.3)
—0o0 a

The actual value of (A; C') can be obtained through numerical evaluation of (6.3).
For notational convenience, (6.3) is defined as a mappingiftmbetween the mutual information

I(A;C) = I* ando? [103], i.e.,

02\ 2
o %)
I =Jo?)=1- Vo 27 log, (1 + e**) dA. (6.4)
—00 TOq

For some SISO processors, e.g., SISO equalizer in ISI chafi@!], SISO detector for CDMA
channels [85] and MIMO channels [105], it is difficult to aytidally define the pdf of the extrinsic LLR

values. In this case, the ergodicity theorem can be usedptace the statistical expectation by time
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average, and the mutual information can be computed foga lanmber of samples as [114] [106]
L N
. _ —-A ~1— —CnAn
I(A;C) =1 5{1+e } 1 Nn§_110g2<1+e ) (6.5)

For accurate approximation by (6.5), the coded block ledgtimeeds to be large enough.

6.2 Derivation of EXIT Chart of SISO Bayesian Detectors

C =appevX=H R: o2 u'o= i»
SISO
- |Bayesian
> ZFIS X: 1C
Detector
»> o'g (2 »> L

Figure 6.1: Block diagram for the EXIT chart derivation of th e SISO Bayesian MMSE detecor.

In this section, we present the derivation of EXIT chart gsial for the soft-input soft-output

Bayesian MMSE detectors according to the block diagramoaotiegiin Fig. 6.1. The coded and in-

terleaved bits are denoted by the bindtyg, Mny)-vectorc = [c], cf, -+, c}fT]T, wherec; =
[c,}l, Ci2, s Cilog, M]T, ¢i,; € {£1}, and M denotes the constellation size of the modulation and

log, M denotes the number of bits per symbol. The binary veetsmapped to the symbol vectgrwith
lengthn according to the mapping rute= m (c). In this chapter we consider only Gray mapping.

If direct mapping is used in the MIMO precoding, the length-vectorm (c) will be transmitted
through thenr x nr MIMO channel represented B, with its (¢, j)-th element denoting the channel
corresponding to the transmit-receive antenna fait). The extrinsic message input to the BMMSE

detectoru® is generated according to the conditional pdf

— Hm (o)|?
p(rlc) = ﬁexp <_w> ’ (6.6)

202

sampled at all possible values efc {+1}"7'°¢2M Thea priori information input to the Bayesian IC
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detector is generated according to
a 0—2 2
)‘ij|cij ~N cij?vaa (6.7)

under the assumption that tlepriori LLR is the interleaved version of EXT from the SISO decoder
and it is therefore Gaussian distributed [103] with me{;}ﬂzé and variancer?, as given in (6.1). The
mutual information between the inpatpriori information and the coded bits can therefore be computed
following (6.4).

The BMMSE estimate;, ; in the IC-MRC receiver is computed using the inpypriori LLR, the

received signat, and the ZFIS estimate, i.e.,
%1 =H'r,

whereH' denotes the pseudo inversekdf
The BMMSE estimate in the LMMSE-IC receiver is computed gdime inputa priori LLR, the

received signat, and the LMMSE-IS estimate, i.e.,
%, = HY (HHY 4 20°1) 'r,

whereH” (HH” + 25°1)"" is the LMMSE filter.

After &3;, k = 1, ---, ng is obtained, either IC-MRC or LMMSE-IC is performed, and the
extrinsic LLR of each coded bitgk, [) is computed, following (5.4). As given in Chapter 5, depegdi
on whether an IC-MRC or LMMSE-IC filtering scheme is applithte statistical properties @‘(XMS,C)
in (5.4) need to be changed accordingly.

After the extrinsic LLRp (X\o(k,1)|c(k,1)) is obtained, we will use (6.5) to compute the output

mutual information of the extrinsic LLR as [114]

N
I €) = 1= > logy [1 4+ exp (~e(n) Ae(m))]-

n=1

6.3 Numerical Results of SISO Bayesian MMSE Detectors

In this section, we present the numerical results of the Eckidrt analysis for the SISO Bayesian MMSE

detectors. We use both thex 4 static channel matrix given in [105] and random CSCG chanteel
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evaluate the EXIT performance. For easy reference, thie staannel matrix from [105] is given in the

Appendix of this Chapter.

6.3.1 EXIT Chart with the Static 4 x 4 Channel

We first depict in Fig. 6.2 the EXIT chart of the conventionati@ayesian detectors fordax 4 MIMO
system using the static channel. We follow the approach@htf@derive the EXIT chart for conventional
IC-MRC and LMMSE-IC receivers. QPSK modulated signals aseduand the noise power is set to

o2 = 0.1990.

4 x 4 static channel, 0?=0.199

0.2 .

—©— Conventional IC-MRC
0.1f —8- Conventional LMMSE-IC M
—>- Bayesian IC-MRC with ZFIS
Bayesian LMMSE-IC with LMMSEIS
I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
la

Figure 6.2: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, QPSK modulations? = 0.1990

It is obvious from the figure that the Bayesian IC-MRC receivatperforms the conventional IC-
MRC receiver as it achieves a higher valud bt any given/?. More importantly, the Bayesian IC-MRC
receiver also outperforms the conventional LMMSE-IC reeei This is of great practical importance
as the soft decision function for QPSK signals remain as tiygdie-tangent function in the Bayesian

receiver, but no matrix inversion is needed in the iteraiohe complexity is therefore significantly
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reduced. As expected, the Bayesian LMMSE-IC receiver inggdhe output mutual information over
the conventional LMMSE-IC receiver.

One more observation from the figure is that the smaller thatif® is, the larger the difference
between the Bayesian and the conventional detectors’ buitpealues becomes. This is expected, as at
small input/®’s, the BMMSE interference estimation accuracy is greatiprioved by using the addi-
tional detector decision statistic, and whEnincreases, tha priori probability becomes more and more
dominant in the BMMSE estimate, making it closer and closehéa priori estimate, i.e., the statistical
mean. The performance gap between the Bayesian and thentiona receivers will become smaller
correspondingly.

The EXIT chart performance is further verified for QPSK signaith the noise power set to
0% = 0.1256. The results are depicted in Fig. 6.3. Same observationbeamade. That is, the Bayesian
IC-MRC receiver outperforms both the conventional IC-MR #he conventional LMMSE-IC receivers,
and by using Bayesian MMSE estimation at the LMMSE-IC outpwther improvement can be gained
over the Bayesian IC-MRC receivers.

The EXIT chart analysis results for 8PSK signals are preseimt Fig. 6.4 and Fig. 6.5 with
the noise power values of?> = 0.1990, ando? = 0.1256, respectively. We only depict the mutual
information curves for LMMSE-IC receivers. As expected Bayesian LMMSE-IC receiver has higher
output mutual information than the conventional receiv@ampared with QPSK modulation results in
Fig. 6.2 and Fig. 6.3, however, we can notice that at same mptual information value, higher output
mutual information can be obtained for QPSK signals than8&K signals. A2 = 0.1256, when
the input mutual information reaches the maximum value t¢iid Bayesian LMMSE-IC detector has the
output mutual information value approaching 1 as well wh&S®& signals are used, but it can only get

to about 0.875 for 8PSK signals.

6.3.2 EXIT Chart with Random CSCG 4 x 4 Channel

Now we present the EXIT chart analysis 4nx 4 random CSCG channels. Shown in Fig. 6.6 is the

EXIT chart of the conventional and Bayesian IC-MRC detextor QPSK modulation, which is obtained
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4 x 4 static channel, 0% =0.1256

0.3 .

—©— Conventional IC-MRC
0.1f —8- Conventional LMMSE-IC M
—>- Bayesian IC-MRC with ZFIS
Bayesian LMMSE-IC with LMMSEIS
I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
la

Figure 6.3: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, QPSK modulations? = 0.1256

through averaging over 50000 realizations of the randomrmfia The average SNR per receive antenna
is set to 6dB. The results further prove the superior perfmre of Bayesian IC-MRC receiver over
the conventional one, especially at low to medium valueshefibhput mutual information. When the
input mutual information approaches 1, the difference betwthe conventional and the Bayesian IC-
MRC detectors’ output mutual information will diminish. &EXIT charts comparison between the
conventional and Bayesian IC-MRC receivers for SNR = 8dRejsicted in Fig. 6.7 and same observation
can be made from this figure.

The LMMSE-IC turbo receiver EXIT chart analysis results @iPSK signals are depicted in Fig.
6.8 with SNR = 6dB. Similar to the static channel analysisydsan estimation based on the LMMSE-
IC output can further improve the performance, especialhyidw to medium input mutual information
values. Comparing the results with that in Fig. 6.6, we caa ate that the LMMSE-IC filtering scheme is
superior to IC-MRC, exhibited by the higher output mutudrmation values especially when the input

mutual information values are not very high. The BayesiastMRC receiver, however, is superior to the
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4 x 4 static channel, o2 = 0.19905
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—- Bayesian LMMSE-IC with LMMSEIS
I I I I

0.45 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 6.4: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, 8PSK modulations? = 0.1990.

conventional LMMSE-IC receiver. This is consistent witle tresults for static channels, as well as the
BER and FER performances we presented in Chapter 5.

Same as the static channel case, we study the EXIT chart of 8RHC receivers for 8PSK
signals. The results are presented in Fig. 6.9 for SNR = 8d@jraFig. 6.10 for SNR = 6dB. Both results

demonstrates the better performance of Bayesian detéetorthe conventional detector.

6.3.3 Convergence Analysis with the Stati¢ x 4 Channel

With the EXIT chart, we are also able to study the convergdmtevior of the turbo receivers. Thex 4
static MIMO channel given in [105] is used and QPSK modutaigconsidered. For error control code,
we again use the rate-half constraint lenfth= 3 convolutional code with generation functi@h 7),cta1 -
Presented in Fig. 6.11 is the results of IC-MRC receiver$ witise power ob? = 0.199. The
trajectories of the conventional and Bayesian receiverarlyl show that the Bayesian receiver requires

much fewer iterations to achieve the same performance h&umbore, performance improvement in the
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4 x 4 static channel, 02 =0.1256
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Figure 6.5: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, 8PSK modulationo? = 0.1256.

initial iterations of the Bayesian receiver is substantial

We next present the results of LMMSE-IC receivers in Fig. 26ulith the noise power set to
o? = 0.285. Several observations can be made from the figure. Firsthéoinitial iteration, the Bayesian
receiver will lead to higher output mutual information ottdecoder, implying that the BER and FER
performance is better than the conventional receiver. 1I88do terms of number of iterations to achieve
convergence, the improvement of the Bayesian receivertiasumuch as the IC-MRC receiver case. This
is because of the interference suppression capabilityeof MMSE filter at the interference cancelation
output. Even when there is relatively high residual intenfee in the conventional LMMSE-IC receiver,
the LMMSE filter can suppress it effectively and provide a-sotbad bit metric value to the decoder.
This can also be verified by the small difference of the outputual information values when the input
mutual information is set td*(rec) = 0. Therefore, for implementation complexity consideratitre
Bayesian LMMSE-IC receiver is more applicable for the pured code and higher modulation schemes,

as we have already indicated in Chapter 5, and further coadirwith the EXIT chart analysis result for
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4 x 4 random Rayleigh channel, SNR = 6dB
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Figure 6.6: Mutual information transfer function comparis on of the conventional and Bayesian IC-MRC

detectors. Random Rayleigh fading channel, QPSK modulatio. Receive SNR = 6 dB.

8PSK signals in Fig. 6.13.

6.4 Conclusions

The EXIT chart analysis of the Bayesian MMSE IC-MRC turboetieer is presented and compared with
the conventional turbo receivers. Our extensive resultsvaiat the Bayesian MMSE IC-MRC turbo
receiver has much higher output mutual information tharctirerentional turbo receivers, thus verifying
its superior BER and FER performance shown in Chapter 5heurtore, the detector and decoder tra-
jectories have shown that much fewer number of iteratiomsgsired by the Bayesian turbo receiver to

achieve convergence.
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4 x 4 random channel, SNR = 8dB
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Figure 6.7: Mutual information transfer function comparis on of the conventional and Bayesian IC-MRC

detectors. Random Rayleigh fading channel, QPSK modulatio. Receive SNR = 8 dB.

Appendix - The 4 x 4 Static Channel Used in some EXIT Charts Generation

The4 x 4 static channel used in some EXIT charts generation in trapteln was taken from [105], and is

reproduced as below:

0.926 — 1.187¢ —0.24 — 0.535¢ 1.305+ 0.1847 0.483 — 0.8524
—0.432 — 0.235¢ 0.448 +0.1227 —0.32 — 0.0077 0.507 + 0.417¢

—0.211 — 0.877¢ 0.649 +0.2947 0.316 — 0.209: —0.969 — 0.3127

—0.198 — 0.688: —1.054 +0.14% 0.44 +0.371¢  0.948 — 0.304¢
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4 x 4 random channel, SNR = 6dB
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Figure 6.8: Mutual information transfer function comparis on of the conventional and Bayesian LMMSE-IC

detectors. Random Rayleigh fading channel, QPSK modulatio. Receive SNR =6 dB.

4 x 4 random channel, SNR = 8dB
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Figure 6.9: Mutual information transfer function comparis on of the conventional and Bayesian LMMSE-IC

detectors. Random Rayleigh fading channel, 8PSK modulatio Receive SNR =8 dB.
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4 x 4 random channel, SNR = 6dB
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Figure 6.10: Mutual information transfer function compari son of the conventional and Bayesian LMMSE-IC

detectors. Random Rayleigh fading channel, 8PSK, receive\RR = 6 dB.

4 x 4 static channel, 6% =0.199
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Figure 6.11: Mutual information transfer function compari son of the conventional and Bayesian IC-MRC

turbo receivers, and decoding path for the turbo receivers\ith KX = 3 CC. Static channel, QPSK 2 = 0.199.
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4 x 4 static channel, 0° = 0.285
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Figure 6.12: Mutual information transfer function compari son of the conventional and Bayesian LMMSE-IC
turbo receivers, and decoding path for the turbo receiversith R. = % K = 3 CC. Static channel, QPSK,

0% = 0.285.

4 x 4 static channel, o= 0.1256, 8PSK, LMMSE-IC
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Figure 6.13: Mutual information transfer function compari son of the conventional and Bayesian LMMSE-IC

turbo receivers, and decoding path for the turbo receivers wth R. = % K = 3 CC. Static channel, 8PSK,

0% = 0.1256.



Chapter 7

Training Signal Design and Channel

Estimation

Receivers based on coherent detection need the channehatfon, which makes channel estimation
essential in the MIMO detector. In this chapter, we will fegn training sequence assisted channel esti-
mation for packet-based MIMO-OFDM for WLAN application. Bto the low mobility in this network,

a guasi-static channel can be assumed for each packetinfraignals are thus needed only at the begin-
ning of the packet. Training signals that are transmitteiti@beginning of a packet are sometimes called
“preambles”.

Following the linear matrix algebraic model defined in Clea, we will first study the frequency-
domain channel estimation (FDCE). Based on the minimum regaared error (MMSE) criteria for least
squares (LS) channel estimation, we will define the bastwognal training signals (OTS) structure and
derive the LS and LMMSE channel estimation algorithms inti®ac7.2. With this OTS structure, LS and
LMMSE channel estimation can be obtained by linear matrteriihg of the received frequency domain
signal with fixed parameters. Therefore, it is very attractor practical implementation.

The preamble length in the OTS scheme, however, should kasttéqual to the number of trans-
mit antennas. The transmission efficiency can thus be dgvidegraded especially when the number of
active transmit antennas is large. We hence also proposedtio8 7.2 a switched subcarrier pream-

ble scheme (SSPS) in which the transmit antennas are diuidedubsets, and OTS are transmitted in

150
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alternative subsets of subcarriers in each group. With 8IS only subsets of the frequency domain
channel estimates can be obtained directly from the prezsnble therefore propose three interpolation
algorithms, namely, linear interpolation which assume ltorrelation between neighboring subcarriers
only, LMMSE interpolation which will make use of a more ratilc channel correlation in the different
subcarriers, and DFT-based LS interpolation which asswarfe®d number of multipaths in the MIMO
radio channel as well as making use of the time- and frequdonyain relationship of the channel param-
eters. The performance of the different frequency-dombanoel estimation algorithms will be presented
in Section 7.2.4.

Another way to reduce the overhead length of preambles isakernse of time-domain channel
estimation algorithms. Section (TDCE) 7.3 is dedicatechtogreamble designs for TDCE. Based on the
frame-work derived in [116], we prove that in addition to B®D-based preamble (CDDP) sequence
proposed in [116], the SSPS with transmission of only its @EDM symbol, also satisfies the criteria
of simple channel estimation and minimum MSE. Compared thighCDDP sequence, the SSPS has the
advantage of smaller PAPR which is easily achieved with ¢ldeiced number of active subcarriers in one

OFDM symbol. Finally in Section 7.4, we conclude the chapter

7.1 Contributions of this Chapter

The main contributions of this chapter are:
e Developed the optimal frequency domain training sequers&d;

e Analyzed the MSE performance of the LS and LMMSE FDCE, eipliproved the requirement

for the mismatched channel correlation and SNR for robughichl estimation;

e Proposed a simple training signal design for optimal TDCE.
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7.2 Preamble Design for Frequency-Domain Channel Estimatn

7.2.1 The LS Channel Estimation

Recall from Chapter 3 that when no precoding is considehedfréquency-domain received signal at each
subcarrier is written as

Ri = WiSy + Ny, (7.1)

wherek is the subcarrier indexR and N areny x 1 vectors representing the received signal and the
AWGN at then i receive antennas§ is anp x 1 vector denoting the transmitted training signal atithe
antennas, an¥V is theng x nyr channel matrix.

Excluding the AWGN term in (7.1), we observe a linear relatieetween the channel parameters
and the received signals. For training sequence assistethehestimation, solving this linear equation
will lead to the LS channel estimates. In order to do thigtmignal with lengthn, OFDM symbols is

needed. The received signal at subcarkieluring the training period afi OFDM symbols can then be

written as:

Ry, = WiS; + Ny, (7.2)
whereR,;, = [ Rii Ria - Rimy ] is ann g X np Matrix representing the received signal at the
ngr antennas, subcarriérduring the training periodS, = [ Sk1 Sk2 - Sk isanngy X np

square matrix representing the training signals at suiecarwith a length ofn OFDM symbols, and
N, = [ Nii Nio - Ny } of sizeng x nr represents the AWGN.

The LS channel estimates are then obtained by right mdhigl&,;l with R, as
Wirs = RS (7.3)

As long asS,, is a non-singular matrixS, * exists. Furthermore, computation 8f.! can be
done off-line. Channel estimation is then just a linear coration of the received signals at the different

antennas.
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In order to derive the optima$,, we first look at the MSE of the LS estimates, written as

MSE = E&(|[WeLs — Wil]»)
= (NS

= £ Ny S

n,=1

nRrR
— ¢ <Z Mk,mékléﬂ&i{,m>

n,=1

_ iR: £ [trace(.M N, Sy 'Sy H)]

ny=1

nRr
= 20" ) trace<§,;1§,;H>

n,=1

= 20%ng trace(§,;1§,;H) : (7.4)

whereN; ,, denotes the:,th row of AV
Performing eigen-decomposition @, asS, = UAU, whereUU" = UYU =1, A =
diag(Ai, A2, -+, A\p,) With A; being theith eigenvalue ofS,,, we have§,;1 = UATUH, §,;H =

UAHUH | and hence

MSE = 20°nptrace(UA'UPUATUH)

= 20%nptrace(A'A™H)

nr 1
= 202 § 7.5
nt=

nr
Therefore, minimum MSE is obtained WheE W is minimized. This is achieved wh Al m =
nt nt

ntzl
constant,n; =1, .-+, np.

As

nr
D> A ? = trace(A¥A)

ng=1

= trace(UATU"UAU"Y)

= trace(S{'S;)

2
= np,
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when we use constant modulus modulated training signalshental transmission power per subcarrier
is n7, the minimum MSE is obtained whén,,,|*> = ny, n; = 1, 2, ---, np. This can be obtained by

the following training signals.

Orthogonal Training Signals (OTS) The OTS can be obtained by extending a preamble sequence de-

signed for a single-transmit single-receive system, as
Sy =TiM, (7.6)

whereT}, is the constant modulus training signal at #ite subcarrier for single-transmit single-

receive OFDM system witth\Q =1, andM is anny x np orthogonal matrix satisfying

MM = MIM = nrL

Remark 1 In order to have the same transmission power at each antemaa, to have the same
dynamic range requirement for the power amplifiers, theogitimal matrix M should have its
element taking values ekp(j0;), with {6;} being some discrete phase values taken fiarr).
For example, whenr is 1, 2, 4, or a multiple of 4M can be set to the Walsh Hadamard matrix of

sizeny. Otherwise, thevr x np DFT matrix can be used.

Remark 2 One special case for the OTSAgl = /nrl,,,.. Thisimplies that same training signal

is transmitted from only one antenna per OFDM symbol. The LU#M® channel estimation is
very simple in this case as it falls back to the single-trahsmienna channel estimation problem.
On the other hand, it involves antenna and RF circuits switcln and off in a very short time
interval, e.g., 4 microsecond(.S) for the IEEE 802.11n systems [4], hence the performance may
get degraded if the RF circuits can not get stable within siart interval. This special case of

preamble design is sometimes referreastched Antenna Preamble Scheme (SAPS)

Remark 3 We can easily see that in this OTS preamble design, eachrifaastenna uses the

same preamble with a pre-defined phase rotation. Therdfwgyroperties of the single antenna
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time slot antenna 1 antenna 2
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B -10-9-8-7T-6-5-4-3-2-1dc1 2 3 456 7 8 910 B -10-9-8-7-6-5-4-3-2-1dc1 23 4567 8 910
9 PP e Y e e o [ sl et wr ot a1+ e[+ e[+ 424 41] - - -
E -10-9-8-7T-6-5-4-3-2-1dc1 2 3 456 7 8 910 E -10-9-8-7-6-5-4-3-2-1dc1 2 3 456 7 8 910

Figure 7.1: Orthogonal training sequence design for 2 trangit antennas.

time slot antenna 1 antenna 2
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2 LAl Tl Tl Tl Tl [T el Tl Teal Toff [ oo [Tl Tel Tedl Tl el Tl Tl oo Tl o] .-
k -10-9-8-7-6-5-4-3-2-1dc 1 2 3 4567 8 910 k -10-9-8-7-6-5-4-3-2-1dc1 2 3 456 7 8 910

Figure 7.2: Switched subcarrier preamble scheme for 2 transit antennas

OFDM training signals are maintained. Moreover, MIMO chalrgstimation for each subcarrier is

obtained by the same linear matrix filter. The implementaisothus very simple.

In Figure 7.1, the orthogonal training signal designiier= 2 is illustrated, in which: denotes the
subcarrier index;+1 means that the original SISO pilot sigriB| is transmitted in this subcarrier,
and —1 denotes that-T}, is transmitted. In the first time slot (OFDM symbol), both emtas
transmitT},. In the second time slot, antenna 1 transmif§, and antenna 2 transmifs, so as to

obtain the orthogonality.

Switched Subcarrier Preamble Scheme (SSPSJhe SSPS can be taken as another special case of OTS.
Same as SAPS, training signal is transmittedy onceper transmit antenna and per subcarrier.
While in SAPS, preamble transmission is “switched” from drensmit antenna to the next, in
SSPS, training signal is “switched” from one subcarriersgtiho the next subcarrier subset, over all

transmit antennas. The training signal in ffilk subcarrier is now
Sy = /nrdiag(Sk1, Sk2, - Skng) - (7.7)
In Figure 7.2, the SSPSis illustrated for = 2 systems.

Comparing the two “optimal” frequency domain training sajechemes, SSPS has the following

advantages:
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e simpler computation in channel estimation as only scalaraipon is needed in order to calculate

the LS channel estimates;
¢ lower PAPR as fewer number of subcarriers are active per OBipivbol per transmit antenna.

On the other hand, the OTS scheme requires the same and fixex fitter for each subcarrier, hence
facilitates better circuit reuse in channel estimation.

The minimum MSE per subcarrier is
min(MSE) = 2¢%nx. (7.8)
The minimum MSE for all the transmit-receive antenna pang @l the NV subcarriers is thus

min(MSE.s) = 20°ng N. (7.9)

7.2.2 The Frequency Domain LMMSE Channel Estimation

The LS channel estimates are obtained by using only the leuwgel of the training signals, which can
be further improved by making use of the correlation infdiiorain frequency and spatial domains. If
we assume that the spatial domain channel response is alated, and that the power delay profile has
the same statistical properties for all the single-trahsimgle-receive channels corresponding to each
transmit-receive antenna pair in the MIMO system, we can #pply a frequency-domain LMMSE filter

to the LS channel estimates in (7.3), as [117]:

1
H,, »,ivmvse = Run <RHH + %}) H,, . Ls, (7.10)

where subscripts,. andn; denote the indices of the receive and transmit antenngseatgely, SNR
is the per subcarrier per transmit antenna signal to notie afthe training signalsﬂm,m,Ls denotes
the N x 1 LS channel estimates corresponding to transmit-receitenae pain(n, n,.), 3 is a constant
depending on the training signal’s constellation. As girefiL17], 3 = 1 if MPSK training signals are
used.Ryyg = S(HmmHnHrnt) is the channel autocorrelation matrix which is indepenaént, andn;

when we assume the same statistical properties for eacle-¢magsmit single-receive antenna channel in

the MIMO-OFDM system.
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As shown in Chapter 3,

H = Fh,

where elements oF is f;,, = exp (—j3Fkn) = WK, Wy = exp (—j3Z), andh is the time domain
channel vector witth = [hg Ay -+ hp—1 0 --- O]T. Assuming WSSUS channel, i.é:,{h,»h;f} =

E{|hi|*} 6(i — j), we have

Ryy = EMHHY)=¢ (FhhFY)
= FE& (hn")F/

= Fdiag(€ (Jhol?), € (IMI?), -+, E(lhe-1*), 0, ---, 0) F7. (7.11)

An

Therefore, if the channel PDF information is availal®g; ;; can be computed and used in LMMSE
channel estimation.
The MSE of LMMSE channel estimation, when perfect PDF infation is used, can be derived

as follows:

nr nr . 9
Z Z & {HHn,«,nt - Hnr,nt,LMMSEH }

nT:I ntzl

. 2
= nTnRg{HH_HLMMSEH }

MSEr vMsE

= nrngr€ { (H - I:ILMMSE)H (H - I:ILMMSE) }

= npnpé {(HY - RY Gl sp) (H — GLumseR) }

= np ngé {trace[(H — GruuseR) (H” — R7YG{1ep) ]}
= ny nptrace[Ryy — GramnseRrrGiAmsE)

= nrnptrace[Ryy — Govuse (XRuyu XY +20°1) Glise]

where Gravvsk IS the frequency domain LMMSE channel estimation filter dedimn (7.10),Rrr =
& (RRM) = & (XRppgXH + 20°I) with X = diag(zo, =1, -+, 2n—_1) being the frequency domain

training signals.
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Applying the results in (7.10) and (7.11), we have for MPSMring signals,

Grvmvse (XRypX™) Gfvse

1\t 1 \!
= Rym (RHH + —I) XIXR g XTX <RHH + —I) Ryy

SNR SNR

1\t 1\t
= Rpyn (RHH + WQO Run <RHH + WQI> Run

-1 -1
= FALF? (FAhFH + LI) FALFY <FAhFH + il) FALF?

SNR SNR

1 -1 1
_ H H H H H H
— FALF (FAhF + sNREF ) FALF (FAhF + SNaFF

1 -1 1 -1 "
= FAp <Ah + WQI> An (Ah + WQI> ALFH,
and

1 2
GramseGinse = FAn <Ah + ﬁl) ALFY.

Therefore,

trace[Ry g — Gruvmse (XRypX? + 20°1) Gse]

L-1

2 |ly|® 207 |y|*
- Z [l ~ N2 T\ 2
=0 (P + sfm)” (I + skr)
L—1 P |?
— _ SNR
_ SNR_
= Il* + sNR
L—-1
-3 [T
h
oo 1+ 5

and the MSE of the channel estimates is

MSELmmse = nrng )y

—1
) FALFY

158

(7.12)

(7.13)

(7.14)

As long asLny < N, the LMMSE channel estimates have smaller MSE than the Lifas.
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MSE with Channel Correlation Mismatch

Equation 7.12) gives the minimum MSE when the exact coioglahatrixR ;77 is known to the LMMSE
channel estimator. Now we will look at the MSE when there ismatch between thRyy used in
channel estimation and the exact one.

Denoting the mismatched correlation matrixRg ; = FALF?, we then have the LMMSE filter

expressed as
~ ~ ~ 9 -1 H
GLvmse = Rpn (RHH + 20 I) X
~ ~ —1
— FA, (Ah + 2021) FHXH
and
GLMMSE (XRHHXH + 2021) Gihvse
~ ~ —1 ~ -1 .
— FA, (Ah + 2021) FAXH (XFALFY XY + 20°FFH) XF (Ah + 2021) ALFH
~ ~ —1 ~ -1 .
— FA, (Ah + 2021) (An + 20°1) (Ah n 2021) ALFH
hence the mismatched MSE expressed as
MSEvvse = nr nRtraCG[RHH — Grvmise (XRpp X + 2071) GLHMMSE}
~ ~ —1 ~ -1 .
= nrn Rtrace[Ah — An (A +20°T)  (An+20%1) (Ay +20°1) Ah]

= A (A2 +202)
s 2
1=0 ()\1 + 202)



CHAPTER 7. TRAINING SIGNAL DESIGN AND CHANNEL ESTIMATION 160

We therefore have the difference between the mismatched a8Ehe MMSE as

l\//I\S/ELMMSE__ MSErmMsE

U (0420 202
- nTnRZ P 2 )\ + 202
=0 ()\1 + 202>

_ SRR G,
= g} N+202 (s 2
1=0 ()\l + 202)

B ~ 2 ~
L3 (N +202) " = 32 (W +20%)°

=0 (N + 20’2) (5\1 + 202)2

L-1 [Al (5\1 + 202) + M N+ 202)] [Al (5\1 + 202) — N (N + 202)}

1=0 (A +202) (5\1 + 202)2
L [)\z;\z +0? (Az + Xz)} (Az - Xz)

=0 (N + 20’2) (5\1 + 202)2

Therefore, if\; > )\;, the LMMSE channel estimates with mismatched channel lzdima matrix
will have higher MSE than the perfect case.

From [117], we havehy; = Ce’ﬁ for the exponential power delay profile We have have
N o= |2 = C2e 7. If Tops > Foms, We have), > &y, henceMSEyse > MSEase. That is,
i.e., if a less correlated channel is assumed, the LMMSErdiagstimates will suffer MSE degradation.
On the other hand, if.,s < Trms, i.€., We use the channel correlation matrix with less datien, no

MSE degradation will be encountered.

!In this case, an infinite length multipath channel is assyrhedce when only considering taps in the LMMSE channel
estimation, there will be some energy leakage to the remgipaths. The significant part of the signal power, howe\ar,gtill

be captured in the firdt multipaths, especially whef).,,s is small.
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MSE With SNR Mismatch

If the channel correlation matrix is perfectly known, bu¢ tbstimated SNR value has some discrepancy

from the actual one, we have the LMMSE filter written as

= oy —1
Givvse = Rpy (Rpy +26°T) X7

— FAp (Ap +26°1) FIXT,
and the SNR-mismatched MSE expressed as

MSE vMmsE = nr nRtrace[RHH — GLMMSE (XRHHXH + 20°1) C"IIJ{1\/1MSI~3]

— g nptrace [Ah — A (An +26%T) 1 (Ap + 202T) (A +26°T) Ah:|

L—1 )\2
= nrng AN — l~ )\1+202}
ZZ; [ (N + 262)2 ( )
L—1 2
AL (A + 20
=0 (N +262)

If the estimated SNR is larger than the actual one,d®< o2, we have

1_)\1 ()\1—1—202) < 1_)\1 ()\1+202)
(N + 252)? (A + 202)?
R
a (A +202)
_ 202
(N +20%)
and
o L—1 20_2
MS AN——————
Eovmmse < nrng lz; O+ 209)
-1
|l
= nr nRZ e
R R
= MSE MmusE,

i.e., no degradation is caused to the MSE. On the other hitig, @stimated SNR is lower than the actual

value, a degradation will be caused to the MSE.
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7.2.3 Interpolation-based Channel Estimation

As discussed in Section 7.2.1 and 7.2.2, LS and LMMSE chagstghations can be obtained if training
signals withn, OFDM symbols are sent and each subcarrier’s training sigaiix S, = 7, M is a non-
singular matrix. When the number of transmit antennas ggelahis preamble scheme could decrease the
system throughput severely. We therefore in this sectioisider a more generalized switched subcarrier
preamble scheme in which the transmit antennas and thersigbsare both divided inte groups, and
training signals are transmitted in different subset otsubers in each transmit antenna group. Therefore,
the preamble period needed can be reduced figrto Z—g For example, if there are four antennas at the
transmitter, we can divide them into two groups and senditrgisignals at even number subcarriers for
the first antenna group, and odd number subcarriers for dendegroup. As there are two antennas in
each group, we can s equal to the Walsh Hadamard matrix of dimension 2, and theitigasignal
period is reduced from four to two. LS channel estimates aamlitained for even and odd number
subcarriers for 1st and 2nd transmit antenna groups aceptdi(7.3), respectively. Channel estimates for
odd number subcarriers of the 1st antenna group and evenamaulbcarriers of the 2nd transmit antenna
group will be obtained by interpolation. The training sigpariod can be further reduced to one OFDM
symbol if the transmit antennas are divided into four groups

In this thesis, we consider three types of interpolatioomelg, linear interpolation, LMMSE in-

terpolation, and DFT-based LS interpolation.

Linear Interpolation

Assuming that the transmit antennas are divided into twu@idilnmm’k,l andﬁnr’nt,kﬂ are the LS
estimates obtained from (7.3), then channel estimate dittheubcarrier can be obtained through linear

interpolation as follows:

Hp g = etk oL 0 Skl (7.15)
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which is a linear matrix filtering operation as follows:

Hnr,nt,k—l 1 00 Hnr,nt,k—l
7 — 1 1

ne ek |z € 3 0 ’
Hnr,nt,kJrl 0 01 Hnr,nt,kJrl

wheree represents any complex number as it does not affect thesesul

LMMSE Interpolation

Linear interpolation expressed in (7.15) assumes a chaometlation matrixR gz with its elements

defined as:

a whenli —j| =1,
R;j =4 1 wheni=j,

0 otherwise
wherea is a real number and € (0,1). This suggests that more accurate estimates could be edt#in
the real channel correlation information is applied in thiteipolation. In this case, not only the neighbor-
ing subcarriers, but all the available subcarriers’ chheegmates will be used to calculate the missing
subcarriers’ channel parameters, and the contributiom fidferent subcarriers is determined by their
correlation. In our study, we US&R 7 (RHH + ﬁqI)_1 as the interpolation filter, wher& is a

1
normalization matrix, an®R y (RHH + ﬁql) is the LMMSE filter. This is the reason we call this
the LMMSE interpolation The simulation results presented in Section 7.2.4 wilkstimat this interpo-
lation scheme has better performance than linear inteipoland it is also robust to thB 5 and SNR

mismatches.

DFT-based LS Interpolation

As defined in Chapter 3, we assume a sample-spaced channgt wkeess delay is no greater than the

cyclic prefix length, and the time- and frequency-domaimcteghparameters are related by FFT and IFFT.

Taking these into consideration, we propose a DFT-basedte®olation. The derivation is as follows.
LS channel estimates for the subcarriers with trainingagoan be obtained according to (7.3),

which will be denoted aﬁln“nhpilot. Denoting the channel estimates for the other subcarrﬁhgnt’mmsmg,
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we can express the channel estima&gs ,,, as:

A~

N Hnr ,n¢,pilot
Hnr ng — P 5

ny,Nnt,missing
whereP represents a permutation matrix of si¥ex N. As L multipaths are assumed in the time domain

channel, we therefore have the following relation:

~

Hn n¢,pil

A ryNt,PL ot

G"H,, ,, =GP =0n_1, (7.16)
Hn,«,ni,missing

whereG is the last(N — L) columns of the Fourier transform matix Letting G”P = [G7 G /] so

as to re-write (7.16) as:

A~

Hnr,nt,pilot
(GrGul | = On_1. (7.17)

Hnr ,n¢,missing

we will have the following relation:
GTI:InT,nt,pilot = _GMI:Inr,nt,missinga (718)

which leads to:

A~

Hn,«,nt,missing = _(G]\H/[GM)ilG%IGTI:Inr,nt,pilot- (719)

This is a LS estimation oﬁnmm,missing from IﬁInT,nt,pﬂot, which suggests the name 0% interpolation
IFFT can then be applied to the above frequency domain egtinta obtain d.-tap time domain

channel estimates. The final frequency domain channel asswill be computed by applying FFT to

the L-tap time domain channel estimates. This IFFT and FFT ojparaan filter out some AWGN nhoise

and thus improve the estimation accuracy.

7.2.4 Simulation Results

In this section, we will present our simulation results. Each SISO OFDM corresponding to one
transmit-receive antenna pair, the system parametersedeafinEEE 802.11a [2] are used. That is, the
FFT size isN = 64, the number of used subcarriersiis= 52, and the number of guard subcarriers

is 12. The CP length i4.cp = 16. The long preamble given in [2] are used to construct the MIMO
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LS Channel Estimation with N transmit and M receive antennas
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Figure 7.3: MSE vs. SNR for LS channel estimation with N transnit and M receive antennas.

preambles. For the 20MHz channel, two channel models ak nsenely, Channel A with,,,s = 50

ns, and Channel E with,,s—250 ns. For frequency domain channel, Channel E is thus lesslated
than Channel A. Both channels assume an exponentially ohecppwer delay profile with 16 multipaths
which are sample-spaced and independently generated dedie model [118]. The mean squared error
(MSE) for the frequency domain channel estimates is usegddormance comparison.

Depicted in Figure 7.3 are the MSE versus SNR per transménaiat performances for the LS
channel estimation algorithms with different number ohsait and receive antennas. We can observe
from the figure that the MSE decreases linearly with the mgireg SNR’s. We can also observe that
when the number of transmit antennas is the same, the MSE gathe for different channel models and
different number of receive antennas, which is due to thetfet same power is transmitted per antenna.
Therefore, the more the transmit antennas, the more theptmtger per receive antenna, which results in
MSE drop when the transmit antenna number is increased.

We then depict in Figure 7.4 the LMMSE performance f@ra 2 MIMO-OFDM system. Shown

in the same figure is the LS performance for Channel A. A few L8®B/ffilters are tested, namely, the
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LMMSE Channel Estimation with 2 transmit and 2 receive antennas designed for SNR=20dB
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Figure 7.4: MSE vs. SNR for LMMSE Channel Estimation with 2 transmit and 2 receive antennas.

LMMSE filter designed for Channel A used for Channel A or Crerte, and LMMSE filter designed
for Channel E used for estimation of Channel A or Channel Elllithese LMMSE filters, a fixed SNR
of 20dB is used in the LMMSE filter calculation. Studying thernees in Figure 7.4, we can observe
that a fixed SNR of 20dB will result in a MSE error floor in highttan 20dB SNR regions. For low
SNR values, the performance is very good. Therefore, as dsnge fix the SNR value to the highest
possible realistic SNR’s, the LMMSE estimation performai very robust to the SNR mismatch. We
can also observe from this figure that using a less correla#dSE filter (Channel E) to estimate a more
correlated channel (Channel A), good MSE performance déhbetobtained in the low to medium SNR
regions. In high SNR regions, a correlation matrix mismaitthis type will result in some error floor.
However, if a more correlated channel matrix (Channel Aksisdito estimate a not so correlated channel
(Channel E), very poor performance will result, in almosttzd SNR regions of interest.

We then present our simulation results based on interpoktior switched subcarrier preamble
schemes in Figure 7.5. Comparing the three interpolatiberees for Channel A, we can observe that in

the low to medium SNR regions, linear interpolation and Of@sed LS interpolation have the same per-
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Interpolation—based channel estimation for 2 transmit 2 receive antennas
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Figure 7.5: Interpolation-based channel estimation for swiched subcarrier scheme.

formance, and in high SNR regions, the later scheme hadlgliggtter performance. While for LMMSE
interpolation, even in the mismatched case (Channel Efeladion matrix used for Channel A, fixed SNR
value of 20 dB in the interpolation filter), it demonstratedter performance than the other two schemes
in all the SNR regions simulated. Similar to LMMSE channdireation, LMMSE interpolation is robust

to channel model mismatch if a not so correlated channelad usthe correlation matrix computation,

and it is robust to SNR mismatch as well if a high SNR value ediua computing the correlation matrix.

7.3 Preamble Design for Time-Domain Channel Estimation

In FDCE, we need to computegny N parameters, thus need a minimumrof OFDM symbols of
training signals when no interpolation is relied on in obitag certain subsets of the channel estimates.
Thengny N frequency domain channel coefficients, however, are complitomngny L time domain
channel coefficients. Estimation of the time domain coeffits need onlj%l symbols of training
signals, hence reduces the overhead significantly. In #gdsas, we will consider TDCE for channels

with [2£5] = 1.
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7.3.1 The Time-Domain Channel Estimation Algorithm

Again we focus on packet transmission in a block fading cehrand the training signals are transmitted

only at the beginning of a packet. The received signal dutiegraining period is expressed as

Ry (k) Hy(k)  Hig(k) -+ Hingp(k) S1(k)
R(k) = .RQ(k) _ | al® IHQ’Q(k) Hane (4) ISM) +V(k), (7.20)
I RnR(k) ] i HnRyl(k‘l) Hn&g(k‘) HnRvnT(k;) 1L S”R(k) ]

which is the same as in (7.2), except that we consider onlyGfF@M symbol’s training here.

The frequency domain channel coefficients are computed as
Hnr,nt(k) = Z hnr,nt(l)Wlk7

whereWy = exp (—j2%).

We therefore have the received signal at antenynand subcarriek as

Ry, (k) = Z Hy, o, ( (k) + Va, (k)
n=1
nr L—1
= D SulB) Y g OWN + Vi, (K)
ny=1 =0
ny L-—1
= D> > hene DS ()W + Vo, (). (7.21)
ng=1 1=0

Following [116], we define the MSE cost function of the chararmimates{ En“m(l)} as

J ()
N-1 ng ny L—1 ~ 2
= D> |En(n)- s (D) S ()WR (7.22)
n=0 n,=1 ni=1 1=0
ny =1, 2, ,MR, Nt =1, 2, nr, {=0,1 ,L—1,

and the solution to the following equation is the LS TDCE:

N—-1 ny L—1 .
=Y |R W =375 T, p(m)Sp(0)S5, (W™ | =0, (7.23)
8h”h"t( ) n=0 p=1m=0
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which is equivalent to

ny L—1 N-1

N-1
Y R (S (W™ =37 NN Sp(n) Sy, ()W b, p(m) W™ = 0.
n=0

P=1m=0 n=0

Similar to [116], we define

N-1
pnrynt(l) = Z Rn'r‘ (n)S:Lt (n)W];ln7
n=0
N-—1
o, (1) = Y Sp(n) S, (n)Wi™,
n=0
wheren;, p=1, 2, --- , np,andn, =1, 2, --- | ng.
We then have
np L—1 _
pnr,nt(l) = Z Z QPmt(l)hnr,p(m)anv L=0,1, -, L-1
p=1m=0
Further defining
Pn.ne = [pn'rynt(o) pnmnt(l) T pn'rynt(L - 1)]T7
T
Pr. = [Pai Prz " Prongl o
qut(O) Q}%nt(_l) T qP,nt(_L + 1)
qP,m(l) Qp,m(o) Tt Qp,nt(_L +2)
Qp,m —
qut(L - 1) QPmt(L - 2)  Gpny (0)
L d LxL
Qi1 Q2 - Qing
Qa1 Q22 - Qang
Q = ;
i QTLT,1 QHT,Q QHT,TLT L npDxnrl
~ M~ ~ ~ T
hy, , = hnr,p(o) hnr,p(l) hnr,p(L - 1)} )
L Lx1
~ M~ ~ ~ T
h,, = _hgr,l hgr,2 hg;r,nT}nTLxlu

where

nT:]-727"'7nR7 nt7p:]-727"'7nT7
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(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)
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we will have

Pn, = Qh,, . (7.34)

This is the same as in [119] except that [119] considered aly 2 MIMO system.

One thing to note is tha® is the same for different receive antennas. We therefordaramthe

linear relation ofp,,,, Q, andflnr as follows:

- — Q - ~ —
P1 h;
Q 0 .
P2 hy
_ . (7.35)
0 . _
an hnR
L - | Q | L -
The time-domain channel estimates are therefore obtamed a
~ - [ Qfl i — -
h1 b1
) Q! 0
h2 P2
= . (7.36)
A 0 :
hnR Q—l an
Computation of p
From the definition in (7.25), we can further write the cadtidn ofp as
N-1
pnr,nt(l) = Ry, (n)S;;t (n)W];ln
n=0
N-1 N-1
_ * —In 1 k nk
= part Snt (n)WN \/—N r an( )WN
N-1 ;| Nl -
= o (F)—= > Sp (n)Wy"™"
k=0 \/N n=0 '
N-1 1 N-1 - *
= Y ) (—N Sna ()W ’)
k=0 n=0
N-1
= T, (k)sp, (k= 1), (7.37)
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whereR,, (n) andr,, . (k), n, k =0, 1, ---, N — 1 denote the frequency and time domain signals at
receive antenna,., s, (k — [) denotes the time-domain training signal at transmit ar#enrwhich is
cyclicly shifted byl symbols, anch,. =1, 2, --- , ng,nz =1, 2, ---, np.

Computation of Q

It has been shown in [119] that wh&) = NI, not only the channel estimation is simplified greatly
by eliminating the need for matrix inversion, but also the S optimal. In [116], a cyclic shift-based
training sequence satisfyin@ = NT was proposed. Here we propose another simple and “optimal”
training signal scheme based on subcarrier switching.

7.3.2 Subcarrier Switching Training Sequence

The frequency domain subcarrier switching training sigeaixpressed as
Sp(n) = /nrSn)é ((n—p+1) mod nr), (7.38)

wherep=1,2, -+, np,n=0,2, ---, N —1,]S(n)|? = 1, §(n) is the Dirac delta function, and the
factor \/nr is to normalize the average transmission power per sulcarer transmit antenna to 1.

We therefore have the following relationship:
Sp(n)Sy,, (n) =nrd(p —ny)d ((n—p+1) mod nr),

andg, »,(l) calculated following (7.26) as:

N-1
() = D Sp(n)Sh, (W™
n=0
07 b 7é g,
= N-1
D IS ()PWR™, p=n
n=0

As

N-1 N-1
SIS m)PWRM =0y > W™,
n=0

n=p—1
An=np
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when(N mod ny) = 0, we have

N g N 1
N-1 nr n
SIS m)PWRM = np Y WP = e TS M
n=0 k=1 k=1 T

Nw P when (1 mod ) =0

0, otherwise

wherelV v = exp (—j%) = exp (—jZHL).

As we want to have

Qpn. = NIpxro(p — ), (7.39)

.., qp.n, (I) = No(I), we should have the following relation satisfied

N
L-1<—,
nr
hence
<,
TS T

i.e., the maximum number of antennas supported by thismgagignal scheme iﬁ%j.

The time domain channel estimates are obtained as

1;11 P1
1A12 1 P2
_ 7.40
N ( )
flnR an

Remark Compared with the CCDP in [116], the switched subcarriéning sequence has lower PAPR,

due to the fact that the fewer number of subcarriers areeaciike MSE performance of both schemes are

exactly the same.

7.3.3 Windowing on the Time-Domain Channel Estimates

After the time-domain channel coefficients are obtained, ftequency-domain coefficients can be ob-

tained from FFT. Before applying the FFT, some windowingchions, e.g., Hamming window, Hanning
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window, or Blackman window, can be applied in order to furtmnimize the MSE, as proposed in [120].
It was also shown in [120] that the Blackman windowing fuoctprovides as good as or even better BER

performance than the LMMSE channel estimation scheme.

7.4 Conclusions

We have presented several results of our study on MIMO OFDahill estimation. Based on the lin-
ear matrix algebraic model, we have derived a general fre;yudomain preamble structure which is
just a simple extension from the SISO OFDM preamble. Theeefthe good properties, such as low
PAPR, of the SISO OFDM preamble can be maintained. We theelalg®d the least squares and linear
minimum mean squared error channel estimation algoritlumghfs proposed preamble scheme. We fur-
ther proposed a switched subcarrier preamble scheme whaisrfewer OFDM symbols in the training
sequence and therefore the transmission efficiency is wegro Three interpolation schemes, namely,
linear interpolation, LMMSE interpolation and DFT-basef Interpolation are proposed, among which
the LMMSE interpolation scheme demonstrates the bestpeaioce, even in the mismatch case. As both
LMMSE channel estimation and LMMSE interpolation can be lenpented with fixed parameter values
in the matrix filter, the implementation is very simple anéréfore attractive for practical deployment.
For time-domain channel estimation, we proved that thechsd subcarrier training sequence satisfies
the optimal MSE criteria and supports simple channel estima Compared with the cyclic-shift-based

training sequence proposed in [116], the switched suleedraining sequence has lower PAPR.

Appendix A - Definition of First Order Derivative to A Complex Variable

The first order derivative of a function= f(x) to the complex variable = x, + j z; is defined as

dy 1(9y .9y
w=aloria) 741

Some of the special cases which are used in this chaptessted below.
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1.

Yy = ax = ax, + jax;

y=laf’ =27 + a7

dy _ *

y = |a —bx|? = |a|* — a*bx — ab*z* + |b|?|x|?

R.|®..
S

= —by".

*
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(7.42)

(7.43)

(7.44)

(7.45)

Appendix B - Definition of First Order Derivative of a Scalar to A Complex

Matrix

The first order derivative of a scalar-valued functips- f(x) to the complex\/ x N matrixx is defined

as

wherez;;,i =1, --

'7M1j:17

Yy dy ... Yy
e 0x7, ori N
b
O Oy ... O
L Ozyyy Oz}, Oz} N |

, N, is the element ok.

(7.46)

Defining aM x 1 column vector and alNV x 1 column vectob, we have the following results:

y = a’xb

d

2 =0pxnN.
y = bfxHa

dy _ yH

(7.47)

(7.48)
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3.

y==c

= = Onvxn.

y = bxHxb

dy _ H
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(7.49)

(7.50)



Chapter 8

Conclusions and Recommendations for

Future Work

8.1 Conclusions

We have addressed several issues associated with tramgtméceive techniques for MIMO-OFDM sys-
tems. Our main contributions are summarized next.

Driven by the motivation of achieving optimal tradeoff beswn the multiplexing gain and diversity
gain for MIMO-OFDM channels, especially for asymmetric MIMOFDM channels, we studied several
linear and non-linear precoding schemes which can map fepatial streams to more transmit antennas.
In order to unify the analysis, we developed a linear signatleh and systematically compared their
ergodic capacity, outage capacity, and diversity perfoicea. In this process, we developed the closed
form equation for the spatial spreading systems using mancdhatrix theory. We also proved that the
4 x 2 groupwise space-time block coding and quasi-orthogoradesgime block coding perform exactly
the same in ergodic capacity sense. A two-dimensionaldipezatransformed MIMO-OFDM system was
proposed which can achieve full diversity and full diversimultaneously.

Exploitation of the diversity and multiplexing gains in tMIMO-OFDM channel relies on not
only an effective precoding scheme at the transmitter, laat @an an optimal and efficient receiver. In

this thesis, we dedicated our effort to the iterative alhons using “turbo principle”. We proposed the

176
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linear soft decision functions for high-order modulatiagngls which can significantly reduce the com-
putational complexity in signal estimation but at the saimeetmaintain the BER performance. More
importantly, we proposed a novel Bayesian minimum meanrsguerror turbo receiver. Compared with
the conventional turbo receivers in the literature whictkenase of only the extrinsic information from
the decoder for interference estimation and cancelationptoposed Bayesian turbo receiver uses both
the decoder extrinsic informaticend the detector decision statistic for interference estiomatiAs a re-
sult, the estimation accuracy is greatly improved, esfigdialow to medium SNR regions. This also
contributes to the 1.5 dB improvement at BER performanck)of, and the better convergence behavior
of the turbo process.

We also developed the extrinsic information transfer ckartthe proposed Bayesian turbo re-
ceivers. Compared with the conventional turbo receivéies proposed Bayesian turbo receivers demon-
strated a much higher output mutual information, provisgsiiperior performance. When plotted with the
extrinsic information transfer chart of the decoder, tlagetrtories of the Bayesian receivers also exhibit
much faster convergence than the conventional receivers.

Our next contribution lies in the systematic study of tragnisignal design for both frequency-
domain and time-domain channel estimation in MIMO-OFDMtegss. Minimum mean squared error-
achieving preamble schemes have been proposed whicheeguir simple filtering calculation to obtain

the channel estimates.

8.2 Recommendations for Future Work

The following issues can be studied further as continuatidihe research in this thesis.

8.2.1 Space-Time-Frequency Processing for Spatially Cagtated Channels

We have studied the precoding schemes under the assumjption gpatial correlation in the MIMO-
OFDM channels. This assumption, however, becomes weaken Wie antenna spacing is reduced, es-
pecially for the receive antennas at the terminal. Theegfiiris important to look into the precoding

schemes in the spatially correlated channels and proptessied solutions.
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8.2.2 Low-Complexity Near Optimal Receiver Algorithms for 2DLPT MIMO-OFDM

The two dimensional linear pre-transformed MIMO-OFDM gystachieves full diversity with maximum
likelihood detection receiver. Receiver algorithms amréfore desired which can effectively exploit the

diversity gains with affordable complexity.

8.2.3 Extension of 2DLPT to Single-Carrier Cyclic-Prefix MIMO Systems

The 2DLPT can simultaneously achieve full capacity anddiérsity when the transform is unitary. With
the similarity between the MIMO-OFDM channels and the MIMi@gte-carrier cyclic prefix (SCCP)
channels, it is expected that similar transform can be agpb MIMO-SCCP to achieve full capacity and

full diversity.

8.2.4 Incorporation of Channel Estimation in the Bayesian Trbo Receiver

We have proposed the Bayesian turbo receivers and studigdptrformance under the assumption of
perfect channel estimation. We have also proposed severaile designs to support optimal channel
estimation. As a natural continuation, incorporation cdrufiel estimation into the Bayesian turbo receiver
by using the proposed preamble schemes needs to be studiedcofresponding EXIT chart analysis

needs to be developed as well.

8.2.5 Soft Decision Function Simplification in Bayesian EM Etimate

Incorporation of both the SISO decoder EXT and the soft dutigtector output in the interference es-
timation will improve the estimation accuracy, hence bheBER and FER performance, as discussed in
Section 5.6. However, as more variables are included in dftedecision function, the computational
complexity in the signal estimation will become higher tliag conventional turbo receiver, especially for
high-order modulation schemes such as MQAM. Thereforesiplessimplification of SDF’s in Bayesian

EM estimate is desired.
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