
TRANSMIT AND RECEIVE TECHNIQUES FOR MIMO
OFDM SYSTEMS

SUMEI SUN

NATIONAL UNIVERSITY OF SINGAPORE

2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48629559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TRANSMIT AND RECEIVE TECHNIQUES FOR MIMO
OFDM SYSTEMS

SUMEI SUN

(B. Sc.(Hons.), Peking University, M.Eng, Nanyang Technological University)

A THESIS SUBMITTED

FOR THE DEGREE OF PH.D

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

March 2006



Acknowledgement

I would sincerely like to thank my thesis supervisor, Professor Tjeng Thiang Tjhung, for his constant

guidance, encouragement, patience, and support, without which this thesis would not have been possible.

His enthusiasm and serious attitude in research has set a great example for me and I believe I will benefit

from it beyond this work.

I would like to thank my colleagues, Yan Wu, Chin-Keong, Ying-Chang, Yongmei, Yuan Li,

Zhongding, Woon Hau, Patrick, and Hongyi, for the interesting technical discussions and sharing, and

the enjoyable environment we have created together, in which research has been full of fun.

My special thanks also go to Professor Pooi Yuen Kam, Professor Chun Sum Ng, and Dr. A.

Nallanatham for sitting in my thesis committee and for theiradvices.

Last but not least, I would like to thank my family for their understanding, tolerance, encourage-

ment and unconditional support, especially my two lovely children Xinyi and Jiarui who have made my

life so meaningful and joyful.

i



Table of Contents

Table of Contents ii

List of Figures vi

List of Tables xi

List of Abbreviations xii

List of Symbols xvi

Summary xvii

List of Publications xix

Chapter 1. Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 1

1.2 Focus of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 5

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 6

1.4 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 8

1.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 9

Chapter 2. Introduction to MIMO 10

2.1 The MIMO Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 10

2.2 Channel Capacity with CSI Perfectly Known Only at Receiver . . . . . . . . . . . . . . . 12

2.2.1 Ergodic Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 13

2.2.2 Outage Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15

2.3 Channel Capacity with CSI Perfectly Known at Both Transmitter and Receiver . . . . . . 15

2.4 MIMO Diversity and Space-Time Codes . . . . . . . . . . . . . . . . .. . . . . . . . . . 16

2.4.1 Orthogonal STBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 18

ii



Table of Contents iii

2.4.2 STTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Quasi-Orthogonal STBC (QSTBC) . . . . . . . . . . . . . . . . . . .. . . . . . 21

2.5 Diversity and Capacity Tradeoff in MIMO Channels . . . . . .. . . . . . . . . . . . . . 22

Chapter 3. An Overview of MIMO-OFDM 33

3.1 A General MIMO-OFDM System Model . . . . . . . . . . . . . . . . . . . .. . . . . . 33

3.1.1 Signal Model for Single-Input Single-Output OFDM . . .. . . . . . . . . . . . . 34

3.1.2 Signal Model for MIMO-OFDM . . . . . . . . . . . . . . . . . . . . . . .. . . . 39

3.2 STFP and FEC Encoding in MIMO-OFDM Systems . . . . . . . . . . . .. . . . . . . . 41

3.2.1 VBLAST-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

3.2.2 GSTBC-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

3.2.3 QSTBC-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

3.2.4 LDC-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.5 CDDSS-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

3.2.6 RAS-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.7 TAS-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.8 SVD-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 58

Chapter 4. Precoding in Asymmetric MIMO-OFDM Channels 59

4.1 The Ergodic Capacity of MIMO-OFDM Systems . . . . . . . . . . . .. . . . . . . . . . 60

4.1.1 Ergodic Capacity of CDDSS MIMO-OFDM Channels . . . . . . .. . . . . . . . 61

4.1.2 Ergodic Capacity of GSTBC, QSTBC, and LDC Asymmetric MIMO-OFDM Chan-

nels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 64

4.2 Outage Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 66

4.2.1 Numerical Results for Frequency-Domain Correlated Channels . . . . . . . . . . 67

4.3 The Mutual Information With Fixed-Order Modulation . . .. . . . . . . . . . . . . . . . 71

4.4 The Diversity Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 73

4.5 Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 77

4.6 Two-dimensional Linear Pre-transformed MIMO-OFDM . . .. . . . . . . . . . . . . . . 79

4.6.1 Ergodic Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 82

4.6.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 82

4.6.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 84

4.6.4 BICM-2DLPT MIMO-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85



Table of Contents iv

4.7 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 87

Chapter 5. Bayesian Iterative Turbo Receiver 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 90

5.2 SDF Simplification in Conventional Turbo Receivers . . . .. . . . . . . . . . . . . . . . 93

5.2.1 The Conventional Turbo Receiver . . . . . . . . . . . . . . . . . .. . . . . . . . 93

5.2.2 Exact SDF’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 96

5.2.3 Simplified SDF’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 98

5.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 102

5.3 The Bayesian IC-MRC Turbo Receiver . . . . . . . . . . . . . . . . . .. . . . . . . . . . 109

5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 109

5.3.2 The Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 109

5.3.3 Optimal BMMSE Estimate . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 111

5.3.4 Bayesian EM MMSE Estimate . . . . . . . . . . . . . . . . . . . . . . . .. . . . 112

5.3.5 The Soft Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 117

5.4 The Bayesian LMMSE-IC Turbo Receiver . . . . . . . . . . . . . . . .. . . . . . . . . . 120

5.5 SDF Simplification in Bayesian EM Estimate . . . . . . . . . . . .. . . . . . . . . . . . 122

5.6 BER and FER Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 122

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 126

Chapter 6. EXIT Chart Analysis 134

6.1 Mutual Information of Extrinsic Information . . . . . . . . .. . . . . . . . . . . . . . . . 135

6.2 Derivation of EXIT Chart of SISO Bayesian Detectors . . . .. . . . . . . . . . . . . . . 138

6.3 Numerical Results of SISO Bayesian MMSE Detectors . . . . .. . . . . . . . . . . . . . 139

6.3.1 EXIT Chart with the Static4 × 4 Channel . . . . . . . . . . . . . . . . . . . . . . 140

6.3.2 EXIT Chart with Random CSCG4 × 4 Channel . . . . . . . . . . . . . . . . . . 141

6.3.3 Convergence Analysis with the Static4 × 4 Channel . . . . . . . . . . . . . . . . 143

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 145

Chapter 7. Training Signal Design and Channel Estimation 150

7.1 Contributions of this Chapter . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 151

7.2 Preamble Design for Frequency-Domain Channel Estimation . . . . . . . . . . . . . . . . 152

7.2.1 The LS Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 152

7.2.2 The Frequency Domain LMMSE Channel Estimation . . . . . .. . . . . . . . . . 156

7.2.3 Interpolation-based Channel Estimation . . . . . . . . . .. . . . . . . . . . . . . 162



Table of Contents v

7.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 164

7.3 Preamble Design for Time-Domain Channel Estimation . . .. . . . . . . . . . . . . . . . 167

7.3.1 The Time-Domain Channel Estimation Algorithm . . . . . .. . . . . . . . . . . 168

7.3.2 Subcarrier Switching Training Sequence . . . . . . . . . . .. . . . . . . . . . . . 171

7.3.3 Windowing on the Time-Domain Channel Estimates . . . . .. . . . . . . . . . . 172

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 173

Chapter 8. Conclusions and Recommendations for Future Work 176

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 176

8.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 177

8.2.1 Space-Time-Frequency Processing for Spatially Correlated Channels . . . . . . . 177

8.2.2 Low-Complexity Near Optimal Receiver Algorithms for2DLPT MIMO-OFDM . 178

8.2.3 Extension of 2DLPT to Single-Carrier Cyclic-Prefix MIMO Systems . . . . . . . 178

8.2.4 Incorporation of Channel Estimation in the Bayesian Turbo Receiver . . . . . . . 178

8.2.5 Soft Decision Function Simplification in Bayesian EM Estimate . . . . . . . . . . 178

Bibliography 179



List of Figures

2.1 Illustration of a narrowbandnT × nR MIMO channel model. . . . . . . . . . . . . . . . . 11

2.2 Illustration of “water-filling” principle. . . . . . . . . . .. . . . . . . . . . . . . . . . . . 17

2.3 Illustration of a concatenated BICM-STBC transmitter.. . . . . . . . . . . . . . . . . . . 20

2.4 Convolutional coded STBC system performance. Bound analysis and simulation result.

K=3,Rc = 1
2 , BPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Convolutional coded STBC system performance. Bound analysis and simulation result.

K=3,Rc = 1
2 , BPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Illustration of Subcarrier Allocation with Guard Bands. . . . . . . . . . . . . . . . . . . 35

3.2 A coded MIMO-OFDM transmitter. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 43

3.3 Block Diagram of A Generalized MIMO OFDM Receiver. . . . . .. . . . . . . . . . . . 43

4.1 Ergodic capacity comparison for a4 × 2 system. . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Ergodic capacity comparison for a8 × 4 system. . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Outage Capacity of4 × 4 Direct Mapping MIMO-OFDM. SNR = 10 dB. . . . . . . . . . 68

4.4 Outage Capacity of4 × 2 Direct Mapping MIMO-OFDM. SNR = 10 dB. . . . . . . . . . 69

4.5 Outage Capacity of4 × 2 GSTBC MIMO-OFDM. SNR = 10 dB. . . . . . . . . . . . . . 69

4.6 Outage Capacity of4 × 2 Precoded MIMO-OFDM.L = 8. . . . . . . . . . . . . . . . . . 70

4.7 Outage Capacity versus SNR of8 × 4 CDDSS MIMO-OFDM.L = 8, τ = 1, 3, 5 and

τ = 8. Uniform power delay profiles. . . . . . . . . . . . . . . . . . . . . . . . . .. . . 71

4.8 Outage Capacity versus SNR of8 × 4 Precoded MIMO-OFDM atPout = 1%. L = 16,

Uniform power delay profiles. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 72

4.9 Outage Capacity of8 × 4 GSTBC MIMO-OFDM.L = 16, Uniform and exponential

power delay profiles, SNR = 10dB. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 73

4.10 Mutual information comparison for a4 × 2 system, QPSK. . . . . . . . . . . . . . . . . . 74

vi



List of Figures vii

4.11 Mutual information comparison for a4 × 2 system, 16QAM. . . . . . . . . . . . . . . . 74

4.12 BER performance of the different precoding schemes for4 × 2 channels, ML detection,

16QAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 BER performance of the8× 4 CDD-CDDSS MIMO-OFDM with different channel order

and delay values.Rc = 1
2 , dfree = 5 CC, turbo receiver, 16QAM. . . . . . . . . . . . . . 76

4.14 BER performance of the different precoding schemes for8 × 4 MIMO-OFDM channels.

QPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.15 BER performance of the different precoding schemes for8 × 4 MIMO-OFDM channels.

16QAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.16 FER performance of the different precoding schemes for8 × 4 MIMO-OFDM channels.

QPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.17 FER performance of the different precoding schemes for8 × 4 MIMO-OFDM channels.

16QAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.18 Transmitter block diagram of 2DLPT MIMO-OFDM. . . . . . . .. . . . . . . . . . . . . 81

4.19 BER performance of a2× 2 2DLPT MIMO-OFDM system with MLD and ZF detection,

flat-fading Rayleigh channel. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 85

4.20 BER performance of a2× 3 2DLPT MIMO-OFDM system with MLD and ZF detection,

flat-fading Rayleigh channel. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 86

4.21 Transmitter block diagram of 2DLPT MIMO-OFDM with BICM. . . . . . . . . . . . . . 87

4.22 BER performance of2 × 1 PT-CDD-OFDM withK = 3 Rc = 1
2 convolutional coded

QPSK-modulated BICM.L = 16, τ = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.23 FER performance of2 × 1 PT-CDD-OFDM withK = 3 Rc = 1
2 convolutional coded

QPSK-modulated BICM.L = 16, τ = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 The iterative receiver for BICM GSTBC-OFDM systems.
∏

and
∏−1 stand for inter-

leaver and deinterleaver, respectively. . . . . . . . . . . . . . . .. . . . . . . . . . . . . 94

5.2 Comparison of the exact and approximated SDF’s for 16QAMsignals. . . . . . . . . . . . 101

5.3 Comparison of the exact and approximated SDF’s for 64QAMsignals. . . . . . . . . . . . 102

5.4 Conventional IC-MRC turbo receiver performance for8×4 GSTBC OFDM system.Rc =

1
2 K = 3 CC, QPSK modulation, exact SDF, ZFIS initialization. . . . . .. . . . . . . . . 104



List of Figures viii

5.5 Conventional IC-MRC turbo receiver performance for8×4 GSTBC OFDM system.Rc =

1
2 K = 3 CC, QPSK modulation, exact SDF, LMMSEIS initialization. . .. . . . . . . . 105

5.6 Conventional IC-MRC turbo receiver performance for8×4 GSTBC OFDM system.Rc =

3
4 K = 3 CC, QPSK modulation, exact SDF, LMMSE IS initialization. . .. . . . . . . . 105

5.7 Conventional LMMSE-IC turbo receiver performance for8 × 4 GSTBC OFDM system.

Rc = 3
4 K = 3 CC, QPSK modulation, exact SDF. . . . . . . . . . . . . . . . . . . . . . 106

5.8 Conventional IC-MRC turbo receiver performance for8 × 4 GSTBC-OFDM.Rc = 1
2

K = 3 CC, 16QAM modulation, exact SDF. LMMSEIS initialization. .. . . . . . . . . . 106

5.9 Conventional IC-MRC turbo receiver performance for8 × 4 GSTBC-OFDM.Rc = 1
2

K = 3 CC, 64QAM modulation, exact SDF. LMMSEIS initialization. .. . . . . . . . . . 107

5.10 Conventional IC-MRC turbo receiver performance for8 × 4 GSTBC-OFDM.Rc = 1
2

K = 3 CC, QPSK modulation, approximated linear SDF. LMMSEIS initialization. . . . . 107

5.11 Conventional IC-MRC turbo receiver performance for8 × 4 GSTBC-OFDM.Rc = 1
2

K = 3 CC, 16QAM modulation, approximated linear SDF. LMMSEIS initialization. . . . 108

5.12 Conventional IC-MRC turbo receiver performance for8 × 4 GSTBC-OFDM.Rc = 1
2

K = 3 CC, 64QAM modulation, approximated linear SDF. LMMSEIS initialization. . . . 108

5.13 The Bayesian turbo receiver for BICM STFP MIMO-OFDM. . .. . . . . . . . . . . . . 110

5.14 MSE comparison between BMMSE and statistical mean interference estimation for IC-

MRC turbo receiver with ZFIS initialization.8× 8 VBLAST, QPSK modulation,Rc = 1
2

K = 3 CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.15 MSE comparison between BMMSE and statistical mean interference estimation for IC-

MRC turbo receiver with LMMSEIS initialization.8 × 8 VBLAST, QPSK modulation,

Rc = 1
2 K = 3 CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.16 BER performance of Bayesian IC-MRC receiver,8×4 GSTBC, QPSK,Rc = 1
2 K = 3 CC.123

5.17 FER performance of Bayesian IC-MRC receiver,8× 4 GSTBC, QPSK,Rc = 1
2 K = 3 CC.124

5.18 BER performance comparison of Bayesian IC-MRC and conventional IC-MRC receivers,

ZFIS and LMMSE IS,8 × 4 GSTBC, QPSK,Rc = 3
4 K=3 CC. . . . . . . . . . . . . . . . 125

5.19 BER performance of Bayesian LMMSE-IC receiver,8× 8 VBLAST, 8PSK,Rc = 3
4 K=3

CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Figures ix

5.20 FER performance of Bayesian LMMSE-IC receiver,8× 8 VBLAST, 8PSK,Rc = 3
4 K=3

CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Block diagram for the EXIT chart derivation of the SISO Bayesian MMSE detecor. . . . . 138

6.2 Mutual information transfer function comparison of theconventional and Bayesian MMSE

detectors. Static channel, QPSK modulation.σ2 = 0.1990 . . . . . . . . . . . . . . . . . 140

6.3 Mutual information transfer function comparison of theconventional and Bayesian MMSE

detectors. Static channel, QPSK modulation.σ2 = 0.1256 . . . . . . . . . . . . . . . . . 142

6.4 Mutual information transfer function comparison of theconventional and Bayesian MMSE

detectors. Static channel, 8PSK modulation.σ2 = 0.1990. . . . . . . . . . . . . . . . . . 143

6.5 Mutual information transfer function comparison of theconventional and Bayesian MMSE

detectors. Static channel, 8PSK modulation.σ2 = 0.1256. . . . . . . . . . . . . . . . . . 144

6.6 Mutual information transfer function comparison of theconventional and Bayesian IC-

MRC detectors. Random Rayleigh fading channel, QPSK modulation. Receive SNR = 6

dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.7 Mutual information transfer function comparison of theconventional and Bayesian IC-

MRC detectors. Random Rayleigh fading channel, QPSK modulation. Receive SNR = 8

dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.8 Mutual information transfer function comparison of theconventional and Bayesian LMMSE-

IC detectors. Random Rayleigh fading channel, QPSK modulation. Receive SNR = 6 dB. 147

6.9 Mutual information transfer function comparison of theconventional and Bayesian LMMSE-

IC detectors. Random Rayleigh fading channel, 8PSK modulation. Receive SNR = 8 dB. . 147

6.10 Mutual information transfer function comparison of the conventional and Bayesian LMMSE-

IC detectors. Random Rayleigh fading channel, 8PSK, receive SNR = 6 dB. . . . . . . . . 148

6.11 Mutual information transfer function comparison of the conventional and Bayesian IC-

MRC turbo receivers, and decoding path for the turbo receivers withK = 3 CC. Static

channel, QPSK,σ2 = 0.199. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.12 Mutual information transfer function comparison of the conventional and Bayesian LMMSE-

IC turbo receivers, and decoding path for the turbo receivers withRc = 1
2 K = 3 CC.

Static channel, QPSK,σ2 = 0.285. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



List of Figures x

6.13 Mutual information transfer function comparison of the conventional and Bayesian LMMSE-

IC turbo receivers, and decoding path for the turbo receivers withRc = 1
2 K = 3 CC.

Static channel, 8PSK,σ2 = 0.1256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1 Orthogonal training sequence design for 2 transmit antennas. . . . . . . . . . . . . . . . . 155

7.2 Switched subcarrier preamble scheme for 2 transmit antennas . . . . . . . . . . . . . . . . 155

7.3 MSE vs. SNR for LS channel estimation with N transmit and Mreceive antennas. . . . . . 165

7.4 MSE vs. SNR for LMMSE Channel Estimation with 2 transmit and 2 receive antennas. . 166

7.5 Interpolation-based channel estimation for switched subcarrier scheme. . . . . . . . . . . 167



List of Tables

4.1 Summary of the Simulation Setup,2 × 2 Flat Fading Channel . . . . . . . . . . . . . . . 86

4.2 Summary of the Simulation Setup,2 × 3 Flat Fading Channel . . . . . . . . . . . . . . . 87

5.1 BPSK Gray Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 97

5.2 QPSK Gray Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 97

5.3 8PSK Gray Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 98

5.4 16QAM Gray Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 98

5.5 64QAM Gray Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 98

xi



xii



List of Abbreviations xiii

List of Abbreviations

2DLPT two-dimensional linear pre-transform

3G third generation

ARQ automatic repeat request

AWGN additive white Gaussian noise

BICM bit-interleaved coded modulation

BLAST Bell Lab LAyered Space-Time

BMMSE Bayesian minimum mean squared error

bps bits per second

CC convolutional code

CDD Cyclic Delay (transmit) Diversity

CDDSS Cyclic Delay Diversity with Spatial Spreading

CDMA code division multiple access

CP Cyclic Prefix

CSI channel state information

CSCG circularly symmetric complex Gaussian

DBLAST Diagonal BLAST

DFT Discrete Fourier Transform

DM direct mapping

ECC error correction code

EGC equal gain combining

EM expectation maximization

EPDF exponential power delay profile



List of Abbreviations xiv

ETSI European Telecommunications Standards Institute

EXIT EXtrinsic Information Transfer

EXT extrinsic information

FEC Forward error correction

FFT Fast Fourier Transform

GSM Global System for Mobile Communications

GSTBC Groupwise Space Time Block Code(d)

GSTTC Groupwise Space Time Trellis Code(d)

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical & Electronic Engineers

IFFT Inverse Fast Fourier Transform

ISI intersymbol interference

ITU International Telecommunication Union

LAN Local Area Network

LDC Linear Dispersion Code(d)

LLR log-likelihood ratio

LMMSE linear minimum mean squared error

LPT linear pre-transform

LS least squares

MAP maximuma posteriori

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML maximum likelihood

MMSE minimum mean squared error

MRC maximal ratio combining

OFDM Orthogonal Frequency Division Multiplexing



List of Abbreviations xv

pdf probability density function

PDF power delay profile

PEP pair-wise error probability

pmf probability mass function

PT pre-transform

RAS receive antenna selection

RF radio frequency

SD sphere decoding

SDF soft decision function

SIMO Single-Input Multiple-Output

SISO soft-input soft-output

SNR Signal to Noise Ratio

SS spatial spreading

ST Space-Time

STBC Space Time Block Code(d)

STC Space Time Code(d)

STFP Space-Time-Freq(uency)-Precoding

STSR single-transmit single-receive

STTC Space Time Trellis Code(d)

SWF Statistical Water Filling

SVD singular value decomposition

TAS transmit antenna selection

UPDF uniform power delay profile

VBLAST Vertical BLAST

WLAN Wireless Local Area Network



List of Symbols

nT number of transmit antennas

nR number of receive antennas

nS number of spatial streams

R frequency domain received signal vector at each subcarrier

X frequency domain transmitted signal vector at each subcarrier

H frequency domain (precoded) channel matrix at each subcarrier

V frequency domain AWGN noise vector at each subcarrier

L number of multipath components (sample-spaced)

LCP cyclic prefix length

N FFT size of an OFDM system

P number of subcarriers used to transmit data and pilots

E statistical expectation

CN(m,Q) complex Gaussian distribution with meanm and covariance matrixQ

C channel capacity

CE ergodic capacity

X̃k,i decision statistic of signalXk at iterationi

X̂k,i statistical mean estimation of signalXk at iterationi

X̆k,i Bayesian MMSE estimation signal ofXk at iterationi

xvi



Summary

This thesis is concerned in general with the transmit and receive techniques for multiple-input

multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems in wideband fre-

quency selective fading channels. In particular we addressissues such as the space-time-frequency pre-

coding schemes to achieve optimal or near-optimal capacityand diversity performance in MIMO-OFDM

channels, optimal and efficient detection and decoding of transmitted sequence at the receiver, and optimal

training signal design and low-complexity channel estimation to support coherent detection and optimal

decoding.

In rich-scattering environments, a MIMO channel created bydeploying multiple antenna arrays at

both the transmitter and the receiver of a wireless link can provide both multiplexing gain and diversity

gain. For a MIMO channel with fixed dimensions, i.e., fixed number of transmit and receive antennas,

there is a tradeoff between the multiplexing gain and the diversity gain. A high diversity gain can only

be achieved at the cost of reduced multiplexing gain. When deployed in wideband frequency selective

channels, MIMO can be combined with OFDM to efficiently mitigate the intersymbol interference. To

further exploit the frequency diversity inherent in frequency selective channels, error control coding or

pre-transform can be used with OFDM. Therefore, how to achieve the required multiplexing gain and

diversity gain from the spatial and frequency domains is an important design issue for MIMO-OFDM

systems.

For wireless communication systems, an asymmetric MIMO channel with more transmit than

receive antennas is typically created for downlink transmission, due to the size and power limitation of the

mobile terminal. We address the multiplexing and diversitygains of asymmetric MIMO-OFDM channels

through space-time-frequency precoding, which can map fewer spatial data streams to more transmit

xvii
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antennas. Both linear and nonlinear precoding schemes are considered. A unified linear system model

for the precoding schemes considered is established, with which we obtain the capacity and diversity

performance of the precoded MIMO-OFDM channels in a unified approach. A two-dimensional linear

pre-transformed MIMO-OFDM system is proposed in this thesis which achieves full capacity and full

diversity simultaneously when the number of spatial data streams is equal to the number of transmit

antennas, and full diversity and maximum capacity of a symmetric MIMO channel when the number of

spatial streams is less than the number of transmit antennas.

Exploitation of the diversity and multiplexing gains in theMIMO-OFDM channel relies on not

only the precoding scheme at the transmitter, but also optimal and efficient receiver algorithms. For re-

ceiver design, we dedicate our effort in this thesis to the iterative algorithms. In particular, a Bayesian

minimum mean squared error turbo receiver is proposed. Compared with the conventional turbo receivers

in the literature which make use of only the extrinsic information from the decoder for interference estima-

tion and cancelation, the proposed Bayesian turbo receiveruses both the decoder extrinsic informationand

the detector decision statistic for interference estimation. As a result, the estimation accuracy is greatly

improved, especially in low to medium SNR regions. This alsocontributes to the 1.5 dB improvement at

BER performance of10−5, and the better convergence behavior of the turbo process.

To further analyze the performance of the proposed Bayesianturbo receivers, the extrinsic informa-

tion transfer chart is derived and compared with that of the conventional turbo receivers, in both fixed and

random MIMO channels. A much higher output mutual information is demonstrated from the Bayesian

turbo detector, proving its superior performance. When plotted with the extrinsic information transfer

chart of the decoder, the trajectories of the Bayesian receivers also exhibit much faster convergence than

the conventional receivers.

Effective realization of the capacity and diversity potential in the MIMO-OFDM channels requires

efficient space-time-frequency precoding and optimal receiver design. For the turbo receivers discussed

in the thesis, accurate channel state information is neededat the receiver. Four training signal schemes

are proposed, two of which to support frequency-domain channel estimation, and the other two to support

time-domain channel estimation. All the training signal design schemes are optimized to achieve the

minimum mean squared error performance.
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Chapter 1

Introduction

1.1 Background

The last decade has seen tremendous growth in wireless communications. The data rate of mobile com-

munication networks has evolved from 9.6 kilobits per second (kbps) of the early second generation GSM

(Global System for Mobile Communications) network, to 21.4kbps of GPRS (General Packet Radio Ser-

vice), and 69.2 kbps of Extended GPRS (EGPRS) using EDGE (Enhanced Data Rate for GSM Evolution)

technology. GPRS and EDGE are also classified as the “2.5 Generation” mobile networks in contrast

to the third generation (3G) code division multiple access (CDMA) networks which can offer 384 kbps

for high mobility users and 2 megabits per second (mbps) for pedestrians. The 3GPP (Third Generation

Partnership Project) is working on the standard specification for delivering data services up to 10 mbps

for data users, and it is predicted that for fourth generation mobile networks, the data rate has to reach 100

mbps for high mobility users and one gigabits per second (gbps) for users in hot spots. The technology and

bandwidth advancement has also attracted significant increase in the number of subscribers. According to

the International Telecommunication Union (ITU) record, the worldwide mobile phone subscribers by the

middle of 2004 have reached 1.5 billion, which is about 25% ofthe world’s population.

Similar to the cellular mobile communications, the data rate offered by wireless local area network

(WLAN) has also grown by about 50 times over the last decade, from 1mbps of the early IEEE (Institute

of Electrical & Electronic Engineers) 802.11 [1], to 11 mbpsof IEEE 802.11b [1], and to 54 mbps of

1
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today’s IEEE 802.11a [2] and 11g [3] systems. Currently, theIEEE 802.11 task group n (TGn) is working

toward a standard to offer as high as 600 mbps WLAN system [4].

Wireless communication has become a seamless (or inseparable) part of people’s life style. Getting

connected anywhere and anytime is no longer just a dream.

Wireless communication system design, however, remains challenging. As predicted by the Ed-

holm’s law of data rates [5], the bandwidth of a communication system, wireless or wireline, is to increase

exponentially with time until some fundamental human limit, for example, number of pixels per second

the human eyeball can process, is reached at some point of time. The radio frequency (RF) bandwidth

allocated by regulatory agencies, on the other hand, is limited and can not increase at a matched pace with

the data rate requirement. Increasing the working signal tonoise ratio (SNR) is another way of increasing

data rate, as suggested by the Shannon channel capacity formula [6]. Wireless communication systems,

however, are transmission power limited. Hence SNR can not be increased unlimitedly. Furthermore,

data rate is a logarithm function of SNR. In the high SNR region, every 3dB SNR increase, or two times’

transmission power, leads to an additional capacity of only1 bps/Hz. Therefore, other means have to be

found to fulfill the data rate demand.

In the mid 1990’s, independent work from Foschini [7] and Telatar [8] showed that in a rich scat-

tering environment, deploying multiple antenna arrays at both the transmitter and the receiver can create a

multiple-input multiple-output (MIMO) channel. The MIMO channel capacity is linearly increased with

the minimum number of the transmit and receive antennas. Foschini also recommended the Diagonal Bell

LAboratories Space-Time (DBLAST) [9] and Vertical Bell LAboratories Space-Time (VBLAST) [10]

systems to realize the capacity potential in the MIMO channel.

In addition to the continuously growing demand for higher data rate, another big challenge for

wireless communications is the hostile channel the information is transmitted through. With reflections,

diffractions, scattering in the radio propagation channel, constructive and destructive superposition of

the reflected, diffracted or scattered paths results in received signal strength experiencing the phenomenon

called “fading” [11]. Fading can be frequency selective, time selective, or doubly selective in both time and
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frequency. For wideband channels1, the transmitted signals are further distorted by “multipath”. Multiple

replicas of the transmitted signals arrive at the receiver with different time delays and experience different

attenuation and phase distortion. The detrimental intersymbol interference (ISI) caused by multipath

is traditionally mitigated by equalization techniques [12]. Due to its effective ISI mitigation capability

and its simple implementation, orthogonal frequency division multiplexing (OFDM) [13] [14] [15] has

been widely adopted in wideband and broadband wireless communications. The wireless LAN IEEE

802.11a [2] and 802.11g [3], ETSI (European Telecommunications Standards Institute) HiperLAN/2 [16]

all specify to use OFDM as the physical layer (PHY) solution.

To combat fading and provide reliable and robust performance, a wireless communication system

has to rely on various “diversity” techniques. Traditionaldiversity techniques include:

Time Diversity Time diversity can be exploited from a time selective fadingchannel. Forward error

correction (FEC) coding with interleaving is one popular time diversity scheme in which additional

information (redundancy) is transmitted at different timeinstances that the channel is experiencing

independent (or close to independent) fading. Diversity gains are achieved through de-interleaving

and decoding [12]. Another time diversity technique which is less referred to is the automatic repeat

request (ARQ) scheme [17] in which re-transmission is requested by the receiver to the transmitter

through a feedback channel when it detects incorrect decoding of information. Depending on the

ARQ schemes adopted by the network, either the same set of information or the re-encoded and

re-packetized information is re-transmitted. The receiver will then perform either code combining

or diversity combining [18] to recover the information. Theincremental redundancy (IR) ARQ

scheme [19] is also a time diversity scheme which transmits additional redundant information of an

error correction code word to help correctly decode the original information sequence.

Frequency Diversity Frequency diversity is available for exploitation when thechannel is experiencing

frequency selective fading. Spread spectrum modulation exploits the frequency diversity through

transmitting the raw information over a wide frequency in which each subbands experience in-

dependent fading. The receiver can achieve the diversity gain through maximal ratio combining

1Channels with bandwidthBW wider than the coherence bandwidth is considered as “Wideband channels” [11].
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(MRC) the independently faded signals over each subbands [20]. For OFDM modulated signals,

the frequency diversity is exploited by using FEC coding andinterleaving [15].

(Receive) Space DiversityTraditionally, space diversity is exploited at the receiver by using multiple

receive antenna elements and combining algorithms such as MRC, equal gain combining (EGC),

receive antenna selection (RAS), or receive antenna switching. Macro-cell diversity or soft handoff

used in CDMA systems [21] is also a space diversity technique. Different combining algorithms

have different level of complexity and lead to different level of diversity gains. As these techniques

are realized solely at the receiver, we call themreceivespace diversity.

A system can exploit more than one type of diversity gains. For example, an OFDM system can use FEC

coding and interleaving to exploit frequency diversity, ARQ scheme to exploit time diversity, and multiple

receive antenna to exploit space diversity.

Time and frequency diversity techniques are realized at thecost of additional redundancy, be it the

additional redundancy introduced by FEC coding in single carrier and OFDM systems, or the additional

redundancy by transmitting a narrowband signal over a channel with much wider bandwidth in spread

spectrum systems. Receiving space diversity does not cost any additional redundancy. Its realization,

however, will depend on the availability of multiple antenna elements at the receiver, which may some-

times not be possible due to the size limitation of the wireless terminal. The base station, on the other

hand, is not so size-constrained and hence can accommodate more antenna elements. Therefore, space

diversity exploitation at the transmitter have to be explored.

In 1991, Wittneben proposed a base station modulation diversity approach in [22] to achieve diver-

sity gains through transmitting the same information from different base stations. He further extended this

work to transmit antenna diversity gain in [23]. J. Winters studied the transmit diversity gains in Rayleigh

fading channels in [24] and showed that transmit diversity can achieve the same gain as the receive diver-

sity. Publication of Tarokhet. al. on space-time code design in [25] started the years of activeresearch in

space-time code design and realization oftransmitspace diversities.
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1.2 Focus of This Thesis

This thesis is concerned with in general the design of transmit and receive techniques for a MIMO-OFDM

system in wideband frequency selective MIMO channels, and more specifically the appropriate space-

time precoding schemes and transmitter and receiver designs for a MIMO-OFDM system in block fading

multipath frequency selective channels. Several space-time pre-coding schemes are studied. Their ergodic

and outage capacity performances are analyzed and their tradeoff between capacity and diversity gains is

investigated. A two-dimensional linearly transformed MIMO-OFDM system is proposed to maximize the

frequency and space diversity gains.

For the receiver, we focus on the iterative turbo receiver algorithms. Simplification of the soft

decision functions have been proposed which introduce onlymarginal performance degradation. More

importantly, a family of Bayesian minimum mean squared error (MMSE) turbo receivers are proposed.

The proposed Bayesian turbo receivers can significantly improve the BER and FER performance over con-

ventional turbo receivers, especially when punctured highrate error correction code (ECC) is used in the

system. The proposed Bayesian turbo receivers can also improve the convergence speed, hence effectively

reducing the processing delay. The extrinsic information transfer (EXIT) chart of the proposed Bayesian

turbo receiver is derived and compared with the conventional turbo receivers. The EXIT chart analysis

results verify the superior performance of the proposed Bayesian turbo receiver over the conventional

receivers.

For coherent detection, channel state information is essential at the receiver. To accurately acquire

the channel estimates, efficient training signal is required. The preamble design for training sequence

assisted channel estimation is studied. Both the time domain and frequency domain channel estimation

algorithms are looked into, and the corresponding preambledesign is proposed which can optimize the

mean squared error (MSE) of the channel estimates.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, the ergodic and outage capacity of the MIMO

channel is reviewed, under the condition of perfect channelstate information (CSI) available at either

only the receiver but not at the transmitter, or both the transmitter and the receiver. Then an overview is

given on the various space-time coding schemes, with the emphasis on the orthogonal space-time block

codes (STBC), space-time trellis codes (STTC), and quasi-orthogonal space-time block codes (QSTBC).

We also show analytically that when FEC code is serially concatenated with orthogonal STBC, additional

diversity gain can be exploited if the channel is fast fading, or alternatively when the channel is slow

fading, additional coding gain can be exploited. A brief discussion of the capacity and diversity tradeoff

is also given in Chapter 2.

In Chapter 3, we formulate the linear signal model for MIMO OFDM systems. Various space-

time-frequency precoding (STFP) techniques are considered. By combining precoding with the MIMO

propagation channel, all the precoding schemes consideredcan be expressed by the common linear signal

model. This unifies the capacity and diversity analysis in Chapter 4. It has also made the derivation of the

turbo receiver algorithms in Chapter 5 applicable to all these precoded MIMO-OFDM systems.

Chapter 4 is dedicated to the capacity and diversity analysis of the various space-time precoded

MIMO-OFDM channels. Both the ergodic capacity and the outage capacity with unconstrained com-

plex Gaussian input signals are studied. The mutual information of the precoded channels for fixed-

order modulation signals is also investigated. The mutual information knowledge will provide more

realistic guidance for precoding scheme selection in practical systems. A two-dimensional linear pre-

transformed (2DLPT) MIMO-OFDM system is proposed which canachieve full capacity and full diver-

sity.

Chapter 5 is focussed on the study of iterative turbo receivers for coded MIMO-OFDM systems.

It is further divided into two parts. The first part is dedicated to simplification of soft decision func-

tions (SDF’s) in conventional turbo receivers. In order to effectively realize the huge capacity of the

MIMO-OFDM channels, higher order modulation, e.g., 8PSK, 16QAM, or 64QAM, signals need to be

transmitted. The estimation of these high-order modulation signals with the soft output extrinsic infor-
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mation from the decoder, however, requires calculation of several exponential terms, hence complex in

practical implementation. In view of this, simplified linear SDF’s are derived which introduce negligible

BER performance degradation, as demonstrated from simulations.

In the second part of Chapter 5, we propose a family of Bayesian turbo receivers. Different from

the conventional turbo receivers, Bayesian signal estimation theory is used to estimate the interference

signals. Hence both thea priori information, i.e., the extrinsic information from the decoder, and the

observation, i.e., the received signal or filter output of the interference canceller, is used. As a result, the

estimation accuracy of the interference signals is greatlyimproved. The improved estimation accuracy

can lead to significant performance improvement, as shown through our simulated BER and FER results.

Two types of filtering schemes have been considered in the interference cancellation (IC) process of the

Bayesian turbo receiver, namely, the matched filtering (MF), i.e., the maximal ratio combining (MRC)

filtering, and the linear MMSE (LMMSE) filtering. These two types of turbo receivers are referred to as

the IC-MRCturbo receiver and theLMMSE-ICturbo receiver, respectively.

In Chapter 6, we derive the extrinsic information transfer (EXIT) chart of the proposed Bayesian

turbo receivers and compare with that of the conventional turbo receivers. Our EXIT chart analysis shows

that the Bayesian IC-MRC turbo receiver has superior performance to not only the conventional IC-MRC

turbo receiver, but also the conventional LMMSE-IC turbo receiver. The performance improvement lies in

two ways - the much higher output mutual information of the Bayesian detector, and the reduced number

of iterations to achieve convergence in the turbo receiver.This result makes the Bayesian IC-MRC turbo

receiver practically appealing. This is because MRC filtering performs only multiplication and summation,

whereas the LMMSE filtering, on the other hand, required the much more complex operations of complex-

valued matrix inversion for each signal stream at each iteration.

The capacity and diversity analysis of precoded MIMO-OFDM channels in Chapter 4, the Bayesian

turbo receiver studies in Chapter 5 and Chapter 6 are all based on the assumption of perfect CSI available

at the receiver. In Chapter 7, we study training signal-based CSI estimation. Both frequency domain and

time domain channel estimation schemes are considered whendesigning the preamble sequence. Their

corresponding mean squared error (MSE) is derived and used as the objective function for optimal training
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signal design. Two optimal training signal schemes are proposed for both the frequency and time domain

channel estimation, supporting very simple channel estimation computation and lead to minimum MSE.

Chapter 8 concludes the work reported in this dissertation.Recommendation for further continua-

tion of the research work in this dissertation is also given in this Chapter.

1.4 Contributions of This Thesis

The major original contributions of this thesis are summarized below.

• Studied systematically the capacity and diversity performance of the various open-loop space-time-

frequency precoded MIMO-OFDM systems. In particular, we derived the ergodic capacity of spatial

spreading MIMO systems by making use of the random matrix theory.

• Proved that cyclic delay transmission in MIMO-OFDM systemstransfers the spatial diversity to

frequency diversity by making use of the linear algebraic model of OFDM systems.

• Proposed a two-dimensional linear pre-transformed MIMO-OFDM system structure which can

achieve full capacity and full diversity;

• Proposed the linear soft decision functions for high-ordermodulation signals in turbo receivers

which can significantly reduce the computational complexity in signal estimation but at the same

time maintain the BER performance;

• Proposed the Bayesian turbo receivers which makes use of both the extrinsic information from the

soft output decoder and the soft output from the detector to obtain the Bayesian estimate of the

interference signals. The Bayesian signal estimation is further extended to the LMMSE-IC turbo

receivers. Significant performance improvement is obtained from the Bayesian turbo receivers;

• Developed the EXIT chart analytical model of the Bayesian turbo receivers. With this model, the

EXIT chart is derived and compared with the conventional turbo receivers. From the EXIT chart

analysis, the superior performance in terms of both higher output mutual information and the re-

duced number of iterations for convergence is proved;
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• Systematically studied the training signal design for bothfrequency-domain and time-domain chan-

nel estimation in MIMO-OFDM systems. With the objective of minimum mean squared error, two

preambles schemes, i.e., the orthogonal training signal and the switched-subcarrier training sig-

nal, are proposed for frequency domain channel estimation.Similarly, two preambles schemes are

also derived for minimum mean squared error time-domain channel channel estimation, i.e., the

switched-subcarrier training signal and cyclic delayed training signal. All the four training signal

schemes involve very simple filtering calculation to obtainthe channel estimates.

1.5 Notations

Throughout the rest of the thesis, unless otherwise mentioned, the time domain data are represented with

lower-case, frequency-domain data with upper-case, vectors and matrices with bold face letters. The

symbols(·)T , (·)H , and(·)−1 represent matrix transposition, Hermitian, and inversion, respectively, and

the delimiter(·)y defines a space of dimensiony. All vectors are defined as column vectors with row

vectors represented by transposition.



Chapter 2

Introduction to MIMO

Space-time (ST) processing is one of the most active research areas in wireless communications during

the last decade, covering the theoretical aspects of capacity limit of a MIMO channel, performance limit

of a space-time system, ST coding/decoding and modulation/demodulation techniques, and solutions to

integrate the technology into practical systems. In this chapter, we give a general overview of the space-

time transmission techniques. We start from the definition of a MIMO channel model. We then derive

its capacity limit with CSI perfectly known at only the receiver but not known at the transmitter. We also

briefly discuss the capacity limit when the CSI is perfectly known at both the transmitter and the receiver.

Following the capacity discussions, we give an introduction to the MIMO diversity techniques. The var-

ious space-time codes are reviewed, and their decoding schemes are compared. Finally we conclude the

chapter by discussing the capacity and diversity gain trade-off in the MIMO channels.

2.1 The MIMO Channel Model

A narrowband flat fading MIMO channel withnT transmit andnR receive antennas is defined as

y = hx + n, (2.1)

wherey ∈ CnR andx ∈ CnT are the complex-valued channel output and input signals,n ∈ CnR denotes

the zero mean complex additive white Gaussian noise (AWGN) with varianceσ2 per real dimension, i.e.,

n ∼ CN(0, 2σ2InR
), andh ∈ CnR×nT with its entries{hij} denoting the complex-valued fading coeffi-

10
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cients corresponding to transmit antennaj and receive antennai. Fig. 2.1 depicts a simple illustration of

such anT × nR MIMO channel.
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Figure 2.1: Illustration of a narrowband nT × nR MIMO channel model.

The MIMO channels can be divided into three categories:

Deterministic Channel. hij ’s are deterministic values.

Ergodic Channel. hij ’s are random variables, and each channel use corresponds toan independent real-

ization ofhij ’s.

Non-Ergodic Channel. hij ’s are random variables, but remain fixed once they are chosen.

Among the three channels, the last two are of more interest for MIMO communication systems design.

Their corresponding suitable capacity measures are respectively the ergodic capacity, and theoutage

capacity. The reason to useergodic capacityto measure anergodic channelis due to the fact that a long

enough code word transmitted in anergodic channelwill experience all states of the channel and hence it

averages out the channel randomness. As fornon-ergodic channel, a code word can only experience one

channel realization no matter how long it is. Theoutage capacityis therefore defined as the rate such that

there exists a code which can achieve with a pre-defined errorprobability for a set of channels. In Chapter
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4, both ergodic capacity and outage capacity will be studiedfor precoded MIMO-OFDM channels.

2.2 Channel Capacity with CSI Perfectly Known Only at Receiver

When the CSI is perfectly known at the receiver but not known at the transmitter, we first look at the

capacity for each channel realization by performing singular value decomposition (SVD) on the channel

matrixh as

h = ΩΣΓH , (2.2)

whereΩ ∈ CnR×nR andΓ ∈ CnT×nT are unitary matrices, and

Σ = diag{σ1, · · · , σr, 0, · · · , 0} ∈ <nR×nT

is the singular value matrix ofh whose rank is assumed to ber = min{nR, nT }.

(2.1) can therefore be re-written as

y = ΩΣΓHx + n. (2.3)

Pre-multiplying (2.3) withΩH , we have

ỹ = ΣΓHx + ñ, (2.4)

whereỹ = ΩHy, andñ = ΩHn, andñ ∼ CN
(
0, 2σ2I

)
. If we further definẽx = ΓHx, (2.1) is turned

into

ỹ = Σx̃ + ñ, (2.5)

which is effectivelynR parallel single-input single-output channels




ỹi = σix̃i + ñi, i = 1, 2, · · · , r,

ỹi = ñi, i = r + 1, · · · , nR.

(2.6)

When the transmitter has no knowledge onh, allocating the transmission power equally to the

nT transmit antennas will lead to maximum capacity [26] [8]. Supposing we normalize the total transmit

power to unity, we have

E
{
xxH

}
=

1

nT
InT

. (2.7)
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Each parallel single-input single-output channel will then achieve capacity when the channel inputxi is

Gaussian [6]

Ci = log2(1 + ρi), i = 1, 2, · · · , r,

Ci = 0, i = r + 1, · · · , nR,

(2.8)

whereρi = 1
nT

σ2
i

No
= 1

nT

λi

No
is the SNR at the channel output, andλi = σ2

i is theith eigenvalue of matrix

hhH andhHh.

The MIMO channel capacity for each channel realization is thus

C =
r∑

i=1

Ci =
r∑

i=1

log2(1 + ρi) =
r∑

i=1

log2

(
1 +

λi

nTNo

)
(bits/channel use), (2.9)

As matriceshhH andhHh have the same eigenvalues, thenR × nT MIMO channelh and thenT × nR

MIMO channelhH have the same capacity if thereceive SNRis set to the same. This property is called

“reciprocity” by Telatar [8].

As

r∑

i=1

log2

(
1 +

λi

nTNo

)
= log2

[
r∏

i=1

(
1 +

λi

nTNo

)]
= log2 det

(
I +

1

nTNo
hhH

)
,

the MIMO capacity per realization is also written as [7][8]

C(h) = log2 det

(
I +

1

nTNo
hhH

)
(bits/channel use). (2.10)

2.2.1 Ergodic Capacity

The ergodic capacity is defined as

CE = E {C(h)} , (2.11)

where the expectation is taken over all the realizations ofh. Analytical evaluation ofCE requires the

statistics ofh, or eigenvalues{λi} of hhH . If the joint probability density function (pdf) of{hij},

p (h11, h12, · · · , hnR,nT
), is known, the ergodic capacity is obtained as

CE =

∫

h11

· · ·
∫

hnR,nT︸ ︷︷ ︸
nR×nT

log2 det

(
I +

1

nTNo
hhH

)
p (h11, · · · , hnR,nT

) dh11 · · · dhnR,nT
. (2.12)
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Alternatively, if the joint pdf of{λi}, p (λ1, · · · , λr), is known, the ergodic capacity can also be

obtained as

CE =

∫

λ1

· · ·
∫

λr

r∑

i=1

log2

(
1 +

λi

nTNo

)
p (λ1, · · · , λr) dλ1 · · · dλr. (2.13)

For circularly symmetric complex Gaussian (CSCG) channelswith hij ∼ CN (0, 1) [8], the joint

pdf of unordered eigenvalues{λi} is given in [27] as

p (λ1, · · · , λr) =
2−rsπr(r−1)

r!Γ̃r(s)Γ̃r(r)
exp

(
−1

2

r∑

i=1

λi

)
r∏

i=1

λs−r
i

∏

i<j

(λi − λj)
2 (2.14)

wheres = max{nR, nT }, λ1 ≥ λ2 ≥ · · · ≥ λr, andΓ̃m(a) is the complex multivariate gamma function

defined by

Γ̃m(a) = πm(m−1)/2
m∏

i=1

Γ(a− i+ 1),

with Γ(a) being the gamma function.

Based on (2.14), Telatar worked out the ergodic capacity ofnT × nR CSCG channel as

∫ ∞

0
log2

(
1 +

λ

nTNo

) r−1∑

k=0

k!

(k + s− r)!

[
Ls−r

k (λ)
]2
λs−r exp(−λ)dλ, (2.15)

wherer = min{nR, nT }, s = max{nR, nT }, and

Ln−m
k (x) =

1

k!
exp(−x)xm−n dk

dxk
(exp(x)xk+n−m)

is the Laguerre polynomial of orderk [28].

In Appendix 2A of this Chapter, we give the Laguerre polynomials and the ergodic capacity for-

mulas for the CSCG MIMO channels that are going to studied in Chapter 4.

Linear Increase of MIMO Capacity with r From the strong law of large numbers, we have for fixed

nR and asnT → ∞
1

nT
hhH → InR

hence from (2.10), we have

C(h) = log2 det

(
I +

1

No
I

)
= nR log2

(
1 +

1

No

)
(bits/channel use), (2.16)

i.e., the capacity increases linearly withnR.
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When we fixnT and makenR → ∞, in order to prove the linear relation between capacityC

and the number of antennasnT , we need to scale the channel matrix as1√
nR

h. Without this scaling, the

receive SNR will grow to infinity. The channel capacity is then

C(h) = log2 det

(
I +

1

nTnRNo
hhH

)
= log2 det

(
I +

1

nTnRNo
hHh

)
= log2 det

(
I +

1

nTNo
I

)

= nT log2

(
1 +

1

nTNo

)
(bits/channel use), (2.17)

by making use of the fact that1nR
hHh → InT

whennR → ∞, from the strong law of large numbers.

2.2.2 Outage Capacity

For non-ergodic channels, the Shannon capacity is zero. This is because no matter how long a code word

we can take, there is a non-zero probability that the realized h is incapable of supporting however a small

rate. Therefore, theoutage capacityis a more appropriate measure which is defined as the transmission

rateR that exceeds the instantaneous channel capacity

C(h) = log2 det

(
I +

1

nTNo
hhH

)

with probabilityP . P is defined as theoutage probability[8], i.e.,

Pout(R) = p (R > C(h)) . (2.18)

Equation (2.18) can be evaluated by Monte Carlo simulations. For approximation, the asymptotic

result ofC(h) tending to a Gaussian random variable whennR andnT grow to infinity, can be used. The

details can be referred to [29][30].

2.3 Channel Capacity with CSI Perfectly Known at Both Transmitter and

Receiver

When both the transmitter and the receiver have perfect CSI,by using the result of Information Theory

concerning parallel Gaussian channels [26][6], from (2.6), we need to allocate the transmission power to

ther parallel channels via “water-filling”. Supposing the powerallocated to theith parallel channel is

Pi = 2E{Re(x̃i)}2 = 2E{Im(x̃i)}2 (2.19)
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subject to the power constraint
r∑

i=1

Pi = 1,

then the mutual information between the input and the outputof the channel is

I(x̃; ỹ) ≤
r∑

i=1

log2

(
1 +

Piλi

nTNo

)
.

Maximization of the mutual information subject to the powerconstraint leads to the channel capacity. It

can be solved by using the Lagrange multipliers, through defining the cost function

J(P1, P2, · · · , Pr) =

r∑

i=1

log

(
1 +

Piλi

nTNo

)
+ ν(1 −

r∑

i=1

Pi)

and differentiating with respect toPi, and we have

λi

nTNo + Piλi
− ν = 0

leading to

Pi =
1

ν
− nTNo

λi
.

As Pi needs to be non-negative, we therefore have the following “water-filling” solution

Pi =

(
µ− nTNo

λi

)+

(2.20)

satisfying the power constraint
∑r

i=1 Pi = 1. µ is called the “water level” and(x)+ is defined as

(x)+ =





x if x ≥ 0,

0 if x < 0.

The principle of water-filling for anr = 4 MIMO channel is illustrated in Fig. 2.2.

2.4 MIMO Diversity and Space-Time Codes

Besides capacity gain, the MIMO channels can also be used to exploit diversity gains and improve the

robustness of wireless communication systems against fading. This is achieved by transmitting space-

time coded signals through thenT antennas, and processing the received signals at thenR antennas by

maximal ratio combining (MRC) and maximum likelihood (ML) decoding.
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-

µ

nT No

λ1

P1

nT No

λ2

P2

nT No

λ3

nT No

λ4

P4

P3 = 0, P1 + P2 + P4 = 1

Figure 2.2: Illustration of “water-filling” principle.

Supposing the space-time encoder takes inM bits and produce anL-symbol-long space-time

codeword, as

x = [x1 x2 · · · xL]

with xl = [xl,1 xl,2 · · · xl,nT
]T , we have the corresponding received signal as

yl = hlxl + nl (2.21)

for a fast fading channel and

yl = hxl + nl (2.22)

for a quasi-static fading channel. By“fast fading” , we mean the channel coefficients remain constant

during one symbol interval, but vary randomly from one symbol to another; By“quasi-static fading”,

we mean the channel coefficients remain constant during a frame but vary randomly from one frame to

another. In other words, for a fast fading channel, the coherence time is longer than the symbol interval

but shorter than the space-time codeword interval, and for aquasi-static fading channel, the coherence

time is longer than the space-time codeword duration.

When perfect CSI is available at the receiver, we have

p(y|x) =
L∏

l=1

1

(2πσ2)nR
exp

(
−|yl − hlxl|2

2σ2

)
(2.23)
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for fast fading channel, and

p(y|x) =

L∏

l=1

1

(2πσ2)nR
exp

(
−|yl − hxl|2

2σ2

)
(2.24)

for a slow quasi-static fading channel.

The ML decision of the transmitted space-time codeword for fast-fading channel is thus

x̂ML = arg max
x∈ΩnT L

p(y|x) (2.25)

= arg max
x∈ΩnT L

L∏

l=1

1

(2πσ2)nR
exp

(
−|yl − hlxl|2

2σ2

)
(2.26)

= arg max
x∈ΩnT L

L∑

l=1

(
− |yl − hlxl|2

)
(2.27)

= arg min
x∈ΩnT L

L∑

l=1

|yl − hlxl|2 , (2.28)

whereΩ denotes the modulation signal set for the space-time code inuse.

Similarly, the ML decision of the transmitted space-time codeword for quasi-static fading channel

is

x̂ML = arg min
x∈ΩnT L

L∑

l=1

|yl − hxl|2 . (2.29)

Similar to error control codes, space-time codes can be categorized into block codes, trellis codes,

and turbo codes. Different codes have different diversity and coding gains, and different decoding com-

plexity. In this section, we will give a brief overview of orthogonal space-time block codes (STBC),

space-time trellis codes (STTC), and quasi-orthogonal STBC (QSTBC).

2.4.1 Orthogonal STBC

The “Orthogonal STBC”, or OSTBC, encoding is a non-linear mapping, which takes input sequence

{s1, s2, · · · , sQ} and maps to a row-orthogonal matrixxnT ×L, i.e.,

xnT×L = MOSTBC (s1, s2, · · · , sQ) ,

and

xxH = αInT
, (2.30)
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whereα is a constant that is related to the total signal power transmitted by the STBC codeword. The

code rate of STBC is defined as

RSTBC =
Q

L
. (2.31)

The most popular OSTBC is the“Alamouti Code” (AC) for nT = 2 [31], whose mapping is

defined as

MAC (s1, s2) =



s1 −s∗2

s2 s∗1


 (2.32)

for both real and complex signals. The code rate of AC isRAC = 1. It has been proven in [32] that the

2 × 1 AC is capacity optimal.

While rate-1 OSTBC is available fornT = 2 for both real and complex signals, it is not the case

for nT > 2. Tarokhet. al. have constructed rate-1 real OSTBC’s fornT ≤ 8 with entries of the form

±s1, ± s2, · · · , ± sQ in [33]. But they showed that rate-1 complex OSTBC exists only for nT = 2,

i.e., the AC. FornT = 3 andnT = 4 cases, rate12 and rate3
4 OSTBC’s are given by Tarokhet. al. in [33].

The most attractive advantage of OSTBC is its full diversityorder ofnRnT , and its simple ML

decoding by linear processing. As given in [34], the ML decision metric for each signalsq, q = 1, · · · , Q,

can be decoupled and optimized individually. The drawback of OSTBC is its limited “coding” gain.

But this can be remedied by concatenating a FEC code before the STBC encoding. Fig. 2.3 depicts a

concatenated bit-interleaved coded modulation (BICM) [35] STBC transmission system. In Appendix

2B, we prove that when a FEC code is concatenated with the Alamouti STBC, and when the channel is

quasi-static over the STBC codeword interval, but changingindependently from one STBC codeword to

another, a diversity order of2dminnR is achieved, of which2nR is from the spatial domain anddmin,

which is also the minimum Hamming distance of the FEC code, isfrom the time domain (or FEC coding

domain). When the channel is quasi-static over both the STBCand the FEC codeword intervals, the

system achieves the diversity order of2nR, and coding gain ofdmin.

2.4.2 STTC

OSTBC can achieve maximum diversity order ofnRnT with simple linear decoding. However, OSTBC

alone does not have any or very limited coding gain. The STTC,on the other hand, is designed to achieve
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-b1, b2, · · · , bM
FEC -c1, c2, · · · , cN

interleaver - mapper -s1, · · · , sQ
STBC

@@��

@@��

...

x1

xnT

Figure 2.3: Illustration of a concatenated BICM-STBC transmitter.

both the maximum possible diversity gain and coding gain [25]. The name of “trellis code” comes from

the fact that the encoding process can be represented by a trellis [25].

The optimal STTC design is derived based on the pair-wise error probability (PEP), which is

defined as the probability that the decoder selects an erroneous codeword̂x instead of the transmitted

codewordx. If we assume perfect CSI at the receiver, we have the PEP written as

P (x, x̂|h) = Prob (p(y|x,h) < p(y|x̂,h)) = Prob
(
‖y − hx‖2 > ‖y − hx̂‖2

)

= Prob




L∑

l=1

nR∑

i=1

∥∥∥∥∥∥
yi −

nT∑

j=1

hl
i,jx

l
j

∥∥∥∥∥∥

2

>

L∑

l=1

nR∑

i=1

∥∥∥∥∥∥
yi −

nT∑

j=1

hl
i,j x̂

l
j

∥∥∥∥∥∥

2


= Prob




L∑

l=1

nR∑

i=1




∥∥∥∥∥∥
yi −

nT∑

j=1

hl
i,jx

l
j

∥∥∥∥∥∥

2

−

∥∥∥∥∥∥
yi −

nT∑

j=1

hl
i,jx̂

l
j

∥∥∥∥∥∥

2


︸ ︷︷ ︸
d2
h
(x,x̂)

> 0




= Q

(√
Es

2No
d2
h
(x, x̂)

)

≤ 1

2
exp

(
−d2

h(x, x̂)
1

4NonT

)

whereEs = 1
nT

is the symbol energy at each transmit antenna, andQ(·) is the complementary error

function [12].

Depending on the fading channel models, e.g., Rayleigh or Rician fading, slow or fast fading,

number of receive antennas, etc., different criteria may have to be used to maximize both the coding gain

and the diversity gain. In [25], Tarokhet. al.first developed the “rank criterion” to maximize the diversity

gain, and the “determinant criterion” to optimize the coding gain for slow Rayleigh fading channels. As

for slow Rician fading channels, the “rank criterion” and the “coding advantage criterion” is derived to

maximize the diversity and coding gains. For fast fading Rayleigh channels, the design criteria become
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the “distance” and the “product” criteria for diversity and coding gains, respectively. A comprehensive

summary of STTC design criteria in various channels can be found in [36].

As the STTC encoder structure can not guarantee the geometrical uniformity of the code [37],

the search for the optimal encoder trellis has to be conducted over all possible pairs of paths in the code

trellis. The decoding complexity of STTC is exponential with the code word length, the number of transmit

antennas, the modulation order, and the number of states in the trellis. Due to all these issues, adoption of

STTC in practical systems falls behind OSTBC.

2.4.3 Quasi-Orthogonal STBC (QSTBC)

Orthogonal STBC has the advantage of full transmit diversity order, simple and decoupled decoding for

each symbol, and easy concatenation with FEC for further coding gain and time-diversity exploitation.

However, rate-1 OSTBC is only available fornT = 2 with complex signals. Therefore, quasi-orthogonal

STBC (QSTBC) was proposed by Jafarkhani in [38] which can achieve full-rate (rate-1) but only half the

maximum transmit diversity. Same as OSTBC, the QSTBC encoding is a non-linear mapping, which can

be written as

xnT×L = MQSTBC (s1, s2, · · · , sQ) ,

where{s1, s2, · · · , sQ} is the input sequence andxnT ×L is the corresponding QSTBC codeword. The

original QSTBC proposed by Jafarkhani in [38] has the codingrate of 1, i.e.,Q = L, and full transmit

diversity.

The QSTBC decoding can be decoupled into groups of symbols instead of single symbols. There-

fore the complexity is higher than OSTBC.

One example of a rate-1 Jafarkhani-QSTBC fornT = 4 is given as follows:

x =




x1 −x∗2 x3 −x∗4

x2 x∗1 x4 x∗3

x3 −x∗4 x1 −x∗2

x4 x∗3 x2 x∗1




=




A1 A2

A2 A1


 , (2.33)
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whereAi, i = 1, 2 denotes theith Alamouti codeword. There are many variations of the Jafarkhani-

QSTBC design in (2.33), as indicated in [38]. But they all have the same performance.

In order to achieve full-rate and full-diversity simultaneously, QSTBC based on constellation ro-

tation was proposed in [39] [40]. In this scheme, the two groups of symbols are drawn from the original

constellation and the rotated constellation, respectively. With the optimal rotation angle, full transmit

diversity can always be made possible.

If the restriction of full transmit diversity is relaxed, high-rate QSTBC can be designed, e.g., Yuen

et. al. proposed a rate-2 QSTBC fornT = 4 in [41] as

x =

√
1

2




x1 + x3 −x∗2 − x∗4

x2 + x4 x∗1 + x∗3

x1 − x3 −x∗2 + x∗4

x2 − x4 x∗1 − x∗3




=




A1 + A2

A1 − A2


 , (2.34)

and a rate-4 QSTBC fornT = 4 as

x =




x1 + x3 + x∗5 + x∗7 −x∗2 − x∗4 + x6 + x8

x2 + x4 + x∗6 + x∗8 x∗1 + x∗3 − x5 − x7

x1 − x3 + x∗5 − x∗7 −x∗2 + x∗4 + x6 − x8

x2 − x4 + x∗6 − x∗8 x∗1 − x∗3 − x5 + x7




=




A1 + A2 + A∗
3 + A∗

4

A1 − A2 + A∗
3 −A∗

4


 , (2.35)

whereAi, i = 1, 2, 3, 4 denotes theith Alamouti codeword.

These QSTBC codes are sometimes also referred as linear dispersion codes (LDC) which were

first proposed by Hassibi and Hochwald [32] due to the fact that the signalsxq, l = 1, 2, · · · , Q are

transmitted over all the transmit antennas within the QSTBCcodeword. In Chapter 4, the capacity and

diversity performance of the rate-2 QSTBC and LDC MIMO-OFDMchannels will be studied in detail.

2.5 Diversity and Capacity Tradeoff in MIMO Channels

As reviewed in the previous sections in this chapter, a MIMO channel can provide two types of gains - the

diversity gain and the capacity gain. If the MIMO channel is used to transmit independent information
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streams in parallel (spatial multiplexing [42]), the data rate (capacity) of the system increases. Schemes

to exploit the capacity potential include the various BLASTarchitectures [9, 10]. If the MIMO channel

is used to transmit signals that carry the same information,for example, OSTBC and STTC, the diversity

gain of the system increases. A MIMO channel can also be used to exploit both the capacity and diversity

gains simultaneously. Hybrid systems, e.g., groupwise STBC (GSTBC) [43] [44] and groupwise STTC

systems [45][46], are the most straightforward approachesin which the transmit antennas are divided into

groups. Independent information is transmitted in different antenna groups to exploit the multiplexing

gain; Within each antenna group, STBC or STTC is applied to exploit the transmit diversity gain. Besides

the hybrid schemes, high-rate QSTBC and LDC [32][47] are space-time block codes which were designed

based on some design criteria to achieve both multiplexing and diversity gains. For example, the LDC by

Hassibi and Hochwald [32] was designed to maximize a given MIMO channel capacity. After the channel

capacity is maximized, the diversity order will then be optimized.

In [48], Tse and Li provided a framework to show that there is afundamental tradeoff between the

capacity and diversity gains for a givennT × nR MIMO channel. Ifr ≤ min(nT , nR) antennas are used

to exploit the spatial multiplexing gain, then only the restof the antennas can be used to exploit diversity

gains. If higher diversity order is desired from the given MIMO channel, the transmission rate will have

to be reduced correspondingly.

In Chapter 4, the capacity and diversity performance of precoded MIMO-OFDM channels will be

studied. A 2DLPT precoding scheme for MIMO-OFDM systems will be proposed. We will show that

when the 2DLPT transform in unitary, this precoding scheme can achieve simultaneously full capacity

and full diversity.

Appendix 2A - Ergodic Capacity for i.i.d. CSCG MIMO Channels

2A.1 4 × 2

For a4 × 2 i.i.d. CSCG MIMO channel, we have

nR = 2, nT = 4, m = 2, n = 4.
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We then have 



k = 0, L2
0(x) = 1, k!

(k+n−m)! = 1
2 ,

k = 1, L2
1(x) = −x+ 3, k!

(k+n−m)! = 1
6 ,

hence the ergodic capacity for the4 × 2 CSCG MIMO channel is

C4×2 =

∫ ∞

0
log2

(
1 +

ρ

4
x
)[1

2
+

1

6
(x− 3)2

]
x2 exp(−x)dx. (2.36)

2A.2 8 × 4

For a8 × 4 i.i.d. CSCG MIMO channel, we have

nR = 4, nT = 8, m = 4, n = 8.

We then have



k = 0, L4
0(x) = 1, k!

(k+n−m)! = 1
24 ,

k = 1, L4
1(x) = −x+ 5, k!

(k+n−m)! = 1
120 ,

k = 2, L4
2(x) = 1

2(30 − 12x+ x2), k!
(k+n−m)! = 1

360 ,

k = 3, L4
3(x) = 1

6(210 − 126x + 21x2 − x3), k!
(k+n−m)! = 1,

hence the ergodic capacity for the8 × 4 CSCG MIMO channel is

C8×4 =

∫ ∞

0
log2

(
1 +

ρ

8
x
)[ 1

24
+

(x− 5)2

120
+

(
30 − 12x+ x2

)2

1440

+

(
210 − 126x + 21x2 − x3

)2

840 × 36

]
x4 exp(−x)dx. (2.37)

2A.3 4 × 4

For a4 × 4 i.i.d. CSCG MIMO channel, we have

nR = 4, nT = 4, m = 4, n = 4.

We then have



k = 0, L0(x) = 1, k!
(k+n−m)! = 1

k = 1, L1(x) = −x+ 1, k!
(k+n−m)! = 1,

k = 2, L2(x) = 1
2(2 − 4x+ x2), k!

(k+n−m)! = 1,

k = 3, L3(x) = 1
6(6 − 18x+ 9x2 − x3), k!

(k+n−m)! = 1,
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hence the ergodic capacity for the4 × 4 CSCG MIMO channel is

C4×4 =

∫ ∞

0
log2

(
1 +

ρ

4
x
)[

1 + (x− 1)2 +

(
2 − 4x+ x2

)2

4

+

(
6 − 18x+ 9x2 − x3

)2

36

]
exp(−x)dx. (2.38)

2A.4 2 × 4

For a2 × 4 i.i.d. CSCG MIMO channel, we have

nR = 4, nT = 2, m = 2, n = 4.

We then have 



k = 0, L2
0(x) = 1, k!

(k+n−m)! = 1
2 ,

k = 1, L2
1(x) = −x+ 3, k!

(k+n−m)! = 1
6 ,

hence the ergodic capacity for the2 × 4 CSCG MIMO channel is

C2×4 =

∫ ∞

0
log2

(
1 +

ρ

2
x
)[1

2
+

1

6
(x− 3)2

]
x2 exp(−x)dx. (2.39)

2A.5 4 × 8

For a4 × 8 i.i.d. CSCG MIMO channel, we have

nR = 8, nT = 4, m = 4, n = 8.

We then have




k = 0, L4
0(x) = 1, k!

(k+n−m)! = 1
24 ,

k = 1, L4
1(x) = −x+ 5, k!

(k+n−m)! = 1
120 ,

k = 2, L4
2(x) = 1

2(30 − 12x+ x2), k!
(k+n−m)! = 1

360 ,

k = 3, L4
3(x) = 1

6(210 − 126x + 21x2 − x3), k!
(k+n−m)! = 1,

and the ergodic capacity for the8 × 4 CSCG MIMO channel is

C4×8 =

∫ ∞

0
log2

(
1 +

ρ

8
x
)[ 1

24
+

(x− 5)2

120
+

(
30 − 12x+ x2

)2

1440

+

(
210 − 126x + 21x2 − x3

)2

840 × 36

]
x4 exp(−x)dx. (2.40)
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Appendix 2B - Performance Bound of BICM-STBC System

In this section, we derive the union bound of BICM-STBC system with ML decision and ML decoding.

We first consider BPSK modulation and i.i.d. CSCG MIMO channels which remain constant within each

STBC code word but change from one codeword to another, i.e.,the MIMO channels are quasi-static with

respect to the STBC codeword interval, but fast fading with respect to the FEC codeword interval. We

then analyze the system performance in i.i.d. CSCG channelswhich remain constant throughput the entire

FEC code word. These two channels are also termed asfastandslow quasi-staticfading channels.

Making use of the fact that the OSTBC designed fornT transmit antennas provides exactly the

same performance as thenTnR order receive MRC if the SNR normalization is taken care of, as proven in

[33] and [34], we start the union bound derivation from the PEP of a coded system withL-branch MRC.

2B.1 Fast Fading Channel

Expressing the received signal at symbol intervali and MRC branchl as

ri,l = hi,lci
√
Ec + ni,l,

whereci is the BPSK modulated coded bits,{hi,l} are i.i.d. complex Gaussian, andni,l is the AWGN

noise with varianceσ2, we have the MRC decision statistic as

yi =
L∑

l=1

hi,lri,l =

(
L∑

l=1

h2
i,l

)
ci
√
Ec +

L∑

l=1

hi,lni,l.

Defining

αi =

√√√√
L∑

l=1

h2
i,l,

we have thatα2
i is chi-square distributed with2L degrees of freedom, with the pdf of

p(h) =
1

(2γ)L(L− 1)!
hL−1 exp(

−h
2γ2

),

where2γ2 is the variance ofhi,l, l = 1, 2, · · · , L.

Scaling the decision statisticyi with αi, we have

zi =
yi

αi
= αici

√
Ec + vi,
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where

vi =

∑L
l=1 hi,lni,l

αi
,

E{vi} = 0,

E{|vi|2} = E
{∑L

l=1 hi,lni,l
∑L

m=1 hi,mni,m

α2
i

}
= σ2.

We therefore have

p {zi|ci, αi} =
1√

2πσ2
exp

(
−|zi − αici

√
Ec|2

2σ2

)
.

If we denote the transmitted code sequence of lengthn (for block code,n is the code word length)

asC, and the corresponding scaled MRC output sequence asZ, we have

p{Z|C} =

n∏

i=1

1√
2πσ2

exp

(
−
∣∣zi − αici

√
Ec

∣∣2

2σ2

)

=
1

(2πσ2)
n
2

exp


−
∑n

i=1

(
|zi|2 − 2ziαici

√
Ec + α2

iEc

)

2σ2




=
1

(2πσ2)
n
2

exp


−
∑n

i=1

(
|zi|2 + α2

iEc

)

2σ2


 exp

(∑n
i=1 ziαici

√
Ec

σ2

)
.

We then have the PEP as

P2,e

(
C̃|C

)
= Prob

{
p{Z|C̃} > p{Z|C}

}

= Prob

{
exp

(∑n
i=1 ziαic̃i

√
Ec

σ2

)
> exp

(∑n
i=1 ziαici

√
Ec

σ2

)}

= Prob

{
n∑

i=1

ziαi

√
Ecc̃i >

n∑

i=1

ziαi

√
Ecci

}

= Prob

{
n∑

i=1

αizi (c̃i − ci) > 0

}
.

If the Hamming distance betweeñC andC is dm, i.e., (c̃i − ci) = −2ci for dm symbols, and
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(c̃i − ci) = 0 for n− dm symbols, we have the PEP as

P2,e

(
C̃|C

)
= Prob





dm∑

j=1

αjzj(−2cj) > 0





= Prob





dm∑

j=1

αjcj

(
αjcj

√
Ec + vj

)
< 0





= Prob





dm∑

j=1

α2
j

√
Ec < −

dm∑

j=1

αjcjvj





= Prob





√
Ec

dm∑

j=1

L∑

l=1

|hj,l|2 < −
dm∑

j=1

cjvj

√√√√
L∑

l=1

|hj,l|2

︸ ︷︷ ︸
η





,

where

E{η} = 0,

E{|η|2} = σ2
dm∑

j=1

L∑

l=1

|hi,l|2,

i.e.,η is zero mean Gaussian.

We therefore have the PEP as

P2,e(dm|h) = Q




√
Ec
∑dm

j=1

∑L
l=1 |hj,l|2

σ




= Q




√√√√2Ec

No

dm∑

j=1

L∑

l=1

|hj,l|2

 , (2.41)

which has a diversity order ofdmL.

The average PEP is therefore

P 2,e(dm) =

[
1

2
(1 − µ)

]dmL dmL−1∑

k=0




dmL− 1 + k

k



[
1

2
(1 + µ)

]k

,

whereµ =

√
Ec
No

1+ Ec
No

=

√
2γ2 Ec

No

1+2γ2 Ec
No

.

For block code, we can therefore obtain the union bound of code word error rate as

P (code word error) ≤
n∑

d=dmin

NdP2,e(d),
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whereNd is the number of code word with Hamming weightd.

For convolutional code (CC)(n, k) wherek is the number of input bits andn is the number of

output bits per time interval, the union bound for soft decision decoding is

P (code word error) <
∞∑

d=dfree

βdP2,e(d),

wheredfree is the minimum free distance of the code,{βd} are obtained from expanding the first derivative

of the transfer functionT (D,N) [17] as follows

dT (D,N)

dN

∣∣∣∣
N=1

=

∞∑

d=dfree

βdD
d.

The bit error probability is obtained as

Pb <
1

k

∞∑

d=dfree

βdP2,e(d). (2.42)

Figure 2.4 depicts the simulated uncoded and coded performance as well as the derived bound for

fast-fading2 × 1 and2 × 2 Alamouti STBC system. The constraint lengthK = 3 Rc = 1
2 convolution

code is used. From the figure we can see clearly that FEC introduces diversity gain in fast fading channels,

exhibited by the slope change of the BER versus SNR curves. Wealso see a very good match between the

simulation and the bound. We have therefore confirmed that concatenating FEC with STBC can exploit

the diversity gain in a fast fading channel.

2B.2 Slow Fading Channel

For slow fading channel whose coefficients remain unchangedduring the code word interval, the MRC

gain coefficientαi remains constant for alli = 1, · · · , n, i.e.

α =

√√√√
L∑

l=1

h2
l .

The scaled MRC outputzi is thus

zi =
√
Ecαci + vi
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with

vi =

∑L
l=1 hlni,l

α
,

E{vi} = 0,

E{|vi|2} = E
{∑L

l=1 hlni,l
∑L

m=1 hmni,m

α2

}
= σ2.

Making use of the results from the previous section, we can quickly write the PEP for slow fading

channel as

P2,e

(
C̃|C

)
= Prob

{
p{Z|C̃} > p{Z|C}

}

= Prob

{
exp

(∑n
i=1 ziαc̃i

√
Ec

σ2

)
> exp

(∑n
i=1 ziαci

√
Ec

σ2

)}

= Prob

{
n∑

i=1

ziα
√
Ecc̃i >

n∑

i=1

ziα
√
Ecci

}

= Prob

{
n∑

i=1

zi (c̃i − ci) > 0

}

= Prob





dm∑

j=1

zj(−2cj) > 0





= Prob





dm∑

j=1

cj

(
αcj
√
Ec + vj

)
< 0





= Prob





dm∑

j=1

α
√
Ec < −

dm∑

j=1

cjvj

︸ ︷︷ ︸
η





= Prob
{
η > dmα

√
Ec

}
.

As η is Gaussian, and

E{η} = 0,

E{|η|2} = dmσ
2,

we have the PEP as

P2,e(dm|h) = Q



√
d2

mα
2Ec

dmσ2


 = Q




√√√√2Ecdm

No

L∑

l=1

|hl|2

 , (2.43)
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which shows that the diversity gain is of orderL from the orthogonal STBC, and coding gain ofdm from

the FEC, in contrast to the full diversity gain of orderLdm in fast fading channel case.

The average PEP is therefore

P 2,e(dm) =

[
1

2
(1 − µ)

]L L−1∑

k=0




L− 1 + k

k



[
1

2
(1 + µ)

]k

,

whereµ =

√
Ec
No

1+ Ec
No

=

√
2γ2dm

Ec
No

1+2dmγ2 Ec
No

.

For block code, we can therefore obtain the union bound of code word error rate as

P (code word error) ≤
n∑

d=dmin

NdP2,e(d),

whereNd is the number of code word with Hamming weightd.

For CC(n, k) wherek is number of input bits andn is the number of output bits per time interval,

the union bound for soft decision decoding is

P (code word error) <

∞∑

d=dfree

βdP2,e(d),

wheredfree is the minimum free distance of the code,{βd} are obtained from expanding the first derivative

of the transfer functionT (D,N) [17] and the bit error probability is obtained as

Pb <
1

k

∞∑

d=dfree

βdP2,e(d). (2.44)

Figure 2.5 depicts the uncoded and coded performance for slow-fading2 × 1 and2 × 2 Alamouti

STBC system. Same as in the study on fast fading channels, we use the constraint lengthK = 3 Rc = 1
2

convolution code and QPSK modulation. From the figure we can see clearly that FEC introduces only

coding gain in slow fading channels, exhibited by the parallel shift of the curves.
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Chapter 3

An Overview of MIMO-OFDM

In this chapter, we will develop the MIMO-OFDM system model and give an overview of MIMO-OFDM.

We start with the signal model formulation for conventionalsingle-antenna cyclic prefix (CP)-based

OFDM systems, and extend it to the MIMO systems. We will then generalize the linear signal model

and incorporate the various STFP schemes. The generalized linear signal model will facilitate the capac-

ity and diversity analysis of the various STFP schemes. The receiver algorithms derived based on one

particular STFP scheme can be also easily extended to other systems.

3.1 A General MIMO-OFDM System Model

In this section, we develop a mathematical model of MIMO-OFDM systems withnT transmit andnR

receive antennas. The OFDM modulation is composed of two steps of operation - inverse fast Fourier

transform (IFFT) and CP insertion. We denoteN as the total number of subcarriers, or the FFT size,P

as the number of subcarriers used to transmit data (and pilotsignals) whereP ≤ N , L the number of

sample-spaced multipaths in each of the MIMO channels defined by the transmit-receive antenna pairs,

andLCP the CP length in samples. Without loss of generality, we assume thatL ≤ LCP, the inter-

symbol interference (ISI) from the multipath channel can therefore be completely mitigated, as shown in

the following derivation.

33
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3.1.1 Signal Model for Single-Input Single-Output OFDM

The OFDM modulated signalx for a single-antenna system can be written as

x = TCPFHX, (3.1)

wherex is a column vector of dimension(N + LCP)× 1, F is theN ×N Fourier transform matrix with

its elements defined asfmn = 1√
N

exp
[
−j 2π

N (m− 1)(n − 1)
]
,m, n = 1, 2, · · · , N , andFH represents

the IFFT operation on the frequency domain signal vectorX. TCP is a circulant matrix [49] of size

(N + LCP) ×N with its first row written as:

( 0 · · · 0
︸ ︷︷ ︸

N−LCP

1 0 · · · 0
︸ ︷︷ ︸

LCP−1

).

TCP adds CP to the IFFT output.X is of sizeN WhenP = N , X is the signal to be transmitted;

whenP < N , some subcarriers at the edges of the allocated bandwidth are used as the guard band. The

subcarrier allocation scheme defined in IEEE 802.11a WLAN [2] is illustrated in Fig. 3.1. Out of the

sixty-four subcarriers, i.e., N=64, eleven subcarriers are used as guard subcarriers, five of which at the

higher frequency band (compared to direct current, or0th subcarrier), i.e., subcarriers27 ∼ 31, and six

at the lower frequency band, i.e., subcarriers−32 ∼ − 27. No data or pilot is transmitted at the direct

current (dc) subcarrier, either. In this caseX is formed as follows:

XT = ( 0 XT
h 0T

N−P−1 XT
l

),

whereXh denotes the frequency domain signal at the higher frequencysubcarriers (in the IEEE 802.11a

case, subcarriers1 ∼ 26), Xl denotes the signal at the lower frequency subcarriers (subcarriers−26 ∼ −

1 in the IEEE 802.11a case), and0N−P−1 denotes the all zero vector with length (N-P-1).

Assuming a sample-spaced multipath channel withL equally-spaced multipaths and thelth ele-

ment having complex gain ofhl, we can write the received signal as

ri = h0xi + h1xi−1 + vi, (3.2)
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-26 -1 0 1 26

Subcarrier Numbers

Figure 3.1: Illustration of Subcarrier Allocation with Gua rd Bands

wherei represents theith received block of data,h0 andh1 are both size(N+LCP)×(N+LCP) Toeplitz

matrices [49] with(h0, h1, · · · , hL−1, 0, · · · , 0)T as the first column and(h0, 0, · · · , 0) as the first row of

h0, and(0, · · · , 0)T as the first column and(0, · · · , 0, hL−1, hL−2, · · · , h1) as the first row ofh1, i.e.,

h0 =




h0 0 0 · · · 0 0

h1 h0 0 · · · 0 0

...
...

...
. . .

...
...

hL−1 hL−2 hL−3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · h1 h0




(N+LCP)×(N+LCP)

,

and

h1 =




0 · · · hL−1 hL−2 · · · h1

0 · · · 0 hL−1 · · · h2

...
.. . 0 0

. . . 0




(N+LCP)×(N+LCP)

.

vi denotes the complex AWGN with zero mean and varianceσ2. Thereforeri consists of three parts: the

desired signalxi, the inter-OFDM symbol interference from the previous OFDMsymbolxi−1, and the

AWGN.

Frame synchronization process identifies the starting point of the OFDM block, following which

the CP portion in the received signal is removed. This is written as:

yi = RCPri, (3.3)

whereRCP is a circulant matrix of sizeN × (N + LCP) whose first row is written as

( 0 · · · 0
︸ ︷︷ ︸

LCP

1 0 · · · 0
︸ ︷︷ ︸

N−1

).
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Therefore,RCPh1 = 0, the inter-OFDM symbol interference is removed from the received signal. Hence

we drop the indexi and rewrite (3.3) as:

y = RCPh0x + v, (3.4)

wherev is the AWGN vector with lengthN . Performing FFT ony, we have

Y = FRCPh0x + Fv

= FRCPh0TCPFHX + V, (3.5)

whereV represents the frequency domain noise which is still white Gaussian, andRcph0Tcp is aN ×N

circulant matrix with the first column written as

ht = [h0, h1, · · · , hL−1, 0, · · · , 0]T . (3.6)

Therefore,Rcph0Tcp can be diagonalized and we have

FRcph0TCPFH = H = diag(H0,H1, · · · ,HN−1) ,

whereH is the frequency response of the channel with thenth diagonal element expressed as [50]

Hn =

L−1∑

l=0

hl exp(−j 2π
N
nl) =

√
NFnht, (3.7)

whereFn is thenth row of the FFT matrixF.

Hence, we can rewrite (3.5) as

Y = HX + V. (3.8)

Theorem 1. The frequency domain channel responseHn’s, n = 0, 1, · · · , N − 1 have the same sta-

tistical property for wide-sense stationary uncorrelatedscattering (WSSUS) complex Gaussian multipath

channels in which only the first component may have non-zero mean.

Proof: For WSSUS complex Gaussian multipath channels, we have forhl = hl,Re + jhl,Im,

E
{
h2

l,Re

}
= E

{
h2

l,Im

}
, l 6= 0,

E
{
h2

l,Re

}
= a2

0 + E
{
h2

l,Im

}
, l = 0,

E {hl,Im} = 0, l = 0, 1, · · · , L− 1,

E {hl,Re} = a0δ(l), l = 0, 1, · · · , L− 1
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wherea0 is the Rician component which is assumed to appear in the realpart ofh0.

We also have

E {hl,Rehl,Im} = 0,

E
{
h2

l

}
= E

{
h2

l,Re − h2
l,Im + 2jhl,Rehl,Im

}
= a2

0δ(l),

E {hlhm6=l} = 0

E
{
hlh

∗
m6=l

}
= 0.

From (3.7),Hn is complex Gaussian random variable (r.v.) when the time domain coefficientshl,

l = 0, 1, · · · , L − 1, are complex Gaussian. Therefore, in order to prove Theorem1, we only need to

show that all theHn’s have the same first order and second order statistics.

The first-order mean value ofHn is

E {Hn} = E
{√

NFnht

}
=

√
NFnE {ht} =

√
NF (n, 0)E {h0} = E {h0} ,

i.e., allHn’s have the same mean.

Now let’s look at the second order statistics.

E
{
|Hn|2

}
= E {HnH

∗
n} = E

{
NFnhth

H
t (Fn)H

}
= NFnE

{
hth

H
t

}
(Fn)H

= N
L−1∑

l=0

F (n, l)E
{
|hl|2

}
F (n, l)∗ = L

L−1∑

l=0

E
{
|hl|2

}
,

E
{
H2

n

}
= NE





(
L−1∑

l=0

F (n, l)hl

)2




= N

L−1∑

l=0

F (n, l)2E
{
h2

l

}

= E
{
h2

0

}

V ar(Hn) = E {(Hn − E(Hn)) (Hn − E(Hn))∗}

= E
{
|Hn|2 − E(Hn)H∗

n −HnE(H∗
n) + |E(Hn)|2

}

= E
{
|Hn|2

}
− |E(Hn)|2

= L
L−1∑

l=0

E
{
|hl|2

}
− |E {h0} |2,

i.e., allHn’s have the same second-order statistics.
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We hence prove thatHn, n = 0, 1, · · · , N − 1 are statistically the same for WSSUS complex

Gaussian multipath channels.

Theorem 2. The maximum frequency diversity order of an OFDM system isL, whereL is the number of

multipaths in the frequency selective channel.

Proof: From (3.8), assuming perfect CSI at the receiver, we have thePEP of maximum likelihood

detection (MLD) as

P (X → Xe) = P (p(Y|X,H) < p(Y|Xe,H))

= P
(
|Y − HX|2 > |Y − HXe|2

)

= Q



√
d2(HX,HXe)

2N0




≤ exp

(
−|HX− HXe|2

4N0

)
,

whereX is the transmitted sequence, andXe is the erroneously detected sequence.N0 = 2σ2.

Defininge = diag (X − Xe), andH = diag (Fht), we have

‖HX − HXe‖2 = ‖eFht‖2

= hH
t FHeHeFht

= hH
t FHQΛeQ

HFht,

whereeeH = QΛeQ
H is the eigen-decomposition of the error vector covariance matrix eeH . The

number of non-zero eigenvaluesdc is determined by the free distance of the FEC.

Defining h̄t = QHFht, there areL non-zero independent complex Gaussian elements inh̄t, and

we have

‖HX− HXe‖2 = h̄H
t Λeh̄t =

L−1∑

l=0

|h̄l|2λe,l

where we assume thatdc ≥ L.

We therefore can write the PEP as

P (X → Xe) =

L−1∏

l=0

exp

(
−|h̄l|2λe,l

4N0

)
,
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and when the multipath componentshl’s are i.i.d. complex Gaussian with zero mean and variance1
L , we

have the average PEP written as

Pe(X → Xe) =

(
1

N0

)−dl

(
dl−1∏

l=0

λe,l

)−1

, (3.9)

wheredl = min(L, dc) is thediversity order of the OFDM system, and we havemax(dl) = L, achieved

when the free distance of the FECdc is larger than the multipath order.

3.1.2 Signal Model for MIMO-OFDM

With the SISO-OFDM model defined in (3.8), we can now work out the MIMO OFDM system model in

a very straight-forward manner, as:

Y = HX + V , (3.10)

whereX is a dimension-nTN column vector obtained by stacking the transmitted signal vectorsXm,

m = 1, 2, · · · , nT from thenT transmit antennas,Y is a dimension-nRN column vector obtained by

stacking the received signal vectorYn, n = 1, 2, · · · , nR, from thenR receive antennas, andH is the

frequency domain MIMO-OFDM channel of size(nRN) × (nTN) which is written as

H =




H1,1 H1,2 · · · H1,nT

H2,1 H2,2 · · · H2,nT

...
...

. ..
...

HnR,1 HnR,2 · · · HnR,nT




,

whereHn,m is aN ×N diagonal matrix corresponding to the single-antenna frequency domain channel

defined by themth-transmitnth-receive antenna pair,V is the AWGN noise vector of dimensionnRN

obtained by stacking the AWGN noise vector at thenR receive antennas.

Therefore, for each receive antennan, the received signal at subcarrierk can be expressed as:

Yn,k =

nT∑

m=1

H(n−1)×N+k,(m−1)×N+k)X(m−1)×N+k

=

nT∑

m=1

Hn,m,kXm,k, (3.11)
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wheren = 1, 2, · · · , nR,m = 1, 2, · · · , nT , andk = 0, , 1, · · · , N − 1.

Defining

Rk =

[
Y1,k Y2,k · · · YnR,k

]T

,

Hk =




Hk,k Hk,2k · · · Hk,nT k

H2k,k H2k,2k · · · H2k,nT k

· · ·

HnRk,k HnRk,2k · · · HnRk,nT k




=




H1,1,k H1,2,k · · · H1,nT ,k

H2,1,k H2,2,k · · · H2,nT ,k

...
...

. . .
...

HnR,1,k HnR,2,k · · · HnR,nT ,k




,

Sk =

[
Xk X2k · · · XnTk

]T

,

N k =

[
Vk V2k · · · VnT k

]T

,

we can write (3.11) as

Rk = HkSk + N k. (3.12)

Theorem 3. The frequency domain MIMO-OFDM channel responseHk ’s, k = 0, 1, · · · , N − 1 have

the same statistical property for spatially uncorrelated WSSUS complex Gaussian multipath channels in

which only the first component may have non-zero mean.

Proof: From Theorem 1, the elementsHnr ,nt,k are complex Gaussian and they are statistically the

same for differentk’s. Therefore, we only need to prove that the correlation coefficients between elements

in Hk is independent ofk, as follows.

E
{
Hm,n,kH

∗
p,q,k

}
= E

{(
L−1∑

l=0

hm,n,le
−j 2π

N
kl

)(
L−1∑

d=0

hp,q,de
−j 2π

N
kd

)∗}

= E
{

L−1∑

l=0

L−1∑

d=0

hm,n,lh
∗
p,q,de

−j 2π
N

k(l−d)

}

=

L−1∑

l=0

L−1∑

d=0

E
{
hm,n,lh

∗
p,q,d

}
e−j 2π

N
k(l−d)

=
L−1∑

l=0

L−1∑

d=0

σ2
l ρ

1
2
r (m, p, l)ρ

1
2
t (n, q, l)δ(l − d)e−j 2π

N
k(l−d)

=

L−1∑

l=0

σ2
l ρ

1
2
r (m, p, l)ρ

1
2
t (n, q, l) (3.13)
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with the assumption of WSSUS multipath models. Therefore, the MIMO channelHk have the same sta-

tistical properties for all the subcarriers. Hereρt(n, q, l) andρr(m, p, l) denote the correlation coefficients

of thelth path at the transmitter and the receiver, which are determined by the angle of departure and angle

of arrival respectively [51][52].

Corollary 1 The frequency domain channel is spatially uncorrelated if the time-domain multipath com-

ponents are spatially uncorrelated.

Proof: This is straightforward from (3.13).

From now onward, unless otherwise stated, we will assume that there is no spatial correlation in

the channel. For signal notation, we will no longer differentiate the MIMO signals from the single-antenna

signals by using calligraphic letters unless otherwise stated.

3.2 STFP and FEC Encoding in MIMO-OFDM Systems

In this section, we will generalize the signal model developed in Section 3.1 by incorporating the various

STFP schemes and discuss application of FEC coding in such systems.

A bit-interleaved coded and modulated STFP MIMO system is illustrated in Fig. 3.2. In this

figure, the random information bits are first demultiplexed into parallel streams (layers) by the “Spatial

DeMux” unit. In each parallel stream, information bits are encoded, bit interleaved, and mapped to con-

stellation points of the adopted modulation scheme in the “BICM” unit, based on the bit-interleaved coded

modulation (BICM) principle [35]. BICM provides both a large Hamming distance and a large Euclidean

distance, hence is a robust coded modulation scheme for wireless channels. It also splits the coded modu-

lation design into two parts - selection of the encoder, and design of the modulation scheme. In this thesis,

we consider Gray mapping rules to map the coded and interleaved bits to symbols. In order to achieve

“turbo” gain in iterative decoding of BICM (BICM-ID), othermapping rules have been proposed. The

details can be referred to works by Li and Ritcey [53] [54] [55] [56], Schreckenbachet. al. [57] [58].

The BICM outputs from the various parallel streams are further processed by the “Space-Time-
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Freq(uency)-Precoding”, i.e., the STFP unit. Depending onthe system requirement and the transmit and

receive antennas available, different STFP schemes can be adopted. For example, if maximum capacity

is targeted from a system with no less receive than transmit antennas, and if no CSI is available at the

transmitter, simple spatial multiplexing, i.e., VerticalBLAST (VBLAST) structure can be used. The

corresponding STFP processing is represented by a linear transform with identity matrixInT
. If maximum

transmit and receive diversity is desired from the MIMO channel, the full-diversity space-time coding

schemes, e.g., STBC [31] [33], STTC [25] [59], etc., can be used. A linear frequency-domain transform

can be applied to the BICM output before the STBC encoding to exploit the frequency domain diversity

and improve the system performance, as suggested in [60]. The linear pre-transform can be applied to

a VBLAST-OFDM system following a similar approach in [60]. To achieve compliance with legacy

standard with multiple transmit antennas, cyclic delay diversity (CDD) can be applied [61, 62, 63]. CDD

can also be combined with other multiple antenna processingschemes, e.g., transmit beamforming, as

shown in [64], or spatial spreading (SS), as will be discussed in this thesis. If both transmit diversity and

capacity gains are desired, groupwise STBC (GSTBC) [65], LDC [66], QSTBC [38, 39], etc., can be used.

When the transmitter has no knowledge about the channel, equal rate is assigned to the different spatial

streams, hence same BICM scheme should be used. Each spatialstream should have the same power

allocation as well.

When perfect CSI is available at the transmitter, SVD-basedbeamforming in conjunction with

water-filling performed at each subcarrier is optimum in achieving the channel capacity. In this case,

the STFP is a linear transform represented by matrixΩ as given in (2.2). To reduce the transmitter

complexity, subchannel grouping (SCG) and statistical water-filling (SWF) was proposed in [67], and it

was proved that SCG and SWF can achieve ergodic capacity of MIMO-OFDM channels. With SCG,

the MIMO-OFDM channels are partitioned into several parallel Gaussian channels with different SNR

and different diversity order. To realize the channel capacity, a multiple-codebook variable rate (MCVR)

coded modulation was proposed in [68] in which different coded modulation scheme was used for different

parallel channel, and the power ratio among the parallel channels was also adjusted according to the SWF

principle in order to optimize the power utilization.
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-random bits SpatialDeMux -- BICMBICM --X1XM Space-Time-Freq-Precoding... ... --XC;1XC;nT OFDMOFDM --to MIMO channel... ... ...
Figure 3.2: A coded MIMO-OFDM transmitter.
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Figure 3.3: Block Diagram of A Generalized MIMO OFDM Receiver.

The output of STFP is then OFDM modulated and transmitted by different antennas.

Assuming perfect timing and frequency synchronization, weremove the CP part from the received

data and then convert the signals to frequency domain by FFT,as shown in Fig. 3.3. Our aim here is the

develop a unified linear signal model for each subcarrier through the “Spatial Multiplexing” unit, written

as

R = HX + V, (3.14)

whereR, X, H andV denote the received and transmitted signals, the space-time-frequency precoded

MIMO channel, and the complex AWGN noise, respectively. Depending on the STFP scheme adopted,

the dimensions ofR, X, H andV may vary for the samenT × nR MIMO channel. With such a general

signal model, we can analyze the capacity and diversity performance within the same framework and

identify the best possible precoding scheme. The receiver algorithms we develop in Chapter 5 can also be

applied to the various STFP MIMO-OFDM systems in a straightforward manner.



CHAPTER 3. AN OVERVIEW OF MIMO-OFDM 44

3.2.1 VBLAST-OFDM

For anT × nR VBLAST-OFDM system [65], the signalsR, H, X andV are defined as




R
def
=

[
R1 R2 · · · RnR

]T

,

H
def
=




H1,1 H1,2 · · · H1,nT

...
...

...
...

HnR,1 HnR,2 · · · HnR,nT



,

X
def
=

[
X1 X2 · · · XnT

]T

,

V
def
=

[
V1 V2 · · · VnR

]T

,

(3.15)

whereRi denotes the received signal at antennai, Hi,j denotes the channel response between transmit

antennaj and receive antennai, Xj denotes the transmitted symbol at antennaj, andVi denotes the

independent and identically distributed (i.i.d.) complexAWGN at receive antennai. Vi has zero mean and

varianceσ2 per real dimension.

For VBLAST systems, generalized decision feedback equalizer (GDFE) with no error propagation

is capacity lossless when the transmitter knowsa priori the rate information for each streams [69]. For

linear receivers, VBLAST will have poor performance whennR < nT due to lack of degree of free-

dom [10][70], hence it is in general required that the receive antenna number is no less than the transmit

antenna number. When this is the case, an iterative turbo receiver with capacity approaching FEC codes,

e.g., turbo codes, low-density parity check (LDPC) codes, can have capacity approaching performance

without requirement for any CSI-related information or rate information [71] [72].

3.2.2 GSTBC-OFDM

In a GSTBC-OFDM system [44][73][65], the transmitted signals are divided into groups. Spatial multi-

plexing is applied to signals among the groups; Within the group, Alamouti STBC is performed before the

OFDM modulation. Therefore, an even number of transmit antennas is required to support GSTBC. How-

ever, even when the transmitter has an odd number of antennas, the concept of GSTBC is still applicable.

In this case, the first(nT − 1) antennas can be used to transmit GSTBC-signals, and thenT th antenna
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transmit is used to transmit the non-STBC coded signal, as insome variable rate STBC’s proposed in [43].

However, in such a system, either rate feedback or power adjustment is needed in order to have optimal

performance.

Another way of applying GSTBC in an odd-number transmit antenna system is to combine the

GSTBC encoding with spatial spreading (SS) - encodingnT−1
2 streams of data by Alamouti STBC, and

then spreading the(nT − 1) STBC-coded streams by SS tonT antennas. The SS is modeled in 3.2.5.

Here we first assume an even-numbered transmit antennas, andthe signalsR, H, X andV are

defined as 



R
def
=

[
R1,1 −R∗

1,2 · · · RnR,1 −R∗
nR,2

]T

,

H
def
=




H1,1 H1,2 · · · H1,nT−1 H1,nT

−H∗
1,2 H∗

1,1 · · · −H∗
1,nT

H∗
1,nT−1

...
...

. . .
...

...

HnR,1 HnR,2 · · · HnR,nT−1 HnR,nT

−H∗
nR,2 H∗

nR,1 · · · −H∗
nR,nT

H∗
nR,nT−1




,

X
def
=

[
X1 X2 · · · XnT

]T

,

V
def
=

[
V1,1 −V ∗

1,2 · · · VnR,1 −V ∗
nR,2

]T

,

(3.16)

where subscripts ofR andV denote the receive antenna and OFDM symbol indices in each Alamouti

STBC code word,Hi,j andXj are defined the same as in a VBLAST-OFDM system.

In order to support linear detection, the number of receive antennas needs to satisfy the following

relation

min(nR) ≥ nT

2
.

Hybrid of GSTBC and VBLAST As we briefly mentioned, when the number of transmit antennasis

not even, a hybrid of VBLAST and GSTBC precoding scheme can beapplied. In this case, the firstnT −1

antennas transmitnT −1
2 streams of GSTBC signals , and the last antenna transmits oneindependent stream

of signal. The number of receive antennas needs to satisfy

min(nR) ≥ nT + 1

2
.
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in order to support linear receivers.

The transmitted signal in the hybrid GSTBC-VBLAST system is




X1 −X∗
2

X2 X∗
1

...
...

XnT −2 −X∗
nT−1

XnT −1 X∗
nT −2

XnT
X∗

nT +1




,

i.e., the first (nT − 1) rows denote the Alamouti STBC-coded signals, and the last row denotes the spatial

multiplexing signal.

Following the same way of manipulation as in GSTBC [44][73],we can develop the corresponding

linear signal model. The signalsR, X and V are defined the same as in a GSTBC system, but the

dimension ofX changes tonT + 1, and the precoded channelH is expressed as

H
def
=




H1,1 H1,2 · · · H1,nT−2 H1,nT−1 H1,nT
0

−H∗
1,2 H∗

1,1 · · · −H∗
1,nT−1 H∗

1,nT−2 0 −H∗
1,nT

...
...

. . .
...

...
...

...

HnR,1 HnR,2 · · · HnR,nT−2 HnR,nT−1 HnR,nT
0

−H∗
nR,2 H∗

nR,1 · · · −H∗
nR,nT −1 H∗

nR,nT−2 0 −H∗
nR,nT




. (3.17)

Obviously, due to lack of transmit diversity, the data rate supported by the last stream is lower than

the othernT−1
2 STBC-ed streams. One way to compensate for the diversity loss is higher power allocation

to the non-STBC coded stream, as indicated in [43].

3.2.3 QSTBC-OFDM

For QSTBC, we focus on thenT = 4 cases and consider the rate-1 code in (2.33) by Jafarkhani [38] and

the rate-2 code by Yuenet. al. in [41].
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For the rate-1 QSTBC coded(nT = 4) × nR system, the signalsR, H, X andV are defined as





R
def
=

[
R1,1 −R∗

1,2 R1,3 −R∗
1,4 · · · RnR,1 −R∗

nR,2 RnR,3 −R∗
nR,4

]T

,

H
def
=




H1,1 H1,2 H1,3 H1,4

−H∗
1,2 H∗

1,1 −H∗
1,4 H∗

1,3

H1,3 H1,4 H1,1 H1,2

−H∗
1,4 H∗

1,3 −H∗
1,2 H∗

1,1

...
...

...
...

HnR,1 HnR,2 HnR,3 HnR,4

−H∗
nR,2 H∗

nR,1 −H∗
nR,4 H∗

nR,3

HnR,3 HnR,4 HnR,1 HnR,2

−H∗
nR,4 H∗

nR,3 −H∗
nR,2 H∗

nR,1




,

X
def
=

[
X1 X2 X3 X4

]T

,

V
def
=

[
V1,1 −V ∗

1,2 V1,3 −V ∗
1,4 · · · VnR,1 −V ∗

nR,2 VnR,3 −V ∗
nR,4

]T

,

(3.18)

where subscripts ofR andV denote the receive antenna and OFDM symbol indices in each QSTBC code

word,Hi,j andXj are defined the same as in a VBLAST-OFDM system.

The rate-2 QSTBC in (2.34) can be generated by applying a2 × 2 Walsh-Hadamard spatial-

spreading matrix onto the GSTBC codeword, as

xQSTBC = W2xGSTBC = W2




A1

A2


 , (3.19)

where

W2 =

√
1

2




1 1

1 −1




is the2 × 2 Walsh-Hadamard matrix,Ai, i = 1, 2 denotes theith Alamouti codeword.
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We therefore have




R
def
=

[
R1,1 −R∗

1,2 · · · RnR,1 −R∗
nR,2

]T

,

H
def
=

√
1
2




H1,1 +H1,3 H1,2 +H1,4 H1,1 −H1,3 H1,2 −H1,4

−H∗
1,2 −H∗

1,4 H∗
1,1 +H∗

1,3 −H∗
1,2 +H∗

1,4 H∗
1,1 −H∗

1,3

...
...

...
...

HnR,1 +HnR,3 HnR,2 +HnR,4 HnR,1 −HnR,3 HnR,2 −HnR,4

−H∗
nR,2 −H∗

nR,4 H∗
nR,1 +H∗

nR,3 −H∗
nR,2 +H∗

nR,4 H∗
nR,1 −H∗

nR,3




,

X
def
=

[
X1 X2 X3 X4

]T

,

V
def
=

[
V1,1 −V ∗

1,2 · · · VnR,1 −V ∗
nR,2

]T

,

(3.20)

where subscripts ofR andV denote the receive antenna and OFDM symbol indices in each Alamouti

STBC code word,Hi,j andXj are defined the same as in a VBLAST-OFDM system.

Remark Comparing the GSTBC signal model in (3.16) and the rate-2 QSTBC model in (3.20), we can

see thatR, X andV are defined the same way in the two systems. A closer look at thechannel matrixH

definition for the two systems leads to the following linear relation:

HQSTBC = HGSTBCT, (3.21)

whereT is a4 × 4 matrix defined as

T =

√
1

2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




= W2 ⊗ I2, (3.22)

whereW2 is the2×2 Walsh-Hadamard matrix,I2 the2×2 identity matrix, and⊗, the Kronecker product.

Taking note thatTTH = THT = I, we therefore have

HQSTBCHH
QSTBC = HGSTBCHH

GSTBC. (3.23)
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3.2.4 LDC-OFDM

We consider the LDC-OFDM system in which each subcarrier is independently encoded by the same

linear dispersion matrices and the channel is quasi-staticwithin the LDC codeword. We hence have a real

signal model in which the equivalent signals in (3.14) are defined as follows (cf. Eqns. (22) - (25)in [66])




R
def
=

[
RRe,1 RIm,1 · · · RRe,nRT RIm,nRT

]T

,

H
def
=




A1H1 B1H1 · · · AQH1 BQH1

...
...

. . .
...

...

A1HnR
B1HnR

· · · AQHnR
BQHnR



,

X
def
=

[
XRe,1 XIm,1 · · · XRe,Q XIm,Q

]T

,

V
def
=

[
VRe,1 VIm,1 · · · VRe,nRT VIm,nRT

]T

,

(3.24)

where subscripts “Re” and “Im” denote real and imaginary parts of the signal,T is the LDC codeword

interval, Q is the total number of symbols transmitted by one LDC codeword, andAq andBq, q =

1, 2, · · · , Q are generated from the LDC encoding matricesAq andBq as

Aq =




ARe,q −AIm,q

AIm,q ARe,q


 ,

Bq =




−BIm,q −BRe,q

BRe,q −BIm,q


 ,

that is,Aq andBq are both of dimension of2nRT × 2nT , andHn is a column vector of dimension2nT

generated from the channel response corresponding to thenth receive antenna as

Hn =

[
HRe,n,1 HRe,n,2 · · · HRe,n,nT

HIm,n,1 HIm,n,2 · · · HIm,n,nT

]T

.

The precoding rate of LDC isRP,LDC = Q/T .

3.2.5 CDDSS-OFDM

Cyclic-delay diversity spatial spreading (CDDSS) is an open loop precoding scheme which can mapnS

streams of data tonT transmit antennas,nT ≥ nS. It is a combination of SS and CDD. CDD was first
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proposed by Kaiser in [62] as a transmit diversity scheme forOFDM systems, as an extension of the delay

diversity scheme proposed for single-carrier modulation systems. Kaiser also proved in [62] that CDD is

equivalent to phase diversity (PD) and in [61] that the operation of CDD is transparent to the receiver.

Before proceeding to develop the signal model for CDDSS-OFDM, we first develop the CDD-

OFDM signal model fornT = 2 andnR = 1 system.

CDD-OFDM

Denoting the IFFT output of the original transmitted signalas

xt = FHX =

[
x0

t x1
t · · · xN−1

t

]T

,

and the cyclic delay value ass, we have the cyclic delayed signal sequence as

xCDD
t =

[
xs

t xs+1
t · · · xN−1

t x0
t x1

t · · · xs−1
t

]T

= PCDDxt, (3.25)

wherePCDD is a circulant matrix with its first row as

(
0 · · · 0 1 0 · · · 0

)

i.e., only itssth element is “1” and all the other elements are “0”.

Then CP is appended to both the original time domain sequencext and the cyclic delayed signal

sequencexCDD
t as

x = TCPxt = TCPFHX,

xCDD = TCPxCDD
t = TCPPCDDFHX.

The corresponding received signal after removing the CP portion is therefore written as

yCDD = RCPh0,1,1x + RCPh0,1,2x
CDD + v (3.26)

= RCPh0,1,1TCPFHX + RCPh0,1,2TCPPCDDFHX + v (3.27)

following (3.4). Hereh0,1,1 andh0,1,2 are the Toeplitz channel matrices corresponding to receiveantenna

1, and transmit antenna 1 and 2, respectively.
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From (3.26) and (3.27), it is obvious that CDD does not incur any ISI.

From Section 3.1,(RCPh0,1,1TCP) and(RCPh0,1,2TCP) are bothN×N circulant matrices with

their first column respectively written as

ht,1,1 = [h0,1,1, h1,1,1, · · · , hL−1,1,1, 0, · · · , 0]T

and

ht,1,2 = [h0,1,2, h1,1,2, · · · , hL−1,1,2, 0, · · · , 0]T .

Matrix
(
RCPh0,1,2TCPPCDD

)
is therefore also a circulant matrix and its first column is the s’th

column of(RCPh0,1,2TCP), written as

hCDD
t,1,2 =






0, · · · , 0︸ ︷︷ ︸

s

h0,1,2, h1,1,2, · · · , hL−1,1,2, 0, · · · , 0︸ ︷︷ ︸
N−L−s




T

, s ≤ (N − L),


hN−s,1,2, · · · , hL,1,2︸ ︷︷ ︸

L+s−N

, 0, · · · , 0︸ ︷︷ ︸
N−L

h0,1,2, h1,1,2, · · · , hN−s−1,1,2︸ ︷︷ ︸
N−s




T

, s > (N − L),

(3.28)

i.e., elements of the first column of circulant matrix
(
RCPh0,1,2TCPPCDD

)
are written as

hCDD
t,1,2 (n) = ht,1,2 [(n− s) mod N ] , n = 0, 1, · · · , N − 1. (3.29)

We can therefore re-write (3.27) as

yCDD = hCDD
equivF

HX + v (3.30)

wherehCDD
equiv isN ×N circulant matrix with its first column written as

hCDD
t,equiv =





[h0,1,1, · · · , hs−1,1,1, hs,1,1 + h0,1,2, · · · , hL−1,1,1 + hL−1−s,1,2,

hL−s,1,2, · · · , hL−1,1,2, 0, · · · , 0]T , s < L,

[h0,1,1, h1,1,1, · · · , hL−1,1,1, 0, · · · , 0, h0,1,2, h1,1,2, · · · , hL−1,1,2, 0, · · · , 0]T , L ≤ s ≤ (N − L),

[h0,1,1 + hN−s,1,2, · · · , hL+s−N−1,1,1 + hL−1,1,2, hL+s−N,1,1, · · · ,

hL−1,1,1, 0, · · · , 0, h0,1,2, h1,1,2, · · · , hN−s−1,1,2]
T , s > (N − L),

(3.31)



CHAPTER 3. AN OVERVIEW OF MIMO-OFDM 52

i.e., for0 < s < N , additional multipathshave been created through CDD. Therefore, higher frequency

diversity is made possible through CDD.

Making use of (3.29), we can alternatively write the elements in the first column of circulant matrix

hCDD
equiv as

hCDD
t,equiv(n) = ht,1,1(n) + hCDD

t,1,2 (n)

= ht,1,1(n) + ht,1,2 [(n− s) mod N ] (3.32)

wheren = 0, 1, · · · , N − 1.

FornT = 2 system, we can see that to fully exploit the frequency diversity potential in CDD, the

cyclic delays is preferably in the rangeL ≥ s < N − L.

Performing FFT on (3.27), we obtain the frequency domain signal model, as

YCDD = H11X + HCDD
12 X + V, (3.33)

whereH11 andHCDD
12 areN ×N diagonal matrices, with thekth diagonal element forH11 as

H11,k =

L∑

l=0

h11,le
−j 2π

N
kl

and thekth diagonal element forHCDD
12 as

HCDD
12,k =





L−1∑

l=0

h12,le
−j 2π

N
k(l+s) = e−j 2π

N
ks

L−1∑

l=0

h12,le
−j 2π

N
kl = e−j 2π

N
ksH12,k, s ≤ (N − L),

N−s−1∑

l=0

h12,le
−j 2π

N
k(l+s) +

L−1∑

l=N−s

h12,le
−j 2π

N
k(l+s−N)

=

L−1∑

l=0

h12,le
−j 2π

N
k(l+s) = e−j 2π

N
ksH12,k, s > (N − L).

We hence have the frequency domain channel expressed as

HCDD
12 = ΨH12 (3.34)

where

Ψ = diag

(
1, e−j 2π

N
s, · · · , e−j 2π

N
ks, · · · , e−j 2π

N
(N−1)s

)
. (3.35)



CHAPTER 3. AN OVERVIEW OF MIMO-OFDM 53

(3.33) can therefore be re-written as

YCDD = (H11 + ΨH12)X + V, (3.36)

For each subcarrier, we have the received signal expressed as

Yk =
(
H11,k + e−j 2π

N
ksH12,k

)
Xk + Vk = HkΦkWXk + Vk, (3.37)

where

Hk =

[
H11,k H12,k

]
,

Φk = diag

(
1, e−j 2π

N
ks

)
,

W =




1

1


 .

Remark Matrix W can be seen as a spatial spreading matrix, which spreads the single-stream transmit-

ted signalXk to nT = 2 antennas.

ThenT = 2 time-domain channel model in (3.32) and frequency domain model in (3.37) can be

extended tonT > 2 CDD transmit diversity system in a straightforward manner.Assuming the incremen-

tal cyclic delay per antenna isτ , then the cyclic delay applied to thent’th antenna is(nt − 1)τ . We hence

have the time-domain equivalent channel as

hCDD
t,equiv(n) =

nT∑

nt=1

ht,1,nt [(n− (nt − 1)τ) mod N ] , (3.38)

and the frequency domain channel as

YCDD =

nT∑

nt=1

ΨntH1ntX + V, (3.39)

whereΨnt ’s are diagonal matrices with thekth diagonal elementψnt(k) written as

ψnt(k) = e−j 2π
N

(nt−1)τk.

We hence have the signal model at each subcarrier as

Yk = HkΦkWXk + Vk, (3.40)
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where

Hk =

[
H11,k H12,k · · · H1,nT ,k

]
,

Φk = diag

(
1, e−j 2π

N
kτ , · · · , e−j 2π

N
k(nT−1)τ

)
,

W =




1

...

1



.

CDDSS-OFDM

As we have shown, in a CDD system, the single-stream signal isfirst spread tonT antennas with equal

energy. After that, a cyclic shift is applied to the time domain signals transmitted overnt > 1 antennas

to transfer the spatial domain freedom to frequency diversity. When the number of transmitted spatial

streams of signalsnS is larger than one but smaller than the number of transmit antennasnT , orthonormal

spatial spreading with cyclic delay diversity, i.e., CDDSS, can be used to map thenS streams of signals to

nT transmit antennas and to transfer the additional spatial domain freedom to frequency diversity. In this

case, the signals in (3.14) are written as




R
def
=

[
R1 R2 · · · RnR

]T

,

H
def
=




H1,1 H1,2 · · · H1,nT

...
...

...
...

HnR,1 HnR,2 · · · HnR,nT




ΦW,

X
def
=

[
X1 X2 · · · XnS

]T

,

V
def
=

[
V1 V2 · · · VnR

]T

,

(3.41)

whereΦ denotes thenT × nT diagonal phase rotation matrix introduced by CDD with thent’th diagonal

element

φnt = exp

[
−j 2π

N
(nt − 1)kτ

]
,

with τ being the incremental cyclic delay value, N the FFT size, andk the subcarrier index.
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Matrix W is the spatial spreading matrix of dimensionnT × nS , corresponding to the firstnS

columns of anT × nT unitary matrix.

Theorem 4. In a CDDSS-OFDM system, each individual data stream is transmitted through CDD.

Proof: From (3.41), the received signal corresponding to spatial streamns, 1 ≤ ns ≤ nS , is written as

Rns

k = HkΦWnsX
ns

k + Vk

whereWns denotes thensth column ofW, and(Wns)
H

Wns = 1.

Comparing with (3.40), the conclusion is straightforward.

Theorem 5. The maximum frequency diversity order for each spatial stream in the CDDSS MIMO-OFDM

system ismin (LnT , N), achieved when the cyclic delayτ = L, withL being the number of multipaths

in each transmit-receive antenna pair channel,nT the number of transmit antennas,N the number of

subcarriers in OFDM.

Proof: From Theorem 4, we only need to prove that the maximum frequency diversity order for CDD-

OFDM ismin (LnT , N) whenτ = L.

From (3.38), whenτ = L, andnTL ≤ N , we have the equivalent time-domain channel as

hCDD
t,equiv(n) =

nT∑

nt=1

ht,1,nt [(n− (nt − 1)L) mod N ]

=





ht,1,1(n) 0 ≤ n ≤ L− 1

ht,1,2(n− L) L ≤ n ≤ 2L− 1

· · ·

ht,1,nT
(n− (nT − 1)L) (nT − 1)L ≤ n ≤ nTL− 1

0 nTL < n

i.e., there arenTL multipaths in the equivalent time-domain channel.

WhennTL > N , the number of multipaths isN .

Therefore, the maximum achievable frequency diversity order ismin(nTL,N).



CHAPTER 3. AN OVERVIEW OF MIMO-OFDM 56

3.2.6 RAS-OFDM

When the receiver has a lot more antennas than the transmitter, receive antenna selection (RAS) can be

performed. Due to the fact that the extra(nR − nT ) receive antennas provide only higher diversity, and

that when the diversity order is getting higher, the additional SNR gain becomes smaller [9], RAS can

significantly reduce the hardware cost yet maintain a negligible performance loss. In [74], Molischet. al.

further looked into the ergodic capacity of antenna selection system and showed that the achieved capacity

of thenT × nT RAS system is close to the fullnT × nR system wherenR > nT .

For RAS spatial multiplexing systems selectingLR “best” out ofnR available antennas, the corre-

sponding signals in (3.14) are written as




R
def
=

[
R1 R2 · · · RLR

]T

,

H
def
= S




H1,1 H1,2 · · · H1,nT

...
...

...
...

HnR,1 HnR,2 · · · HnR,nT



,

X
def
=

[
X1 X2 · · · XnT

]T

,

V
def
=

[
V1 V2 · · · VLR

]T

,

(3.42)

whereS denotes the receive antenna selection matrix of sizeLR × nR. S is constructed from the rows of

thenR × nR identity matrixInR
, i.e., only those rows corresponding to the selected antenna indices will

be taken to formS.

3.2.7 TAS-OFDM

Similar to RAS, transmit antenna selection (TAS) can be performed at the transmitter. Different from RAS,

TAS is a closed loop precoding scheme. Feedback informationis needed from the receiver as to which

are the “best” antennas for transmission, based on the pre-determined antenna selection criteria. For TAS

in spatial multiplexing systems [75, 76],nR out of nT antennas will be selected, and the corresponding
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signals in (3.14) are written as




R
def
=

[
R1 R2 · · · RnR

]T

,

H
def
=




H1,1 H1,2 · · · H1,nT

...
...

...
...

HnR,1 HnR,2 · · · HnR,nT




S,

X
def
=

[
X1 X2 · · · XnR

]T

,

V
def
=

[
V1 V2 · · · VnR

]T

,

(3.43)

whereS denotes the transmit antenna selection matrix of sizenT × nR, andS is constructed from the

columns of thenR × nR identity matrix InR
, i.e., only those columns corresponding to the selected

antenna indices will be taken to formS.

For asymmetric downlink MIMO channels with more transmit than receive antennas due to the

size limitation and power consumption constraint of the terminal, TAS reduces the hardware cost yet

maintaining the same diversity order as a full-antenna system [76][77].

3.2.8 SVD-OFDM

When CSI is perfectly known at the transmitter, SVD can be applied to fully decouple the MIMO channels.

For MIMO-OFDM systems, the suboptimal sub-channel grouping and statistical water-filling technique

proposed in [67] was proved to asymptotically achieve the ergodic channel capacity. For SVD-MIMO-

OFDM, the equivalent signals in (3.14) are written as




R
def
=

[
R1 R2 · · · RnR

]T

,

H
def
=




H1,1 H1,2 · · · H1,nT

...
...

...
...

HnR,1 HnR,2 · · · HnR,nT




V,

X
def
=

[
X1 X2 · · · XnT

]T

,

V
def
=

[
V1 V2 · · · VnR

]T

,

(3.44)
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whereH = UDVH is the SVD of the channel matrixH.

For ordered MIMO-OFDM channels, the coded modulation scheme, coding rate and modulation

order for each of the ordered channels needs to be changed adaptively to maximize the achievable through-

put for a given power budget and bit error rate performance requirement. The system depicted in Fig. 3.2

can be taken as a multiple codebook variable rate (MCVR) BICMsolution in which each grouped channel

may use different coding scheme with different coding rate,and different modulation order to adapt to the

corresponding available diversity order and SNR in the channel. However, MCVR BICM solution may

suffer some performance loss from the highest order groupedchannel, as suggested in [68]. This is due to

the fact that the highest order grouped channel has the highest diversity order among all the groups, mak-

ing it close to a Gaussian channel. In this case, trellis coded modulation (TCM) which is optimized for

the AWGN channel will have better performance than BICM. Besides MCVR, another system structure,

called single codebook constant rate (SCCR) [78], can also be used. In SCCR SVD-OFDM, the various

grouped-channels make use of the same coding and modulationorder, and the achievable throughput is

optimized through power loading.

3.3 Summary of the Chapter

A generalized linear system model has been developed for space-time-frequency coded MIMO-OFDM

systems. This generalized linear signal model will facilitate the capacity analysis in Chapter 4 and the

receiver design in Chapter 5.



Chapter 4

Precoding in Asymmetric MIMO-OFDM

Channels

Based on the generalized linear signal model for the variousSTFP precoded MIMO-OFDM systems in

Chapter 3, we will study their capacity, diversity and bit/frame error rate (BER/FER) performance in this

chapter. We will put our special focus on the asymmetric channels with more transmit than receive anten-

nas. They are typically created for downlink transmission when the terminal station can not accommodate

as many antennas as the base station or access point (AP) due to size limitation and power consumption

constraints. Among such asymmetric channels, it has been proven in [66] that the Alamouti STBC is both

capacity and diversity optimal for2 × 1 configurations. However, for other MIMO configurations, we

will show that the known precoding schemes are either capacity lossy, or diversity lossy, or both capacity

and diversity lossy. We then propose a 2DLPT MIMO-OFDM system which can fully exploit the spatial

and frequency diversities available in the MIMO-OFDM channels. We will also prove that the proposed

2DLPT achieves full capacity when the number of spatial streams is set equal to the number of transmit

antennas.

59
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4.1 The Ergodic Capacity of MIMO-OFDM Systems

For annT ×nR direct mapping MIMO-OFDM system modeled in (3.10), we can have its capacity written

as

C
def
=

1

N + LCP
log2

(
I +

ρ

nT
HHH

)
, (4.1)

when the channel inputX is i.i.d. Gaussian. In the above equation, the capacity lossdue to the CP has

been taken into account and it has been assumed that all theN subcarriers are active. Hereρ is the receive

SNR at each subcarrier and each antenna.

Alternatively, we can use the signal model in (3.14) to derive capacity of the DM and other pre-

coded MIMO-OFDM channels. Assuming

• no spatial correlation at both the transmitter and the receiver1;

• zero-mean WSSUS CSCG multipath MIMO channels, i.e., Rayleigh fading channels;

• perfect CSI at receiver but no CSI at transmitter;

• i.i.d. Gaussian transmitted signals;

• all N subcarriers used to transmit information;

• capacity loss due to CP not taken into account;

we have the MIMO-OFDM channel capacity written as [52]

C =
1

N

N−1∑

k=0

Ck

=
1

N

N−1∑

k=0

1

β
log2 det

(
I +

ρ

nT
HkH

H
k

)

=
1

Nβ

N−1∑

k=0

M∑

i=1

log2(1 +
ρ

nT
λk,i) bits/channel use,

wherek is the subcarrier index,λk,i is theith eigenvalue ofHkH
H
k , ρ is the receive SNR at each subcarrier

and each antenna,M is the rank ofHk, andβ is the channel use per precoding interval. For the open-loop

1This is possible for indoor wireless channels, which has rich local scatterers at both the transmitter and receiver. To enable

this condition, the antenna separation needs to be wide enough as well.
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precoding schemes discussed in Chapter 3, we have

β =





1, DM and CDDSS,

2, GSTBC and QSTBC,

2T, LDC,

with T being the number of symbol intervals per LDC code word.

From Theorem 3, the MIMO channels at different subcarriers are statistically the same, hence

the capacity at each subcarriers are statistically the same. We therefore have the ergodic capacity of the

MIMO-OFDM channel as [52]

CE =
1

β

M∑

i=1

E
[
log2(1 +

ρλi

nT
)

]
bits/channel use.

From Corollary 1 in Chapter 3, we have independent CSCG channels at each subcarrier when the

time-domain multipaths are WSSUS zero-mean complex Gaussian and spatially uncorrelated. Therefore,

the ergodic capacity can be easily computed for the DM-OFDM systems with CSCG channels by making

use of the results from Appendix 2A.

Next we will prove that results in Appendix 2A can also be directly applied to compute the ergodic

capacity of CDDSS CSCG MIMO channels. We will prove that the ergodic capacity ofnT × nR × nS

(nT > nR ≥ nS) CDDSS-MIMO channel is equal to that ofnS × nR DM channel, when the MIMO

channel coefficients are CSCG with i.i.d. elements ofCN(0, 1).

4.1.1 Ergodic Capacity of CDDSS MIMO-OFDM Channels

Denoting thenT × nR (nR < nT ) propagation channel asHp where superscript(·)p stands for propaga-

tion, thenS × nR CDDSS MIMO channel asHs = HpS with S being thenT ×nS orthonormal CDDSS

matrix, i.e.,SHS = InS
, and thenS × nR DM channel asHd, and assuming thatHp is CSCG with i.i.d.

elements ofCN(0, 1), thenHd = Hp(:, 1 : nS)2 is also CSCG with i.i.d. elements ofCN(0, 1).

2ForN × M matrixA, notationA(:, P1 : P2) with P1 ≥ 1 andP2 ≤ M denotes submatrix ofA with all its rows but only

columns ofP1 to P2, and notationA(Q1 : Q2, :) with Q1 ≥ 1 andQ2 ≤ N denotes submatrix ofA with all its columns but

only rows ofQ1 to Q2.
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WhennS = nT , the CDDSS matrixS = ΦW is unitary, i.e.,SHS = SSH = InT
. Therefore,

matricesHp andHs are statistically the same. It is hence straightforward that the CDDSS has the same

ergodic capacity asnT × nR DM, i.e., CDDSS achieves full capacity.

WhennS < nT , S is orthonormal but not unitary matrix. So we have to look at the statistical

properties of individual elementsHs(m,n) in Hs, withm = 1, · · · , nR, andn = 1, · · · , nS . As

Hs(m,n) =

nT∑

i=1

Hp(m, i)S(i, n),

Hs(m,n) is still complex Gaussian. Its statistical properties are determined by its first- and second-order

moments, which are derived as

E {Hs(m,n)} = E
{

nT∑

i=1

Hp(m, i)S(i, n)

}
=

nT∑

i=1

E {Hp(m, i)}S(i, n) = 0,

E
{
|Hs(m,n)|2

}
= E

{[
nT∑

i=1

Hp(m, i)S(i, n)

] [
nT∑

i=1

Hp(m, i)S(i, n)

]∗}

= E





nT∑

i=1

nT∑

j=1

Hp(m, i)S(i, n) (Hp(m, j))∗ S∗(j, n)





=

nT∑

i=1

nT∑

j=1

E {Hp(m, i) (Hp(m, j))∗}S(i, n)S∗(j, n)

=

nT∑

i=1

nT∑

j=1

δ(i − j)S(i, n)S∗(j, n)

=

nT∑

i=1

|S(i, n)|2 = 1,

and

E {Re(Hs(m,n))Im(Hs(m,n))} = E
{[

nT∑

i=1

Re(Hp(m, i))Re(S(i, n)) − Im(Hp(m, i))Im(S(i, n))

]




nT∑

j=1

Re(Hp(m, j))Im(S(j, n)) + Im(Hp(m, j))Re(S(j, n))








=
1

2

nT∑

i=1

(Re(S(i, n))Im(S(i, n)) − Im(S(i, n))Re(S(i, n)))

= 0.

Therefore,Hs(m,n) is CSCG with mean zero and variance of 1, i.e.,Hs(m,n) ∼ CN(0, 1).
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We now look into the cross correlation between the differentelements ofHs:

E {Hs(m,n) (Hs(k, l))∗} = E
{[

nT∑

i=1

Hp(m, i)S(i, n)

] [
nT∑

i=1

Hp(k, i)S(i, l)

]∗}

= E





nT∑

i=1

nT∑

j=1

Hp(m, i)S(i, n) (Hp(k, j))∗ S∗(j, l)





=

nT∑

i=1

nT∑

j=1

E {Hp(m, i) (Hp(k, j))∗}S(i, n)S∗(j, l)

=

nT∑

i=1

nT∑

j=1

δ(m − k)δ(i − j)S(i, n)S∗(j, l)

= δ(m − k)

nT∑

i=1

S(i, n)S∗(i, l)

= δ(m − k)δ(n − l),

i.e., elements inHs are independent.

Till now, we have proved thatHs is nR × nS CSCG with i.i.d. elements ofCN(0, 1), i.e., Hs

is statistically the same as thenS × nR DM channel matrixHd. The eigenvalues ofHs (Hs)H and

Hd
(
Hd
)H

are hence alsostatisticallythe same, following the distribution given in (2.14).

Therefore, thenT × nR × nS CDDSS channel has the same ergodic capacity as thenS × nR DM

channel. FornS ≤ nR ≤ nT , we we hence have

CE,CDDSS,nT×nR×nS
≤ CE,V BLAST,nS×nR

,

the equality is true whennS = nT .

Making use of (2.15), the ergodic capacity ofnT × nR × nS, nS ≤ nR ≤ nT , CDDSS-MIMO

CSCG channels can be evaluated as

CE,CDDSS =

∫ ∞

0
log2

(
1 +

Pλ

nSN0

) nS−1∑

k=0

[
LnR−nS

k (λ)
]2
λnR−nSe−λdλ. (4.2)

4.1.2 Ergodic Capacity of GSTBC, QSTBC, and LDC Asymmetric MIMO-OFDM Chan-

nels

For GSTBC, QSTBC, and LDC precoded MIMO-OFDM channels,H is no longer i.i.d. CSCG. To obtain

the ergodic capacity, we need to derive the statistical distribution of the eigenvalues inHHH . This is,

however, non-trivial. So in this thesis, we use Monte Carlo simulations to obtain their ergodic capacities.
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4.1.3 Numerical Results

We now present the numerical results. FFT size ofN = 64 is used, and all the 64 subcarriers are used to

transmit data. For CDDSS, we setnS = nR.

In Fig. 4.1, we depict the ergodic capacity versus SNR of the various precoded4 × 2 MIMO-

OFDM channels. Eight i.i.d. zero mean complex Gaussian multipath channels are used, and perfect spatial

uncorrelation is assumed. The2 × 2 DM-OFDM capacity is also included for comparison. The LDC in

[66] was used in generating the result. From the channel matrix relation in (3.23), it is straightforward that

4 × 2 GSTBC and QSTBC have the same eigenvalues for each channel realization and hence the same

ergodic capacity. But more interestingly, the figure shows that LDC also has the same ergodic capacity as

GSTBC and QSTBC. This can be implicitly explained by the factthat the three schemes have the same

precoding rate, i.e.,RP,LDC = RP,GSTBC = RP,QSTBC = 2, and that the dispersion matricesAq andBq

satisfy the constraint ofAH
q Aq = BH

q Bq = T
QInT

, hence dispersing the transmitted symbols with equal

energy in all spatial and temporal directions. This is exactly the same as what the rate-2 QSTBC does.
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Figure 4.1: Ergodic capacity comparison for a4 × 2 system.

Comparing the implementation complexity of GSTBC, QSTBC, and LDC, however, LDC will be
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less preferable due to its higher implementation complexity in both the encoding and decoding processes.

In terms of design flexibility, both LDC and QSTBC lose to GSTBC due to the fact that with every

additional pair of transmit antennas, we can add one more group of Alamouti STBC if the number of

receive antennas satisfynR ≥ nT

2 . The coding rate is alwaysnT

2 . A rate-nT

2 QSTBC and LDC, on the

other hand, may have to be derived for differentnT ’s.

From Fig. 4.1, we can also see that CDDSS has the same ergodic capacity as the2×2 DM-OFDM

channel, as proved in Section 4.1.1.

The ergodic capacity for8× 4 channels is depicted in Fig. 4.2. Only GSTBC, LDC, CDDSS, and

4× 4 DM are considered in this case. Studying the results in the figure, we can draw the same conclusion

as the4 × 2 channel, that is, carefully designed precoding such as GSTBC and LDC can make use of the

additional transmit antennas to introduce capacity improvement overnR × nR DM channel, and CDDSS

has the same ergodic capacity as thenS × nR DM channels. All these precoding schemes, however,

introduce capacity loss.
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Figure 4.2: Ergodic capacity comparison for a8 × 4 system.
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4.2 Outage Capacity

Having compared the ergodic capacity, we now look at the outage capacity of the precoded MIMO-OFDM

channels. As pointed out in [52], the outage properties are determined by the number of spatial and

frequency diversity degrees of freedom in the channel. Assuming that a codeword spans only one OFDM

symbol, the outage probabilityPout for a given rateR is defined as

Pout = prob

(
I =

1

N

N−1∑

k=0

Ik < R

)
, (4.3)

whereI is the mutual information of the MIMO-OFDM channel. The outage capacity can be obtained

analytically if the statistical property ofI is known.

From Theorem 3 in Chapter 3, the MIMO channelHk at each subcarrierk is statistically the

same. Hence, the mutual information of each subcarrier,Ik, is statistically the same. The mean mutual

information of the MIMO-OFDM channel is thus written as

E {I} = E
{

1

N

N−1∑

k=0

Ik

}
=

1

N

N−1∑

k=0

E {Ik} = E {Ik} = Ī , (4.4)

which is independent of the multipath channel characteristics. The correlation ofIk at different subcarri-

ers, however, is dependent on the frequency domain correlation of Hk’s, which depends on the dispersive-

ness of the multipath channels. We now look at two extreme cases - the single-path flat fading channel,

and the highly dispersive frequency independent fading. The later case is obtained with i.i.d. zero-mean

complex Gaussian N-path channel andLCP = N .

For the flat fading channel, each subcarrier has the sameHk, hence

Ik = Iflat, k = 0, 1, · · · , N − 1,

I = Iflat,

we therefore have

Ī = Īflat,

V ar(I) = E
{
I2
}
− (E {I})2 = E

{
I2
flat

}
− Ī2

flat = V ar(Iflat).
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For the highly dispersive frequency independent fading channel, the MIMO channels at different

subcarriers are statistically the same but are independentof each other, i.e., i.i.d. The mutual information

of each subcarrier is therefore also i.i.d. We hence have

E {I} =
1

N

N−1∑

k=0

E {Ik} =
1

N

N−1∑

k=0

Īk = Īk,

V ar(I) = E
{
I2
}
− (E {I})2 = E

{
1

N

N−1∑

k=0

Ik
1

N

N−1∑

m=0

Im

}
−
(

1

N

N−1∑

k=0

Īk

)2

=
1

N2

[
N−1∑

k=0

N−1∑

m=0

(
E {IkIm} − Īk Īm

)
]

=
1

N2

[
N−1∑

k=0

(
E
{
I2
k

}
− Ī2

k

)
]

=
1

N2

(
N−1∑

k=0

V ar(Ik)

)

=
1

N
V ar(Ik)

From the above two extreme cases, we can make a qualitative conclusion that the more dispersive

the multipath channel, the smaller the variance of the mutual information, hence the lower the outage

probability and the higher the outage capacity.

We next look at some numerical results with i.i.d. zero mean complex Gaussian multipath chan-

nels. Same as the ergodic capacity study, 64 subcarriers areused in the OFDM channels, andLCP is

assumed to be long enough to achieve perfect ISI mitigation.

4.2.1 Numerical Results for Frequency-Domain Correlated Channels

We now present the numerical results in frequency-domain correlated channels. Again spatial indepen-

dence is assumed among the channel coefficients for all the subcarriers. We first verify our qualitative

analysis that frequency correlation introduces degradation to the outage capacity. Presented in Fig. 4.3 is

the outage probability of4×4 DM-OFDM channels with the number of i.i.d. multipaths ofL = 3, L = 8,

L = 16, andL = 64, respectively. The SNR is set to 10dB. It clearly shows that the richer the multipaths

in the channel, the higher the outage capacity. Comparing the outage capacity of the four channels at

Pout = 0.01, we can see that from the most correlated channel ofL = 3 to the fully uncorrelated channel
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of L = 64, the outage capacity can increase by over 1 bit/channel use!
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Figure 4.3: Outage Capacity of4 × 4 Direct Mapping MIMO-OFDM. SNR = 10 dB.

Same observation can be made for the DM-OFDM outage capacityperformance in asymmetric

MIMO channels, as shown in Fig. 4.4 for the4 × 2 setup at SNR of 10dB. Three multipath channels

are used for the comparison, namely, the i.i.d. multipath channel withL = 3, L = 8, andL = 16,

respectively. AtPout = 0.01, the outage capacity increases from 5.05 bits/channel use of the L = 3

channel, to 5.50 bits/channel use of theL = 8 channel, and 5.7 bits/channel use of theL = 16 channel.

We next look at the outage capacity of pre-coded asymmetric MIMO-OFDM channels. Depicted in

Fig. 4.5 are the outage probability versus mutual information curves for the4×2 GSTBC at SNR = 10dB.

Again three multipath channels are used for the comparison,i.e.,L = 3, L = 8, andL = 16. Similarly,

the richer the multipath components, the higher the outage capacity. For example, atPout = 0.01, the

outage capacity increases from 4.65 bits/channel use of theL = 3 channel, to 5.08 bits/channel use of the

L = 8 channel, and 5.3 bits/channel use of theL = 16 channel.

We summarize the outage capacity performance of all the precoded4× 2 MIMO-OFDM channels

in Fig. 4.6 forL = 8 i.i.d. zero mean complex Gaussian multipath channels. Two incremental cyclic delay
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Figure 4.4: Outage Capacity of4 × 2 Direct Mapping MIMO-OFDM. SNR = 10 dB.
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Figure 4.5: Outage Capacity of4 × 2 GSTBC MIMO-OFDM. SNR = 10 dB.
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values are used in CDDSS, i.e.,τ = 3 andτ = 8. It can seen that different from the ergodic capacity

case, CDDSS has higher outage capacity than the2× 2 DM channels, which is attributed to the additional

frequency diversity introduced by CDD. As different cyclicdelay values introduce different additional

frequency diversity, they also result in different outage capacity. The figure also shows that GSTBC and

LDC have almost the same outage capacity.
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Figure 4.6: Outage Capacity of4 × 2 Precoded MIMO-OFDM. L = 8.

Fig. 4.8 summarizes the outage capacity of the precoded8 × 4 CDDSS MIMO-OFDM channels

with L = 8 i.i.d. zero-mean complex Gaussian multipaths, andτ = 1, 3, 5 andτ = 8. It again proves

that different cyclic delay values result in different outage capacity.

Fig. 4.8 summarizes the outage capacity of the precoded8× 4 MIMO-OFDM channels withL =

16 i.i.d. zero-mean complex Gaussian multipaths, andPout = 1%. τ = 16 is used for CDDSS channels.

From this figure, we can see that for GSTBC, the required SNR is1.52dB to achieve 4 bits/channel use,

7.07dB to achieve 8 bits/channel use; for CDDSS, the required SNR is respectively 1.66dB and 7.29dB

to achieve 4 bits/channel use and 8 bits/channel use. Therefore, the outage capacity difference is getting

much smaller between GSTBC and CDDSS.

In Fig. 4.9, we compare the influence of power delay profiles (PDF) on the outage behavior.8× 4
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Figure 4.7: Outage Capacity versus SNR of8 × 4 CDDSS MIMO-OFDM. L = 8, τ = 1, 3, 5 and τ = 8.

Uniform power delay profiles.

GSTBC MIMO-OFDM channels withL = 16 are used. Two PDF’s are considered, namely, the uniform

power delay profile (UPDP) with i.i.d. zero mean complex Gaussian multipaths, and exponential power

delay profile (EPDP) with zero mean complex Gaussian multipaths and incremental power loss of 3dB

per multipath component. Obviously, UPDP leads to better outage performance.

From the qualitative analysis and the numerical results presented in this section, we have shown

that for MIMO-OFDM, the richer the diversity in the precodedchannel, the higher the outage capacity.

Therefore, the precoding scheme should be designed to exploit all the frequency and space diversities in

the channel.

4.3 The Mutual Information With Fixed-Order Modulation

Ergodic capacity is obtained when the channel inputX is i.i.d. Gaussian. For practical systems, symbols

with fixed constellation, e.g., M-PSK or M-QAM, have to be transmitted. Therefore, the ergodic capacity

in Section 4.1 is not achievable, and a more realistic indication of the precoding optimality will be the
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Figure 4.8: Outage Capacity versus SNR of8 × 4 Precoded MIMO-OFDM at Pout = 1%. L = 16, Uniform

power delay profiles.

mutual information between the channel outputR and the channel inputX, assuming that the elements in

X are i.i.d. from the modulation constellation. The mutual information is computed as [26]

I(X; R) = [H(R) −H(R|X)] /T, (4.5)

whereH(·) = −E log p(·) is the entropy function, andT is the precoding interval. From the generalized

channel model in (3.14), we have

p(R|X) =
1

(2πσ)dm
exp

(
−|R− HX|2

2σ2

)
,

where ‘dm’ denotes the dimension of the complex AWGN in (3.14). Hence

H(R|X) = dm log 2πσ2e.

Calculation ofH(R) needs to take expectation over three random variables, i.e., H, X, andV. Here we

obtain the numerical results through Monte Carlo simulations.

We depict the mutual information of a4×2 precoded channel with QPSK modulation in Fig. 4.10,

and 16QAM modulation in Fig. 4.11. From the two figures, we seethat same as the ergodic capacity,
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Figure 4.9: Outage Capacity of8 × 4 GSTBC MIMO-OFDM. L = 16, Uniform and exponential power delay

profiles, SNR = 10dB.

CDDSS has the same mutual information as the2 × 2 DM for both the QPSK and 16QAM modulation

channel inputs, and LDC, GSTBC, and QSTBC have the same mutual information.

4.4 The Diversity Gain

As shown in Section 4.2, the richer the diversity in the precoded channels, the higher the outage capacity

that can be achieved. The diversity potential should therefore be fully exploited. In this section, we will

study the diversity performance of the precoding schemes based on two assumptions:

Maximum receive antenna diversity ofnR. This can be achieved when the interference from the other

spatial streams is completely cancelled by advanced receivers, e.g., the MLD receivers, the iterative

turbo receivers to be discussed in Chapter 5, the BI-GDFE in [79][80][81], etc..

Full exploitation of frequency diversity. This can be achieved when a very powerful FEC is deployed.



CHAPTER 4. PRECODING IN ASYMMETRIC MIMO-OFDM CHANNELS 74

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Average SNR per receive antenna (dB)

M
ut

ua
l I

nf
or

m
at

io
n(

bi
ts

/s
ec

/H
z

Mutual Information Comparison of Precoding Schemes for Asymmetric MIMO Channels, 4 × 2, QPSK

Cap
GSTBC
QSTBC
LDC
2X2 DM
SS

Figure 4.10: Mutual information comparison for a 4 × 2 system, QPSK.
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With the two assumptions, it has been proven in [44] that the maximum diversity order of GSTBC

is 2nR, achieved with MLD or with perfect interference cancellation among the different groups. Same

diversity order is achieved by thenT = 4 QSTBC, as proven in [41]. In fact, [41] has shown that for

spatially uncorrelated channels, QSTBC and GSTBC have the same BER performance.

Similarly, we can havenR the maximum space-diversity order of CDDSS and DM. However,

the maximum frequency diversity order of DM isL, the number of multipaths in the channel, whereas

additional frequency diversity is made available in CDDSS whose order is dependent on the delay value

τ , the power delay profile of the fading channel, and the total number of transmit antennas [63]. The

maximum achievable frequency domain diversity is

min(nTL,N).

As for LDC, although the BER union bound has been derived in [66], no explicit diversity order

can be obtained from it. We therefore depict in Fig. 4.12 the MLD performance for the 16QAM-modulated

4× 2 precoded system. No FEC coding is applied, so only spatial diversity contributes to the BER versus

SNR slope. Naturally, SS has the lowest spatial diversity when compared with LDC and GSTBC. Between

LDC and GSTBC, we can see from the figure that LDC has slightly higher gain than GSTBC.

The frequency diversity gain effect of CDDSS is illustratedin Fig. 4.13 for an8×4 convolutionally

coded (CC) CDDSS-OFDM system with 16QAM modulation. The CC has rateRc = 1
2 , and minimum

free distance ofdfree = 5. L-path UPDF is deployed in each MIMO multipath channel, andτ is the CDD

value. At the receiver, turbo processing is employed. From the figure, it can be seen that for low-order

multipath channel(L = 3, L = 8), largerτ will lead to higher diversity gain. For high-order multipath

channel, e.g.,L = 16, the different CDD values do not have much impact on the BER performance. This

is because the frequency diversity is realized by the soft decision decoding of the CC whose performance

is limited by itsdfree. To maximize the frequency diversity gain of CDDSS-OFDM, either a stronger code

or a linear frequency domain transform [82] has to be used. More details will be given in Section 4.6.
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4.5 Bit Error Rate

The BER performance is related to the diversityd that the system can exploit as:

BER ∝ SNRd,

whered is determined by the precoding scheme deployed at the transmitter, the richness of multipath in

the channel, and optimality of the receiver algorithms. In this section, we look into the BER performance

of the precoded8 × 4 systems with theRc = 1
2 dfree = 5 CC. For receiver, we use a five-iteration

turbo receiver whose details are given in Chapter 5. 16-tap multipath channel with UPDF is used in the

simulations. For CDDSS, we setτ = 16.

Depicted in Fig. 4.14 is the BER for QPSK, and Fig. 4.15 for 16QAM modulated systems. From

the figures, it can be seen that GSTBC has the best BER performance among the three precoding schemes.

Compared with LDC, it is about 0.25dB better with QPSK, and 0.5dB better with 16QAM, at BER =10−5.

This should be due to the same turbo receiver structure beingused for all the three precoded systems. As

recommended by [83], a widely linear filter can be used for LDCsystems to make use of both the original

signal and its conjugate in the turbo receiver detection. Then the performance advantage of LDC will be

better realized. But this also means additional implementation complexity.

Although CDDSS still loses to LDC and GSTBC, the performancegap, however, becomes smaller

than the capacity performance and the uncoded performance.This is due to the additional frequency

diversity from CDDSS. For QPSK signals, CDDSS loses to GSTBCby only about 0.5dB at BER=10−5,

and for 16QAM, 0.7dB. However, it has to be pointed out that the detection complexity of CDDSS is

lower than GSTBC, mainly due to its smallerH dimension than the GSTBC systems.

Presented in Fig. 4.16 and Fig. 4.17 are the FER performance of the 8 × 4 Rc = 1
2 K = 3

convolutionally coded MIMO-OFDM systems with QPSK and 16QAM modulation signals, respectively.

The frame length is set to one OFDM symbol with 64 subcarriers. L = 16 i.i.d. complex Gaussian

multipath channels are used, andτ = 16 for CDDSS. ThePout = 1% outage capacity is also included

in the figure for comparison. For QPSK modulated signals corresponding to 4 bits/channel use spectral

efficiency, we can see from Fig. 4.16 that the GSTBC is 7.34 dB away from the outage capacity, and
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Figure 4.14: BER performance of the different precoding schemes for8× 4 MIMO-OFDM channels. QPSK.
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CDDSS is about 7.30dB away from its outage capacity. For 16QAM modulated signals corresponding to

8 bits/channel use spectral efficiency, Fig. 4.17 shows thatGSTBC and CDDSS are respectively 5.2dB

and 5.1dB away from their outage capacities. Therefore, CDDSS is slightly better than GSTBC from the

view point of approaching the outage capacity limit.

Lastly, there is one point that needs to be pointed out. Results in Fig. 4.16 and Fig. 4.17 are

generated with a very simple CC, which is selected to just show optimality of the precoding scheme. To

approach the capacity limit, a more powerful code, e.g., turbo code or LDPC code, should be used.
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Figure 4.16: FER performance of the different precoding schemes for8× 4 MIMO-OFDM channels. QPSK.

4.6 Two-dimensional Linear Pre-transformed MIMO-OFDM

We have shown that CDDSS is capacity lossless when the numberof spatial streams is equal the number

of transmit antennas. Otherwise, CDDSS and the other precoding schemes we have studied in the previous

sections are all capacity lossy. We have also proved that CDD-OFDM and CDDSS-OFDM transfer the

transmit diversity from the “extra” antennas to frequency diversity, and frequency diversity can be realized

by the FEC code. However, this also means that the realizablediversity order is limited by the free distance
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Figure 4.17: FER performance of the different precoding schemes for8×4 MIMO-OFDM channels. 16QAM.

of the FEC code. A precoding scheme which is able to achieve full capacity and full diversity is therefore

desired.

Motivated by the works in [84] and [82] for single-transmit single-receive OFDM systems, here we

propose a two-dimensional linear pre-transformed MIMO-OFDM system, i.e., 2DLPT MIMO-OFDM, as

depicted in Fig. 4.18. Linear pre-transforms (LPT) are applied in both frequency and spatial domains,

as shown in the figure. TheN × N linear unitary frequency domain LPT (FD-LPT) is applied to each

individual spatial streams independently before the spatial domain LPT (SD-LPT). The SD-LPT is applied

to the FD-LPT output, subcarrier by subcarrier, independently. When the number of spatial streamsnS is

equal to the number of transmit antennasnT , i.e.,nS = nT , the SD-LPT isnT × nT unitary transform.

WhennS < nT , the SD-LPT is orthonormal matrix. We will show that for the case ofnS = nT ,

the 2DLPT MIMO-OFDM can achieve full capacity and full diversity simultaneously; whennS < nT ,

2DLPT is capacity lossy but achieves full diversity.

Following (3.10), the 2D-PT MIMO-OFDM system can still be modeled as

Y = HT X + V , (4.6)
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Figure 4.18: Transmitter block diagram of 2DLPT MIMO-OFDM.

whereY , X , H, andV are defined the same as in (3.10), andT denotes the 2DLPT which is written as

T = TSTF (4.7)

= Q diag
(
TS

1 , TS
2 , · · · ,TS

N

)
Pdiag

(
TF

1 , TF
2 , · · · ,TF

nT

)
(4.8)

= Q




TS
1 0 · · · 0

0 TS
2 · · · 0

...
...

... 0

0 · · · 0 TS
N




P




TF
1 0 · · · 0

0 TF
2 · · · 0

...
...

... 0

0 · · · 0 TF
nS




(4.9)

whereQ andP are respectively row and column permutation matrices, withtheir elements defined as

Qi,j =





1, wheni = b j
nT

c + (j mod nT ) ×N,

0, otherwise
(4.10)

Pi,j =





1, whenj = b i
nT

c + (i mod nT ) ×N,

0, otherwise
(4.11)

for i, j = 0, 1, · · · , NnT − 1.

TS
k denotes thenT × nS SD-LPT matrix at subcarrierk, TS

ns
denotes the FD-LPT for spatial

streamns with the total number of spatial streams defined asnS .

SD-LPT The CDDSS precoding matrices can be used for SD-LPT. From Theorem 5, the maximum

achievable frequency diversity for each spatial stream ismin(nTL, N), when the incremental cyclic

delayτ is set toτ = L.

FD-LPT The linear transform proposed in [82] is used as FD-LPTTF to exploit the frequency diversity.
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4.6.1 Ergodic Capacity

As we have proved in Section 4.1.1, the CDDSS MIMO-OFDM has the same ergodic capacity as the

nS × nT DM MIMO-OFDM channels. For 2DLPT MIMO-OFDM, the FD-LPT matrix TF is unitary,

henceTF X remains i.i.d. Gaussian if the input signalX is i.i.d. Gaussian. Therefore, 2DLPT MIMO-

OFDM achieves the same ergodic capacity as the CDDSS MIMO-OFDM, i.e., whennS < nT , 2DLPT

has the same ergodic capacity as thenS × nT DM MIMO-OFDM channels, and whennS = nT , 2DLPT

has the same ergodic capacity as thenT × nT DM MIMO-OFDM channels.

Below we provide a direct proof that whennS = nT , 2DLPT is capacity lossless, by making use

of the signal model in (4.6), and the fact thatTS is unitary:

C = E
{

log2

[
det

(
I +

ρ

nT
(HT )(HT )H

)]}

= E
{

log2

[
det

(
I +

ρ

nT
HT T HHH

)]}

= E
{

log2

[
det

(
I +

ρ

nT
HHH

)]}
,

i.e., 2DLPT MIMO-OFDM channel has the same ergodic capacityas the SDM MIMO-OFDM channel

defined byH. Hereρ is defined as the average signal to noise ratio (SNR) per receive antenna.

4.6.2 Diversity

Theorem 6. The maximum diversity order of the 2DLPT MIMO-OFDM system isnR min (nLnT , N).

Proof: From (4.6), assuming perfect CSI at the receiver, we have thePEP based on MLD as

P (X → Xe) = P (p(Y |X,H) < p(Y|Xe,H))

= P
(
|Y − HT X|2 > |Y − HT Xe|2

)

= Q



√
d2(HT X,HT Xe)

2N0




≤ exp

(
−‖HT X− HT Xe‖2

4N0

)
,

whereX is the transmitted sequence, andXe is the erroneously detected sequence.
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Define

e = TF (X −Xe) = ΥΛ
1
2
e ΩH ,

HS
nr

= HnrT
S = ΨΓ

1
2 ΞH ,

whereHnr denotes the submatrix ofH corresponding to thenrth receive antenna, i.e.,Hnr = H((nr −

1)N + 1 : nrN, :), andΛ
1
2
e andΓ

1
2 are respectively the singular value matrices ofe andHS

nr
.

The number of non-zero singular values inΛ
1
2
e is determined by the distance property ofTF , dTF .

As TF is N × N unitary, we havedTF = N , i.e., the number of non-zero singular values inΛ
1
2
e is N .

ForΓ
1
2 , the number of non-zero elements ismin (nTL,N), from Theorem 4.

We therefore have

HS
nr

e = ΨΓ
1
2 ΞHΥΛ

1
2
e ΩH = Φ∆

1
2 ΘH ,

and∆
1
2 hasdo = min (nTL,N) non-zero singular values.

Hence

‖HT X− HT Xe‖2 =

nR∑

nr=1

‖HS
nr

e‖2

=

nR∑

nr=1

trace
(
HS

nr
eeH

(
HS

nr

)H)

=

nR∑

nr=1

trace
(
Φ∆ΦH

)
=

nR∑

nr=1

trace (∆)

=

nR∑

nr=1

do∑

m=1

δm,nr ,

and the PEP as

P (X → Xe) =

nR∏

nr=1

do∏

m=1

exp

(
−δm,nr

4N0

)
,

When the multipath components are zero-mean i.i.d. complexGaussian, we have the average PEP

written as [12]

Pe(X → Xe) ∝
(

dl−1∏

l=0

δl

)−1

, (4.12)

wheredl = nRdo = nR min(LnT , N) is themaximum achievable diversity order of the 2DLPT MIMO-

OFDM system.

WhenLnT ≤ N , the 2DLPT achieves full diversity ofdl = nRnTL.
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4.6.3 Numerical Results

In this section, we present the simulation results. We first consider2 × 2 and2 × 3 flat fading MIMO-

OFDM channels with FFT size ofN = 8. As (nLnT = 2) < N , the overall diversity orders in the two

channels are respectively2 × 2 × 1 = 4 and2 × 3 × 1 = 6. We will show that the diversity can be fully

exploited by using the 2DLPT and MLD.

In addition to the 2DLPT system, we also consider the DM system without 2DLPT, the single

dimensional frequency domain PT (1D FD-LPT) system, and single dimensional spatial domain PT (1D

FD-LPT) system. The intention of the performance comparison is as follows.

For DM MIMO-OFDM without any PT, the frequency diversity in each single-input single-output

channel is of order one (flat fading), and the spatial diversity order is two from the receive diversity

achieved through MLD. When spatial domain transform is applied to the system, extra frequency diver-

sity is made available to each single-input single-output channel. For thenT = 2 flat fading channels

considered, each single-input single-output channel after the SD-LPT has frequency diversity order of

two. This extra frequency diversity, however, can only be exploited when a FD-LPT is applied in each

layer. Hence, for the 1D SD-LPT system, the maximum diversity order is two for2 × 2 and three for

2×3 systems, from the receive antennas and achieved through MLD, same as the DM system. For the 1D

FD-LPT MIMO-OFDM systems, the frequency diversity in each layer is order one, hence the maximum

diversity order of the systems remains as two for2 × 2 and three for2 × 3 systems. In summary, when

MLD is used, only the 2DLPT MIMO-OFDM system can achieve the maximum diversity order. The

other three schemes can only achieve the receive diversity,of order two for2×2, and order three for2×3

configuration.

Besides MLD, we also demonstrate the performance of the fourschemes using zero-forcing (ZF)

detection. In this case, all the four2 × 2 systems have diversity order of one, and the four2 × 3 systems

have diversity order of two. The simulation scenarios and the corresponding achievable diversity order are

summarized in Table 4.1 for2 × 2, and in Table 4.2 for2 × 3.

The simulated BER performance for2 × 2 configuration with QPSK modulation is depicted in

Fig. 4.19. As expected, the four systems with ZF detection has exactly the same performance, and the
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lowest diversity order. Then the DM system with no PT, as wellas the 1D SD-LPT and FD-LPT systems

with MLD have exactly the same performance, and higher diversity order than the ZF performance. The

2DLPT with MLD has the best performance and highest diversity order of all systems.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

SNR per receive antenna (dB)

B
E

R

2 × 2 MIMO−OFDM, flat fading

 

 

no PT, MLD
FD−LPT, MLD
SD−LPT, MLD
2DLPT, MLD
no PT, ZF
FD−LPT, ZF
SD−LPT, ZF
2DLPT, ZF

Figure 4.19: BER performance of a2 × 2 2DLPT MIMO-OFDM system with MLD and ZF detection, flat-

fading Rayleigh channel.

The simulated BER performance for2 × 3 configuration with QPSK modulation is depicted in

Fig. 4.20. In this case, ZF detection results in diversity order of two for all the four schemes, which is the

lowest diversity order. Then the DM system with no PT, the 1D SD-LPT and 1D FD-LPT systems with

MLD have exactly the same performance, with diversity orderof three. The 2DLPT with MLD has the

best performance and highest diversity order of all the fourschemes.

4.6.4 BICM-2DLPT MIMO-OFDM

Same as the other precoding schemes we studied, BICM can be applied to the 2DLPT MIMO-OFDM

systems. In Fig. 4.21, a BICM-2DLPT MIMO-OFDM transmitter block diagram is presented.

At the receiver, interference-cancelation based iterative receiver as presented in Chapter 5 can be
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Figure 4.20: BER performance of a2 × 3 2DLPT MIMO-OFDM system with MLD and ZF detection, flat-

fading Rayleigh channel.

Table 4.1: Summary of the Simulation Setup,2 × 2 Flat Fading Channel

Transmitter Setup Receiver Setup Achievable Diversity

2DLPT MLD 4

1D FD-LPT MLD 2

1D SD-LPT MLD 2

no PT (SDM) MLD 2

2DLPT ZF 1

1D FD-LPT ZF 1

1D SD-LPT ZF 1

no PT (SDM) ZF 1

implemented for the BICM-2DLPT MIMO-OFDM systems. Presented in Fig. 4.22 is the simulated BER

performance forK = 3 Rc = 1
2 convolutional coded QPSK-modulated2 2DLPT MIMO-OFDM system

at iteration 5. The results of2 1D-SDLPT-OFDM, and that of the Alamouti STBC without PT are also

included in the figure for comparison. Obviously, the BICM-2DLPT system can exploit the frequency

diversity much more effectively, resulting in steeper BER versus SNR slope of the BER curves. From
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Table 4.2: Summary of the Simulation Setup,2 × 3 Flat Fading Channel

Transmitter Setup Receiver Setup Achievable Diversity

2DLPT MLD 6

1D FD-LPT MLD 3

1D SD-LPT MLD 3

no PT (SDM) MLD 3

2DLPT ZF 2

1D FD-LPT ZF 2

1D SD-LPT ZF 2

no PT (SDM) ZF 2
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Figure 4.21: Transmitter block diagram of 2DLPT MIMO-OFDM w ith BICM.

the figure, we can also see that 2DLPT-OFDM has equivalent performance as the STBC system, with a

performance difference of about 0.2dB. When we look at the FER performance as depicted in Fig. 4.23,

we can see that the 2DLPT-OFDM and STBC have converged performance in the high SNR regions.

For the 1D-SDLPT system, however, due to the large frequencydiversity order available in the channel

(L = 16), and the limited effective free distance of the FEC (dfree = 5), the frequency diversity can not

be fully exploited, as exhibited by the slope of the BER/FER versus SNR performance curves.

4.7 Summary of the Chapter

In this chapter, we have studied the capacity and diversity performance of some precoded MIMO-OFDM

channels and showed that none of these known precoding schemes achieved optimal capacity and diversity
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Figure 4.22: BER performance of2 × 1 PT-CDD-OFDM with K = 3 Rc = 1

2
convolutional coded QPSK-

modulated BICM. L = 16, τ = 16.

performance. We then proposed a two-dimensional linear pre-transformed MIMO-OFDM system which

achieves simultaneously full capacity and full diversity when the number of spatial streams is equal to the

number of transmit antennas. For the asymmetric MIMO-OFDM channel with more transmit than receive

antennas, the proposed 2DLPT system achieves full diversity and maximum capacity ofnR×nR channel.
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Chapter 5

Bayesian Iterative Turbo Receiver

5.1 Introduction

When FEC code is applied in a MIMO system, an iterative (“turbo”) receiver in which soft information is

exchanged between the detector and the decoder can significantly improve decoding performance. There

have been many works on turbo receiver design. For example, the earliest literature on turbo receiver was

in the field of code division multiple access (CDMA) systems,by Wang and Poor [85], and Alexanderet.

al. [86][87][88]. In the field of MIMO systems, Luet. al. proposed a linear minimum mean squared error

(LMMSE) interference cancellation (IC)-based turbo receiver in [89] for multiuser STC systems (referred

as groupwise STC systems in this thesis), which was a straightforward extension of Wang’s work in [85] to

MIMO systems. Sellathurai and Haykin applied the LMMSE-IC turbo receiver to coded BLAST systems

in [90] (the so called turbo BLAST, or T-BLAST), and further evaluated its performance in correlated

Rayleigh fading channels [91]. The practical virtue of T-BLAST has also been verified in experiments

[92]. In [93], Caireet. al. developed a generalized framework on iterative receivers for CDMA systems,

which is applicable to MIMO systems as well. Based on the factor-graph representation and the sum-

product algorithm (SPA) [94], they showed that the estimated interference at each iteration is a function

of the decoders’ extrinsic information (EXT), rather than of the decoders’a posterioriprobability (APP).

The EXT is used to obtain thea priori probability of the coded bits, from which thestatistical mean, or

the prior estimate [95], of the transmitted signals are calculated. IC is then performed and SISO decoding

90
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implemented. Different filtering schemes can be applied in the IC step, for example, matched filter (MF)

or LMMSE. In a semi-tutorial paper [96], Biglieriet. al. discussed a class of iterative receivers for MIMO

systems that combine soft decoder and spatial interferencecancellers and analyzed their performances

using extrinsic information transfer (EXIT) charts. The IC-based turbo receivers considered in these

papers are referred as“conventional” turbo receivers in this thesis.

In these conventional turbo receivers, only Phase Shift Keying (PSK) modulation signals, e.g.,

BPSK, 8PSK, etc., were considered. However, to address the key concern of spectral efficiency, higher

order modulation needs to be applied, e.g., Quadrature Amplitude Modulation (QAM). The interference

statistical mean estimation using the SISO decoder EXT should be studied. Due to the increase of number

of bits per modulation symbol, a number of exponential termsneed to be computed in the soft decision

functions (SDF’s), complexity will therefore be a major concern in practical implementation. Simplified

SDF’s in which the exponential terms are converted to linearcalculations are desired.

When exacta priori probability is available, statistical mean provides the best estimate of the

interference signals. However, when thea priori probability obtained from the SISO decoders has some

degree of inaccuracy, for example, at low to medium SNR values, or in the initial iterations in the turbo

receiver, or when punctured code is used in the system, the accuracy of the estimated interference mean

will be rather poor. Therefore, schemes have to be found to compensate for the estimation errors.

In this chapter, we study the above two problems in turbo receiver. We first present the iterative

receiver design and derive the exact SDF’s for two commonly used MQAM modulation signals, i.e.,

16QAM and 64QAM, based on the estimateda priori probability. We then proceed to derive the simplified

SDF’s using Maclaurin series. Performance comparison of the simplified and the exact SDF’s will show

that the simplified SDF’s introduce negligible performancedegradations.

To improve the estimation accuracy of the interference signals, we propose a novel Bayesian

MMSE (BMMSE) turbo receiver that exploits EXT in theBayesian estimation (BE)of the interference

signals. We start by deriving the BMMSE estimate [95] [97], which is the mean of the posterior proba-

bility density function (pdf) of the desired signal, and show that the BMMSE estimate conditioned on the

received signal and the estimated interference (from the previous iteration) is a function ofbothEXT and
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the IC-MRC decision statistic. We refer this receiver as theBayesian IC-MRC turbo receiverto differ-

entiate it from the conventional IC-MRC turbo receiver in [93]. We show that the BMMSE estimate has

much smaller mean squared error (MSE) than the statistical mean. The improved MSE leads to better bit

error rate (BER) and frame error rate (FER) performance. When the same number of iterations are used,

the Bayesian turbo receiver can achieve at least 1 dB’s performance gain over the receiver of [93] at BER

of 10−5.

Using the Gaussian model developed in [98] for the output of conventional LMMSE-IC detectors,

we further apply the BMMSE estimation to LMMSE-IC receiversand refer this class of receiver as the

Bayesian LMMSE-IC turbo receiver. Similar to IC-MRC receivers, the BMMSE estimate is a function

of both EXT and the LMMSE-IC decision statistic. The Bayesian LMMSE-IC turbo receiver is desired

for a system deploying punctured code and high order modulation to achieve high spectral efficiency, as

both accurate interference estimation by BMMSE and effective interference suppression by LMMSE filter

is required in order to guarantee convergence to the lower performance bound. Simulation results show

performance gains over the conventional LMMSE-IC receivers.

The EXT and decision statistic represent two types of information from two different domains.

The decision statistic is obtained from spatial domain, by making use of the received signal and the

estimated interference from the interference layers. The EXT is obtained from time domain (when single-

carrier transmission scheme is used) or frequency domain (when multi-carrier modulation is used) through

the knowledge of the other symbols in the same layer and same domain, by exploiting their correlation

produced by the encoder (and the modulation mapper). Therefore, the information is not repetitive but

complementary to interference estimation. This leads to much more accurate IC and thus improves the

turbo receiver performance, as will be demonstrated by the lower BER and FER values in the simulations

to be presented in this chapter, as well as the much higher output mutual information in the EXIT chart

analysis which will be presented in Chapter 6.

The rest of the chapter is organized as follows. In Section 5.2, we dedicate our study to the

SDF simplification in conventional receivers. We will give abrief overview of the conventional turbo

receiver design and derive both the exact and simplified SDF’s based on the estimateda priori probability.
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The simulated performance of the proposed SDF’s will be compared with the exact SDF’s to show the

negligible degradation introduced in the proposed simplification. In Section 5.3, we derive the Bayesian

IC-MRC turbo receiver, and extend it to the LMMSE-IC receiver in Section 5.4. The simulated BER

and FER performances of the Bayesian IC-MRC and LMMSE-IC receivers are presented in Section 5.6.

Finally in Section 5.7, we make our concluding remarks.

Throughout this chapter, we use the GSTBC OFDM system model in the derivations unless pointed

out otherwise. The results can be extended to other systems in a very straightforward manner. We also use

the terms maximal ratio combining (MRC) and MF interchangeably. For transmitted signalX, X̆ , X̂ , and

X̃ represent its BMMSE estimate, statistical mean estimate, and decision statistic at the detector output,

respectively.

5.2 SDF Simplification in Conventional Turbo Receivers

5.2.1 The Conventional Turbo Receiver

Referring to the system block diagram in Fig. 3.2, and makinguse of the signal model in (3.14), we will

first give a brief overview of the conventional turbo receiver, making use of the IC-MRC receiver depicted

in Fig. 5.1 as example.

In this figure, signalR denotes the received signal at each subcarrier, as defined in(3.14) and

(3.16),X̃nt andX̂nt , nt = 1, 2, · · · , nT denotes the decision statistic from the IC-MRC detector, and

the statistical mean estimate of signalXnt , respectively.λ(I) andλ(O) denote the inputa priori and

output extrinsic information of the SISO decoders.

At each iteration, an IC and MRC (“IC & MRC”) unit is implemented for each subcarrier to

cancel the estimated interference from other antenna groups, and then exploit the diversity from the spatial

domain by MRC, generating the following decision statistic

X̃k,i = HH
k

(
R − Ĩk,i

)
, (5.1)

where subscriptsk andi denote the transmitted signal index and the iteration numbers, respectively,Hk
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Figure 5.1: The iterative receiver for BICM GSTBC-OFDM systems.
∏

and
∏

−1 stand for interleaver and

deinterleaver, respectively.

denotes thekth column ofH, andĨk,i represents the estimated interference which is calculatedas

Ĩk,i =

nT∑

p=1
p 6=k

HpX̂p,i−1,

whereX̂p,i−1 is the estimated statistical mean ofXp at iteration(i− 1), as given later in (5.7).

An initial estimate ofX̃ can be obtained through ZF interference suppression (IS) [44], expressed

as

X̃0 = H†R, (5.2)

where subscript0 denotes0th iteration (initialization),H† denotes the pseudo-inverse matrix ofH.

Alternatively, an LMMSE filter can be used, expressed as

X̃0 =

(
HHH +

2σ2

σ2
x

I

)−1

HHR, (5.3)

whereσ2 is the AWGN noise variance defined in (3.14),σ2
x is the signal power, andI is the identity matrix.
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The Soft Demodulator

The soft demodulator calculates the updated log-likelihood ratio (LLR) of coded bits, i.e., the extrinsic

metric values, using the detector outputX̃k,i, as

Λi(k, l) = log
p(clk = 1|X̃k,i)

p(clk = 0|X̃k,i)

= log
p
(
X̃k,i|clk = 1

)
p(clk = 1)

p
(
X̃k,i|clk = 0

)
p(clk = 0)

= log
p
(
X̃k,i|clk = 1

)

p
(
X̃k,i|clk = 0

) + log
p(clk = 1)

p(clk = 0)︸ ︷︷ ︸
λi−1
a (k,l)

= log

∑

Sk∈Ω+

p
(
X̃k,i|Sk

)
p
(
Sk|clk = 1

)

∑

Sk∈Ω−

p
(
X̃k,i|Sk

)
p
(
Sk|clk = 0

) + λi−1
a (k, l)

= log

∑

Sk∈Ω+

p(X̃k,i|Sk)

log2 M∏

j=1
j 6=l

p(cjk)

∑

Sk∈Ω−

p(X̃k,i|Sk)

log2 M∏

j=1
j 6=l

p(cjk)

︸ ︷︷ ︸
λi
e(k,l)

+λi−1
a (k, l),

(5.4)

wherel = 1, 2, · · · , log2M , Ω+=
{
Sk : clk = 1

}
, i.e., the subset of modulation symbols whoselth bit

is 1, andΩ−=
{
Sk : clk = 0

}
represents the signal subset whoselth bit is 0.p(clk) is the estimateda priori

probability ofclk, as given later in (5.5). At the initialization (iteration 0), p(clk) = 1
2 , andλ0

a(k, l) = 0. It

can be seen that the LLR is composed of two parts - the updated bit metric valueλi
e(k, l) and thea priori

informationλi−1
a (k, l).

{λi
e(k, l)} are de-interleaved to generate the input{λI(C)} for the SISO decoder which produces

thea posterioriand extrinsic LLR information{λO(C)} (EXT) for the coded bits.

The extrinsic information is then interleaved to generate thea priori informationλi
a(k, l) for the

“Soft Mapper” in which thea priori probability of the coded bits is first calculated as





P (clk = 1) =
exp(λi

a(k, l))

1 + exp(λi
a(k, l))

P (clk = 0) =
1

1 + exp(λi
a(k, l))

(5.5)
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from which the symbola priori probability is computed as

P {Sm} =

log2 M∏

l=1

P
(
clm

)
, (5.6)

under the assumption thatSm is mapped from bits[c1m, c
2
m, · · · , c

log2 M
m ], and these bits are uncorrelated

with sufficient interleaving.

Finally, the modulated symbols are estimated as its statistical mean:

X̂k,i = E{Xk,i} =
∑

Sm∈Ω

SmP (Sm), (5.7)

whereΩ denotes the signal set for all the modulation symbols.

5.2.2 Exact SDF’s

Applying the gray mapping rules as given in Table 5.1-5.5 forBPSK, QPSK, 8PSK, 16QAM, and 64QAM

signals, respectively, we can obtain the exact SDF’s in the conventional turbo receivers, as

• BPSK

X̂m,i = (+1) × P (cm = 1) + (−1) × P (cm = 0) = tanh

(
λi
a(m)

2

)
(5.8)

• QPSK

X̂m,i = tanh

(
λi
a(m, 1)

2

)
+ j tanh

(
λi
a(m, 2)

2

)
(5.9)

• 8PSK

X̂m,i = tanh

(
−λ

i
a(m, 2)

2

)
a+ beλ

i
a(m,3)

1 + eλ
i
a(m,3)

+ j tanh

(
−λ

i
a(m, 1)

2

)
aeλ

i
a(m,3) + b

1 + eλ
i
a(m,3)

, (5.10)

wherea =

√
2+

√
2

2 , andb =

√
2−

√
2

2 .

• 16QAM

X̂m,i = tanh

(
λi
a(m, 1)

2

)
3 + eλ

i
a(m,2)

1 + eλ
i
a(m,2)

+ j tanh

(
λi
a(m, 3)

2

)
3 + eλ

i
a(m,4)

1 + eλ
i
a(m,4)

(5.11)
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• 64QAM

X̂m,i = tanh

(
λi
a(m, 1)

2

)
7 + 5eλ

i
a(m,3) + 3eλ

i
a(m,2)+λi

a(m,3) + eλ
i
a(m,2)

(
1 + eλi

a(m,2)
) (

1 + eλi
a(m,3)

)

+j tanh

(
λi
a(m, 4)

2

)
7 + 5eλ

i
a(m,6) + 3eλ

i
a(m,5)+λi

a(m,6) + eλ
i
a(m,5)

(
1 + eλ

i
a(m,5)

) (
1 + eλ

i
a(m,6)

)

= tanh

(
λi
a(m, 1)

2

)
F
(
λi
a(m, 2), λ

i
a(m, 3)

)

+ j tanh

(
λi
a(m, 4)

2

)
F
(
λi
a(m, 5), λ

i
a(m, 6)

)
, (5.12)

whereF(x, y) in (5.12) is defined as

F(x, y) =
7 + 5ey + 3ex+y + ex

(1 + ex) (1 + ey)
. (5.13)

The detailed derivation of (5.10) and (5.11) can be found in Appendix A. Following the same

procedure, the results in (5.8), (5.9), and (5.12) can be obtained.

The SDF’s in (5.8) to (5.12) consist of a number of exponential terms. They are computationally

expensive in practical implementations. Simplified SDF’s are therefore desired.

Table 5.1: BPSK Gray Mapping Table.

INPUT BIT(b1) I-OUT Q-OUT

0 -1 0

1 1 0

Table 5.2: QPSK Gray Mapping Table.

INPUT BITS(b1b2) I-OUT Q-OUT

00 -1 -1

01 -1 1

11 1 1

10 1 -1
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Table 5.3: 8PSK Gray Mapping Table.

INPUT BITS(b1b2) I-OUT Q-OUT

000 a b

001 b a

011 -b a

010 -a b

110 -a -b

111 -b -a

101 b -a

100 a -b

a =

√
2+

√
2

2 , b =

√
2−

√
2

2

Table 5.4: 16QAM Gray Mapping Table.

INPUT BITS(b1b2) I-OUT

00 -3

01 -1

11 1

10 3

INPUT BITS(b3b4) Q-OUT

00 -3

01 -1

11 1

10 3

Table 5.5: 64QAM Gray Mapping Table.

INPUT BITS(b1b2) I-OUT

000 -7

001 -5

011 -3

010 -1

110 1

111 3

101 5

100 7

INPUT BITS(b3b4) Q-OUT

000 -7

001 -5

011 -3

010 -1

110 1

111 3

101 5

100 7

5.2.3 Simplified SDF’s

Simplified SDF’s for BPSK and QPSK

As

tanh(x) =
ex − e−x

ex + e−x
,
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we have

lim
x→+∞

tanh(x) = 1,

lim
x→−∞

tanh(x) = −1,

and its Maclaurin series as

tanh(x) = x− 1

3
x3 +

2

15
x5 − · · · , |x| < π

2
,

we therefore can approximatetanh(x) as

tanh(x) ≈ f̃1(x) =





+1, x ≥ 1

x, |x| < 1

−1, x ≤ −1

. (5.14)

The simplified SDF’s for BPSK and QPSK are hence

• BPSK

X̆m,i = f̃1

(
λi
a(m)

2

)
; (5.15)

• QPSK

X̆m,i = f̃1

(
λi
a(m, 1)

2

)
+ jf̃1

(
λi
a(m, 2)

2

)
. (5.16)

From our investigation on soft decision based iterative interference cancelation for uncoded GSTBC

OFDM systems [44], the above approximation introduces nearly no performance degradation.

Simplified SDF for 8PSK

In 8PSK modulation, there are two constant valuesa =

√
2+

√
2

2 , b =

√
2−

√
2

2 , anda =
(√

2 + 1
)
b. We

can therefore write its exact SDF as

X̂m,i = b tanh

(
−λ

i
a(m, 2)

2

)( √
2

1 + eλi
a(m,3)

+ 1

)
+ jb tanh

(
−λ

i
a(m, 1)

2

)( √
2

1 + e−λi
a(m,3)

+ 1

)
.

(5.17)

Defining

f2(x) =
1

1 + ex
, (5.18)
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we have

lim
x→+∞

f2(x) = 0, and lim
x→−∞

f2(x) = 1.

Making use of the Maclaurin series off2(x), we can have the following linear function to approx-

imatef2(x)

f2(x) ≈ f̃2(x) =





0, x ≥ 2

1
2 − x

4 , |x| < 2

1, x ≤ −2

. (5.19)

Therefore, we have the simplified SDF for 8PSK signals as

X̆m,i = f̃1

(
−λ

i
a(m, 2)

2

)(√
2f̃2(λ

i
a(m, 3)) + 1

)
+ jf̃1

(
−λ

i
a(m, 1)

2

)(√
2f̃2(−λi

a(m, 3)) + 1
)
,

(5.20)

wheref̃1(x) is defined in (5.14), and̃f2(x) is defined in (5.19).

Simplified SDF for 16QAM

Defining

f3(x) =
3 + ex

1 + ex
,

we have

lim
x→+∞

f3(x) = 1, and lim
x→−∞

f3(x) = 3.

Making use of the Maclaurin series off3(x), we can have its linear approximation as

f3(x) ≈ f̃3(x) =





1, x ≥ 2

2 − x
2 , −2 < x < 2

3, x ≤ −2

. (5.21)

and the following approximated linear SDF for 16QAM

X̆m,i = f̃1

(
λi
a(m, 1)

2

)
f̃3

(
λi
a(m, 2)

)
+ jf̃1

(
λi
a(m, 3)

2

)
f̃3

(
λi
a(m, 4)

)
, (5.22)

wheref̃1(x) is defined in (5.14).
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Simplified SDF for 64QAM

In order to obtain the simplified linear SDF for 64QAM, we firstdecomposeF(x, y) as

F(x, y) = 3 + 2f2(x) − 2f2(y) + 4f2(x)f2(y),

with f2(x) is defined in (5.18).

Making use of the result in (5.19), we have the following approximation forF(x, y)

F̃(x, y) = 3 + 2f̃2(x) − 2f̃2(y) + 4f̃2(x)f̃2(y), (5.23)

The approximated linear SDF for 64QAM is then

X̆m,i = f̃1

(
λi
a(m, 1)

2

)
F̃
(
λi
a(m, 2), λ

i
a(m, 3)

)
+ jf̃1

(
λi
a(m, 4)

2

)
F̃
(
λi
a(m, 5), λ

i
a(m, 6)

)
. (5.24)

Fig. 5.2 and Fig. 5.3 depict the comparison of the exact and simplified SDF’s for 16QAM and

64QAM signals, respectively. From these two figures, we can see a very accurate approximation for the

simplified SDF.
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Figure 5.2: Comparison of the exact and approximated SDF’s for 16QAM signals.
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Figure 5.3: Comparison of the exact and approximated SDF’s for 64QAM signals.

5.2.4 Simulation Results

In this section, we present the simulated BER performance ofboth the exact and the approximated SDF’s

for an8 × 4 GSTBC-OFDM system. RateRc = 1
2 CC with constraint length 3 and generation function

of (5, 7)octal is used. RateRc = 3
4 CC was obtained through puncturing according to the puncturing

pattern given in [99] and [100]. Bit interleavers proposed in IEEE 802.11a standard are adopted [2] in

the simulations. Three modulation schemes are considered,namely QPSK, 16QAM and 64QAM. 64

subcarriers and 16 symbols of CP are assumed in OFDM modulation. Of the 64 subcarriers, only 48

are used to transmit data, as specified in IEEE 802.11a standard [2]. Sixteen independent multipaths

are generated in the channel, with each multipath having i.i.d. zero mean complex Gaussian coefficient.

Unless otherwise stated, the IC-MRC filtering is used in the iterations.

In Fig. 5.4, we present the performance of conventional IC-MRC receiver forRc = 1
2 QPSK

performance. ZFIS is used in initialization. The simulatedperformance of soft decision Viterbi decoded

single group GSTBC-OFDM with four receive antennas is also included in the figure. It gives the lower

bound of the8×4 GSTBC-OFDM system, which is achieved with perfect IC. From the figure, we can see
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that the BER improves from iteration to iteration, and more importantly, the slope of the BER versus SNR

curves gets steeper and steeper, suggesting that the diversity order is getting higher and higher. However,

its convergence speed is rather slow. From iteration 5 onward, the improvement from iteration to iteration

is within 0.2dB, and at iteration 8, it is about 0.8dB away from the lower bound at BER =10−5.

LMMSE IS can improve the convergence performance and hence bridge the gap between the

turbo receiver and the lower bound, as shown in Fig. 5.5. The turbo receiver converges at iteration 4, and

it approaches the lower bound at SNR = 6dB, BER of4 × 10−5.

When puncturing is applied to the FEC for higher spectral efficiency, the EXT accuracy will be

degraded, which will lead to accuracy degradation in interference estimation and cancelation. In this case,

even with the better LMMSE IS initialization, the conventional IC-MRC turbo receiver may not achieve

convergence, instead, divergence can be observed in the BERin various iterations, as shown in Fig. 5.6.

One way to solve this problem is to use LMMSE-IC filtering scheme in the iterations. As the

LMMSE filtering can mitigate the residual interference effectively, good convergence can be obtained, as

shown in Fig. 5.7. With this scheme, however, we need to compute matrix inversion for each signal stream

at each subcarrier and in each iteration, therefore it is very complicated. Other schemes are therefore

desired. We will propose a Bayesian interference estimation scheme in Section 5.3 as an alternative

solution. The proposed scheme can also work with LMMSE-IC, as we will show in Section 5.4.

In Fig. 5.8, we depict the simulation results for 16QAM systems with the exact SDF. The lower

bound is also included in the figure to benchmark the performance. LMMSE IS is used in initialization,

and IC-MRC filtering is used in the iterations. From iteration to iteration, we can see higher and higher

diversity gains achieved, which is a result of improved accuracy of interference estimation and cancelation.

As no puncturing is applied in the CC, the iterative receiverconverges to the lower bound at BER of10−4.

We next present in Fig. 5.9 the simulated performance for 64QAM with the exact SDF. Same as in

Fig. 5.8, we depict the BER curves at the LMMSE IS, iterations1-5, and the lower bound. We can see that

same as the 16QAM system, the iterative receiver converges at fourth iteration, and it is approaching the

lower bound within the presented BER and SNR range. The touching point to the lower bound, however,

lies at BER values lower than10−5. This may be due to the denser constellation of 64QAM which will
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Figure 5.4: Conventional IC-MRC turbo receiver performance for 8 × 4 GSTBC OFDM system. Rc = 1

2

K = 3 CC, QPSK modulation, exact SDF, ZFIS initialization.

requires higher SNR for accurate interference estimation.

The receiver performance with the simplified SDF for QPSK signals is depicted in Fig. 5.10 and

compared with that with the exact SDF. We show only the results of iteration 1, 3, and 4 in the figure

which prove that the simplification in the SDF introduces only negligible degradation.

We then present in Fig. 5.11 the receiver performance with the simplified SDF for 16QAM system.

Results at iteration 1, 3 and 4 are depicted in the figure and are compared with those with the exact SDF.

It can be seen that very little degradation is introduced by the SDF simplification.

In Fig. 5.12, we depict the receiver performance with the simplified SDF for 64QAM at iterations

1, 3 and 4 and compare with those with the exact SDF. Similar to16QAM, only marginal degradation is

introduced by the SDF simplification.
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Figure 5.5: Conventional IC-MRC turbo receiver performance for 8 × 4 GSTBC OFDM system. Rc = 1

2

K = 3 CC, QPSK modulation, exact SDF, LMMSEIS initialization.
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Figure 5.6: Conventional IC-MRC turbo receiver performance for 8 × 4 GSTBC OFDM system. Rc = 3

4

K = 3 CC, QPSK modulation, exact SDF, LMMSE IS initialization.
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Figure 5.7: Conventional LMMSE-IC turbo receiver performa nce for 8 × 4 GSTBC OFDM system.Rc = 3

4

K = 3 CC, QPSK modulation, exact SDF.
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Figure 5.8: Conventional IC-MRC turbo receiver performance for 8× 4 GSTBC-OFDM. Rc = 1

2
K = 3 CC,

16QAM modulation, exact SDF. LMMSEIS initialization.
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Figure 5.9: Conventional IC-MRC turbo receiver performance for 8× 4 GSTBC-OFDM. Rc = 1

2
K = 3 CC,

64QAM modulation, exact SDF. LMMSEIS initialization.
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Figure 5.10: Conventional IC-MRC turbo receiver performance for 8 × 4 GSTBC-OFDM. Rc = 1

2
K = 3

CC, QPSK modulation, approximated linear SDF. LMMSEIS init ialization.
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Figure 5.11: Conventional IC-MRC turbo receiver performance for 8 × 4 GSTBC-OFDM. Rc = 1

2
K = 3

CC, 16QAM modulation, approximated linear SDF. LMMSEIS ini tialization.
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Figure 5.12: Conventional IC-MRC turbo receiver performance for 8 × 4 GSTBC-OFDM. Rc = 1
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K = 3

CC, 64QAM modulation, approximated linear SDF. LMMSEIS ini tialization.
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5.3 The Bayesian IC-MRC Turbo Receiver

5.3.1 Motivation

Conventional turbo receiver makes use of the EXT from previous iteration to calculate the statistical

mean as the interference estimate. When puncturing is applied to obtain higher code rate and higher

spectral efficiency, the accuracy of statistical mean will be degraded, and the turbo receiver may not be

able to converge to the lower bound, as exhibited in Fig. 5.6 for aRc = 3
4 QPSK GSTBC OFDM

system. Therefore, a better interference estimator is desired. In this section, we propose a novel BMMSE

interference estimator which employs both the EXT from the SISO decoder and the decision statistic from

the soft output detector in the interference estimation. The application of complementary information

improves the MSE of the estimated signals, and as a result, improves the BER and FER performance.

5.3.2 The Detector

The proposed Bayesian turbo receiver is depicted in Fig. 5.13. Similar to the conventional turbo receiver

depicted in Fig. 5.1, a soft-output STFP detector is implemented at each iteration. The detector uses

either IC-MRC or LMMSE-IC scheme. The decision statistic ofthe transmitted signals is then delivered

to the soft-demodulator and the extrinsic bit metric valuesare calculated and de-interleaved, using which

the SISO decoders compute the updated EXT. Different from the conventional turbo receiver in Fig. 5.1,

both the EXT from the SISO decoder and the decision statisticfrom the detector is needed to compute

the Bayesian MMSE estimate of the transmitted signals, and the Bayesian MMSE estimate is used in the

STFP detector for the next iteration of IC.

The IC output for thekth signal atith iteration is then

R̃k,i = R −
nT∑

p=1
p 6=k

HpX̆p,i−1 = HkXk + Ṽk,i, (5.25)

whereHp is thepth column ofH, X̆p,i−1 is the BMMSE estimate of thepth interference signal at iteration

i− 1, andṼk,i is the composite residual interference and white Gaussian noise, i.e.,

Ṽk,i =

nT∑

p=1
p 6=k

Hp

(
Xp − X̆p,i−1

)
+ V.
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Figure 5.13: The Bayesian turbo receiver for BICM STFP MIMO-OFDM.

Making use ofR̃k,i, the decision statistic for thekth signal atith iteration,X̃k,i, is thus

X̃k,i = FH
k,iR̃k,i, (5.26)

whereFk,i denotes the linear filter.

Same as the conventional turbo receiver, the two popular linear filtering schemes can be used in

the proposed Bayesian turbo receiver, namely, the MF (or MRC) filter with

Fk,i = Hk (5.27)

and the LMMSE filter which will be discussed in detail in Section 5.4.

In the Bayesian turbo receiver, we take a different approachin the interference estimation. We start

from the optimal BMMSE estimate of the transmitted signals,and show that when expectation maximiza-

tion (EM) algorithm [101] is used to reduce computation complexity, we obtain the same IC-MRC linear

filtering detector, as given in (5.26) and (5.27). Differentfrom the conventional turbo receiver which uses

the statistical interference mean given in (5.7), the BMMSEestimation of the interference signals̆Xp,i−1

is used in IC. This leads to better accuracy, and hence betterreceiver performance, as shown in the later

part of this chapter.
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5.3.3 Optimal BMMSE Estimate

In Bayesian parameter estimation we assume that the parameter to be estimated is a realization of the

random variableθ with an assigned prior pdfp(θ). After the datay are observed, the state of knowledge

aboutθ is given by the posterior pdfp(θ|y). The optimal BMMSE estimator that minimizes the MSE

averaged over all realizations ofθ andy, i.e., the Bayesian MSE [95], is defined as the mean of the

posterior pdf,

θ̆ = E(θ|y) =

∫
θp(θ|y)dθ.

The BMMSE estimator depends on the prior knowledge as well asthe observation data. If the prior

knowledge is weak relative to that of data, then the estimator will ignore the prior knowledge. Otherwise,

the estimator will be “biased” towards the prior mean.

If we assume perfect CSI at the receiver, the BMMSE estimate of the transmitted signals is

X̆BMMSE = E{X|R} =
∑

Xj∈ΩnT

Xj p(Xj |R), (5.28)

where we assumenT ≤ (2nR) for GSTBC, andnT ≤ nR for VBLAST systems, hence the transmitted

signal dimension isnT × 1 in (3.14).

Using Bayes’ rule, we obtain the posterior pdf, i.e., the conditional pdf ofXj givenR as

p(Xj|R) =
p(Xj ,R)

p(R)
=
p(R|Xj)p(Xj)

p(R)
=

p(R|Xj)p(Xj)∑

Xi∈ΩnT

p(R|Xi)p(Xi)
, (5.29)

where

p(R|Xj) = α exp

[
−(R− HXj)

H (R− HXj)

2σ2

]
(5.30)

from (3.14). Hereα is a system-dependent constant, andα = 1
(2πσ2)nR

for VBLAST, andα = 1
(2πσ2)2nR

for GSTBC.

We can then compute the BMMSE estimate ofX, as

X̆BMMSE =
∑

Xj∈ΩnT

Xj p(Xj |R) =
∑

Xj∈ΩnT

Xj
p(R|Xj) p(Xj)∑

Xi∈ΩnT

p(R|Xi) p(Xi)

=

∑

Xj∈ΩnT

Xjp(R|Xj) p(Xj)

∑

Xi∈ΩnT

p(R|Xi) p(Xi)
. (5.31)
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Computation of both the numerator and the denominator of (5.31) incurs a complexity ofMnT .

Simplification is thus desired. Here we adopt the expectation step of the EM algorithm [101] to reduce the

computational complexity of BMMSE estimation in (5.31).

5.3.4 Bayesian EM MMSE Estimate

The Bayesian EM MMSE estimate of thekth transmitted signal at iterationi, X̆k,i, is derived based on

the received signalR, and the estimate of the interference signals at iterationi− 1, X̆p,i−1, p 6= k, as

X̆k,i
def
= E

{
Xk|R, X̆k,i−1

}
(5.32)

whereX̆k,i−1 =
[
X̆1,i−1, X̆2,i−1, · · · , X̆k−1,i−1, X̆k+1,i−1, · · · , X̆nT ,i−1

]T
. The bar on the vector

X̆k,i−1 means the exclusion of thekth elementX̆k,i−1 from it.

Using Bayes’ rule, we can further write (5.32) as

X̆k,i =
∑

Sm∈Ω

Sm p
(
Xk = Sm|R, X̆k,i−1

)

=
∑

Sm∈Ω

Sm

p
(
Xk = Sm,R, X̆k,i−1

)

p
(
R, X̆k,i−1

)

=
∑

Sm∈Ω

Sm

p
(
R|Xk = Sm, X̆k,i−1

)
p
(
Xk = Sm, X̆k,i−1

)

∑

Sn∈Ω

p
(
R,Xk = Sn, X̆k,i−1

)

=

∑

Sm∈Ω

Sm p
(
R|Xk = Sm, X̆k,i−1

)
p (Xk = Sm)

∑

Sn∈Ω

p
(
R|Xk = Sn, X̆k,i−1

)
p (Xk = Sn)

, (5.33)

under the assumption thatp
{
Xk, X̆k,i−1

}
= p {Xk} p

{
X̆k,i−1

}
.

Remark 1 The computational complexity in the enumerator and denominator of (5.33) is linear with the

modulation size.
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Remark 2 In conventional EM receivers as [101] [44], it was assumed that all the transmitted signals

are equally probable, hence (5.33) is simplified to

X̆k,i =

∑

Sm∈Ω

Sm p
{
R|Xk = Sm, X̆k,i−1

}

∑

Sn∈Ω

p
{
R|Xk = Sn, X̆k,i−1

} . (5.34)

In a coded system, when turbo receiver is implemented, thea priori probability of the transmitted

signals is available from the previous iteration, as given in (5.6). We thus can use it in (5.33) to obtain the

Bayesian EM MMSE estimate. This distinguishes the BayesianEM estimate from the conventional EM

estimate in [101] [44].

Before proceeding to the derivation of̆Xk,i, we first prove that the BMMSE EM estimate is unbi-

ased.

Theorem 7. The Bayesian EM MMSE estimatĕXk,i is unbiased.

Proof: From (5.32), we have

E
{
X̆k,i

}
= E

{
E
{
Xk|R, X̆k,i−1

}}

= E




∑

Xk∈Ω

Xk p
(
Xk|R, X̆k,i−1

)




=

∫
p
(
R|X̆k,i−1

)
dR

∑

Xk∈Ω

Xk p
(
Xk|R, X̆k,i−1

)

=
∑

Xk∈Ω

Xk

∫
p
(
R|X̆k,i−1

)
p
(
Xk|R, X̆k,i−1

)
dR

=
∑

Xk∈Ω

Xk

∫
p
(
Xk,R|X̆k,i−1

)
dR

=
∑

Xk∈Ω

Xkp
(
Xk|X̆k,i−1

)

=
∑

Xk∈Ω

Xkp (Xk)

= E {Xk} .

For the modulation schemes considered here, we further have

E
{
X̆k,i

}
= 0. (5.35)
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Now we proceed to derive the BMMSE estimatĕXk,i. We first assume perfect interference esti-

mation and cancelation. In this case, we have the pdfp
{
R|Xk, X̆k,i−1

}
given in (5.30). With the result

from (5.56) in Appendix B, we have the Bayesian EM MMSE estimate as

X̆k,i =

∑

Sm∈Ω

Sm exp



−‖HkSm‖2 + 2Re

(
S∗

mX̃k,i

)

2σ2


 p (Xk = Sm)

∑

Sn∈Ω

exp



−‖HkSn‖2 + 2Re

(
S∗

nX̃k,i

)

2σ2


 p (Xk = Sn)

. (5.36)

whereX̃k,i is the IC-MRC decision statistic, computed from (5.26) and (5.27).

Equation (5.36) implies that to obtain the Bayesian EM MMSE estimateX̆k,i, we need to imple-

ment the IC-MRC detector so as to havẽXk,i. We also need to know thea priori probability p {Xk},

which are obtained from the SISO decoders, as illustrated inFig. 5.13.

The assumption of perfect IC or zero-residual interferencepower, however, is unrealistic. An

accurate knowledge ofp
{
R|Xk, X̆k,i−1

}
is important to guarantee the estimation accuracy. To obtain

that, we proceed to analyze the statistical properties of the IC-MRC signal.

Statistics of The IC-MRC Signal

From (5.26) and (5.27), we have the IC-MRC decision statistic as

X̃k,i = gkXk + ṽk,i, (5.37)

where

gk = HH
k Hk,

ṽk,i = HH
k Ṽk,i =

nT∑

p=1
p 6=k

HH
k Hp

(
Xp − X̆p,i−1

)
+ HH

k V.

ṽk,i is Gaussian distributed from the central limit theorem. As proven in Appendix C, it has mean

zero and variance

ς2 =
1

2

nT∑

p=1
p 6=k

nR

n2
T

(
1 −

∣∣∣X̆p,i−1

∣∣∣
2
)

+ gkσ
2

for spatially uncorrelated WSSUS UPDF and EPDF multipath channels.
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We therefore have the following pdf

p
{
X̃k,i|Xk

}
=

1

2πς2
exp


−

∣∣∣X̃k,i − gkXk

∣∣∣
2

2ς2


 . (5.38)

IC-MRC Bayesian EM MMSE Estimate

With (5.38), we are ready to derive the IC-MRC Bayesian EM MMSE estimate, as

X̆k,i,IC−MRC = E
{
Xk|X̃k,i

}

=
∑

Sm∈Ω

Sm

p
{
X̃k,i|Xk = Sm

}
p {Xk = Sm}

∑

Sn∈Ω

p
{
X̃k,i|Xk = Sn

}
p {Xk = Sn}

. (5.39)

For BPSK modulated signals with Gray mapping rule given in Table 5.1, we have

X̆k,i,BPSK,IC−MRC = tanh

(
λi−1
a (k)

2
+
gkX̃k,i

ς2

)
. (5.40)

For QPSK signals with the Gray mapping rule in Table 5.2, we use thea priori probability in (5.6)

and have

X̆k,i,QPSK,IC−MRC =
1√
2


tanh


λ

i−1
a (k, 1)

2
+

Re
(
gkX̃k,i

)

√
2ς2




+j tanh


λ

i−1
a (k, 2)

2
+

Im
(
gkX̃k,i

)

√
2ς2




 . (5.41)

For 8PSK signals with Gray mapping rule of Table 5.3, its Bayesian EM MMSE estimate is calcu-

lated as

X̆k,i,8PSK,IC−MRC =
a cosh (x́1) sinh (x́3) + b cosh (x́2) sinh (x́4) e

λi−1
a (k,3)

cosh (x́1) cosh (x́3) + cosh (x́2) cosh (x́4) eλ
i−1
a (k,3)

+j
a cosh (x́4) sinh (x́2) e

λi−1
a (k,3) + b cosh (x́3) sinh (x́1)

cosh (x́1) cosh (x́3) + cosh (x́2) cosh (x́4) eλ
i−1
a (k,3)

, (5.42)

where

x́1 =
bgkX̃k,i,Im

ς2
− λi−1

a (k, 1)

2
,

x́2 =
agkX̃k,i,Im

ς2
− λi−1

a (k, 1)

2
,

x́3 =
agkX̃k,i,Re

ς2
− λi−1

a (k, 2)

2
,

x́4 =
bgkX̃k,i,Re

ς2
− λi−1

a (k, 2)

2
.
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For 16QAM signals following the mapping rule in Table 5.4, wehave the Bayesian EM MMSE

estimate as

X̆k,i,16QAM,IC−MRC =
1√
10

(
fx,16QAM(

Re(gkX̃k,i)√
10ς2

,
gk

ς2
, λ4l−3

c , λ4l−2
c )

+jfx,16QAM(
Im(gkX̃k,i)√

10ς2
,
ρl

ς2
, λ4l−1

c , λ4l
c )

)
, (5.43)

where

fx,16QAM(x, y, λ, γ) =
3e−0.4y−γ sinh(3x+ λ

2 ) + sinh(x+ λ
2 )

e−0.4y−γ cosh(3x+ λ
2 ) + cosh(x+ λ

2 )
,

and for 64QAM signals following the mapping rule in Table 5.5, we have the Bayesian EM MMSE

estimate as

X̆k,i,64QAM,IC−MRC =
1√
42

(
fx,64QAM(

Re(gkX̃k,i)√
42ς2

,
ρl

42ς2
, λ6l−5

c , λ6l−4
c , λ6l−3

c )

+jfx,64QAM(
Im(gkX̃k,i)√

42ς2
,
ρl

ς2
, λ6l−2

c , λ6l−1
c , λ6l

c )

)
, (5.44)

where

fx(x, y, λ, γ, η) =
7k7 sinh(7x+ λ

2 ) + 5k5 sinh(5x+ λ
2 ) + 3k3 sinh(3x+ λ

2 ) + sinh(x+ λ
2 )

k7 cosh(7x+ λ
2 ) + k5 cosh(5x+ λ

2 ) + k3 cosh(3x+ λ
2 ) + cosh(x+ λ

2 )

with

k7 = e−24y−γ , k5 = e−12y−γ−η , andk3 = e−4y−η .

Discussions and Remarks

Comparing the Bayesian EM MMSE estimate in (5.40) and (5.41)with that in [44] and [101] for uncoded

systems, we improve the original EM estimate by applying theestimateda priori probability from the

SISO decoders, rather than simply assuming an equala priori probability. As pointed out in [95], use of

prior information will always improve the estimation accuracy.

In turbo receivers, the prior information is estimated fromthe SISO decoders, hence has limited

accuracy especially in the low to medium SNR region. The accuracy is further degraded when punctured

code is used. Therefore, when only this estimated prior information is used to calculate the statistical mean

of the interference, as in conventional turbo receivers, inaccurate IC ensues. The detrimental effect can
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lead to performance divergence under some circumstances, e.g., when punctured code is used, as shown

by one of our simulation results presented in Fig. 5.18 of Section 5.6.

In BMMSE estimation we make use of not only the estimateda priori information from the de-

coder, but also the decision statistic information from thedetector. While the prior information is estimated

by exploiting the correlation introduced through BICM, theIC-MRC decision statistic is obtained using

the spatial domain information through STFP. The spatial domain information can effectively compensate

for the estimation errors due to thea priori information inaccuracy, as observed from the MSE comparison

depicted in Fig. 5.14 and Fig. 5.15 for a QPSK-modulated8 × 8 VBLAST system. ZFIS initialization

is used for the simulation of Fig. 5.14 and LMMSE IS is used forFig. 5.15. The rateRc = 1
2 constraint

lengthK = 3 CC is used. It can be seen that for ZFIS initialization, BMMSEestimation leads to MSE

reduction of 14dB at iteration 3 andEb/No = 4dB, and 22dB atEb/No = 6dB. With LMMSE IS initial-

ization, about 12dB MSE reduction is obtained at iteration 3for bothEb/No = 4dB andEb/No =6dB.

This improved estimation accuracy leads to significant BER and FER performance improvement, as will

be shown in Section 5.6.

5.3.5 The Soft Demodulator

The soft demodulator calculates the updated log-likelihood ratio (LLR) of coded bits, i.e., the extrinsic

metric values, for the SISO decoder using the detector output X̃k,i, as described in (5.4). Applying results
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Figure 5.14: MSE comparison between BMMSE and statistical mean interference estimation for IC-MRC

turbo receiver with ZFIS initialization. 8 × 8 VBLAST, QPSK modulation, Rc = 1

2
K = 3 CC.

.

in (5.5) and (5.38), we can further decompose the extrinsic LLR λi
e(k, l) as

λi
e(k, l) = log

∑

Sk∈Ω+

p(X̃k,i|Sk)

log2 M∏

j=1
j 6=l

exp

[
(2cjk − 1)

λi−1
a (k, j)

2

]

∑

Sk∈Ω−

p(X̃k,i|Sk)

log2 M∏

j=1
j 6=l

exp

[
(2cjk − 1)

λi−1
a (k, j)

2

]

= log

∑

Sk∈Ω+

exp


−

∣∣∣X̃k,i − gkSk

∣∣∣
2

2ς2




log2 M∏

j=1
j 6=l

exp

[
(2cjk − 1)

λi−1
a (k, j)

2

]

∑

Sk∈Ω−

exp


−

∣∣∣X̃k,i − gkSk

∣∣∣
2

2ς2




log2 M∏

j=1
j 6=l

exp

[
(2cjk − 1)

λi−1
a (k, j)

2

]

= log

∑

Sk∈Ω+

exp


−

∣∣∣X̃k,i − gkSk

∣∣∣
2

2ς2
+

log2 M∑

j=1
j 6=l

(2cjk − 1)
λi−1
a (k, j)

2




∑

Sk∈Ω−

exp


−

∣∣∣X̃k,i − gkSk

∣∣∣
2

2ς2
+

log2 M∑

j=1
j 6=l

(2cjk − 1)
λi−1
a (k, j)

2




,
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Figure 5.15: MSE comparison between BMMSE and statistical mean interference estimation for IC-MRC

turbo receiver with LMMSEIS initialization. 8 × 8 VBLAST, QPSK modulation, Rc = 1

2
K = 3 CC.

.

we hence have

λi
e(k, l) = max∗Sk∈Ω+


−|X̃k,i−gkSk|2

2ς2
+

log2 M∑

j=1
j 6=l

(2cjk − 1)
λi−1
a (k, j)

2




− max∗Sk∈Ω−


−|X̃k,i−gkSk|2

2ς2
+

log2 M∑

j=1
j 6=l

(2cjk − 1)
λi−1
a (k, j)

2


 , (5.45)

where themax∗(·) function is defined as

a = max∗ ≡ log

[
L∑

i=1

exp (ai)

]
,

and

max∗(a1, a2) = log (ea1 + ea2) = max(a1, a2) + log
(
1 + e−|a1−a2|

)
.
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5.4 The Bayesian LMMSE-IC Turbo Receiver

Similar to conventional LMMSE-IC turbo receivers in [85] and [89], LMMSE filtering can be applied in

(5.26) to further suppress the residual interference. Verdú and Poor have proved in [98] that the LMMSE

filter can be modeled by an equivalent AWGN channel. We can therefore obtain the BMMSE estimate

of the signal for the LMMSE-IC turbo receiver in a very straight-forward manner. The LMMSE filter

Fk,i minimizes the MSE between the transmitted signalXk and the filter outputX̃k,i = FH
k,iR̃k,i, and is

obtained from the Wiener-Hopf equation as

Fk,i = E
{
R̃k,iR̃

H
k,i

}−1
E
{
X∗

kR̃k,i

}
=
(
HΓk,iH

H + 2σ2I
)−1

Hk, (5.46)

whereΓk,i is a diagonal matrix with elements

γp,i =





1, p = k

∑

Xp∈Ω

p{Xp}|Xp|2 +
∣∣∣X̆p,i−1

∣∣∣
2
− X̆∗

p,i−1X̂p,i − X̆p,i−1X̂
∗
p,i, p 6= k,

(5.47)

andX̂p,i andX̆p,i being the statistical mean and BMMSE estimate ofXp, respectively. Please take note

that elementsγp 6=k,i are computed differently from the conventional LMMSE-IC turbo receivers, which is

due to the use of Bayesian estimate in the IC process.

The LMMSE-IC decision statistic is thus

X̃k,i = FH
k,iR̃k,i = µk,iXk + ηk,i, (5.48)

which is an equivalent AWGN model with [98]

µk,i = E
{
X̃k,iX

∗
k

}
=
{
HH

[
HΓk,iH

H + 2σ2I
]−1

H
}

kk
, (5.49)

ν2
k,i = Var

{
X̃k,i

}
= µk,i − µ2

k,i, (5.50)

and{·}ij denotes the element atith row andjth column.

With the Gaussian model developed in (5.48) - (5.50), we can easily obtain the BMMSE estimate

for BPSK signals as

X̆k,i,BPSK,LMMSE−IC = tanh

(
λi−1
a (k)

2
+
µk,iX̃k,i

ν2
k,i

)
, (5.51)
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and for QPSK signals as

X̆k,i,QPSK,LMMSE−IC =
1√
2


tanh


λ

i−1
a (k, 1)

2
+

Re
(
µk,iX̃k,i

)

√
2ν2

k,i




+j tanh


λ

i−1
a (k, 2)

2
+

Im
(
µk,iX̃k,i

)

√
2ν2

k,i




 . (5.52)

For 8PSK signals with Gray mapping rule of Table 5.3, its Bayesian EM MMSE estimate is calcu-

lated as

X̆k,i,8PSK,LMMSE−IC =
a cosh (x́1) sinh (x́3) + b cosh (x́2) sinh (x́4) e

λi−1
a (k,3)

cosh (x́1) cosh (x́3) + cosh (x́2) cosh (x́4) eλ
i−1
a (k,3)

+j
a cosh (x́4) sinh (x́2) e

λi−1
a (k,3) + b cosh (x́3) sinh (x́1)

cosh (x́1) cosh (x́3) + cosh (x́2) cosh (x́4) eλ
i−1
a (k,3)

, (5.53)

where

x́1 =
bµk,iX̃k,i,Im

ν2
k,i

− λi−1
a (k, 1)

2
,

x́2 =
aµk,iX̃k,i,Im

ν2
k,i

− λi−1
a (k, 1)

2
,

x́3 =
aµk,iX̃k,i,Re

ν2
k,i

− λi−1
a (k, 2)

2
,

x́4 =
bµk,iX̃k,i,Re

ν2
k,i

− λi−1
a (k, 2)

2
.

For 16QAM signals following the mapping rule in Table 5.4, wehave the Bayesian EM MMSE

estimate as

X̆k,i,16QAM,LMMSE−IC =
1√
10

(
fx,16QAM(

Re(µk,iX̃k,i)√
10ν2

k,i

,
µk,i

ν2
k,i

, λ4l−3
c , λ4l−2

c )

+jfx,16QAM(
Im(µk,iX̃k,i)√

10ν2
k,i

,
ρl

ν2
k,i

, λ4l−1
c , λ4l

c )

)
, (5.54)

where

fx,16QAM(x, y, λ, γ) =
3e−0.4y−γ sinh(3x+ λ

2 ) + sinh(x+ λ
2 )

e−0.4y−γ cosh(3x+ λ
2 ) + cosh(x+ λ

2 )
,

and for 64QAM signals following the mapping rule in Table 5.5, we have the Bayesian EM MMSE
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estimate as

X̆k,i,64QAM,LMMSE−IC =
1√
42

(
fx,64QAM

(
Re(µk,iX̃k,i)√

42ν2
k,i

,
ρl

42ν2
k,i

, λ6l−5
c , λ6l−4

c , λ6l−3
c

)

+jfx,64QAM

(
Im(µk,iX̃k,i)√

42ν2
k,i

,
ρl

ν2
k,i

, λ6l−2
c , λ6l−1

c , λ6l
c

))
, (5.55)

where

fx(x, y, λ, γ, η) =
7k7 sinh(7x+ λ

2 ) + 5k5 sinh(5x+ λ
2 ) + 3k3 sinh(3x+ λ

2 ) + sinh(x+ λ
2 )

k7 cosh(7x+ λ
2 ) + k5 cosh(5x+ λ

2 ) + k3 cosh(3x+ λ
2 ) + cosh(x+ λ

2 )

with

k7 = e−24y−γ , k5 = e−12y−γ−η , k3 = e−4y−η .

5.5 SDF Simplification in Bayesian EM Estimate

Incorporation of both the SISO decoder EXT and the soft output detector output in the interference estima-

tion will improve the estimation accuracy, as shown in the MSE performance comparison in Fig. 5.15 and

Fig. 5.14, and the BER and FER performance comparison presented in Section 5.6. However, as more

variables are included in the SDF, the computational complexity is higher than the conventional turbo

receiver. In this section, we will discuss the possible simplification of SDF’s in Bayesian EM estimate.

For BPSK and QPSK signals, the SDF’s are still a hyperbolic function. Therefore, the clip function

given in (5.14) can be applied. For 8PSK, 16QAM and 64QAM signals, the corresponding simplified

SDF’s need to be re-derived. We propose this as one possible future work for the Bayesian turbo receiver

study.

5.6 BER and FER Performance

In this section, we present the BER and FER performance of theBayesian turbo receivers. Again the rate

Rc = 1
2 constraint lengthK = 3 CC is used as the mother code, and puncturing is applied to generate

the desired coding rate according to the puncturing patterngiven in [99] and [100]. Uniform power delay

profiles with sixteen i.i.d. complex Gaussian taps are used for the spatial channels corresponding to each
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transmit and receive antenna pair, which are assumed uncorrelated in spatial domain. The FFT size is set

to 64, and 48 are assigned as data subcarriers. Coding frame length of 96 is used forRc = 1
2 QPSK, and

216 is used forRc = 3
4 8PSK, in each parallel streams.

In Fig. 5.16 and Fig. 5.17, we depict the BER and FER performance of IC-MRC Bayesian MMSE

receiver for an8 × 4 GSTBC system withRc = 1
2 and QPSK modulation. ZFIS is used for initialization.

For comparison, the conventional IC-MRC turbo receiver performance using EXT and the lower bound

are also depicted in the figure. Several observations can be made from the two figures. First, superior

performance is obtained by the Bayesian turbo receiver. Itssecond iterationperformance is better than the

fifth iterationof the conventional receiver at low to medium SNR values, andthe same as the conventional

one at high SNR. This is because of the improved accuracy in BMMSE interference estimation, as shown

in Section 5.3.
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Figure 5.16: BER performance of Bayesian IC-MRC receiver,8 × 4 GSTBC, QPSK,Rc = 1

2
K = 3 CC.

With the same number of iterations implemented for both the Bayesian and the conventional turbo

receivers, an SNR gain of 1.2 dB can be achieved from the Bayesian receiver at iteration five, at BER =
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Figure 5.17: FER performance of Bayesian IC-MRC receiver,8 × 4 GSTBC, QPSK,Rc = 1

2
K = 3 CC.

10−5 and FER =10−2. Convergence of the Bayesian receiver to the lower bound appears at SNR = 4.5

dB, corresponding to BER =6×10−4 and FER =3×10−2, while the conventional receiver does not show

obvious convergence in the range of our simulation setups.

Performance advantage of the Bayesian receiver is more obvious when punctured code is used

in the system, as illustrated by the BER simulation results in Fig. 5.18 for aRc = 3
4 QPSK 8 × 4

GSTBC system. In this figure, we present four simulation results, namely, conventional IC-MRC receiver

with both ZFIS and LMMSE IS initialization, and Bayesian IC-MRC receiver with ZFIS and LMMSE

IS initialization. For each of them, we show the BER at iterations 1, 3, and 5. From the figure, we can

see clearly the divergence behaviors of the conventional receivers. LMMSE IS initialization improves the

performance, but it can not solve the divergence problem. Webelieve this is due to puncturing in the CC

that degrades the accuracy in the EXT. The Bayesian receivers, with the compensation of the detector’s

decision statistic, however, can very well avoid the performance divergence. Furthermore, they achieves

5dB gain over the conventional ones with both ZFIS and LMMSE IS initialization, and more importantly,
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Figure 5.18: BER performance comparison of Bayesian IC-MRCand conventional IC-MRC receivers, ZFIS

and LMMSE IS, 8 × 4 GSTBC, QPSK,Rc = 3

4
K=3 CC.

the Bayesian receiver with LMMSE IS initialization converges to the lower bound at BER =10−3 and SNR

= 6 dB. The additional complexity to achieve these significant gains is only the summation of decision

statistic and thea priori information in the hyperbolic tangent function, as shown in(5.40) and (5.41).

The BER and FER performances of the Bayesian LMMSE-IC receiver are depicted in Fig. 5.19

and Fig. 5.20, respectively for an8 × 8 VBLAST system withRc = 3
4 8PSK. Similar to the IC-MRC

Bayesian receivers, its second iteration performance is better than the fifth iteration conventional receiver

at low to medium SNR values due to the improved accuracy in theinterference estimation, and approaches

the conventional receiver performance at high SNR values due to the dominance of the a priori information

in the Bayesian estimate. For all the five iterations presented in the figures, the Bayesian receiver achieves

at least 1dB gain over the conventional one.



CHAPTER 5. BAYESIAN ITERATIVE TURBO RECEIVER 126

4 5 6 7 8 9 10 11 12 13 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 per receive antenna(dB)

B
E

R

iteration 1
iteration 2
iteration 3
iteration 4
iteration 5

Conventional LMMSE−IC

Bayesian LMMSE−IC

Figure 5.19: BER performance of Bayesian LMMSE-IC receiver, 8 × 8 VBLAST, 8PSK, Rc = 3

4
K=3 CC.

5.7 Conclusions

We presented our study on turbo receivers for coded MIMO-OFDM systems. In order to reduce the

complexity of SDF in conventional turbo receivers, Maclaurin series were used to derive the simplified

linear SDF’s for the popular MPSK and M-QAM signals. Simulation results show negligible performance

degradation from the decision function simplification.

We also proposed a new class of Bayesian MMSE turbo receiversfor coded MIMO-OFDM sys-

tems. Using EM algorithm, we derive the Bayesian MMSE estimate of the transmitted signals and show

that it is a function of both the linear detector decision statistic and the extrinsic information from the

soft-input soft-output decoder. The EXT and decision statistic represent information from two different

domains, one from coding domain and the other from the interference domain. They are hence not repeti-

tive but complementary in interference estimation. The Bayesian MMSE estimate effectively compensates

for the inaccuracy experienced by the statistical mean interference estimation usingonly the extrinsic in-
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Figure 5.20: FER performance of Bayesian LMMSE-IC receiver, 8 × 8 VBLAST, 8PSK, Rc = 3

4
K=3 CC.

formation in conventional turbo receivers. This contributes to the fewer number of iterations needed to

achieve convergence, and the SNR gains at same BER and FER performances.

The incorporation of more variables in the interference estimate of Bayesian turbo receiver, how-

ever, does not introduce much additional complexity for theBPSK and QPSK modulation signals. The

simplified linear SDF used in conventional turbo receivers can also be applied in the Bayesian turbo re-

ceivers in a straightforward manner for these two modulation schemes. For other modulation signals, e.g.,

8PSK, 16QAm and 64QAM, more complexities will be incurred ingetting the Bayesian EM estimate.

Simplification of the decision functions are therefore desired.

In the next chapter, we will present the EXIT chart analysis of the Bayesian turbo receivers.
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Appendix A: Detailed Derivation of (5.10), (5.11) and (5.12)

From (5.7), we can calculatêXm,i following the 8PSK mapping table given in Table 5.3 as

X̂m,i = (a+ jb)P (Sm,I = a+ jb) + (b+ ja)P (Sm,I = b+ ja)

+ (−b+ ja)P (Sm,I = −b+ ja) + (−a+ jb)P (Sm,I = −a+ jb)

+ (−a− jb)P (Sm,I = −a− jb) + (−b− ja)P (Sm,I = −b− ja)

+ (b− ja)P (Sm,I = b− ja) + (a− jb)P (Sm,I = a− jb).

Hence we have the real part of̂Xm,i calculated as

X̂m,i, Re =

a
e

−λa(m,1)−λa(m,2)−λa(m,3)
2 − e

−λa(m,1)+λa(m,2)−λa(m,3)
2 − e

λa(m,1)+λa(m,2)−λa(m,3)
2 + e

λa(m,1)−λa(m,2)−λa(m,3)
2

(
e

λa(m,1)
2 + e−

λa(m,1)
2

)(
e

λa(m,2)
2 + e−

λa(m,2)
2

)(
e

λa(m,3)
2 + e−

λa(m,3)
2

)

+b
e

−λa(m,1)−λa(m,2)+λa(m,3)
2 − e

−λa(m,1)+λa(m,2)+λa(m,3)
2 − e

λa(m,1)+λa(m,2)+λa(m,3)
2 + e

λa(m,1)−λa(m,2)+λa(m,3)
2

(
e

λa(m,1)
2 + e−

λa(m,1)
2

) (
e

λa(m,2)
2 + e−

λa(m,2)
2

) (
e

λa(m,3)
2 + e−

λa(m,3)
2

)

=
ae

−λa(m,3)
2

e
λa(m,3)

2 + e−
λa(m,3)

2

tanh

(
−

λa(m, 2)

2

)
+

be
λa(m,3)

2

e
λa(m,3)

2 + e−
λa(m,3)

2

tanh

(
−

λa(m, 2)

2

)

=
ae

−λa(m,3)
2 + be

λa(m,3)
2

e
λa(m,3)

2 + e−
λa(m,3)

2

tanh

(
−

λa(m, 2)

2

)
,

and the imaginary part of̂Xm,i calculated as

X̂m,i, Im =

b
e

−λa(m,1)−λa(m,2)−λa(m,3)
2 + e

−λa(m,1)+λa(m,2)−λa(m,3)
2 − e

λa(m,1)+λa(m,2)−λa(m,3)
2 − e

λa(m,1)−λa(m,2)−λa(m,3)
2

(
e

λa(m,1)
2 + e−

λa(m,1)
2

) (
e

λa(m,2)
2 + e−

λa(m,2)
2

)(
e

λa(m,3)
2 + e−

λa(m,3)
2

)

+a
e

−λa(m,1)−λa(m,2)+λa(m,3)
2 + e

−λa(m,1)+λa(m,2)+λa(m,3)
2 − e

λa(m,1)+λa(m,2)+λa(m,3)
2 − e

λa(m,1)−λa(m,2)+λa(m,3)
2

(
e

λa(m,1)
2 + e−

λa(m,1)
2

) (
e

λa(m,2)
2 + e−

λa(m,2)
2

)(
e

λa(m,3)
2 + e−

λa(m,3)
2

)

=
be

−λa(m,3)
2

e
λa(m,3)

2 + e−
λa(m,3)

2

tanh

(
−

λa(m, 1)

2

)
+

ae
λa(m,3)

2

e
λa(m,3)

2 + e−
λa(m,3)

2

tanh

(
−

λa(m, 1)

2

)

=
ae

λa(m,3)
2 + be

−λa(m,3)
2

e
λa(m,3)

2 + e−
λa(m,3)

2

tanh

(
−

λa(m, 1)

2

)
.

Similarly, we can calculate the real part of̂Xm,i following the 16QAM mapping table given in
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Table 5.4 as

X̂m,i, Re = −3P (Sm,I = −3) − P (Sm,I = −1) + P (Sm,I = 1) + 3P (Sm,I = 3)

= −3P
(
c1m = 0

)
P
(
c2m = 0

)
− P

(
c1m = 0

)
P
(
c2m = 1

)

+ P
(
c1m = 1

)
P
(
c2m = 1

)
+ 3P

(
c1m = 1

)
P
(
c2m = 0

)

=
−3 − eλa(m,2) + eλa(m,1)+λa(m,2) + 3eλa(m,1)

(
1 + eλa(m,1)

) (
1 + eλa(m,2)

)

=

(
eλa(m,1)−1

) (
3 + eλa(m,2)

)
(
1 + eλa(m,1)

) (
1 + eλa(m,2)

)

=

(
eλa(m,1)/2 − e−λa(m,1)/2

) (
3 + eλa(m,2)

)
(
eλa(m,1)/2 + e−λa(m,1)/2

) (
1 + eλa(m,2)

)

= tanh

(
λa(m, 1)

2

)
3 + eλa(m,2)

1 + eλa(m,2)
.

Following the same procedure, we can derive the estimate of the imaginary part ofX̂m,i for

16QAM, and the estimate of̂Xm,i for 64QAM.

Appendix B. Expansion of(R −HX)H (R − HX)

(R −HX)H (R − HX)
∣∣∣
X̆k,i−1

= R
H
R −R

H
HX − X

H
H

H
R + X

H
H

H
HX

∣∣∣
X̆k,i−1

= R
H
R −

nT∑

p=1

R
H

XpHp −

nT∑

p=1

X
∗
pH

H
p R +

nT∑

p=1

nT∑

q=1

H
H
p HqX

∗
p Xq

∣∣∣∣∣
X̆k,i−1

= R
H
R −

nT∑

p=1
p 6=k

R
H

X̆p,i−1Hp −

nT∑

p=1
p 6=k

X̆
∗
p,i−1H

H
p R +

nT∑

p=1
p 6=k

nT∑

q=1
q 6=k

H
H
p HqX̆

∗
p,i−1Xq

︸ ︷︷ ︸
C

+ ‖HkXk‖
2 − R

H
XkHk − X

∗
kH

H
k R +

nT∑

p=1
p 6=k

(
H

H
p HkX̆

∗
p,i−1Xk + H

H
k HpX

∗
k X̆p,i−1

)

= C + ‖HkXk‖
2 − R

H
XkHk − X

∗
kH

H
k R +

nT∑

p=1
p 6=k

(
H

H
p HkX̆

∗
p,i−1Xk + H

H
k HpX

∗
kX̆p,i−1

)

= C + ‖HkXk‖
2 − H

H
k X

∗
k


R −

nT∑

p=1
p 6=k

HpX̆p,i−1


 −


R −

nT∑

p=1
p 6=k

HpX̆p,i−1




H

HkXk

= C + ‖HkXk‖
2 − 2Re


HH

k X
∗
k


R −

nT∑

p=1
p 6=k

HpX̆p,i−1







= C + ‖HkXk‖
2 − 2Re

[
X

∗
kX̃k,i

]
, (5.56)
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whereC is a constant term for all the hypotheses ofXk, “Re” denotes the real part of the signal,Hk

denotes thekth column of channel matrixH, and

X̃k,i = H
H
k


R −

nT∑

p=1
p 6=k

HpX̆p,i−1




is the IC-MRC decision statistic, as shown in (5.37).

Appendix C. Mean and Variance of the Interference at IC-MRC Output

Definingρkp = HH
k Hp, we have

E {ṽk} = E





nT∑

p=1
p 6=k

ρkp

(
Xp − X̆p,i−1

)
+ HH

k V





=

nT∑

p=1
p 6=k

ρkpE
{
Xp − X̆p,i−1

}
+ HH

k E {V}

= 0,

and

E
{
|ṽk|2

}
= E





∣∣∣∣∣∣∣

nT∑

p=1
p 6=k

ρkp

(
Xp − X̆p,i−1

)
+ HH

k V

∣∣∣∣∣∣∣

2


= E





∣∣∣∣∣∣∣

nT∑

p=1
p 6=k

ρkp

(
Xp − X̆p,i−1

)
∣∣∣∣∣∣∣

2


+ E
{∣∣HH

k V
∣∣2
}

= E





nT∑

p=1
p 6=k

nT∑

q=1,
q 6=k

ρkpρ
∗
kq

(
Xp − X̆p,i−1

)(
X∗

q − X̆∗
q,i−1

)




+ 2σ2gk

=

nT∑

p=1
p 6=k

nT∑

q=1,
q 6=k

E
{
ρkpρ

∗
kq

}
E
{(
Xp − X̆p,i−1

)(
X∗

q − X̆∗
q,i−1

)}
+ 2σ2gk

=

nT∑

p=1
p 6=k

E
{
|ρkp|2

}(
1 −

∣∣∣X̆p,i−1

∣∣∣
2
)

+ 2σ2gk

under the assumption thatρkp is independent ofXp andX̆p,i−1.

For OFDM systems, we have the frequency domain channel coefficients

Hn,k(m) =

L−1∑

l=0

hn,k(l)e
− 2π

N
ml,
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wheren andk are the receive antenna and transmit antenna indices,n = 1, 2, · · · , nR, k = 1, 2, · · · , nT ,

m is the subcarrier index,m = 0, 1, 2, · · · , N − 1, N is the FFT size,l is the multipath index,

l = 0, 1, · · · , L − 1 with L being the number of multipaths in the channel correspondingto transmit

antennan and receiver antennak, andhn,k(l) is the time-domain multipath coefficients.

Assuming wide sense stationary uncorrelated scattering (WSSUS) multipath channel for each

(n, k) MIMO channel, and spatially uncorrelated for different(n, k) pairs, we will look into two channels:

uniform power delay (UPD) profile and exponentially decaying power delay (EPD) profile.

C.1 Uniform Power Delay Profile

For WSSUS UPD profile, each multipath is i.i.d. complex Gaussian with zero mean and variance1LnT
.

We hence have fork 6= p

E
{
|ρkp|2

}
= E

{
HH

k HpH
H
p Hk

}

= E





nR∑

g=1

H∗
g,k(m)Hg,p(m)

nR∑

n=1

Hn,k(m)H∗
n,p(m)





= E





nR∑

g=1

nR∑

n=1

H∗
g,k(m)Hn,k(m)Hg,p(m)H∗

n,p(m)





= E





nR∑

g=1

nR∑

n=1

[
L−1∑

l=0

h∗g,k(l)e
j 2π

N
ml

L−1∑

i=0

hn,k(i)e
−j 2π

N
mi

L−1∑

t=0

hg,p(t)e
−j 2π

N
mt

L−1∑

s=0

h∗n,p(s)e
j 2π

N
mg

]


= E





nR∑
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s=0
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∗
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j 2π
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

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=

nR∑

g=1

nR∑

n=1

L−1∑

l=0

L−1∑

i=0

L−1∑

t=0

L−1∑

s=0

E
{
h∗g,k(l)hn,k(i)hg,p(t)h

∗
n,p(s)
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ej

2π
N
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From [102], whenZ1, Z2, Z3 andZ4 are zero-mean, stationary complex Gaussian, we have

E {Z∗
1Z

∗
2Z3Z4} = E {Z∗

1Z3} E {Z∗
2Z4} + E {Z∗

1Z4} E {Z∗
2Z3} ,
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therefore,

E
{
|ρkp|2

}
=

nR∑

g=1

nR∑

n=1

L−1∑

l=0

L−1∑

i=0

L−1∑

t=0

L−1∑

s=0

[
E
{
h∗g,k(l)hn,k(i)

}
E
{
hg,p(t)h

∗
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}

+E
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}
E
{
hn,k(i)h

∗
n,p(s)

}]
ej

2π
N

m(l−i−t+s)

=
1

n2
TL

2

nR∑

g=1
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[δ(g − n)δ(l − i)δ(t − s)

+δ(k − p)δ(l − t)δ(k − p)δ(i − s)] ej
2π
N
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=

nR∑

g=1

nR∑

n=1

L−1∑

l=0

L−1∑

i=0

L−1∑

t=0
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s=0

(
1

LnT

)2

δ(g − n)δ(l − i)δ(t − s)ej
2π
N
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=
nR

n2
T

,

whereδ(·) is the Dirac delta function.

We then have the composite interference and AWGN noise powerfor the UPD profile as

ς2 =
1

2
E
{
|µ̃k,i|2

}
=

1

2

nT∑

p=1
p 6=k

nR

n2
T

(
1 −

∣∣∣X̆p,i−1

∣∣∣
2
)

+ gkσ
2. (5.57)

C.2 Exponential Power Delay Profile

For WSSUS EPD profile, we have the channel impulse response expressed as

h(n) =

L−1∑

l=0

hlδ(n − l) =

L−1∑

l=0

ae−lβδ(n − l),

whereβ is the power loss law exponent anda is the normalization factor such that the MIMO multipath

channel does not change the average SNR at its input and output, anda is

a =

√
1 − e−2β

nT
∑L−1

l=0 e−2lβ
.

Same as the UPD channel, each multipathhl is complex Gaussian with zero mean and variance

σ2
l = a2e−2lβ.
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Making use of the derivation result for UPD channels, we hence have

E
{
|ρkp|2

}
= E
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HH

k HpH
H
p Hk
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nR∑
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,

which is the same as the Uniform Power Delay Profile multipathchannel.

The composite interference and AWGN noise power for the Exponential Power Delay profile is

therefore also the same as Uniform Power Delay Profile multipath channel, as given in (5.57).



Chapter 6

EXIT Chart Analysis

In this chapter we present the EXIT chart analysis of the proposed Bayesian MMSE turbo receivers.

EXIT chart was first proposed by S. ten Brink to trace the convergence behavior of iterative decoding

of turbo codes [103] by observing the mutual information trajectory of Ia andIe, the mutual informa-

tion between the inputa priori valuesLa to the SISO decoder and the coded bits (Ia), and the mutual

information between the output extrinsic valuesLe from the SISO decoder and the coded bits (Ie). The

EXIT chart analysis was later applied to trace convergence of other turbo processing algorithms, e.g., for

turbo-equalization in [104], for turbo receivers in MIMO systems in [105], etc.. In [106], a good tutorial

is given on the EXIT chart analysis in iterative processing.

It is worth mentioning that for turbo and turbo-like codes, e.g., LDPC codes [107][108], serially

concatenated convolutional codes (SCCC) [109], etc., another method based on density evolution has

also been proposed to analyze the convergence behaviour of iterative decoding, see works by Divsalar

et. al. [110], Richardson and Urbanke [111][112]. The density evolution analysis tracks the pdf of the

EXT as the density evolves from iteration to iteration. As the pdf of the EXT can be approximated by

a Gaussian density function [113], the density evolution analysis and the EXIT chart analysis share a lot

of commonalities. For other turbo processing algorithms, e.g., turbo equalization and turbo receiver, the

EXT output from the soft-output equalizer (turbo equalization) or detector (turbo receiver) can not be

approximated by a Gaussian distribution [114]. In this case, Hagenauer and Tüchler proposed to use the

time average to replace the statistical expectation in mutual information calculation [114], making use

134
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of the ergodicity theorem. This is a very straightforward replacement. The density evolution analysis,

however, will become a lot more complex.

The rest of the chapter is organized as follows. In Section 6.1, we give a general overview of the

mutual information of EXT and in Section 6.2, we present the EXIT chart derivation of the BMMSE detec-

tors. The numerical results of the BMMSE detector are presented in Section 6.3. Finally the conclusions

are drawn in Section 6.4.

6.1 Mutual Information of Extrinsic Information

We have briefly discussed the mutual information definition in Section 4.3. That discussion is more fo-

cussed on the mutual information between the MIMO channel input X with fixed modulation and the

unconstrained MIMO channel outputR. Here we focus on real binary input unconstrained output “chan-

nels” with the coded bits as the input and the real-valued LLRinformation as the output. The LLR can be

either thea priori LLR information at the SISO detectors/decoders input, or theextrinsicLLR information

at the SISO modules output. We are interested in determiningthe mutual information between the coded

bits and the inputa priori LLR, as well as the mutual information between the coded bitsand the output

extrinsicLLR.

Let X andY be two real valued r.v. with pdff(x) andf(y) and joint density functionf(x, y),

then the mutual information betweenX andY is defined as [6]

I(X;Y ) = E
{

log
f(x, y)

f(x) · f(y)

}

=

∫ ∫
f(x, y) log

f(x, y)

f(x) · f(y)
dxdy

=

∫ ∫
f(y|x)f(x) log

f(y|x)
f(y)

dxdy.

For binary input unconstrained output AWGN channelY = X + Z wherex ∈ {+1, − 1}, andz

is statistically independent AWGN with zero mean and varianceσ2, we have

I(X;Y ) =
∑

x=±1

∫ +∞

−∞
f(y|x)p(x) log

f(y|x)
f(y)

dy,

with p(x) being the probability mass function (pmf). The maximum mutual information is achieved for
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equally likely inputx [6], which is

I(X;Y ) =
1

2

∑

x=±1

∫ +∞

−∞
f(y|x) log

f(y|x)
f(y)

dy,

and

f(y) =
1

2
f(y|x = +1) +

1

2
f(y|x = −1)

=
1

2

1√
2πσ

(
e−

(y−1)2

2σ2 + e−
(y+1)2

2σ2

)
.

As extensively discussed in [113], [103], [104], [110], and[115], thea priori and extrinsic infor-

mation, i.e., the LLR values(λ|c) at the input and output of the SISO decoder can be well approximated

by a conditionally independent and identically distributed Gaussian random variable satisfying the “con-

sistency” condition

|E(λ|c)| =
σ2

a

2
,

whereσ2
a is its variance. The conditional pdf is therefore

f(λ|c) =
1√

2πσa

e
− (λ−c

σ2
a
2 )2

2σ2
a =

1√
2πσa

e
− (−λ−c

σ2
a
2 )2

2σ2
a ecλ = f(−λ|c)ecλ. (6.1)

The mutual information betweenΛ and the coded bitsC is therefore only dependent onσa, and
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written as

I(Λ;C) =
1

2

∑

x=±1

∫ +∞

−∞
f(λ|c) log
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f(λ)

dλ (6.2)

=
1

2
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1
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The actual value ofI(Λ;C) can be obtained through numerical evaluation of (6.3).

For notational convenience, (6.3) is defined as a mapping function between the mutual information

I(Λ;C) = Ia andσ2
a [103], i.e.,

Ia = J(σ2
a) = 1 −

∫ +∞

−∞

1√
2πσa

e
−

(
λ−

σ2
a
2

)2

2σ2
a log2

(
1 + e−λ

)
dλ. (6.4)

For some SISO processors, e.g., SISO equalizer in ISI channels [104], SISO detector for CDMA

channels [85] and MIMO channels [105], it is difficult to analytically define the pdf of the extrinsic LLR

values. In this case, the ergodicity theorem can be used to replace the statistical expectation by time
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average, and the mutual information can be computed for a large number of samples as [114] [106]

I(Λ;C) = 1 − E
{
1 + e−λ

}
≈ 1 − 1

N

N∑

n=1

log2

(
1 + e−cnλn

)
. (6.5)

For accurate approximation by (6.5), the coded block lengthN needs to be large enough.

6.2 Derivation of EXIT Chart of SISO Bayesian Detectors-C mapper -X H -R - ZFIS -~X�2 -�o- �2a -�a SISOBayesianICDetector --�e�d
Figure 6.1: Block diagram for the EXIT chart derivation of th e SISO Bayesian MMSE detecor.

In this section, we present the derivation of EXIT chart analysis for the soft-input soft-output

Bayesian MMSE detectors according to the block diagram depicted in Fig. 6.1. The coded and in-

terleaved bits are denoted by the binary(log2MnT )-vector c =
[
cT
1 , cT

2 , · · · , cT
nT

]T
, whereci =

[
ci,1, ci,2, · · · , ci,log2 M

]T
, ci,j ∈ {±1}, and M denotes the constellation size of the modulation and

log2M denotes the number of bits per symbol. The binary vectorc is mapped to the symbol vectorx with

lengthnT according to the mapping rulex = m (c). In this chapter we consider only Gray mapping.

If direct mapping is used in the MIMO precoding, the length-nT vectorm (c) will be transmitted

through thenT × nR MIMO channel represented byH, with its (i, j)-th element denoting the channel

corresponding to the transmit-receive antenna pair(j, i). The extrinsic message input to the BMMSE

detectorµo is generated according to the conditional pdf

p (r|c) =
1

(2πσ2)nR
exp

(
−‖r −Hm (c)‖2

2σ2

)
, (6.6)

sampled at all possible values ofc ∈ {±1}nT log2 M . Thea priori information input to the Bayesian IC
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detector is generated according to

λa
ij |cij ∼ N

(
cij
σ2

a

2
, σ2

a

)
(6.7)

under the assumption that thea priori LLR is the interleaved version of EXT from the SISO decoder

and it is therefore Gaussian distributed [103] with meancij
σ2
a
2 and varianceσ2

a , as given in (6.1). The

mutual information between the inputa priori information and the coded bits can therefore be computed

following (6.4).

The BMMSE estimatĕxk,i in the IC-MRC receiver is computed using the inputa priori LLR, the

received signalr, and the ZFIS estimate, i.e.,

x̆i−1 = H†r,

whereH† denotes the pseudo inverse ofH.

The BMMSE estimate in the LMMSE-IC receiver is computed using the inputa priori LLR, the

received signalr, and the LMMSE-IS estimate, i.e.,

x̆i−1 = HH
(
HHH + 2σ2I

)−1
r,

whereHH
(
HHH + 2σ2I

)−1
is the LMMSE filter.

After x̆k,i, k = 1, · · · , nT is obtained, either IC-MRC or LMMSE-IC is performed, and the

extrinsic LLR of each coded bitsc(k, l) is computed, following (5.4). As given in Chapter 5, depending

on whether an IC-MRC or LMMSE-IC filtering scheme is applied,the statistical properties ofp(X̃k,i|Sk)

in (5.4) need to be changed accordingly.

After the extrinsic LLRp (λe(k, l)|c(k, l)) is obtained, we will use (6.5) to compute the output

mutual information of the extrinsic LLR as [114]

Ie(λe;C) = 1 − 1

N

N∑

n=1

log2 [1 + exp (−c(n) λe(n))] .

6.3 Numerical Results of SISO Bayesian MMSE Detectors

In this section, we present the numerical results of the EXITchart analysis for the SISO Bayesian MMSE

detectors. We use both the4 × 4 static channel matrix given in [105] and random CSCG channels to
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evaluate the EXIT performance. For easy reference, the static channel matrix from [105] is given in the

Appendix of this Chapter.

6.3.1 EXIT Chart with the Static 4 × 4 Channel

We first depict in Fig. 6.2 the EXIT chart of the conventional and Bayesian detectors for a4 × 4 MIMO

system using the static channel. We follow the approach in [96] to derive the EXIT chart for conventional

IC-MRC and LMMSE-IC receivers. QPSK modulated signals are used and the noise power is set to

σ2 = 0.1990.
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Bayesian IC−MRC with ZFIS
Bayesian LMMSE−IC with LMMSEIS

Figure 6.2: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, QPSK modulation.σ2 = 0.1990

It is obvious from the figure that the Bayesian IC-MRC receiver outperforms the conventional IC-

MRC receiver as it achieves a higher value ofIe at any givenIa. More importantly, the Bayesian IC-MRC

receiver also outperforms the conventional LMMSE-IC receiver. This is of great practical importance

as the soft decision function for QPSK signals remain as hyperbolic-tangent function in the Bayesian

receiver, but no matrix inversion is needed in the iterations. The complexity is therefore significantly
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reduced. As expected, the Bayesian LMMSE-IC receiver improves the output mutual information over

the conventional LMMSE-IC receiver.

One more observation from the figure is that the smaller the input Ia is, the larger the difference

between the Bayesian and the conventional detectors’ output Ie values becomes. This is expected, as at

small inputIa’s, the BMMSE interference estimation accuracy is greatly improved by using the addi-

tional detector decision statistic, and whenIa increases, thea priori probability becomes more and more

dominant in the BMMSE estimate, making it closer and closer to thea priori estimate, i.e., the statistical

mean. The performance gap between the Bayesian and the conventional receivers will become smaller

correspondingly.

The EXIT chart performance is further verified for QPSK signals with the noise power set to

σ2 = 0.1256. The results are depicted in Fig. 6.3. Same observations canbe made. That is, the Bayesian

IC-MRC receiver outperforms both the conventional IC-MRC and the conventional LMMSE-IC receivers,

and by using Bayesian MMSE estimation at the LMMSE-IC output, further improvement can be gained

over the Bayesian IC-MRC receivers.

The EXIT chart analysis results for 8PSK signals are presented in Fig. 6.4 and Fig. 6.5 with

the noise power values ofσ2 = 0.1990, andσ2 = 0.1256, respectively. We only depict the mutual

information curves for LMMSE-IC receivers. As expected, the Bayesian LMMSE-IC receiver has higher

output mutual information than the conventional receiver.Compared with QPSK modulation results in

Fig. 6.2 and Fig. 6.3, however, we can notice that at same input mutual information value, higher output

mutual information can be obtained for QPSK signals than the8PSK signals. Atσ2 = 0.1256, when

the input mutual information reaches the maximum value of 1,the Bayesian LMMSE-IC detector has the

output mutual information value approaching 1 as well when QPSK signals are used, but it can only get

to about 0.875 for 8PSK signals.

6.3.2 EXIT Chart with Random CSCG 4 × 4 Channel

Now we present the EXIT chart analysis in4 × 4 random CSCG channels. Shown in Fig. 6.6 is the

EXIT chart of the conventional and Bayesian IC-MRC detectors for QPSK modulation, which is obtained
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Figure 6.3: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, QPSK modulation.σ2 = 0.1256

through averaging over 50000 realizations of the random channel. The average SNR per receive antenna

is set to 6dB. The results further prove the superior performance of Bayesian IC-MRC receiver over

the conventional one, especially at low to medium values of the input mutual information. When the

input mutual information approaches 1, the difference between the conventional and the Bayesian IC-

MRC detectors’ output mutual information will diminish. The EXIT charts comparison between the

conventional and Bayesian IC-MRC receivers for SNR = 8dB is depicted in Fig. 6.7 and same observation

can be made from this figure.

The LMMSE-IC turbo receiver EXIT chart analysis results forQPSK signals are depicted in Fig.

6.8 with SNR = 6dB. Similar to the static channel analysis, Bayesian estimation based on the LMMSE-

IC output can further improve the performance, especially for low to medium input mutual information

values. Comparing the results with that in Fig. 6.6, we can also see that the LMMSE-IC filtering scheme is

superior to IC-MRC, exhibited by the higher output mutual information values especially when the input

mutual information values are not very high. The Bayesian IC-MRC receiver, however, is superior to the
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Figure 6.4: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, 8PSK modulation.σ2 = 0.1990.

conventional LMMSE-IC receiver. This is consistent with the results for static channels, as well as the

BER and FER performances we presented in Chapter 5.

Same as the static channel case, we study the EXIT chart of LMMSE-IC receivers for 8PSK

signals. The results are presented in Fig. 6.9 for SNR = 8dB, and in Fig. 6.10 for SNR = 6dB. Both results

demonstrates the better performance of Bayesian detector than the conventional detector.

6.3.3 Convergence Analysis with the Static4 × 4 Channel

With the EXIT chart, we are also able to study the convergencebehavior of the turbo receivers. The4× 4

static MIMO channel given in [105] is used and QPSK modulation is considered. For error control code,

we again use the rate-half constraint lengthK = 3 convolutional code with generation function(5, 7)octal.

Presented in Fig. 6.11 is the results of IC-MRC receivers with noise power ofσ2 = 0.199. The

trajectories of the conventional and Bayesian receivers clearly show that the Bayesian receiver requires

much fewer iterations to achieve the same performance. Furthermore, performance improvement in the
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Figure 6.5: Mutual information transfer function comparis on of the conventional and Bayesian MMSE de-

tectors. Static channel, 8PSK modulation.σ2 = 0.1256.

initial iterations of the Bayesian receiver is substantial.

We next present the results of LMMSE-IC receivers in Fig. 6.12 with the noise power set to

σ2 = 0.285. Several observations can be made from the figure. First, forthe initial iteration, the Bayesian

receiver will lead to higher output mutual information of the decoder, implying that the BER and FER

performance is better than the conventional receiver. Second, in terms of number of iterations to achieve

convergence, the improvement of the Bayesian receiver is not as much as the IC-MRC receiver case. This

is because of the interference suppression capability of the LMMSE filter at the interference cancelation

output. Even when there is relatively high residual interference in the conventional LMMSE-IC receiver,

the LMMSE filter can suppress it effectively and provide a not-so-bad bit metric value to the decoder.

This can also be verified by the small difference of the outputmutual information values when the input

mutual information is set toIa(rec) = 0. Therefore, for implementation complexity consideration, the

Bayesian LMMSE-IC receiver is more applicable for the punctured code and higher modulation schemes,

as we have already indicated in Chapter 5, and further confirmed with the EXIT chart analysis result for
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Figure 6.6: Mutual information transfer function comparis on of the conventional and Bayesian IC-MRC

detectors. Random Rayleigh fading channel, QPSK modulation. Receive SNR = 6 dB.

8PSK signals in Fig. 6.13.

6.4 Conclusions

The EXIT chart analysis of the Bayesian MMSE IC-MRC turbo receiver is presented and compared with

the conventional turbo receivers. Our extensive results show that the Bayesian MMSE IC-MRC turbo

receiver has much higher output mutual information than theconventional turbo receivers, thus verifying

its superior BER and FER performance shown in Chapter 5. Furthermore, the detector and decoder tra-

jectories have shown that much fewer number of iterations isrequired by the Bayesian turbo receiver to

achieve convergence.
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Figure 6.7: Mutual information transfer function comparis on of the conventional and Bayesian IC-MRC

detectors. Random Rayleigh fading channel, QPSK modulation. Receive SNR = 8 dB.

Appendix - The 4×4 Static Channel Used in some EXIT Charts Generation

The4× 4 static channel used in some EXIT charts generation in this chapter was taken from [105], and is

reproduced as below:



0.926 − 1.187i −0.24 − 0.535i 1.305 + 0.184i 0.483 − 0.852i

−0.432 − 0.235i 0.448 + 0.122i −0.32 − 0.007i 0.507 + 0.417i

−0.211 − 0.877i 0.649 + 0.294i 0.316 − 0.209i −0.969 − 0.312i

−0.198 − 0.688i −1.054 + 0.14i 0.44 + 0.371i 0.948 − 0.304i






CHAPTER 6. EXIT CHART ANALYSIS 147

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Ia

Ie

4 × 4 random channel, SNR = 6dB

conventional LMMSE−IC
Bayesian LMMSE−IC with LMMSEIS

Figure 6.8: Mutual information transfer function comparis on of the conventional and Bayesian LMMSE-IC

detectors. Random Rayleigh fading channel, QPSK modulation. Receive SNR = 6 dB.
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Figure 6.9: Mutual information transfer function comparis on of the conventional and Bayesian LMMSE-IC

detectors. Random Rayleigh fading channel, 8PSK modulation. Receive SNR = 8 dB.
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Figure 6.10: Mutual information transfer function compari son of the conventional and Bayesian LMMSE-IC

detectors. Random Rayleigh fading channel, 8PSK, receive SNR = 6 dB.
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Figure 6.11: Mutual information transfer function compari son of the conventional and Bayesian IC-MRC

turbo receivers, and decoding path for the turbo receivers with K = 3 CC. Static channel, QPSK,σ2 = 0.199.
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Figure 6.12: Mutual information transfer function compari son of the conventional and Bayesian LMMSE-IC

turbo receivers, and decoding path for the turbo receivers with Rc = 1

2
K = 3 CC. Static channel, QPSK,

σ2 = 0.285.
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Figure 6.13: Mutual information transfer function compari son of the conventional and Bayesian LMMSE-IC

turbo receivers, and decoding path for the turbo receivers with Rc = 1
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K = 3 CC. Static channel, 8PSK,
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Chapter 7

Training Signal Design and Channel

Estimation

Receivers based on coherent detection need the channel information, which makes channel estimation

essential in the MIMO detector. In this chapter, we will focus on training sequence assisted channel esti-

mation for packet-based MIMO-OFDM for WLAN application. Due to the low mobility in this network,

a quasi-static channel can be assumed for each packet. Training signals are thus needed only at the begin-

ning of the packet. Training signals that are transmitted atthe beginning of a packet are sometimes called

“preambles”.

Following the linear matrix algebraic model defined in Chapter 3, we will first study the frequency-

domain channel estimation (FDCE). Based on the minimum meansquared error (MMSE) criteria for least

squares (LS) channel estimation, we will define the basic orthogonal training signals (OTS) structure and

derive the LS and LMMSE channel estimation algorithms in Section 7.2. With this OTS structure, LS and

LMMSE channel estimation can be obtained by linear matrix filtering of the received frequency domain

signal with fixed parameters. Therefore, it is very attractive for practical implementation.

The preamble length in the OTS scheme, however, should be at least equal to the number of trans-

mit antennas. The transmission efficiency can thus be severely degraded especially when the number of

active transmit antennas is large. We hence also propose in Section 7.2 a switched subcarrier pream-

ble scheme (SSPS) in which the transmit antennas are dividedinto subsets, and OTS are transmitted in

150
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alternative subsets of subcarriers in each group. With the SSPS, only subsets of the frequency domain

channel estimates can be obtained directly from the preambles. We therefore propose three interpolation

algorithms, namely, linear interpolation which assumes high correlation between neighboring subcarriers

only, LMMSE interpolation which will make use of a more realistic channel correlation in the different

subcarriers, and DFT-based LS interpolation which assumesa fixed number of multipaths in the MIMO

radio channel as well as making use of the time- and frequency-domain relationship of the channel param-

eters. The performance of the different frequency-domain channel estimation algorithms will be presented

in Section 7.2.4.

Another way to reduce the overhead length of preambles is to make use of time-domain channel

estimation algorithms. Section (TDCE) 7.3 is dedicated to the preamble designs for TDCE. Based on the

frame-work derived in [116], we prove that in addition to theCDD-based preamble (CDDP) sequence

proposed in [116], the SSPS with transmission of only its first OFDM symbol, also satisfies the criteria

of simple channel estimation and minimum MSE. Compared withthe CDDP sequence, the SSPS has the

advantage of smaller PAPR which is easily achieved with the reduced number of active subcarriers in one

OFDM symbol. Finally in Section 7.4, we conclude the chapter.

7.1 Contributions of this Chapter

The main contributions of this chapter are:

• Developed the optimal frequency domain training sequence design;

• Analyzed the MSE performance of the LS and LMMSE FDCE, explicitly proved the requirement

for the mismatched channel correlation and SNR for robust channel estimation;

• Proposed a simple training signal design for optimal TDCE.
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7.2 Preamble Design for Frequency-Domain Channel Estimation

7.2.1 The LS Channel Estimation

Recall from Chapter 3 that when no precoding is considered, the frequency-domain received signal at each

subcarrier is written as

Rk = WkSk + N k, (7.1)

wherek is the subcarrier index,R andN arenR × 1 vectors representing the received signal and the

AWGN at thenR receive antennas,S is anT × 1 vector denoting the transmitted training signal at thenT

antennas, andW is thenR × nT channel matrix.

Excluding the AWGN term in (7.1), we observe a linear relation between the channel parameters

and the received signals. For training sequence assisted channel estimation, solving this linear equation

will lead to the LS channel estimates. In order to do this, pilot signal with lengthnT OFDM symbols is

needed. The received signal at subcarrierk during the training period ofnT OFDM symbols can then be

written as:

Rk = WkSk + N k, (7.2)

whereRk =

[
Rk,1 Rk,2 · · · Rk,nT

]
is annR×nT matrix representing the received signal at the

nR antennas, subcarrierk during the training period,Sk =

[
Sk,1 Sk,2 · · · Sk,nT

]
is annT × nT

square matrix representing the training signals at subcarrier k with a length ofnT OFDM symbols, and

N k =

[
N k,1 N k,2 · · · N k,nT

]
of sizenR × nT represents the AWGN.

The LS channel estimates are then obtained by right multiplying S−1
k with Rk, as

Ŵk,LS = RkS
−1
k . (7.3)

As long asSk is a non-singular matrix,S−1
k exists. Furthermore, computation ofS−1

k can be

done off-line. Channel estimation is then just a linear combination of the received signals at the different

antennas.



CHAPTER 7. TRAINING SIGNAL DESIGN AND CHANNEL ESTIMATION 153

In order to derive the optimalSk, we first look at the MSE of the LS estimates, written as

MSE = E(||Ŵk,LS − Wk||2)

= E(||N kS
−1
k ||2)

= E(

nR∑

nr=1

|N k,nr
S−1

k |2)

= E
(

nR∑

nr=1

N k,nr
S−1

k S−H
k N H

k,nr

)

=

nR∑

nr=1

E
[
trace

(
N H

k,nr
N k,nr

S−1
k S−H

k

)]

= 2σ2
nR∑

nr=1

trace
(
S−1

k S−H
k

)

= 2σ2nR trace
(
S−1

k S−H
k

)
, (7.4)

whereN k,nr
denotes thenrth row ofN k.

Performing eigen-decomposition onSk asSk = UΛUH , whereUUH = UHU = I, Λ =

diag(λ1, λ2, · · · , λnT
) with λi being theith eigenvalue ofSk, we haveS−1

k = UΛ−1UH , S−H
k =

UΛ−HUH , and hence

MSE = 2σ2nR trace
(
UΛ−1UHUΛ−HUH

)

= 2σ2nR trace
(
Λ−1Λ−H

)

= 2σ2nR

nT∑

nt=1

1

|λnt |2
. (7.5)

Therefore, minimum MSE is obtained when
nT∑

nt=1

1

|λnt |2
is minimized. This is achieved when1

|λnt |2
=

constant, nt = 1, · · · , nT .

As

nT∑

nt=1

|λnt |2 = trace
(
ΛHΛ

)

= trace
(
UΛHUHUΛUH

)

= trace
(
SH

k Sk

)

= n2
T ,
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when we use constant modulus modulated training signals andthe total transmission power per subcarrier

is nT , the minimum MSE is obtained when|λnt |2 = nT , nt = 1, 2, · · · , nT . This can be obtained by

the following training signals.

Orthogonal Training Signals (OTS) The OTS can be obtained by extending a preamble sequence de-

signed for a single-transmit single-receive system, as

Sk = TkM, (7.6)

whereTk is the constant modulus training signal at thekth subcarrier for single-transmit single-

receive OFDM system with|Tk|2 = 1, andM is annT × nT orthogonal matrix satisfying

MMH = MHM = nT I.

Remark 1 In order to have the same transmission power at each antenna,so as to have the same

dynamic range requirement for the power amplifiers, the orthogonal matrixM should have its

element taking values ofexp(jθi), with {θi} being some discrete phase values taken from[0, 2π).

For example, whennT is 1, 2, 4, or a multiple of 4,M can be set to the Walsh Hadamard matrix of

sizenT . Otherwise, thenT × nT DFT matrix can be used.

Remark 2 One special case for the OTS isM =
√
nT InT

. This implies that same training signal

is transmitted from only one antenna per OFDM symbol. The LS MIMO channel estimation is

very simple in this case as it falls back to the single-transmit antenna channel estimation problem.

On the other hand, it involves antenna and RF circuits switching on and off in a very short time

interval, e.g., 4 microsecond (4µS) for the IEEE 802.11n systems [4], hence the performance may

get degraded if the RF circuits can not get stable within suchshort interval. This special case of

preamble design is sometimes referred asSwitched Antenna Preamble Scheme (SAPS).

Remark 3 We can easily see that in this OTS preamble design, each transmit antenna uses the

same preamble with a pre-defined phase rotation. Therefore,the properties of the single antenna
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Figure 7.1: Orthogonal training sequence design for 2 transmit antennas.
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Figure 7.2: Switched subcarrier preamble scheme for 2 transmit antennas

OFDM training signals are maintained. Moreover, MIMO channel estimation for each subcarrier is

obtained by the same linear matrix filter. The implementation is thus very simple.

In Figure 7.1, the orthogonal training signal design fornT = 2 is illustrated, in whichk denotes the

subcarrier index,+1 means that the original SISO pilot signalTk is transmitted in this subcarrier,

and−1 denotes that−Tk is transmitted. In the first time slot (OFDM symbol), both antennas

transmitTk. In the second time slot, antenna 1 transmits−Tk and antenna 2 transmitsTk so as to

obtain the orthogonality.

Switched Subcarrier Preamble Scheme (SSPS)The SSPS can be taken as another special case of OTS.

Same as SAPS, training signal is transmittedonly onceper transmit antenna and per subcarrier.

While in SAPS, preamble transmission is “switched” from onetransmit antenna to the next, in

SSPS, training signal is “switched” from one subcarrier subset to the next subcarrier subset, over all

transmit antennas. The training signal in thekth subcarrier is now

Sk =
√
nT diag(Sk,1, Sk,2, · · · , Sk,nT

) . (7.7)

In Figure 7.2, the SSPS is illustrated fornT = 2 systems.

Comparing the two “optimal” frequency domain training signal schemes, SSPS has the following

advantages:
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• simpler computation in channel estimation as only scalar operation is needed in order to calculate

the LS channel estimates;

• lower PAPR as fewer number of subcarriers are active per OFDMsymbol per transmit antenna.

On the other hand, the OTS scheme requires the same and fixed matrix filter for each subcarrier, hence

facilitates better circuit reuse in channel estimation.

The minimum MSE per subcarrier is

min(MSE) = 2σ2nR. (7.8)

The minimum MSE for all the transmit-receive antenna pairs and all theN subcarriers is thus

min(MSELS) = 2σ2nR N. (7.9)

7.2.2 The Frequency Domain LMMSE Channel Estimation

The LS channel estimates are obtained by using only the knowledge of the training signals, which can

be further improved by making use of the correlation information in frequency and spatial domains. If

we assume that the spatial domain channel response is uncorrelated, and that the power delay profile has

the same statistical properties for all the single-transmit single-receive channels corresponding to each

transmit-receive antenna pair in the MIMO system, we can then apply a frequency-domain LMMSE filter

to the LS channel estimates in (7.3), as [117]:

Ĥnr ,nt,LMMSE = RHH

(
RHH +

β

SNR
I

)−1

Ĥnr,nt,LS, (7.10)

where subscriptsnr andnt denote the indices of the receive and transmit antennas, respectively, SNR

is the per subcarrier per transmit antenna signal to noise ratio of the training signals,̂Hnr ,nt,LS denotes

theN × 1 LS channel estimates corresponding to transmit-receive antenna pair(nt, nr), β is a constant

depending on the training signal’s constellation. As givenin [117], β = 1 if MPSK training signals are

used.RHH = E(HnrntH
H
nrnt

) is the channel autocorrelation matrix which is independentof nr andnt

when we assume the same statistical properties for each single-transmit single-receive antenna channel in

the MIMO-OFDM system.
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As shown in Chapter 3,

H = Fh,

where elements ofF is fk,n = exp
(
−j 2π

N kn
)

= W kn
N , WN = exp

(
−j 2π

N

)
, andh is the time domain

channel vector withh = [h0 h1 · · · hL−1 0 · · · 0]T . Assuming WSSUS channel, i.e.,E
{
hih

∗
j

}
=

E
{
|hi|2

}
δ(i − j), we have

RHH = E(HHH) = E
(
FhhHFH

)

= FE
(
hhH

)
FH

= F diag
(
E
(
|h0|2

)
, E
(
|h1|2

)
, · · · , E

(
|hL−1|2

)
, 0, · · · , 0

)
︸ ︷︷ ︸

Λh

FH . (7.11)

Therefore, if the channel PDF information is available,RHH can be computed and used in LMMSE

channel estimation.

The MSE of LMMSE channel estimation, when perfect PDF information is used, can be derived

as follows:

MSELMMSE =

nR∑

nr=1

nT∑

nt=1

E
{∥∥∥Hnr ,nt − Ĥnr,nt,LMMSE

∥∥∥
2
}

= nT nRE
{∥∥∥H − ĤLMMSE

∥∥∥
2
}

= nT nRE
{(

H − ĤLMMSE

)H (
H − ĤLMMSE

)}

= nT nRE
{(

HH − RHGH
LMMSE

)
(H − GLMMSER)

}

= nT nRE
{

trace
[
(H − GLMMSER)

(
HH − RHGH

LMMSE

)]}

= nT nRtrace
[
RHH − GLMMSERRRGH

LMMSE

]

= nT nRtrace
[
RHH − GLMMSE

(
XRHHXH + 2σ2I

)
GH

LMMSE

]
,

whereGLMMSE is the frequency domain LMMSE channel estimation filter defined in (7.10),RRR =

E
(
RRH

)
= E

(
XRHHXH + 2σ2I

)
with X = diag(x0, x1, · · · , xN−1) being the frequency domain

training signals.
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Applying the results in (7.10) and (7.11), we have for MPSK training signals,

GLMMSE

(
XRHHXH

)
GH

LMMSE

= RHH

(
RHH +

1

SNR
I

)−1

XHXRHHXHX

(
RHH +

1

SNR
I

)−1

RHH

= RHH

(
RHH +

1

SNR
I

)−1

RHH

(
RHH +

1

SNR
I

)−1

RHH

= FΛhF
H

(
FΛhF

H +
1

SNR
I

)−1

FΛhF
H

(
FΛhF

H +
1

SNR
I

)−1

FΛhF
H

= FΛhF
H

(
FΛhF

H +
1

SNR
FFH

)−1

FΛhF
H

(
FΛhF

H +
1

SNR
FFH

)−1

FΛhF
H

= FΛh

(
Λh +

1

SNR
I

)−1

Λh

(
Λh +

1

SNR
I

)−1

ΛhF
H ,

and

GLMMSEGH
LMMSE = FΛh

(
Λh +

1

SNR
I

)−2

ΛhF
H .

Therefore,

trace
[
RHH − GLMMSE

(
XRHHXH + 2σ2I

)
GH

LMMSE

]

=

L−1∑

l=0


|hl|2 −

|hl|6(
|hl|2 + 1

SNR

)2 − 2σ2|hl|4(
|hl|2 + 1

SNR

)2




=

L−1∑

l=0

|hl|2
SNR

|hl|2 + 1
SNR

=

L−1∑

l=0

|hl|2

1 + |hl|2
2σ2

and the MSE of the channel estimates is

MSELMMSE = nT nR

L−1∑

l=0

|hl|2

1 + |hl|2
2σ2

(7.12)

< nT nR

L−1∑

l=0

2σ2 (7.13)

= LnT nR 2σ2. (7.14)

As long asLnT ≤ N , the LMMSE channel estimates have smaller MSE than the LS estimates.
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MSE with Channel Correlation Mismatch

Equation 7.12) gives the minimum MSE when the exact correlation matrixRHH is known to the LMMSE

channel estimator. Now we will look at the MSE when there is mismatch between theRHH used in

channel estimation and the exact one.

Denoting the mismatched correlation matrix asR̃HH = FΛ̃hF
H , we then have the LMMSE filter

expressed as

G̃LMMSE = R̃HH

(
R̃HH + 2σ2I

)−1
XH

= FΛ̃h

(
Λ̃h + 2σ2I

)−1
FHXH ,

and

G̃LMMSE

(
XRHHXH + 2σ2I

)
G̃H

LMMSE

= FΛ̃h

(
Λ̃h + 2σ2I

)−1
FHXH

(
XFΛhF

HXH + 2σ2FFH
)
XF

(
Λ̃h + 2σ2I

)−1
Λ̃hF

H

= FΛ̃h

(
Λ̃h + 2σ2I

)−1 (
Λh + 2σ2I

)(
Λ̃h + 2σ2I

)−1
Λ̃hF

H

hence the mismatched MSE expressed as

M̃SELMMSE = nT nRtrace
[
RHH − G̃LMMSE

(
XRHHXH + 2σ2I

)
G̃H

LMMSE

]

= nT nRtrace

[
Λh − Λ̃h

(
Λ̃h + 2σ2I

)−1 (
Λh + 2σ2I

) (
Λ̃h + 2σ2I

)−1
Λ̃h

]

= nT nR

L−1∑

l=0


λl −

λ̃2
l

(
λ2

l + 2σ2
)

(
λ̃l + 2σ2

)2



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We therefore have the difference between the mismatched MSEand the MMSE as

M̃SELMMSE − MSELMMSE

= nT nR

L−1∑

l=0


λl −

λ̃2
l

(
λ2

l + 2σ2
)

(
λ̃l + 2σ2

)2 − 2σ2λl

λl + 2σ2




= nT nR

L−1∑

l=0




λ2
l

λl + 2σ2
− λ̃2

l

(
λ2

l + 2σ2
)

(
λ̃l + 2σ2

)2




= nT nR

L−1∑

l=0



λ2

l

(
λ̃l + 2σ2

)2
− λ̃2

l

(
λl + 2σ2

)2

(λl + 2σ2)
(
λ̃l + 2σ2

)2




= nT nR

L−1∑

l=0




[
λl

(
λ̃l + 2σ2

)
+ λ̃l

(
λl + 2σ2

)] [
λl

(
λ̃l + 2σ2

)
− λ̃l

(
λl + 2σ2

)]

(λl + 2σ2)
(
λ̃l + 2σ2

)2




= nT nR

L−1∑

l=0

4σ2




[
λlλ̃l + σ2

(
λl + λ̃l

)](
λl − λ̃l

)

(λl + 2σ2)
(
λ̃l + 2σ2

)2




Therefore, ifλl > λ̃l, the LMMSE channel estimates with mismatched channel correlation matrix

will have higher MSE than the perfect case.

From [117], we havehl = Ce−
l

τrms for the exponential power delay profile1. We have have

λl = |hl|2 = C2e−
2l

τrms . If τrms > τ̃rms, we haveλl > λ̃l, henceM̃SELMMSE > MSELMMSE. That is,

i.e., if a less correlated channel is assumed, the LMMSE channel estimates will suffer MSE degradation.

On the other hand, ifτrms < τ̃rms, i.e., we use the channel correlation matrix with less correlation, no

MSE degradation will be encountered.

1In this case, an infinite length multipath channel is assumed, hence when only consideringL taps in the LMMSE channel

estimation, there will be some energy leakage to the remaining paths. The significant part of the signal power, however, can still

be captured in the firstL multipaths, especially whenτrms is small.
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MSE With SNR Mismatch

If the channel correlation matrix is perfectly known, but the estimated SNR value has some discrepancy

from the actual one, we have the LMMSE filter written as

G̃LMMSE = RHH

(
RHH + 2σ̃2I

)−1
XH

= FΛh

(
Λh + 2σ̃2I

)−1
FHXH ,

and the SNR-mismatched MSE expressed as

M̃SELMMSE = nT nRtrace
[
RHH − G̃LMMSE

(
XRHHXH + 2σ2I

)
G̃H

LMMSE

]

= nT nRtrace
[
Λh − Λh

(
Λh + 2σ̃2I

)−1 (
Λh + 2σ2I

) (
Λh + 2σ̃2I

)−1
Λh

]

= nT nR

L−1∑

l=0

[
λl −

λ2
l

(λl + 2σ̃2)2
(
λl + 2σ2

)]

= nT nR

L−1∑

l=0

λl

[
1 − λl

(
λl + 2σ2

)

(λl + 2σ̃2)2

]
.

If the estimated SNR is larger than the actual one, i.e.,σ̃2 < σ2, we have

1 − λl

(
λl + 2σ2

)

(λl + 2σ̃2)2
< 1 − λl

(
λl + 2σ2

)

(λl + 2σ2)2

= 1 − λl

(λl + 2σ2)

=
2σ2

(λl + 2σ2)
,

and

M̃SELMMSE < nT nR

L−1∑

l=0

λl
2σ2

(λl + 2σ2)

= nT nR

L−1∑

l=0

|hl|2

1 + |hl|2
2σ2

= MSELMMSE,

i.e., no degradation is caused to the MSE. On the other hand, if the estimated SNR is lower than the actual

value, a degradation will be caused to the MSE.
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7.2.3 Interpolation-based Channel Estimation

As discussed in Section 7.2.1 and 7.2.2, LS and LMMSE channelestimations can be obtained if training

signals withnT OFDM symbols are sent and each subcarrier’s training signalmatrixSk = TkM is a non-

singular matrix. When the number of transmit antennas is large, this preamble scheme could decrease the

system throughput severely. We therefore in this section consider a more generalized switched subcarrier

preamble scheme in which the transmit antennas and the subcarriers are both divided intonG groups, and

training signals are transmitted in different subset of subcarriers in each transmit antenna group. Therefore,

the preamble period needed can be reduced fromnT to nT

nG
. For example, if there are four antennas at the

transmitter, we can divide them into two groups and send training signals at even number subcarriers for

the first antenna group, and odd number subcarriers for the second group. As there are two antennas in

each group, we can setM equal to the Walsh Hadamard matrix of dimension 2, and the training signal

period is reduced from four to two. LS channel estimates can be obtained for even and odd number

subcarriers for 1st and 2nd transmit antenna groups according to (7.3), respectively. Channel estimates for

odd number subcarriers of the 1st antenna group and even number subcarriers of the 2nd transmit antenna

group will be obtained by interpolation. The training signal period can be further reduced to one OFDM

symbol if the transmit antennas are divided into four groups.

In this thesis, we consider three types of interpolation, namely, linear interpolation, LMMSE in-

terpolation, and DFT-based LS interpolation.

Linear Interpolation

Assuming that the transmit antennas are divided into two groups,Ĥnr,nt,k−1 andĤnr,nt,k+1 are the LS

estimates obtained from (7.3), then channel estimate at thekth subcarrier can be obtained through linear

interpolation as follows:

H̃nr,nt,k =
Ĥnr,nt,k−1 + Ĥnr,nt,k+1

2
, (7.15)
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which is a linear matrix filtering operation as follows:



H̃nr,nt,k−1

H̃nr,nt,k

H̃nr,nt,k+1




=




1 0 0

1
2 ε 1

2

0 0 1







Ĥnr,nt,k−1

0

Ĥnr,nt,k+1



,

whereε represents any complex number as it does not affect the results.

LMMSE Interpolation

Linear interpolation expressed in (7.15) assumes a channelcorrelation matrixRHH with its elements

defined as:

Ri,j =





α when|i− j| = 1,

1 wheni = j,

0 otherwise

whereα is a real number andα ∈ (0, 1). This suggests that more accurate estimates could be obtained if

the real channel correlation information is applied in the interpolation. In this case, not only the neighbor-

ing subcarriers, but all the available subcarriers’ channel estimates will be used to calculate the missing

subcarriers’ channel parameters, and the contribution from different subcarriers is determined by their

correlation. In our study, we useWRHH

(
RHH + 1

SNRI
)−1

as the interpolation filter, whereW is a

normalization matrix, andRHH

(
RHH + 1

SNRI
)−1

is the LMMSE filter. This is the reason we call this

theLMMSE interpolation. The simulation results presented in Section 7.2.4 will show that this interpo-

lation scheme has better performance than linear interpolation and it is also robust to theRHH and SNR

mismatches.

DFT-based LS Interpolation

As defined in Chapter 3, we assume a sample-spaced channel whose excess delay is no greater than the

cyclic prefix length, and the time- and frequency-domain channel parameters are related by FFT and IFFT.

Taking these into consideration, we propose a DFT-based LS interpolation. The derivation is as follows.

LS channel estimates for the subcarriers with training signals can be obtained according to (7.3),

which will be denoted aŝHnr,nt,pilot. Denoting the channel estimates for the other subcarriers asĤnr,nt,missing,
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we can express the channel estimatesĤnr ,nt as:

Ĥnr ,nt = P




Ĥnr,nt,pilot

Ĥnr,nt,missing


 ,

whereP represents a permutation matrix of sizeN ×N . AsLmultipaths are assumed in the time domain

channel, we therefore have the following relation:

GHĤnr,nt = GHP




Ĥnr,nt,pilot

Ĥnr,nt,missing


 = 0N−L, (7.16)

whereG is the last(N − L) columns of the Fourier transform matrixF. LettingGHP = [GT GM ] so

as to re-write (7.16) as:

[GT GM ]




Ĥnr ,nt,pilot

Ĥnr ,nt,missing


 = 0N−L. (7.17)

we will have the following relation:

GT Ĥnr,nt,pilot = −GMĤnr,nt,missing, (7.18)

which leads to:

Ĥnr,nt,missing = −(GH
MGM )−1GH

MGT Ĥnr,nt,pilot. (7.19)

This is a LS estimation of̂Hnr,nt,missing from Ĥnr,nt,pilot, which suggests the name ofLS interpolation.

IFFT can then be applied to the above frequency domain estimates to obtain aL-tap time domain

channel estimates. The final frequency domain channel estimates will be computed by applying FFT to

theL-tap time domain channel estimates. This IFFT and FFT operation can filter out some AWGN noise

and thus improve the estimation accuracy.

7.2.4 Simulation Results

In this section, we will present our simulation results. Foreach SISO OFDM corresponding to one

transmit-receive antenna pair, the system parameters defined in IEEE 802.11a [2] are used. That is, the

FFT size isN = 64, the number of used subcarriers isP = 52, and the number of guard subcarriers

is 12. The CP length isLCP = 16. The long preamble given in [2] are used to construct the MIMO



CHAPTER 7. TRAINING SIGNAL DESIGN AND CHANNEL ESTIMATION 165

0 5 10 15 20 25 30
−40

−35

−30

−25

−20

−15

−10

−5

0
LS Channel Estimation with N transmit and M receive antennas

SNR in dB per transmit antenna

M
S

E
 in

 d
B

N=2, M=2, channel A
N=2, M=2, channel E
N=2, M=8, channel A
N=4, M=2, channel A
N=4, M=2, channel A
N=8, M=2, channel A

Figure 7.3: MSE vs. SNR for LS channel estimation with N transmit and M receive antennas.

preambles. For the 20MHz channel, two channel models are used, namely, Channel A withτrms = 50

ns, and Channel E withτrms=250 ns. For frequency domain channel, Channel E is thus less correlated

than Channel A. Both channels assume an exponentially decaying power delay profile with 16 multipaths

which are sample-spaced and independently generated usingJake’s model [118]. The mean squared error

(MSE) for the frequency domain channel estimates is used forperformance comparison.

Depicted in Figure 7.3 are the MSE versus SNR per transmit antenna performances for the LS

channel estimation algorithms with different number of transmit and receive antennas. We can observe

from the figure that the MSE decreases linearly with the increasing SNR’s. We can also observe that

when the number of transmit antennas is the same, the MSE is the same for different channel models and

different number of receive antennas, which is due to the fact that same power is transmitted per antenna.

Therefore, the more the transmit antennas, the more the total power per receive antenna, which results in

MSE drop when the transmit antenna number is increased.

We then depict in Figure 7.4 the LMMSE performance for a2× 2 MIMO-OFDM system. Shown

in the same figure is the LS performance for Channel A. A few LMMSE filters are tested, namely, the
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Figure 7.4: MSE vs. SNR for LMMSE Channel Estimation with 2 transmit and 2 receive antennas.

LMMSE filter designed for Channel A used for Channel A or Channel E, and LMMSE filter designed

for Channel E used for estimation of Channel A or Channel E. Inall these LMMSE filters, a fixed SNR

of 20dB is used in the LMMSE filter calculation. Studying the curves in Figure 7.4, we can observe

that a fixed SNR of 20dB will result in a MSE error floor in higherthan 20dB SNR regions. For low

SNR values, the performance is very good. Therefore, as longas we fix the SNR value to the highest

possible realistic SNR’s, the LMMSE estimation performance is very robust to the SNR mismatch. We

can also observe from this figure that using a less correlatedLMMSE filter (Channel E) to estimate a more

correlated channel (Channel A), good MSE performance can still be obtained in the low to medium SNR

regions. In high SNR regions, a correlation matrix mismatchof this type will result in some error floor.

However, if a more correlated channel matrix (Channel A) is used to estimate a not so correlated channel

(Channel E), very poor performance will result, in almost all the SNR regions of interest.

We then present our simulation results based on interpolations for switched subcarrier preamble

schemes in Figure 7.5. Comparing the three interpolation schemes for Channel A, we can observe that in

the low to medium SNR regions, linear interpolation and DFT-based LS interpolation have the same per-
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Figure 7.5: Interpolation-based channel estimation for switched subcarrier scheme.

formance, and in high SNR regions, the later scheme has slightly better performance. While for LMMSE

interpolation, even in the mismatched case (Channel E’s correlation matrix used for Channel A, fixed SNR

value of 20 dB in the interpolation filter), it demonstrates better performance than the other two schemes

in all the SNR regions simulated. Similar to LMMSE channel estimation, LMMSE interpolation is robust

to channel model mismatch if a not so correlated channel is used in the correlation matrix computation,

and it is robust to SNR mismatch as well if a high SNR value is used in computing the correlation matrix.

7.3 Preamble Design for Time-Domain Channel Estimation

In FDCE, we need to computenRnTN parameters, thus need a minimum ofnT OFDM symbols of

training signals when no interpolation is relied on in obtaining certain subsets of the channel estimates.

ThenRnTN frequency domain channel coefficients, however, are computed fromnRnTL time domain

channel coefficients. Estimation of the time domain coefficients need onlydnT L
N e symbols of training

signals, hence reduces the overhead significantly. In this section, we will consider TDCE for channels

with dnT L
N e = 1.
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7.3.1 The Time-Domain Channel Estimation Algorithm

Again we focus on packet transmission in a block fading channel, and the training signals are transmitted

only at the beginning of a packet. The received signal duringthe training period is expressed as

R(k) =




R1(k)

R2(k)

...

RnR
(k)




=




H1,1(k) H1,2(k) · · · H1,nT
(k)

H2,1(k) H2,2(k) · · · H2,nT
(k)

...
...

HnR,1(k) HnR,2(k) · · · HnR,nT
(k)







S1(k)

S2(k)

...

SnR
(k)




+ V(k), (7.20)

which is the same as in (7.2), except that we consider only oneOFDM symbol’s training here.

The frequency domain channel coefficients are computed as

Hnr,nt(k) =
L−1∑

l=0

hnr ,nt(l)W
lk
N ,

whereWN = exp
(
−j 2π

N

)
.

We therefore have the received signal at antennanr and subcarrierk as

Rnr(k) =

nT∑

nt=1

Hnr,nt(k)Snt(k) + Vnr(k)

=

nT∑

nt=1

Snt(k)
L−1∑

l=0

hnr ,nt(l)W
lk
N + Vnr(k)

=

nT∑

nt=1

L−1∑

l=0

hnr ,nt(l)Snt(k)W
lk
N + Vnr(k). (7.21)

Following [116], we define the MSE cost function of the channel estimates
{
h̃nr,nt(l)

}
as

J
(
h̃nr ,nt(l)

)

=

N−1∑

n=0

nR∑

nr=1

∣∣∣∣∣Rnr(n) −
nT∑

nt=1

L−1∑

l=0

h̃nr,nt(l)Snt(n)W ln
N

∣∣∣∣∣

2

, (7.22)

nr = 1, 2, · · · , nR, nt = 1, 2, · · · , nT , l = 0, 1, · · · , L− 1,

and the solution to the following equation is the LS TDCE:

∂J

∂h̃nr ,nt(l)
=

N−1∑

n=0


Rnr(n)S∗

nt
(n)W−ln

N −
nT∑

p=1

L−1∑

m=0

h̃nr ,p(m)Sp(n)S∗
nt

(n)W
n(m−l)
N


 = 0, (7.23)
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which is equivalent to

N−1∑

n=0

Rnr(n)S∗
nt

(n)W−ln
N −

nT∑

P=1

L−1∑

m=0

N−1∑

n=0

Sp(n)S∗
nt

(n)W−nl
N h̃nr ,p(m)W nm

N = 0. (7.24)

Similar to [116], we define

pnr,nt(l) =

N−1∑

n=0

Rnr(n)S∗
nt

(n)W−ln
N , (7.25)

qp,nt(l) =
N−1∑

n=0

Sp(n)S∗
nt

(n)W−nl
N , (7.26)

wherent, p = 1, 2, · · · , nT , andnr = 1, 2, · · · , nR.

We then have

pnr,nt(l) =

nT∑

p=1

L−1∑

m=0

qp,nt(l)h̃nr ,p(m)W nm
N , L = 0, 1, · · · , L− 1. (7.27)

Further defining

pnr,nt = [pnr,nt(0) pnr,nt(1) · · · pnr,nt(L− 1)]T , (7.28)

pnr =
[
pT

nr ,1 pT
nr ,2 · · · pT

nr ,nT

]T
, (7.29)

Qp,nt =




qp,nt(0) qp,nt(−1) · · · qp,nt(−L+ 1)

qp,nt(1) qp,nt(0) · · · qp,nt(−L+ 2)

...
...

qp,nt(L− 1) qp,nt(L− 2) · · · qp,nt(0)




L×L

, (7.30)

Q =




Q1,1 Q1,2 · · · Q1,nT

Q2,1 Q2,2 · · · Q2,nT

...
...

QnT ,1 QnT ,2 · · · QnT ,nT




nT L×nT L

, (7.31)

h̃nr ,p =
[
h̃nr ,p(0) h̃nr ,p(1) · · · h̃nr ,p(L− 1)

]T
L×1

, (7.32)

h̃nr =
[
h̃T

nr ,1 h̃T
nr ,2 · · · h̃T

nr,nT

]T
nT L×1

, (7.33)

where

nr = 1, 2, · · · , nR, nt, p = 1, 2, · · · , nT ,
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we will have

pnr = Qh̃nr . (7.34)

This is the same as in [119] except that [119] considered onlya2 × 2 MIMO system.

One thing to note is thatQ is the same for different receive antennas. We therefore canform the

linear relation ofpnr , Q, andh̃nr as follows:




p1

p2

...

pnR




=




Q

Q 0

. ..

0
. . .

Q







h̃1

h̃2

...

h̃nR




. (7.35)

The time-domain channel estimates are therefore obtained as




ĥ1

ĥ2

...

ĥnR




=




Q−1

Q−1 0

. . .

0
. . .

Q−1







p1

p2

...

pnR




. (7.36)

Computation of p

From the definition in (7.25), we can further write the calculation ofp as

pnr,nt(l) =

N−1∑

n=0

Rnr(n)S∗
nt

(n)W−ln
N

=

N−1∑

n=0

S∗
nt

(n)W−ln
N

(
1√
N

N−1∑

k=0

rnr(k)W
nk
N

)

=

N−1∑

k=0

rnr(k)
1√
N

N−1∑

n=0

S∗
nt

(n)W
−n(l−k)
N

=

N−1∑

k=0

rnr(k)

(
1√
N

N−1∑

n=0

Snt(n)W
−n(k−l)
N

)∗

=

N−1∑

k=0

rnr(k)s
∗
nt

(k − l), (7.37)
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whereRnr(n) andrnr(k), n, k = 0, 1, · · · , N − 1 denote the frequency and time domain signals at

receive antennanr, s∗nt
(k − l) denotes the time-domain training signal at transmit antenna nt which is

cyclicly shifted byl symbols, andnr = 1, 2, · · · , nR, nt = 1, 2, · · · , nT .

Computation of Q

It has been shown in [119] that whenQ = NI, not only the channel estimation is simplified greatly

by eliminating the need for matrix inversion, but also the MSE is optimal. In [116], a cyclic shift-based

training sequence satisfyingQ = NI was proposed. Here we propose another simple and “optimal”

training signal scheme based on subcarrier switching.

7.3.2 Subcarrier Switching Training Sequence

The frequency domain subcarrier switching training signalis expressed as

Sp(n) =
√
nTS(n)δ ((n− p+ 1) mod nT ) , (7.38)

wherep = 1, 2, · · · , nT , n = 0, 2, · · · , N − 1, |S(n)|2 = 1, δ(n) is the Dirac delta function, and the

factor
√
nT is to normalize the average transmission power per subcarrier per transmit antenna to 1.

We therefore have the following relationship:

Sp(n)S∗
nt

(n) = nT δ(p − nt)δ ((n− p+ 1) mod nT ) ,

andqp,nt(l) calculated following (7.26) as:

qp,nt(l) =
N−1∑

n=0

Sp(n)S∗
nt

(n)W−nl
N

=





0, p 6= nt,

N−1∑

n=0

|Sp(n)|2W−nl
N , p = nt.

As
N−1∑

n=0

|Sp(n)|2W−nl
N = nT

N−1∑

n=p−1
∆n=nT

W−nl
N ,
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when(N mod nT ) = 0, we have

N−1∑

n=0

|Sp(n)|2W−nl
N = nT

N
nT

−1∑

k=1

W−knT l
N W

−(p−1)l
N = nTW

−(p−1)l
N

N
nT

−1∑

k=1

W−kl
N
nT

=





NW
−(p−1)l
N , when

(
l mod N

nT

)
= 0

0, otherwise

whereW N
nT

= exp

(
−j 2π

N
nT

)
= exp

(
−j 2πnT

N

)
.

As we want to have

Qp,nt = NIL×Lδ(p − nt), (7.39)

i.e.,qp,nt(l) = Nδ(l), we should have the following relation satisfied

L− 1 <
N

nT
,

hence

nT <
N

L− 1
,

i.e., the maximum number of antennas supported by this training signal scheme isb N
L−1c.

The time domain channel estimates are obtained as



ĥ1

ĥ2

...

ĥnR




=
1

N




p1

p2

...

pnR




. (7.40)

Remark Compared with the CCDP in [116], the switched subcarrier training sequence has lower PAPR,

due to the fact that the fewer number of subcarriers are active. The MSE performance of both schemes are

exactly the same.

7.3.3 Windowing on the Time-Domain Channel Estimates

After the time-domain channel coefficients are obtained, the frequency-domain coefficients can be ob-

tained from FFT. Before applying the FFT, some windowing functions, e.g., Hamming window, Hanning
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window, or Blackman window, can be applied in order to further minimize the MSE, as proposed in [120].

It was also shown in [120] that the Blackman windowing function provides as good as or even better BER

performance than the LMMSE channel estimation scheme.

7.4 Conclusions

We have presented several results of our study on MIMO OFDM channel estimation. Based on the lin-

ear matrix algebraic model, we have derived a general frequency domain preamble structure which is

just a simple extension from the SISO OFDM preamble. Therefore, the good properties, such as low

PAPR, of the SISO OFDM preamble can be maintained. We then developed the least squares and linear

minimum mean squared error channel estimation algorithms for this proposed preamble scheme. We fur-

ther proposed a switched subcarrier preamble scheme which needs fewer OFDM symbols in the training

sequence and therefore the transmission efficiency is improved. Three interpolation schemes, namely,

linear interpolation, LMMSE interpolation and DFT-based LS interpolation are proposed, among which

the LMMSE interpolation scheme demonstrates the best performance, even in the mismatch case. As both

LMMSE channel estimation and LMMSE interpolation can be implemented with fixed parameter values

in the matrix filter, the implementation is very simple and therefore attractive for practical deployment.

For time-domain channel estimation, we proved that the switched subcarrier training sequence satisfies

the optimal MSE criteria and supports simple channel estimation. Compared with the cyclic-shift-based

training sequence proposed in [116], the switched subcarrier training sequence has lower PAPR.

Appendix A - Definition of First Order Derivative to A Complex Variable

The first order derivative of a functiony = f(x) to the complex variablex = xr + j xi is defined as

dy

dx
=

1

2

(
∂y

∂xr
− j

∂y

∂xi

)
. (7.41)

Some of the special cases which are used in this chapter are listed below.
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1.

y = ax = axr + jaxi

dy
dx = a.

(7.42)

2.

y = ax∗ = axr − jaxi

dy
dx = 0.

(7.43)

3.

y = |x|2 = x2
r + x2

i

dy
dx = 2x∗.

(7.44)

4.

y = |a− bx|2 = |a|2 − a∗bx− ab∗x∗ + |b|2|x|2

dy
dx = −by∗.

(7.45)

Appendix B - Definition of First Order Derivative of a Scalar t o A Complex

Matrix

The first order derivative of a scalar-valued functiony = f(x) to the complexM ×N matrixx is defined

as

dy

dx
=




∂y
∂x∗

11

∂y
∂x∗

12
· · · ∂y

∂x∗
1N

. . .

. . .

∂y
∂x∗

M1

∂y
∂x∗

M2
· · · ∂y

∂x∗
MN




, (7.46)

wherexij , i = 1, · · · , M , j = 1, · · · , N , is the element ofx.

Defining aM × 1 column vectora and aN × 1 column vectorb, we have the following results:

1.

y = aHxb

dy
dx = 0M×N .

(7.47)

2.

y = bHxHa

dy
dx = abH .

(7.48)
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3.

y = c

dy
dx = 0M×N .

(7.49)

4.

y = bHxHxb

dy
dx = xbbH .

(7.50)



Chapter 8

Conclusions and Recommendations for

Future Work

8.1 Conclusions

We have addressed several issues associated with transmit and receive techniques for MIMO-OFDM sys-

tems. Our main contributions are summarized next.

Driven by the motivation of achieving optimal tradeoff between the multiplexing gain and diversity

gain for MIMO-OFDM channels, especially for asymmetric MIMO-OFDM channels, we studied several

linear and non-linear precoding schemes which can map fewerspatial streams to more transmit antennas.

In order to unify the analysis, we developed a linear signal model and systematically compared their

ergodic capacity, outage capacity, and diversity performances. In this process, we developed the closed

form equation for the spatial spreading systems using random matrix theory. We also proved that the

4 × 2 groupwise space-time block coding and quasi-orthogonal space-time block coding perform exactly

the same in ergodic capacity sense. A two-dimensional linear pre-transformed MIMO-OFDM system was

proposed which can achieve full diversity and full diversity simultaneously.

Exploitation of the diversity and multiplexing gains in theMIMO-OFDM channel relies on not

only an effective precoding scheme at the transmitter, but also on an optimal and efficient receiver. In

this thesis, we dedicated our effort to the iterative algorithms using “turbo principle”. We proposed the

176
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linear soft decision functions for high-order modulation signals which can significantly reduce the com-

putational complexity in signal estimation but at the same time maintain the BER performance. More

importantly, we proposed a novel Bayesian minimum mean squared error turbo receiver. Compared with

the conventional turbo receivers in the literature which make use of only the extrinsic information from

the decoder for interference estimation and cancelation, the proposed Bayesian turbo receiver uses both

the decoder extrinsic informationand the detector decision statistic for interference estimation. As a re-

sult, the estimation accuracy is greatly improved, especially in low to medium SNR regions. This also

contributes to the 1.5 dB improvement at BER performance of10−5, and the better convergence behavior

of the turbo process.

We also developed the extrinsic information transfer chartfor the proposed Bayesian turbo re-

ceivers. Compared with the conventional turbo receivers, the proposed Bayesian turbo receivers demon-

strated a much higher output mutual information, proving its superior performance. When plotted with the

extrinsic information transfer chart of the decoder, the trajectories of the Bayesian receivers also exhibit

much faster convergence than the conventional receivers.

Our next contribution lies in the systematic study of training signal design for both frequency-

domain and time-domain channel estimation in MIMO-OFDM systems. Minimum mean squared error-

achieving preamble schemes have been proposed which require very simple filtering calculation to obtain

the channel estimates.

8.2 Recommendations for Future Work

The following issues can be studied further as continuationof the research in this thesis.

8.2.1 Space-Time-Frequency Processing for Spatially Correlated Channels

We have studied the precoding schemes under the assumption of no spatial correlation in the MIMO-

OFDM channels. This assumption, however, becomes weaker when the antenna spacing is reduced, es-

pecially for the receive antennas at the terminal. Therefore, it is important to look into the precoding

schemes in the spatially correlated channels and propose effective solutions.
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8.2.2 Low-Complexity Near Optimal Receiver Algorithms for2DLPT MIMO-OFDM

The two dimensional linear pre-transformed MIMO-OFDM system achieves full diversity with maximum

likelihood detection receiver. Receiver algorithms are therefore desired which can effectively exploit the

diversity gains with affordable complexity.

8.2.3 Extension of 2DLPT to Single-Carrier Cyclic-Prefix MIMO Systems

The 2DLPT can simultaneously achieve full capacity and fulldiversity when the transform is unitary. With

the similarity between the MIMO-OFDM channels and the MIMO single-carrier cyclic prefix (SCCP)

channels, it is expected that similar transform can be applied to MIMO-SCCP to achieve full capacity and

full diversity.

8.2.4 Incorporation of Channel Estimation in the Bayesian Turbo Receiver

We have proposed the Bayesian turbo receivers and studied their performance under the assumption of

perfect channel estimation. We have also proposed several preamble designs to support optimal channel

estimation. As a natural continuation, incorporation of channel estimation into the Bayesian turbo receiver

by using the proposed preamble schemes needs to be studied. The corresponding EXIT chart analysis

needs to be developed as well.

8.2.5 Soft Decision Function Simplification in Bayesian EM Estimate

Incorporation of both the SISO decoder EXT and the soft output detector output in the interference es-

timation will improve the estimation accuracy, hence better BER and FER performance, as discussed in

Section 5.6. However, as more variables are included in the soft decision function, the computational

complexity in the signal estimation will become higher thanthe conventional turbo receiver, especially for

high-order modulation schemes such as MQAM. Therefore, possible simplification of SDF’s in Bayesian

EM estimate is desired.
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