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I would like to thank Dr. Stéphane Le Goff and Dr. Martin Johnston

for their continuous guidance and help on my research. Also, I would

like to thank Prof. Zhiguo Ding and Dr. Kanapathippillai Cumanan

for their kind support and encouragement on both my research and the

Ph.D life. Finally, I would like to thank the school of Electrical and

Electronic Engineering of Newcastle university for the excellent research

environment.



Abstract

Secure communications between legitimate users have received consid-

erable attention recently. Transmission cryptography, which introduces

secrecy on the network layer, is heavily relied on conventionally to se-

cure communications. However, it is theoretically possible to break the

encryption if unlimited computational resource is provided. As a result,

physical layer security becomes a hot topic as it provides perfect secrecy

from an information theory perspective. The study of physical layer

security on real communication system model is challenging and impor-

tant, as the previous researches are mainly focusing on the Gaussian

input model which is not practically implementable.

In this thesis, the physical layer security of wireless networks employing

finite-alphabet input schemes are studied. In particular, firstly, the se-

crecy capacity of the single-input single-output (SISO) wiretap channel

model with coded modulation (CM) and bit-interleaved coded modula-

tion (BICM) is derived in closed-form, while a fast, sub-optimal power

control policy (PCP) is presented to maximize the secrecy capacity per-

formance. Since finite-alphabet input schemes achieve maximum secrecy

capacity at medium SNR range, the maximum amount of energy that

the destination can harvest from the transmission while satisfying the

secrecy rate constraint is computed. Secondly, the effects of mapping

techniques on secrecy capacity of BICM scheme are investigated, the se-

crecy capacity performances of various known mappings are compared on

8PSK, 16QAM and (1,5,10) constellations, showing that Gray mapping

obtains lowest secrecy capacity value at high SNRs. We propose a new

mapping algorithm, called maximum error event (MEE), to optimize the

secrecy capacity over a wide range of SNRs. At low SNR, MEE map-

ping achieves a lower secrecy rate than other well-known mappings, but

at medium-to-high SNRs MEE mapping achieves a significantly higher



secrecy rate over a wide range of SNRs. Finally, the secrecy capacity and

power allocation algorithm (PA) of finite-alphabet input wiretap chan-

nels with decode-and-forward (DF) relays are proposed, the simulation

results are compared with the equal power allocation algorithm.
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Chapter 1

Introduction

1.1 Introduction

In recent years, there has been a rapid growth in the research and development of

wireless networks. The increase of the data rate enables users, who are under the

wireless signal coverage to transfer large amount of data with fast speed. However,

as people become more relying on the wireless communication, communication secu-

rity issues grow more important, as the radio frequency (RF) signal can be received

by unintended users due to the broadcast nature of wireless signals. The commu-

nication systems of the future require not only the fast and reliable transmission of

information, but also the secure transmission of information.

The traditional method of securing the communication is by using the cryp-

tography technique. Cryptography is applied to the network layer to secure the

communication. Based on mathematical theory and computer science technology,

modern cryptography generates a highly complex secrecy key and secures the com-

munication. In theory, only secure key holders can view the encrypted message. The

cryptography technique has been applied to practical use for decades and provides a

considerably reliable method to secure communication. However, the cryptography

technique has its own disadvantages: firstly, the channel condition in the wireless

environment introduces challenges to the secret key distribution. Secondly, gener-

ating a highly secure secret key requires knowledge of complicated mathematics.

Finally and most importantly, as computational power is growing rapidly with the

invention of new computer techniques, the secret key is theoretically breakable by

exhaustive searching providing massive computational resources are available.

1



1.1 Introduction

On the physical layer, where the RF signals are transmitted and received, a

information-theoretical method to secure the communication is introduced, namely

physical layer security (PLS) [3]. The PLS explores the maximum information

rate that can be transmitted whilst avoiding interception. This rate is computed

based on the assumption of perfect code and decoding algorithm are applied to the

wiretap channel. Thanks to the turbo code and the rediscovery of LDPC code, it is

possible to transmit data at a capacity approaching rate that enables the practical

secure communication to obtain close-to-theory performance. By combining PLS

and cryptography techniques, the confidential message can be well secured.

The PLS is initially studied on the degraded channel model, in which the channel

between the sender and the eavesdropper (wiretap channel) is a degraded version of

the channel between the sender and the destination (main channel). It is shown that

the confidential message can be transmitted to the intended receiver with no error,

whilst being partially unnoticed by the eavesdropper. The maximum unnoticed

information rate is defined as secrecy capacity with a notation of CS. Later, the

results of PLS on the degraded channel are extended to the Gaussian channels,

showing that the secrecy capacity is positive if the main channel is less noisy than the

wiretap channel and the value of secrecy capacity is equal to the capacity difference

between the main channel and the wiretap channel.

Nowadays, wireless communication technology is widely applied in our daily life.

This is demonstrated by the extensive use of mobile phones and wireless local area

networks (WLAN). Due to the nature of the wireless broadcast, the transmission

signals can either be received by the intended user, or be caught by any other users.

In the recent past, research on PLS has extended to the fading channels, finding

that a positive secrecy rate is achievable in the fading channels even if the SNR in

the main channel is smaller than the SNR in the wiretap channel, on average. It

is crucial to determine the secrecy capacity of the practical communication systems

employing finite-size constellations.

As the decoding complexity and the computational resource costs increase dra-

matically with the constellation size increases, the practical communication system

employs finite-alphabet input. In contrast to Gaussian input, the channel capacity

of the finite-alphabet input schemes is upper bounded by log2M , where M is the

constellation size. The research on trellis coded modulation (TCM) indicate that

the secrecy capacity becomes zero if the transmission power increases to infinity

2



1.2 Motivation and challenges

and the maximum value of secrecy capacity has to found by exhaustive searching

due to no closed-form solution to the mutual information so far. Similar to TCM,

bit-interleaved coded modulation(BICM) is a widely applied finite-alphabet input

scheme, BICM out performs TCM over Rayleigh fading channels in terms of bit error

rate (BER) performance. In contrast to the TCM scheme, BICM capacity is affected

by the mapping technique, therefore, the secrecy capacity performance of BICM

varies if a different mapping technique is applied. Since the mutual information is

used in the secrecy performance computation for finite-alphabet input schemes, the

term secrecy capacity is not accurate to describe the secrecy performance. In the re-

maining of this thesis, secrecy rate RS is used to denote the maximum equivocation

rate in the finite-alphabet input wiretap channel model.

Recently, the cooperative communication technique has been introduced to the

PLS in order to enhance the secrecy capacity performance and to prevent the wiretap

channel from becoming less noisy than the main channel. The secrecy rate of coded

modulation (CM) in the decode-and-forward (DF) relay helped wiretap channel

model has been studied in [28], an iterative searching algorithm is established to

optimize the transmission power and maximize the secrecy capacity. It is shown

that a significant enhancement on secrecy rate performance is obtained by using

multiple relays.

1.2 Motivation and challenges

The research on PLS are mainly based on the Gaussian input assumption. Under

this assumption, the channel capacity of a binary message is simplified to a closed-

form expression, shown as C = log2(1+SNR), it is shown that the channel capacity

is completely determined by the channel SNR. Thus, the secrecy capacity can be

also presented in a function of SNR. For CM and BICM, the closed-form solution to

the mutual information has not been obtained, which makes the analysis on secrecy

capacity of CM and BICM very difficult. However, it has been demonstrated in

relevant works [61] that the secrecy capacity performances of CM and BICM are

significantly different to Gaussian input, As the secrecy capacity decreases to zero

at high SNR. The power control policy developed in Gaussian input is not applicable

to the CM and BICM cases. Thus, it is challenging to study the relationship between

SNR and the secrecy capacity on CM and BICM wiretap channel model, moreover,

3



1.3 Aims

once the relationship is determined, the optimal power control policy that maximizes

secrecy capacity can be obtained.

It has been demonstrated in various works [42–44] that by using the binary re-

flected Gray mapping, BICM obtains optimal mutual information performance over

a wide range of SNR. Without considering the case of BICM with iterative decod-

ing (BICM-ID), Gray mapping outperforms the other mappings on both mutual

information and BER performance. However, to achieve maximum secrecy rate

performance, one mapping is said to be optimal if it maximizes the difference of

mutual information between the main channel and wiretap channel. Gray mapping

does not maximize the difference, but maximizes the mutual information for both

the main channel and the wiretap channel, which is not desired. Therefore, it is

meaningful to study the mapping effects on secrecy rate performance and determine

the optimal mapping algorithm for secrecy performance. The main challenge comes

from determine the key parameter that best characterize the mapping and directly

affect the secrecy rate performance.

It has been proven that positive secrecy rate is not achievable if the main chan-

nel SNR is smaller than the wiretap channel SNR for single antenna wiretap chan-

nel model. The transmission has to be paused and waiting for the main channel

SNR become larger than the wiretap channel SNR. However, by using the coopera-

tive communication technique and introducing helper relays to the wiretap channel

model that establishes additional communication channels can solve this problem.

Until now, on finite-alphabet input schemes, existing research has relied on exhaus-

tive searching to find the the optimal PA algorithm, which maximizes the secrecy

capacity. A PA with low computational cost while maintaining high secrecy capacity

performance is demanded.

1.3 Aims

The aim of this thesis is to develop a closed-form solution to the secrecy capac-

ity and optimal power control policy for the finite-alphabet input wiretap channel.

The theoretical tools for analyzing secrecy capacity performance are derived in this

thesis. With the aim of secrecy capacity maximization and transmission power

minimization, the theoretical expression of the closed-form solution to the power

control policy is expected. Comprehensive discussions on the mapping issues for

4



1.4 Objectives

secrecy rate maximization are presented in this thesis in order to obtain the opti-

mal mapping algorithm for secrecy rate performance. In addition, this study also

explores the cooperative communication methods that can enhance the secrecy rate

performance.

1.4 Objectives

The objectives of this thesis are outlined as follow:

• Develop a closed-form relation between secrecy capacity and MMSE over Gaus-

sian wiretap channels with detailed proof.

• Analyse the bit-labelling effects to the secrecy rate performance and develop

an optimal bit-labelling rule for secure communication.

• Develop fast power allocation policy to maximize the secrecy rate performance

of SISO wiretap channels employing CM and BICM schemes over Rayleigh

fading channels.

• Investigate secrecy rate performance and optimal power allocation policy for

the wiretap channel with DF relay with detailed proof.

1.5 Thesis Layout

The remainder of this thesis is organized as follows: in chapter 2, the related litera-

tures are revised. In chapter 3, we provide a brief review of the key concepts related

to this thesis. In Chapter 4, the relation between channel capacity and MMSE is

reviewed and the secrecy rate is formulated into a function of MMSE and SNR.

By introducing a linear to logarithm domain transformation to MMSE, a fast PCP

is presented and the maximum secrecy rate is formulated in a closed-form. Fur-

thermore, by using quartic approximation to the transformed MMSE, the secrecy

rate and mutual information of 8PSK and 16QAM are approximated in closed-

form. Finally, with the aim of saving energy, the energy-harvesting ratio of BICM

schemes under secrecy constraint is determined. Numerical simulation results are

provided to validate the analysis. In Chapter 5, the effect of mapping techniques to

5



1.6 List of Publications

secrecy rate performance is investigated. In this chapter, the secrecy rate of vari-

ous mappings, such as Gray mapping, set-partitioning mapping, maximum squared

Euclidean weight mapping etc. are compared. By splitting the constellations into

sub-constellations and investigating the effect of average Hamming distance of the

mappings to the secrecy capacity performance, an optimal mapping algorithm for

secrecy communication is proposed. The simulations of the proposed optimal map-

ping for secrecy rate performance and various other mappings are shown on 8PSK,

16QAM and (1,5,10) constellations. In Chapter 6, the secrecy rate performance of

a wiretap channel model employing CM and BICM schemes helped by a relay is

studied. We assume the relay acts as a helper node using the decode-and-forward

technique. By employing the closed-form approximation of the secrecy rate, a com-

putational resource saving closed-form power allocation policy is proposed. Finally,

in Chapter 7, conclusions for this thesis are drawn and the future plans for continued

research are listed.
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Chapter 2

Literature survey

2.1 Physical layer security of SISO wiretap chan-

nel model

Physical layer security is a promising technique to secure the communication from an

information theory aspect. Soon after C. E. Shannon introduced the famous shannon

limit, which defines the maximum information rate that can be perfectly recovered

after transmission [2], he realized that the information can be secured on the physical

layer from an information theoretical point of view [1]. Later, Wyner introduced

the wiretap channel model, which models the communication among three users in

a network. Within this wiretap channel model, there is a transmitter, often referred

to Alice, one legitimate receiver named Bob and an eavesdropper, called Eve. In

Wyner’s wiretap channel model Alice is the message source and wishes to transmit

a confidential message to Bob, Eve observes the communication and intercepts the

confidential message. The channel between Alice and Bob is referred as main channel

while the channel between Alice and Eve is referred as wiretap channel. Wyner

proved that the confidential message can be perfectly secured provided the wiretap

channel is a degraded version of the main channel. The maximum information

rate that can be transmitted by Alice with total ignorance by Eve is defined as

the secrecy capacity. The further study in [4] extend Wyner’s conclusion, in his

work, the wiretap channel is no longer a degraded version of the main channel. It

shows that positive secrecy capacity is achieved provided the main channel is less

noisy than the wiretap channel. In [5], both the main channel and the wiretap

channel are assumed to be Gaussian channels, the study showed that the conclusion
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2.2 Physical layer security of MIMO wiretap channel model

in [4] is applicable to the Gaussian channel case. For the Gaussian wiretap channel,

the secrecy capacity is equal to the channel capacity differences between the main

channel and the wiretap channel. It shows that, to obtain positive secrecy capacity

in the Gaussian wiretap channel, the main channel has to be less noisy than the

wiretap channel.

In [10–12], the secrecy capacity is studied over ergodic fading channels. In these

works, perfect wiretap channel CSI is assumed known at the transmitter, and the

secrecy capacity of rate adaptive transmission is determined. However, the result

holds only when the Global CSI is available at the transmitter. The secrecy capaci-

ties of slow fading channels are exploited in [6–9]. In these works, the channels in the

wiretap channel model are assumed under quasi-static fading. In [6], the transmitter

is assumed to know the CSI of both main channel and the wiretap channel perfectly.

The optimal power allocation policy to maximize the secrecy capacity is given in a

close-form expression. In [9], the transmitter is assumed to have imperfect knowl-

edge of the wiretap channel CSI, thus, outage probability is evaluated to measure the

probability that the eavesdropper successfully intercepts the confidential message.

Moreover, the impact of channel correlation over secrecy capacity is studied in [15],

in which the main channel and the wiretap channel are correlated Rayleigh fading

channels, it is shown that the secrecy capacity is a logarithm function of the average

channel SNR of both channels and the correlation level.

2.2 Physical layer security of MIMO wiretap chan-

nel model

The single antenna classical wiretap channel model is highly dependent on the chan-

nel condition to achieve positive secrecy capacity, when the SNR in the main channel

is smaller than the SNR in the wiretap channel at one instantaneous fading realiza-

tion, no positive secrecy capacity is achieved. To solve this problem, two alternative

transmission scheme are introduced, namely multi-antenna communication and co-

operative networking. The secrecy capacity in multi-input multi-output (MIMO)

wiretap channel is studied in [13] based on the assumption of that the transmitter

has perfect knowledge of the eavesdropper CSI, in which, the optimal power allo-

cation policy is presented by using the eigenvalue maximization method. In [14],
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2.3 Secure communication with cooperative communication

the secrecy capacity of Gaussian MISO channels is investigated and proves that the

optimal communication strategy in MISO case is beam-forming. In [16] and [17], in

which A. Khisti studied the Wyner’s three terminal wiretap channel modesl but with

multiple antenna input, multiple antenna eavesdropper, single antenna destination

(MISOME) and multiple antenna input, multiple antenna eavesdropper, multiple

antenna destination (MIMOME) cases, respectively. In these works, the secrecy ca-

pacity is characterized by generalized eigenvalues, and by using beam-forming, the

secrecy capacity is maximized. Also, it is shown that the perfect knowledge of the

eavesdropper CSI is not strictly necessary to achieve a positive secrecy rate. Addi-

tionally, in [18], an upper bound of the secrecy capacity in MIMO case is presented

at the high SNR regime provided imperfect CSI of the eavesdropper channel, it is

demonstrated that the secrecy capacity performance is near optimal by introducing

artificial noise. By using multi-antennas on the receivers, the SNR at the receiver

side is strongly affected by the choice of combining method, such as maximum ratio

combining (MRC) and selective combining (SC), thus results in different secrecy ca-

pacity performance. This combining issue is studied in [19], in which a single input,

multiple output (SIMO) wiretap channel system is considered. The analysis show

that MRC is more suitable for maximizing the secrecy capacity.

2.3 Secure communication with cooperative com-

munication

Cooperative communication is a promising technique to enhance the secrecy capacity

performance of a wiretap channel model. Normally in cooperative communication,

an additional node is introduced to the network, known as relay. The relay can

either help the legitimate communication by using various forwarding techniques

after receiving signals from the transmitter, or it can generate artificial interferences

to confuse the eavesdropper. The jamming signal method is introduced in [20],

where a relay is introduced to the wiretap channel. The relay transmits a jamming

signal to interfere the eavesdropper’s decoding ability and ultimately benefits the

secrecy capacity of the wiretap channel. In [21–25], the secrecy capacity of coop-

erative jamming is computed when the legitimate receiver under the assumption of

the legitimate receiver having perfect knowledge of the jamming signals while the
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2.3 Secure communication with cooperative communication

eavesdropper has no information about the jamming signals. The jamming signals

are not necessarily transmitted from the relay, the source can also generate jamming

signals to confuse the eavesdropper. This issue is studied in [27], is proven that when

the wiretap link is strong, secrecy capacity performance is better when the jamming

signals are generated from the relay. In [26], the secrecy capacity of cooperative

jamming in the general Gaussian multiple access wiretap channel is investigated,

the power allocation policy for maximizing the secrecy capacity is determined and

the simulation shows that cooperative jamming among users can be of great bene-

fit to the secrecy capacity performance. In [27–31], the secrecy capacity of various

forward strategies, such as amplify-forward (AF), decode-forward (DF), etc. are

studied. In [28], the secrecy capacity of DF is computed and the optimal power

allocation (PA) is obtained in closed-form while the optimal PA is obtained via

an iterative searching algorithm. In [32], the power allocation policy for AF relay

networks under a secrecy constraint is considered, and a water-filling algorithm is

used to find the optimal PA algorithm and the simulation shows the solution to be

computationally efficient. For DF, the relay observes the source signal, then decodes

and re-encodes the message in the same fashion as the source before transmitting

them to the destination. In [33], the author considered the secrecy capacity in a

wiretap channel with multiple eavesdroppers, by using DF and cooperative jamming

(CJ), the optimal PA is proposed to maximize the secrecy capacity.

However, the literatures of secrecy capacity mentioned above are all based on

a strong assumption: the message is infinitely long and the channel input follows

Gaussian distribution, this assumption is often referred as Gaussian input assump-

tion. However, in practical communications, the modulation size is finite and the

channel input is discrete for the convenience of processing the channel output, and

some information is lost in quantization [34]. Thus, the mutual information and se-

crecy rate performance of finite-alphabet input can be very different to the Gaussian

input.
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2.4 Code modulation and bit interleaved coded modulation

2.4 Code modulation and bit interleaved coded

modulation

In practical communications, the outputs of the encoder are modulated onto a finite

number of complex numbers, this communication model is often referred as finite-

alphabet input. Coded modulation (CM) and bit-interleaved coded modulation

(BICM) are two widely applied finite-alphabet input schemes. The trellis-coded

modulation (TCM) is initially introduced by [35] for AWGN channel communi-

cations. The coding and modulation in TCM are regarded as a single entity at

the transmitter, the modulated output symbols are interleaved at symbol level and

transmitted. In order to optimize the bit-error rate (BER) performance of TCM,

set-partitioning (SP) mapping is introduced. Despite the optimal performances in

terms of channel capacity and BER over AWGN channels, the BER performance of

TCM over Rayleigh fading channels is very poor. In [36–39], the optimal coding de-

sign rule of TCM over Rayleigh fading channel is investigated. However, due to the

symbol level interleaving, the diversity, which is the minimum Hamming distance of

the code, is an important parameter for fading channel BER performance can hardly

be increased, thus, the BER performance of TCM over Rayleigh fading channels is

not optimal. Aware that the BER performance over Rayleigh fading channel is

heavily dependent on the minimum Hamming distance (code diversity) of the code

rather than the minimum Euclidean distance of the code, Zehavi introduced bit-

interleaved coded modulation (BICM) in [41], where the coding and modulation are

no longer combined as a single entity, a bit-wise interleaver is introduced between

the encoder and the modulator. The output of the encoder is interleaved at bit level

and forwarded to the modulator. In the BICM scheme, the coding and modulation

are optimized independently. Later, in [42], the BICM is studied in detail and BICM

mutual information is computed by using Monte-Carlo method. It is shown that

the BICM mutual information is smaller than the CM mutual information for the

same constellation size but has better BER performance over fading channels. Gray

mapping obtains the best mutual information performance of the BICM scheme over

a medium to high SNR range [43]. In [46], the optimal mapping for ultra wideband

(UWB) is studied and strictly regular set partitioning mapping outperforms Gray

mapping at a very low SNR range in terms of mutual information. The iterative

decoding is initially introduced for Turbo code [51, 52] decoding, as the maximum
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likelihood (ML) decoding is over complex to implement. The BER performance of

iterative decoding is very close to the ML algorithm if enough iteration is performed.

Later, the iterative decoding method is applied onto BICM schemes, the new commu-

nication structure is named as bit-iterative coded modulation with iterative decoding

(BICM-ID). However, in BICM-ID, the BER performance of Gray mapping shows

very little improvement to the increment of iteration, while the BER performances

of other mapping schemes, such as set-partitioning, shows great improvement as the

number of decoding iteration increases. Considerable amount of research have done

in searching for the optimal mapping scheme, which obtains the lowest bit error rate

(BER) performance. In [45, 47, 49, 50], various mapping techniques are introduced

for BICM-ID, although these mappings show poor performances on mutual informa-

tion, the BER performances are better than Gray mapping with iterative decoding

algorithm. The shape of constellation also affects the BER performances of BICM

and a complete study of the constellation shaping is given in [53]. The physical layer

security of code modulation systems is studied in [61,62], it is shown that the secrecy

rate performance of finite-alphabet input is significantly different to the Gaussian

input case, where the secrecy rate at high SNR regime is zero if no PA is applied.

Due to the lack of closed-form solution to the AMI of CM schemes, both papers

optimize the pre-coding matrix of the transmitter by using the exhaustive searching

method. The secrecy rate of a relay wiretap channel with DF transmission strategy

is considered in [63], using an adaptive searching method, the optimal power control

algorithm is provided.

2.5 Wiener meets Shannon

The major difficulty of secrecy rate research employing finite-alphabet input comes

from the lack of closed-form solution to the mutual information. For CM and BICM,

the mutual information are evaluated by using the Monte-Carlo method. The closed-

form approximation of the mutual information for CM and BICM are obtained over

a limited range of SNR. It seems that obtaining a closed-form solution to the secrecy

rate is over difficult by only using information theory [65] [64]. In [64], a general

formula of AMI in the wideband regime is proposed, and it is shown that the AMI

can be approximated by a quadratic function of SNR. The channel capacity of the

BICM scheme is further studied in [66], it is proved that CM performs better than
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2.5 Wiener meets Shannon

BICM in terms of AMI in the UWB regime. In [65], the AMI of finite-alphabet

input is studied at the high SNR range, the author presents an upper-bound and a

lower bound in closed-form for the AMI of the BICM scheme.

The research on the fundamental connection between information theory and

estimation theory can be traced back to the 1970s. In [54–60], the log-likelihood ra-

tio (LLR) associated with signal detection in Gaussian noise has been investigated,

it is shown in [58, 59] that there exists a simple relation between conditional mean

estimation and the gradient and Laplacian of the LLR. The mutual information is

expressed as the expectation of the LLR of conditional and unconditional measures.

It is well known that LLR is a fundamental notion in signal detection and estima-

tion, we can see that information theory and estimation theory is bridged by LLR.

Recently, a fundamental relation between the mutual information (MI) and the min-

imum mean square error (MMSE), which is a fundamental quantity in estimation

theory, is presented in [68]. Regardless of the input distribution, MMSE measured

at the output is equal to the slope of the MI as long as the channel is exhibiting ad-

ditive Gaussian noise. The MMSE of the finite-alphabet input schemes are studied

in [69, 70], the power control policy for fading channels is presented, furthermore,

the MMSE of some commonly used constellations, such as BPSK, 4PAM, 8PSK and

16QAM are obtained and simplified. By using the relation of MMSE and MI, the

pre-coding techniques for MIMOME CM schemes over fading channels are presented

in [61, 62], in which, the secrecy capacity performance is enhanced by minimizing

the information rate at the eavesdropper.

In summery, most of the research on PLS are based on the Gaussian input

assumption. However, few researches have been done on the secrecy rate and optimal

power control policy of finite-alphabet input schemes. Moreover, the closed-form

solutions to the secrecy rate for finite-alphabet input schemes are not obtained. In

the next chapter, the mathematical expressions of some key contributions of existing

research are presented.
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Chapter 3

The background theory

3.1 The channel capacity

The channel capacity defines the maximum throughput of error free data trans-

mission over a communication channel for a given bandwidth in the presence of

noise. The Gaussian input channel capacity is a common assumption for research

and we start by introducing the Gaussian input channel capacity followed by the

finite-alphabet input channel capacity.

Assume X is the channel input, N is the additive white Gaussian noise with zero

mean and a variance value of σ2, the channel output Y is given by

Y = X +N. (3.1)

We assume that there is a constraint on the input power P , for the input codeword

(x1, x2, . . . , xn), the average power constraint is given by

1

n

n
∑

i=1

x2
i ≤ P. (3.2)
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3.1 The channel capacity

The mutual information of the AWGN channel is given by

I(X ; Y ) = H(Y )−H(Y |X)

= H(Y )−H(X +N |X)

= H(Y )−H(N |X)

≤ 1

2
log2 2πe(P + σ2)− 1

2
log2 2πeσ

2

=
1

2
log2(1 +

P

σ2
). (3.3)

Where e is the base of the natural logarithm.By definition, the channel capacity is

the maximum of the mutual information and (3.3) is maximized when X follows

Gaussian distribution, so that E[Y 2] = P + σ2. The channel capacity in (3.3) can

be further written as a function of the signal to noise ratio, which is given by

C =
1

2
log2(1 + SNR). (3.4)

This equation shows that the channel capacity is only determined by the channel

SNR. The channel capacity C increases to infinity if the SNR continuous to increase.

However, in practical terms, the Gaussian input model is not implementable as

it requires an infinite number of input and the codeword can be infinitely long, thus

the decoding complexity is too high for practical implementation. The modulation

schemes in real world communication are of finite size, specifically, the modulation

size in most cases is set to M = 2m, where m is a positive real number.

The most significant difference between Gaussian input and finite alphabet input

is that the information rate of finite-alphabet input schemes do not increase to

infinity as SNR rises, the maximum information rate is determined by the size of

the modulation M rather than the channel SNR,

Rmax = log2M. (3.5)

In the following sections, the system model and the mutual information of two widely

used modulation schemes, namely coded modulation (CM) and bit-interleaved coded

modulation (BICM) are introduced in detail.
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3.1 The channel capacity

3.1.1 Coded modulation

With the aim of maximizing the minimum Euclidean distance for bandwidth and

power-efficient transmission over the AWGN channel, Ungerboeck introduced trellis-

coded modulation [35] in 1982. Since then, it is generally accepted that the coding

and the modulation blocks have to be combined in a single entity and jointly opti-

mized.

In the CM, the source message is encoded to the codeword C, an ideal inter-

leaver π interleaves C at the symbol level. The modulator is m-dimensional mem-

oryless and maps the interleaved codeword sequences over a signal set χ following

one-to-one labelling rule, where |χ| = M . The m-bit codeword sub-sequence of C

uniquely correspond to a symbol on the constellation. In the TCM, Ungerboeck

propose the set-partitioning mapping which is obtained by an m-level partition-

ing of χ. The transmitted signal is denoted as X = {x1, x2, · · · , xk, · · · }. Let

Figure 3.1: Block diagram of the CM or BICM transmission. In the case of CM, π
interleaves at the symbol level. In the case of BICM, π interleaves at the bit level.

Y = {y1, y2, · · · , yk, · · · } denotes the received signal sequence of the corresponding

transmitted X , while H = {h1, h2, · · · , hk, · · · } designate the channel state infor-

mation (CSI). Assume the noise follows Gaussian distribution, with zero mean and

unit variance, the conditional output probability density function is given by

pY |X,H(yk|xk, hk) =
1

2π
exp(−|yk − hkxk|2). (3.6)

16



3.1 The channel capacity

In the remainder of this thesis, the pY |X,H(yk|xk, hk) is denoted as P (y|hx) for sim-

plicity. Assuming perfect CSI at the receiver, the size of the signal set is M , the

mutual information under uniform inputs constraint is given by the conditional av-

erage mutual information (AMI)

C = I(X ; Y ) = m−EX,Y

[

log2

∑

s∈χ p(y|hs)
p(y|hx)

]

. (3.7)

In this equation, s denotes the constellation points and m = log2M . In the remain-

der of this thesis, we refer this MI by CM MI.

3.1.2 Bit-interleaved coded modulation

The BICM is an alternative scheme to CM for bandwidth efficient communications

over fading channels, the concept of BICM was first introduced by Zehavi [41] and

applied to 8-PSK constellations. There are two main differences between BICM

and CM schemes: firstly, the BICM treats coding and modulation as separate com-

ponents, thus, the BICM receiver is much simpler to design compare to the CM

receiver. Secondly, the interleaver used in the BICM scheme perform bit-wise in-

terleaving rather than symbol level interleaving. The codeword sequence C is in-

terleaved by π, the interleaved sequence π(C) is then mapped onto χ. In BICM,

the one-to-one correspondence is at the bit level, let Ck,i be the k-th bit of the i-th

sub-sequence of C, after interleaving, the m-bit sequence is Ĉ and Ck,i is interleaved

to Ĉ̂,|k, while k̂ and j denote the bit position and the number of the m-bit sequence

of Ĉ, respectively.

The mutual information of BICM is much more complex to evaluate than the CM

case, due to the bit-wise interleaver “breaks” the relationship between the encoder

output bit sequence and the constellation symbol. In [42], the interleaving process

is modelled by a random switch followed by m parallel independent and memoryless

channels, which is named “parallel channel model”. By definition, the AMI of

BICM is equal to summing up all AMI in the m branches. For a 2m-ary signal

constellation with additive Gaussian noise N exhibiting a fading coefficient h, the

mutual information is given by [42], [53]

I(x, y) = m−
m
∑

i=1

Eb,y

{

log2

∑

s∈χ p(y|hs)
∑

s∈χb
i
p(y|hs)

}

. (3.8)
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3.2 The wiretap channel model

Where the operator Eb,y[ · ] designates the expected value over all possible values

in the binary vectors C and channel output samples y. In this equation, χb
i is the

sub-set of all signals belonging to χ whose labels are equal to b ∈ {0, 1} at position

i = 0, . . . , m in the mapping. In the remainder of this thesis, we refer this MI by

BICM MI.

3.2 The wiretap channel model

In [3], Wyner considered the communication model in the presence of an eaves-

dropper. In this model, the transmitter Alice sends a confidential message to the

intended receiver Bob. The channel between Alice and Bob is named as the main

channel. Eve is the eavesdropper, by tapping a wire to the main channel, Eve tries

to intercept the confidential message. The communication channel between Alice

and Eve is called the wiretap channel or eavesdropper channel. In many secrecy

communication researches, including Wyner’s work, the channel knowledge of the

wiretap channel is assumed known to the transmitter. This assumption is realistic

when Eve is one active user in the communication network, however, Eve is not

permitted to all communications. Thus, the active user Eve becomes a potential

eavesdropper, while Alice gains perfect CSI of Eve.

Wyner’s work has been extended by Csiszár and Körner in [4], in which the

secrecy capacity of non-degraded channel version is studied. The Gaussian wiretap

channel model is studied in [5], where both the main channel and the wiretap channel

are Gaussian channels. The Gaussian wiretap channel model can be extend to the

fading channel case easily, as each fading realization can be modelled as the Gaussian

channel with complex AWGN.

Fig. 3.2 shows the general Gaussian wiretap channel model, where hD and hE

denote the channel coefficients of the main channel and wiretap channel, respectively.

The noises nD and nE are zero mean and unit variance Gaussian noise.

One assumption is made throughout the whole thesis, that is: the channel state

information of both main channel and wiretap channel are known at the transmitter.

This assumption is practical when both Bob and Eve are legitimate users in the

communication network, however, the message from Alice are only for Bob in a

certain time period. In this model, both Bob and Eve are active users, they perfectly

estimate the CSI of the respective channel and feed back this information to Alice.
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Bob

Eve

Alice

hE

hD nD

nE

Main channel

eavesdropper

channel

Figure 3.2: The wiretap channel model with one eavesdropper

3.3 The secrecy capacity and the secrecy rate

In 1948, C. E. Shannon considered communications under the secrecy constraint

in [1]. In his work, information-theoretical security of the confidential message is

guaranteed, this strong secrecy is not affected by the computational resource of

the eavesdropper’s receiver. In 1978, Wyner built up a wiretap model and studied

the secrecy communication in this model [3]. Wyner proved that the confidential

message between Alice and Bob can be transmitted at an information rate RS with

the eavesdropper Eve being totally unaware, the maximum value of RS is defined

as the secrecy capacity CS. Later, the secrecy capacity for the Gaussian channel

and Rayleigh fading channel are investigated [5, 6]. In [5], the mutual information

for the Gaussian wiretap channel is given by

CS = CD − CE

= I(γD)− I(γE), (3.9)

where γD and γE denotes the SNRs of the main channel and the wiretap channel,

respectively. It is shown that the secrecy capacity is a bi-variable function of the

main channel SNR and the wiretap channel SNR.

We introduce the secrecy capacity of a wireless communication system by con-

sidering two cases: perfect wiretap channel CSI is known at Alice and imperfect

wiretap CSI is known at Alice.
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3.4 The outage probability

We assume that Bob and Eve have perfect CSI of the main channel and the

wiretap CSI, respectively. These assumptions are practical in a slow fading environ-

ment, where the channel coefficients remain constant long enough for Bob and Eve

to obtain perfect CSI. We also assume that Alice has perfect global CSI. This corre-

sponds with, for instance Eve being another active user in the wireless network, for

example: in the time-division multiple-access (TDMA) environment. We assume

that the both channels are block Rayleigh fading channels, in which the channel

coefficients remain constant for every transmission block and vary block to block

following Rayleigh distribution. For every transmission block, the wiretap channel

can be equivalent to a complex Gaussian channel, the instantaneous secrecy capacity

is given by

CS(γD, γE) = [I(γD)− I(γE)]
+
, (3.10)

The operation [· · · ]+ keeps the positive value but scales negative value to 0. This

is because Alice is able to pause the transmission whenever the wiretap channel is

less noisy than the main channel.

By using an adaptive coding technique, the transmission rate can be adapted

to every fading realization. Therefore, by taking expectation over all instantaneous

secrecy capacity values, the average secrecy capacity is obtained, which is given by

C̄S = EhD ,hE
[CS(γD, γE)] . (3.11)

Therefore, C̄S is the maximum information rate that Alice and Bob can hide from

the eavesdropper.

Throughout this thesis, the term secrecy capacity refers to the secrecy perfor-

mance obtained by Gaussian input scheme, while we use secrecy rate to describe the

secrecy performance of the finite-alphabet input schemes.

3.4 The outage probability

To obtain the secrecy capacity of a wiretap channel model, the CSI of both the

main channel and wiretap channel are essential at the transmitter. However, in

some cases, it is difficult or even impossible to precisely measure the CSI of the

wiretap channel. When Alice only knows imperfect CSI of the wiretap channel is

known by Alice, there is no method to precisely determine the secrecy capacity
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and the only solution for Alice is to set the secrecy rate to RS. By doing so, the

transmitter is assuming that the mutual information of the wiretap channel is equal

to

ĈE = CD − RS. (3.12)

Where ĈE denotes the estimation of the wiretap mutual information under imperfect

CSI. If CE < ĈE , perfect CSI can be obtained and RS is achieved. Otherwise, if

CE > ĈE, the secrecy capacity CS is smaller than RS and information theoretic

security is compromised [9]. However, if strict secrecy is not required, a lower level

of secrecy can be obtained by using the imperfect CSI of the wiretap channel. To

measure the security level of the system, outage probability is introduced.

The outage probability Pout(RS) is the probability of the event CS < RS, which

is given by

Pout(RS) = P [CS ≤ RS]

= 1− P [CS ≥ RS]

= 1− P [log2(
1 + γD

1 + γE
) > RS]

= 1− γ̄D

γ̄D + 2RS γ̄E
exp

(

−2RS − 1

γ̄D

)

. (3.13)

where γ̄D and γ̄E denote the average SNR of the main channel and wiretap channel,

respectively.

3.5 The secrecy capacity at low SNR regime

If the communication system is power limited but has large bandwidth, the trans-

mission power is averaged over the entire bandwidth and, the SNR is very low. This

model is also called the ultra wide band (UWB) model. The problem of maximum

mutual information for a power-limited system was initially considered by Claude

Shannon, let P denote the received power, N0 is the one-sided noise power spectral

level. The mutual information of an ideal band-limited AWGN channel approaches

C = lim
B→∞

B log2(1 +
P

BN0
) =

P

N0
log2 e. (3.14)

Since P is limited, the SNR decreases when B increases.
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3.5 The secrecy capacity at low SNR regime

The mutual information at a low SNR regime is initially studied by using Taylor

expansion on log(1 + SNR) at SNR = 0. The obtained function indicates that the

mutual information is approximately linear when the SNR is very low.

C low ≈ Ċ(0)γ + C̈(0)γ2 + o(γ2), (3.15)

where Ċ(0), C̈(0) denote the first and second order of derivative of C at SNR = 0,

respectively. By definition, the secrecy capacity over an AWGN channel at the low

SNR regime is approximated by

C low
S ≈ Ċ(0)(γD − γE) + C̈(0)(γ2

D − γ2
E). (3.16)

It is shown that the secrecy capacity over an AWGN channel at low SNR can be

approximated to a linear function of the SNR difference. If the channel follows

Rayleigh fading, C low
S is given by

C low
S ≈ Ċ(0)(E[γD]− E[γE]) + C̈(0)(E[γ2

D]−E[γ2
E ]), (3.17)

where the expectation is taking on all fading realizations. For the Gaussian input

case, it is easy to obtain that Ċ(0) = 1 and C̈(0) = −1
2
by applying a derivative

to the mutual information. However, compared to Gaussian input, the Ċ(0) and

C̈(0) of the finite-alphabet input schemes are more complex to evaluate. In [72], V.

Prelov and S. Verdú studied the first two Taylor expansions of mutual information

for proper complex constellations χ that are introduced by Neeser and Massey [73],

the Ċ(0) and C̈(0) are given by

Ċ(0) = E[|s|2]− |E[s]|2 (3.18)

C̈(0) = −1

2
[(E[|s|2]− |E[s]|2)2 + |E[s2]− E2[s]|2], (3.19)

where s are the constellation points on χ. However, (3.19) is only valid for CM

schemes. The Ċ(0) and C̈(0) of the BICM scheme can be obtained by applying the

relationship between CM capacity and the BICM capacity [66], which is given by

CBICM
χ =

1

2

m
∑

i=1

∑

b=0,1

(CCM
χ − CCM

χi
b
). (3.20)
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3.6 The secrecy capacity at high SNR regime

Thus, the Ċ(0) and C̈(0) of the BICM scheme is computed by

Ċ(0) =
1

2

m
∑

i=1

∑

b=0,1

|E[sib]|2 (3.21)

C̈(0) =
1

4

m
∑

i=1

∑

b=0,1

((E[|sib|2]− |E2[sib]|)2 − (1 + |E[s2]|2)

+ |E[(sib)
2]− E2[sib]

2|), (3.22)

It is worth noting that (3.22) are for the zero mean and unit variance constellation

χ with 2m constellation points, each point corresponds to one m-bit sequence.

3.6 The secrecy capacity at high SNR regime

Considering a Wyner channel model, all channels are AWGN, Alice transmits the

signals at power level PS, σ
2
D and σ2

E are the noise variances of the main channel

and the wiretap channel, respectively. The average signal power E[|X|2] = 1. The

secrecy capacity CS is by definition given by

CS = log2(1 +
PS

σ2
D

)− log2(1 +
PS

σ2
E

). (3.23)

Assume that the value of PS is very large compared to the noise power, (3.23) is

approximated to

CS = log2(
σ2
D

σ2
E

). (3.24)

Equation (3.24) indicates that secrecy capacity at high SNR is not affected by the

transmission power, but is completely defined by the noise power level differences

between the two channels.

It is well known that the mutual information of any input scheme with finite-size

constellation achieves log2M if SNR is high enough. Thus, without a proper power

control policy, the secrecy capacity decreases to 0 when SNR are very high and we

have following relationships

lim
SNR→0

CS = 0, lim
SNR→∞

CS = 0, CS ≥ 0, (3.25)
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3.7 The minimum mean square error

it is indicated that for CM and BICM, to obtain the maximum value of CS, the

transmission power has to be controlled at a moderate value rather than increased

to infinity. In later chapters, we investigate the optimal power allocation for finite-

alphabet input schemes under secrecy constraints.

3.7 The minimum mean square error

In communication, control and signal processing, making precise estimates, pre-

dictions or decisions of some quantities based on information observed from other

quantities are the core motivations of research. Because the noise exists in the com-

munication process, the estimation of the original information based on the noisy

observation may not be perfect, it is possible to make biased estimation when the

SNR is very smaller. One method to describe the level of errors is to measure the

mean value of the squared errors. This process is referred as mean square error

(MSE).

To begin with, assume the transmitter sends message X through an AWGN

channel to the destination. The noise in the channel is denoted as N , the noisy

signals observed at the receiver are denoted as Y . The estimation of X based on the

observation of Y and the channel SNR is referred as the conditional mean estimator,

denoted as X̂(Y ;SNR), which is given by

X̂(Y ;SNR) = E[X|Y ;SNR]. (3.26)

The MSE measures the error between X and X̂(Y ;SNR) in the mean squared sense

E[(X − X̂(Y ;SNR))2]. (3.27)

The MMSE is the minimum value of MSE, this value is affected by the estimation

algorithm and the choose of the estimator.
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Chapter 4

The closed-form solution for

secrecy rate and power control

policy for CM and BICM schemes

4.1 Introduction

Until now, the Gaussian input has been the basis for most research on secrecy ca-

pacity. It is well known that the channel capacity of Gaussian input has a simple

closed-form relation to the channel SNR. Therefore, by definition, on an AWGN

channel, the secrecy capacity is given by log2(
1+SNRD

1+SNRE
), where SNRD and SNRE

denote the SNRs of the main channel and the wiretap channel, respectively. Most re-

search on secrecy capacity maximization problems and optimal power control policy

(PCP) are based on this model.

However, the PCP derived from Gaussian input model is not applicable to the

finite alphabet input model. Significant differences have been found between the

secrecy rate of finite alphabet input schemes and the Gaussian input assumption

especially at high SNR range, where zero secrecy rate is obtained with a finite-

alphabet input scheme if it lacks any PCP. By assuming the channels are slow fading

and massive computational resources are available, an exhaustive search method is

introduced to obtain optimal PCP and maximise secrecy rate in [63]. Although by

using exhaustive searching, the secrecy rate is maximized and the PCP is optimal,

but this method is inefficient and not applicable to the fast fading channels.

It was shown in [68] that the derivative of the mutual information I(SNR) of a
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4.2 Mutual information vs. minimum mean square error

channel with respect to the SNR is equal to the minimum mean square error (MMSE)

measured at the receiver side. By using this relationship, the optimization of the

secrecy rate for CM is found in [61] with an adaptive searching algorithm. In this

work, a transformation for this relationship is introduced, focusing on the optimal

power control policy of finite-alphabet input schemes and the secrecy rate at a high

SNR range. It is worth mentioning that we assume the receiver performs perfect

channel estimation (CE) and the global CSI is known at the transmitter, which

is proved realistic when both Bob and Eve are active users in the communication

network.

In the remainder of this chapter, the following problems are solved:

• What is the relationship of the secrecy rate CS and the SNR difference between

the main channel and the wiretap channel?

• What is the optimal power control policy?

• Is it possible to estimate the maximum secrecy rate when Global CSI is avail-

able at the transmitter?

4.2 Mutual information vs. minimummean square

error

Mutual information is a fundamental concept in information theory, measuring the

information rate that a channel can transmit at with no errors given a certain

input signalling. Until now, the closed-form solution of the mutual information

for a finite-alphabet input remains an open problem. Therefore, the secrecy rate

of finite-alphabet input is difficult to analyse mathematically. Previous research on

optimizing the transmission power PS under a secrecy constraint relies on exhaustive

searching. In consideration of efficiency, a fast power control policy is necessary.

The mean square error (MSE) is a basic quantity in estimation theory, where

MMSE is the minimum value of the MSE. MMSE measures how accurately the

channel input can be recovered by observing of the channel output. Consider the

AWGN channel where the channel input-output function is given by

Y =
√
γX +N, (4.1)
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4.2 Mutual information vs. minimum mean square error

where N is the zero mean, unit variance Gaussian noise and X and Y are the

channel input symbol vector and channel output signal vector, respectively. The γ

denotes the instantaneous channel SNR. The probability density function (pdf) of

the output is

pY |X(y|x) =
1

π
e−|y−√

γx|2. (4.2)

Let X̂ denote the estimate of the channel input X based on the observation of the

channel output Y and the error of the estimation is measured using the mean square.

The conditional mean estimator gives the best estimation of X [68], denoted as X̂ ,

X̂ = E[X|√γX +N ]. (4.3)

The mean square error is the expectation value of the difference between X and X̂ ,

which is given by

E[|X − X̂|2], (4.4)

while the MMSE is the minimum value of (4.4). Let MMSE(γ) denote the MMSE

as a function of SNR and X̂ as the soft estimation of the channel input X , then we

have

MMSE(γ) = minE[|X − X̂|2]. (4.5)

Let I(γ) denote the mutual information of the channel. A relationship between I(γ)

and MMSE(γ) is given by

MMSE(γ) =
dI(γ)

dγ
. (4.6)

If the channel is AWGN and the input follows a Gaussian distribution, the MMSE

is then given by

MMSE(γ) =
1

1 + γ
log2 e, (4.7)

where e is the base of natural logarithm. For the CM, in the presence of zero mean,

unit variance Gaussian noise, the soft estimation of the transmitted symbol s is

denoted as ŝ, which is given by

Ŝ(y, h) =

∑

s∈χ s exp(−|y − hs|2)
∑

s∈χ exp(−|y − hs|2) , (4.8)
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4.3 secrecy rate and logarithm transformed MMSE

where χ denotes the constellation. The MMSE by definition is given by

MMSEχ(γ)=E[|X|2]−E
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. (4.9)

It is important to note that (4.9) is only valid for a CM scheme and not applicable

to BICM, due to the channel input of BICM schemes being bit-wise interleaved. We

obtain the relationship between MMSE and mutual information for BICM using an

alternative method by applying the relationship between CM and BICM [66],

IBI(γ) =

m
∑

i=1

1

2

∑

b=0,1

(ICM(γ)− ICM
χb
i
(γ)). (4.10)

The mutual information for BICM is given by:

MMSEBI(γ) =
m
∑

i=1

1

2

∑

b=0,1

(MMSEχ(γ)−MMSEχb
i
(γ)), (4.11)

where MMSEχb
i
denotes the MMSE of the sub-constellation χb

i .

By using this relationship, the MMSE of BICM is obtained and the mutual

information of the finite-alphabet input can be obtained by integrating the MMSE.

In the next section, some transformations are introduced in order to obtain the

secrecy performance and power allocation policy for finite-alphabet input schemes.

4.3 secrecy rate and logarithm transformedMMSE

In this section, we denote the parameters for the source-to-destination channel (main

channel) and the source-to-eavesdropper channel (wiretap channel) by adding the

subscript D and E, respectively. By definition, the secrecy rate CS is given by

the difference of the mutual information of the main channel and the eavesdropper

channel,

CS = CD − CE. (4.12)

If the input alphabet is infinite and Gaussian distributed, the secrecy capacity is

given by

CS = log2

(

1 + γD

1 + γE

)

. (4.13)
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4.3 secrecy rate and logarithm transformed MMSE

By using 4.13, it is very easy to determine the value of secrecy capacity and optimal

power control policy for Gaussian input systems. However, the MMSE of a finite-

alphabet input relies on Monte-Carlo evaluation and the channel SNR difference

changes when the transmission power varies. For these two reasons, the value of

secrecy rate of a finite-alphabet input is hard to determine. Previous research on

the secrecy rate of a finite-alphabet input does not give a closed-form solution to

the above problems, so, adaptive search algorithms are widely applied in [28] [63]

[75] [61].

Instead of considering the secrecy performance in CD − CE form, we consider it

in integration form, which is given by

CS =

∫ γD

γE

dC

dγ
dγ. (4.14)

By combining (4.2) and (4.14), CS is an integral equation of MMSE(γ), which is

shown below

CS =

∫ γD

γE

MMSE(γ)γ,

= ¯MMSE(γ)(γD − γE), (4.15)

where ¯MMSE is the average MMSE value within [γE, γD]. However, this integrated

form of the channel secrecy rate does not simplify the computation of CS because

the range of [γE , γD] varies with the transmission power PS. The MMSE values of

some popular input schemes are shown in the figures below.

It is indicated in Fig.4.1 that MMSE decreases when SNR increases, while

[γE, γD] increases. Thus, the maximum CS can only be found by changing PS in

steps and exhaustive searching.

To save computational resources, we present a transformed CS formula, which

is not constraint by the input distribution as long as the signals are affected by

Gaussian noise.

The main problem of (4.15) is that the SNR difference and MMSE both change
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4.3 secrecy rate and logarithm transformed MMSE

values if PS varies. However, the SNR difference in dB (∆γdB) is constant,

∆γdB = 10 log10(PS|hD|2)− 10 log10(PS|hE|2) (4.16)

= 10 log10

( |hD|2
|hE |2

)

.

It is simpler to start by focusing on the AWGN channel case, since the block fading

channels are equivalent to AWGN channels within every single fading block. Later,

the power allocation policy for fading channels can be easily derived from the AWGN

chanel case.

We define IdB(γdB) as the mutual information when the SNR is in dB and

IdB(γdB) = I(γ). Equation (4.15) is transformed as:

CS = IdB(γD,dB)− IdB(γE,dB))

= max
PS

∫ γD,dB

γE,dB

dIdB(γdB)

dγdB
dγdB,

= max
PS

∫ γD,dB

γE,dB

dI(γ)

dγ

dγ

dγdB
dγdB,

= max
PS

∫ γD,dB

γE,dB

0.1 log2(10)10
0.1γdB

dI(γ)

dγ
dγdB. (4.17)

Here, we denote 0.1 log2(10)10
0.1γdB dI(γ)

dγ
by M(γdB) and the secrecy rate is given by

CS = max
PS

∫ γD,dB

γE,dB

M(γdB)dγdB. (4.18)

Firstly, we consider the Gaussian input case, the channel capacity is given by

log2(1 + γ). Then MMSE(γ) = 1
(+γ)

log2 e and the secrecy capacity is given by:

CG
s = 0.1 log(10)

∫ γD,dB

γE,dB

100.1γdB
log2 e

1 + 100.1γdB
dγdB. (4.19)

When the transmission power is large, PS → ∞, the secrecy capacity is:

CG
s ≈ 0.33(γD,dB − γE,dB) (4.20)

The transformed gradient of the mutual information for the Gaussian coded input

is a positive constant value at high SNR, which indicates that infinite transmission

power is optimal for secrecy transmission. However, the transformed gradient of the
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4.4 secrecy rate maximization under transmission power constraint

Table 4.1: OPTIMAL PS SEARCHING STEPS

Compare γopt and γM,dB = 10 log10(|hM |2PT ).
If γD,dB ≤ γopt, transmits with full power PS = PT . Searching stops.
If γD,dB ≥ γopt, first, adjust PS so that γD,dB = γopt.
Increment PS and compute the average value of M̄(γdB) between the SNR
interval [γE,dB, γD,dB], until M̄(γdB) is maximum.

mutual information for the finite-alphabet input case is very different at high SNR,

which will result in a completely different power control policy at the transmitter

for secrecy transmission. Since the value of M(γdB) is finite and non-negative and

lim
γ→0

M(γdB) = 0; lim
γ→∞

M(γdB) = 0; (4.21)

then, according to the property of a continuous function, the secrecy rate of a finite-

alphabet input has a global maximum value at a finite SNR. In the next section, we

propose an optimal power control policy solution using exhaustive searching and an

alternative convenient sub-optimal solution for power control.

4.4 secrecy rate maximization under transmission

power constraint

The transformed secrecy rate formula was introduced in the last section and it is

possible to perform power allocation according to (4.15). The variation of trans-

mission power PS does not affect the value of ∆γdB = γD,dB − γE,dB, but shifts

the interval [γE,dB, γD,dB] on the SNR axis as is shown in Fig.4.2. To achieve the

maximum secrecy rate, the transmitter has to adapt the transmission power PS and

shift [γE,dB, γD,dB], where M̄ within the interval is maximum.

We define the SNR where the transformed MMSE achieves its maximum value

as γopt and the transmission power constraint PS ≤ PT . The optimal PCP is given

in table 4.1. It is clear that the searching range for the optimal PS is limited around

γopt, thus, the complexity of PCP is greatly reduced compared with the exhaustive

searching method presented in [63].

If the strict maximal of secrecy rate is not required, the PCP can be significantly

simplified with ignorable scarifies of secrecy rate performance, this PCP is referred

to fast PCP in the remainder of this thesis. It is clear that M(γdB) is a concave
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4.4 secrecy rate maximization under transmission power constraint
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4.4 secrecy rate maximization under transmission power constraint

Table 4.2: The maximum value of M(γdB) and the corresponding γopt

Input schemes Mmax γopt
16QAM-CM 0.244 8 dB
16QAM-Gray 0.252 7 dB
16QAM-SP 0.382 10.7 dB
64QAM-CM 0.288 14.7 dB
64QAM-Gray 0.308 13 dB
64QAM-SP 0.398 16 dB

function, so rather than optimizing M̄, a simpler solution is to set γopt in the center

of [γE,dB, γD,dB], which is shown as:

γopt =
γE,dB + γD,dB

2
. (4.22)

By substituting the value of γE,dB and γD,dB into (4.22), the suboptimal PCP is

given by:

P̂S =











100.1γopt

|hD||hE| , if10
0.1γdBopt

|hD||hE| ≤ PT

PT , if10
0.1γopt

|hD||hE| ≥ PT

(4.23)

The γopt of some input schemes are listed in table 4.2. The γopt of Gray map-

ping is smaller than other mapping schemes if the constellation is unchanged, which

indicates lower PS is required to achieve the maximum secrecy rate than other map-

pings. However, Gray mapping achieves lower M(γopt) values than all other mapping

schemes, in other words, the maximum possible secrecy rate of Gray mapping is the

lowest. According to (4.15), by assuming M̄ = Mmax, the maximum value of the

secrecy rate within the whole SNR range is given by

Cmax
S ≤ Mmax(γ)(γD,dB − γE,dB). (4.24)

In the remainder of this section, simulation results of the secrecy performances

with suboptimal PCP over Rayleigh fading channels and the maximum values of

the secrecy rate over AWGN channels are presented.

In Fig.4.3, the secrecy rate of finite-alphabet input schemes at high SNR and

suboptimal PCP does not decrease to 0 as SNR increases to infinity. In Fig.4.4

there are two general trends, on one hand, the bounds of CM and BICM with Gray

mappings are very tight compared to other mapping schemes. On the other hand,
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4.4 secrecy rate maximization under transmission power constraint
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4.4 secrecy rate maximization under transmission power constraint

the bound is tighter when the SNR gap between two channels is smaller. This is

mainly because of the smaller difference between Mmax and M̄ of CM and Gray

mapping and other input schemes within [γE,dB, γD,dB].
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4.5 Transmission power minimization with a target secrecy rate

4.5 Transmission power minimization with a tar-

get secrecy rate

The variable rate communication requires the coding scheme to adapt the coding rate

to the instantaneous channel condition. Although maximum secrecy rate is achieved

by using this technique, the design complexity is high. Instead, transmitting the

confidential message at a constant rate can greatly reduce the design complexity for

the transmitter.

It has been demonstrated that M(γdB) is a concave function. Thus, there exist

a range of PS values to achieve the target rate RT . Although the maximum secrecy

rate can be obtained, in some cases, a steady transmission at a fixed information

rate is required, for example, the transmitter is not able to adapt the channel coding

rate to the CSI. Under this assumption, the optimal algorithm is to transmit the

confidential message at the target rate RT whenever RT satisfies

RT < max(M̄)(γD,dB − γE,dB), (4.25)

where max(M̄) denotes the maximum value of M̄ obtained by shifting [γE,dB, γD,dB].

This indicates that RT is achieved when
γE,dB+γD,dB

2
< γopt. The target function is

given by

min PS (4.26)

s.t.

CS ≥ RT .

To obtain the minimum PS, we introduce the approximation functions of the

secrecy rate.

4.5.1 Closed-form approximation of secrecy rate

The closed-form solution of mutual information or secrecy rate of a BICM scheme

is an attractive target in information theory. It was introduced in the previous

sections that secrecy rate of finite-alphabet input schemes are concave functions

with one global maximum value at γopt. Hence, an approximation of the CS curves

in a limited SNR range is possible. However, the approximation may not perfectly
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4.5 Transmission power minimization with a target secrecy rate

match M(γdB) at entire SNR range, as it is analysed, we are mostly interested with

the M(γdB) in (−∞, γopt]. To start with, we obtain a closed-form approximation of

the M(γ) curves from low SNR to γopt.

It is shown in Fig. 4.2 that the M(γdB) curves of various mappings around

γopt are similar to the curves of a quadratic function. To estimate the M value,

we define a quadratic function A(γdB) to approximate the M(γdB) curves. The

quadratic function A(γdB) is given by

A(γdB) = β1γ
2
dB + β2γdB + β3. (4.27)

The coefficients β1, β2, β3 are obtained by substituting (γdB,M(γ)) values on the

curves into A(γdB). The optimal β1, β2, β3 are obtained by minimizing the estimation

error between A(γdB) andM(γdB). The error between the approximation A(γdB) and

M(γdB) is measured by computing the MMSE, denoted as E(γdB) between A(γdB)

and M(γdB) at the SNR range we interested in,

E(γdB) =

γh,dB
∑

γl,dB

|A(γopt)−M(γopt)|2. (4.28)

Where γl,dB and γh,dB are the lower and upper bounds of the SNR range of interest

in dB form. In this chapter, we are mostly interested in the medium SNR range.

Some quadratic approximations of M(γ) on 16QAM and 8PSK constellations

around γopt are listed below.

For 16QAM, Gray mapping: β1 = −0.0019, β2 = 0.027, β3 = 0.155, we obtain

the approximation function as

A16QAM(γdB) = −0.0019γ2
dB + 0.027γdB + 0.155, (4.29)

For 8PSK, Gray mapping: β1 = −0.0019, β2 = 0.0168, β3 = 0.158 and the quadratic

function is shown as

A8PSK(γdB) = −0.0019γ2
dB + 0.0168γdB + 0.1580, (4.30)

It is shown that around γopt and lower SNRs, the Aχ(γ) curves approximate the

Mχ curves very well, while at high SNRs, the approximation is higher than the
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4.5 Transmission power minimization with a target secrecy rate

actual value. According to (4.27), the secrecy rate can be approximated by

C̃S ≈ β1

3
(γ3

D,dB − γ3
E,dB) +

β2

2
(γ2

D,dB − γ2
E,dB)

+β3(γD,dB − γE,dB). (4.31)

The curves compared in Fig. 4.6 show that the approximation of secrecy rate

matches the simulation results very well at medium SNR range, while at high SNR,

the approximation tends to be optimistic on the RS values. It is also shown in

Fig. 4.6 that the approximation for 4QAM is very accurate from low SNR to γopt,

while the accuracy of the approximation decreases as the constellation size increases.

However, the dotted curves still match the full lines very well for 16QAM Gray

mapping from 1dB to 9dB.

4.5.2 Closed-form approximation on channel capacity

With the help of the second order approximation on M, it is possible to obtain a

close-form approximation of the channel capacity for finite-alphabet input schemes.

It is shown that the channel capacity of finite-alphabet input schemes at medium

SNRs can be approximated to a single variable, cubic function. Assume the channel

capacity at SNR = t is denoted as C(t). Then denote tdB = 10 log10(t) and let

Ĉ(tdB) = C(t) so that

C(t) =

∫ t

0

MMSE(γ)dγ. (4.32)

This can be rewritten as

C(t) = Ĉ(ttB) (4.33)

=

∫ tdB

−∞
M(γdB)dγdB, (4.34)

=

∫ tdB

udB

M(γdB)dγdB + Ĉ(udB), (4.35)

=
β1

3
(t3dB − u3

dB) +
β2

2
(t2dB − u2

dB)

+β3(tdB − udB) + Ĉ(udB) + v, (4.36)

where udB is the SNR in decibel form where Aχ(γdB) begins to match well with

M(γdB) and v is a constant produced by the integration process. Taking 16QAM
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with Gray mapping as an example, udB = 0, v = 0 and Ĉ(0) = 0.8942. The channel

capacity approximation is then given as

C(γdB) ≈
β1

3
γ3
opt +

β2

2
γ2
opt + β3 + 0.8942. (4.37)

4.5.3 Transmission power minimization

To determine the minimum PS for RT , we further simplify (4.31) into a function of

PS

RT ≤ CS

= (γD,dB − γE,dB)(β1(γ
2
D,dB + γ2

E,dB + γD,dBγE,dB) + β2(γD,dB + γE,dB) + β3)

=
3β1

4
∆γdBT

2 + β2∆γdBT +
β1

4
∆γ3

dB + β3∆γdB, (4.38)

Where T = γD,dB + γE,dB. For the SISO wiretap channel, the SNR gap is constant

and irrelevant to PS, while T can be expressed by

T = 10 log10 |hD|2 + 10 log10 |hE|2 + 20 log10 PS. (4.39)
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4.5 Transmission power minimization with a target secrecy rate

It is shown that T is a incremental function of PS, the minimum PS is obtained

when T is minimized. The minimum T is obtained by solving

3β1

4
∆γdBT

2 + β2∆γdBT +
β1

4
∆γ3

dB + β3∆γdB − RT = 0. (4.40)

Because β1 < 0, the minimum T value is given by

T =
−β2∆γdB +

√

β2
2∆γ2

dB − 3β1∆γdB(β3∆γdB + β1

4
∆γ3

dB −RT )

3
2
β1∆γdB

. (4.41)

Note that there exist two values of T satisfy (4.40), the larger one denotes the

maximum value of PS for the wiretap channel to achieve RT . Thus, the minimum

transmission power is given by

PS =
10

T
20

√

|hD|2|hE |2
. (4.42)

It is shown in Fig. 4.8 and Fig. 4.9 that the minimum transmission power de-

creases exponentially as hE increases. For hE = 1, the PS for RT = 0.2bit/channel

use is smaller than the PS values forRT = 0.4bit/channel use andRT = 0.6bit/channel

use. However, as the target rate RT increases to 0.8bit/channel use, PS = 0. This

is because the target rate RT is larger than the secrecy rate achievable for the SNR

gap provided.

In Fig. 4.9, the SNR gap is increased to 4dB, the simulation shows that except

RT = 0.8bit/channel use, the required PS values are smaller for the RT shown in

Fig. 4.8. It is shown that with ∆γ = 4dB, RT = 0.8bit/channel use is achievable

and the minimum PS value required is the maximum.
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4.6 Energy harvesting under secrecy constraint

Reducing the energy cost and extending the battery life of mobile devices is crucial

for wireless networks. In the case of sensor networks, replacing the batteries of sen-

sors, such as implant devices in medical use, can be very difficult or even impossible.

Such devices are often equipped with a fixed battery and the device will run out of

power if it is not recharged. Therefore, energy harvesting is a technique that receives

considerable attention as it allows the device to collect energy from the surrounding

environment to overcome the issue of battery limit.

Conventional energy harvesting techniques rely on external energy sources, such

as those based on solar power or wind energy and are not a part of the communication

network. A promising energy harvesting approach to gather energy from the radio

frequency signals has been introduced in [77, 78], which has proved that power and

information can be carried by RF signals simultaneously.

The design of a sustainable receiver on wiretap channels is investigated, where the

users (intended receiver and eavesdropper) are equipped with an energy-harvesting

component in their receivers. The transmitter is both an information source and

energy source that broadcasts RF signals to all terminals. The intended receiver and

eavesdropper receiver harvest energy from the observation of RF signals and store

them in the corresponding batteries. The extra power will be discarded if the battery

is fully charged. We consider a wiretap channel where the transmitter maintains

a constant rate of transmission of the confidential message and the information

rate is equal to the target secrecy rate RS. The transmitter is assumed to have

full knowledge of the global CSI, it performs fast PCP and evaluates the secrecy

rate. If CS > RS, the transmitter knows that the channel is good enough and

the transmission starts, otherwise, the transmission pauses. It is possible that at

some fading realizations CS is much larger than the required target secrecy rate

RS. In this case, part of the transmission power is actually wasted, which can be

collected by using energy harvesting techniques. In the wiretap channel model, the

intended receiver does not set the energy harvesting level itself, but is instructed by

the transmitter because the transmitter is the only user who has perfect knowledge

of the global CSI.

Of the various energy-harvesting techniques, we focus on power splitting. As-

sume an infinitely long confidential message is transmitted on a wiretap channel
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4.6 Energy harvesting under secrecy constraint

model with a target secrecy rate RS. The power splitting coefficient 0 < ρ < 1

of the intended receiver and the eavesdropper receiver are denoted as ρD and ρE ,

respectively. If ρ = 0, the receiver harvests no energy from the RF signals and uses

all power for information decoding, while ρ = 1 implies that the receiver collects

all energy from the RF signal. The transmitter broadcasts the confidential message

to the intended receiver at a power level PS while the eavesdropper observes the

communication and tries to intercept the confidential message. The main channel

(transmitter to destination) and the wiretap channel (transmitter to eavesdropper)

are independent and identical flat fading channels. In the energy harvesting systems,

there exist two types of noise: noise introduced by the channel and the noise intro-

duced by the analogue-to-digital conversion(ADC) process. As we are interested in

the medium SNR range secrecy rate performance, the channel noise is very small

and ignorable compared to the signal power, the ADC noise takes dominant effects

in the decoding process. Thus, in the remaining of this section, we only consider the

ADC noise and assume the channel noise is equal to 0. The receiver observations of

the channel output are given by

yD =
√

PShDx+ nD, (4.43)

yE =
√

PShEx+ nE . (4.44)

where nD and nE are Gaussian noises with zero mean and unit variance. After

power splitting, the received signals are given by

y′D =
√

(1− ρD)PShDx+
√

(1− ρD)nD, (4.45)

y′E =
√

(1− ρE)PShEx+
√

(1− ρD)nE . (4.46)

It is assumed that the transmitter knows the global CSI and the splitting ratio of

the intended receiver, but the transmitter does not know the splitting ratio of the

eavesdropper. Let γ and γ̂ denote the SNR measured by the receiver before power
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4.6 Energy harvesting under secrecy constraint

splitting and after power splitting, respectively.

γD = |hD|2PS, (4.47)

γE = |hE |2PS, (4.48)

γ̂D = (1− ρD)|hD|2PS, (4.49)

γ̂E = (1− ρE)|hE|2PS. (4.50)

In terms of secrecy rate, the worst case is that the eavesdropper uses all power for

decoding the confidential message and harvests no energy from the RF signals, i.e.,

ρE = 0. We use γdB to denote the SNR in decibels, thus, γD,dB and γ̂D,dB satisfy

the following relations

γ̂D,dB = 10 log10 |hD|2PS + 10 log10(1− ρD)

= γd,dB + µ, (4.51)

γ̂E,dB = γE,dB. (4.52)

To achieve the target secrecy information rate RT , the energy harvesting ratio of the

destination receiver has to be chosen properly and satisfy the following conditions,

RT < CS, (4.53)

subject to

ρD > 0, PS > 0. (4.54)

If ρD is set too small, too much energy is wasted and the battery of the receiver

is charged slowly. If ρD is too large, then the secrecy rate of the wiretap channel

is smaller than the predefined target secrecy rate and as a result, the confidential

message cannot be transmitted to the destination with perfect secrecy. The secrecy

rate of 4QAM, 8PSK and 16QAM were approximated at moderate SNR values with

high accuracy in the previous sections, the condition in (4.53) can be reformulated
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to

RT ≤ CS

≤ β1

3
(γ̂3

D,dB − γ3
E,dB) +

β2

2
(γ̂2

D,dB − γ2
E,dB) + β3(γ̂D,dB − γE,dB). (4.55)

The minimum γ̂D,dB is obtained when RT = CS, define J(γ̂D,dB) as a function of

γ̂D,dB,

J(γ̂D,dB) =
β1

3
γ̂3
D,dB +

β2

2
γ̂2
D,dB + β3γ̂D,dB − ω (4.56)

where

ω= −(
β1

3
γ3
E,dB +

β2

2
γ2
E,dB + β3γE,dB)− RT . (4.57)

Let J(γ̂D,dB) = 0, and the three roots of J(γ̂D,dB) are denoted as R1,R2,R3. We

assume the three roots follows

R1 ≤ R2 ≤ R3. (4.58)

Only R2 is in the range (γE,dB, γD,dB), as R1 and R3 are generated by the negative

values of the secrecy rate approximation formula. The range of the energy splitting

R1
R2 R3

�E,dB(0,-RT)

(0,0)

Figure 4.10: The three roots for J(γ̂D,dB), The green point denotes γE,dB. The whole
curve is shifted downward by RT and the original (0,0) pint becomes (0,−RT ).

ratio ρD is given by

0 < ρD < 1− 100.1(R2−γD,dB). (4.59)

If R2 has no real value solution, it indicates that there is no solution to obtain the
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target secrecy rate even if using the full received signal power. Fig.4.11 and Fig.
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Figure 4.11: The maximum energy harvesting ratio at the destination receiver, the
main channel gain is 6dB and the wiretap channel gain is 2dB.

4.12 demonstrate the maximum energy harvesting ratio at the destination receiver

providing the target secrecy rate RT . It is shown that, as the target secrecy rate

increases, the amount of harvested energy is reduced, the energy harvesting ratio

is a concave function of the input transmission power. At high PS values, the ρD

decreases to 0, this is because the information rate in the wiretap channel is increased

and the secrecy rate CS < RT , thus, no energy from the RF signal can be harvested.
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4.7 Conclusion

In this chapter, the secrecy rate of finite-alphabet input schemes was investigated.

First the relationship between secrecy rate and MMSE over AWGN channels was

introduced and defined secrecy rate in a integration form of MMSE. By applying the

logarithm domain transformation, it was found that the secrecy rate has a definite

relationship with the SNR differences between two channels in decibel. Then, a fast

PCP to optimize the transmission power PS was presented in order to prevent the

secrecy rate CS reducing at high SNRs, although this PCP is not strictly optimal in

terms of maximizing the secrecy rate. However, massive computational resources are

saved compared to the exhaustive searching of the optimal PCP introduced in [63].

Furthermore, when the global CSI is available at the transmitter, the maximum

value of secrecy rate that an input scheme could achieve can be determined. Finally,

by using a quadratic approximation of the transformed MMSE curves, the secrecy

rate and mutual information of 4QAM, 8PSK, 16QAM with Gray mapping are

approximated in closed-form. This shows that in the medium range of SNR, the

secrecy rate and mutual information behave in a similar manner to a bi-variate

cubic function and uni-variate cubic function, respectively. By using the closed-

form approximation of the secrecy rate, the maximum energy harvesting ratio for

a predefined target secrecy rate is determined. The devices with energy harvesting

receivers can communicates under perfect secrecy while harvesting energy from the

RF signals simultaneously.

The simulation in this chapter considered Gray mapping and SP mapping on

BICM schemes, the results have demonstrated that the mappings on BICM schemes

affect the secrecy rate severely. In fact, Gray mapping performs the worst in terms

of achievable secrecy rate at high SNR. SP mapping outperforms Gray mapping in

terms of maximum secrecy rate at all SNRs. In the next chapter, the effect of signal

mappings on secrecy performance is studied.
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Chapter 5

Signal mapping for bit-interleaved

coded modulation schemes to

achieve secure communications

5.1 Introduction

Before BICM was introduced, the trellis coded modulation (TCM), which was intro-

duced by Ungerboeck with optimal performance over AWGN channels, was generally

accepted as the default communication structure. However, the BER performance

of TCM is severally degraded when TCM is applied over Rayleigh fading channels.

It is indicated that the code diversity, which is described by the Euclidean distances

between the codewords has higher impact than the Hamming distance at the bit

error rate (BER) performance over Rayleigh fading channels. However, it is diffi-

cult to obtain high code diversity in TCM since it combines coding and modulation

as one entity. Thus, despite TCM schemes having large Hamming distance of the

codes, the BER performance over Rayleigh fading channels is poor.

To improve the communication quality of wireless communications, an inspiring

design in [79] showed that improved performance is obtained by separating the de-

coder and the demodulator. Inspired by this contribution, Zehavi introduced BICM

as an alternative of CM in [41]. There are some advantages of BICM over TCM,

firstly, because coding and modulation are treated as separate entities, the Euclidean

distance between the codeword are greatly increased compared to the TCM scheme,

the BER performance of BICM is better than TCM over Rayleigh fading channels.
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Secondly, it is very complex to jointly optimize the coding/modulation entity and

the decoding/demodulation entity in a TCM scheme, while in a BICM scheme, cod-

ing/modulation and decoding/demodulation are optimized separately, the design

complexity is greatly reduced. Because of the low design complexity and good BER

performance in the wireless communication environment, the BICM scheme is the

de facto standard of wireless communications nowadays.

In BICM, the encoder outputs are forwarded into an ideal interleaver π and bro-

ken into m-bit subsequences, the interleaved subsequences are then mapped to the

2m-ary symbols on constellation χ according to the mapping schemes. The receiver

estimates the log-likelihood ratio (LLR) of each bit rather than the transmitted

symbol after receiving the signals via the communication channel, this process is

also called demapping. After demapping, the LLRs of each bit are de-interleaved in

the same fashion π−1 with the transmitter interleaver and forwarded to the decoder.

Among all the mapping schemes, binary reflected Gray mapping is known by the

optimal performance of mutual information at a wide range of SNRs [43]. However,

it is indicated in chapter 4 that Gray mapping achieves a lower secrecy rate than SP

mapping at high SNR under optimal power allocation policy. It is indicated that the

mapping technique can affect the secrecy rate performance in BICM schemes. In the

previous section, only SP mapping is illustrated as the comparison of secrecy rate

performance to Gray mapping, while a large number of mapping techniques have

not been compared. In this chapter, the effects of mapping technique to the secrecy

rate performance is studied by investigating various mapping schemes. The optimal

labelling rule to secure the communication is presented and the performance of the

optimal mapping is compared with various well-known mappings.

5.2 The impact of constellation and mappings on

mutual information

The major keying methods in the modern communication are: amplitude shift key-

ing (ASK), frequency shift keying (FSK) and phase shift keying (PSK). Among all

the keying methods, 8PSK and 16QAM are very widely applied in modern commu-

nications. In this section, we analyse the effect of mapping and constellation (8PSK

and 16QAM) over block fading channels with Wyner’s classical wiretap channel
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model. The channel coefficients follow Rayleigh distribution but remain constant

within one transmission block period. Before process any further, the system model

has to be clarified: we assume that Bob and Eve are the legitimate users in the

communication network, Alice is the base station. Both Bob and Eve measures the

channel condition of their respective channels and feed back the CSI to Alice, how-

ever, in some time period, Alice wishes to communicate with Bob in confidential, in

this case, Eve becomes a eavesdropper. Thus, it is reasonable to assume that the

transmitter knows the global CSI and each receiver has their own channel CSI. It

is also reasonable to assume that Eve is able to possess full knowledge of the signal

constellation and labelling technique employed by Alice and Bob.

An independent uniformly distributed binary source generates a sequence of

information bits and forwards the bits to the channel encoder. The information

bits are encoded at the predefined code rate Rc, the encoder output sequence is

interleaved by a random/pseudo-random interleaver and then divided into m-bit

(m = 4 for 16QAM and m = 6 for 64QAM) vectors C = {c1, c2, . . . , ci, . . . , cm}.
The transmitter Alice maps each m-bit vector onto a complex symbol x, which is

drawn from a 16QAM or 64QAM signal constellation. The sequence of complex

symbols is then sent through the main channel to Bob, whereas Eve observes the

communication between Alice and Bob through the wiretap channel. The channel

coefficients of the main channel and the wiretap channel are denoted as hD and hE ,

respectively. The channel outputs are given by

yD =
√

PShDx+ nD, (5.1)

yE =
√

PShEx+ nE , (5.2)

where PS is the transmission power at the transmitter, the nD ∼ CN(0, 1) and

nE ∼ CN(0, 1) are white Gaussian noises. The mutual information of BICM scheme

is given by

I(x, y) = m−
m
∑

i=1

Eb,y

{

log2

∑

s∈χ p(y|hs)
∑

s∈χb
i
p(y|hs)

}

, (5.3)

where s is the constellation symbols, χb
i denotes the constellation symbols whose i-th

bit value is equal to b = {0, 1}. The expectation Eb,y[·] is taken over each received
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signal y and all bit values. By definition, the secrecy rate CS is given by

CS = max [I(x, yD)− I(x, yE)]
+
. (5.4)

Combining (5.3) and (5.4), the secrecy rate of a BICM scheme is obtain by

solving following equation

CS =

[

m
∑

i=1

Eb,y

{

log2

∑

s∈χ p(yE|
√
PShEs)

∑

s∈χb
i
p(yD|

√
PShDs)

∑

s∈χ p(yD|
√
PShDs)

∑

s∈χb
i
p(yE|hEs)

}]+

. (5.5)

The value of (5.5) can be obtained by using the Monte-Carlo method. However,

the effects of mapping technique over secrecy rate can be analyzed without an exact

closed-form solution to (5.5).

We start the analysis from two aspects, specifically: the effects of neighbour-

ing constellation points of the current transmission symbol and the effect of sub-

constellation shape. To obtain the design rules of high secrecy rate mapping scheme,

it is convenient to rewrite (5.5) into following form

CS =

m
∑

i=1

Eb,y[F (γ) +G(χb
i)]

+, (5.6)

where

F (γ) = log2

∑

s∈χ p(yE|hEs)
∑

s∈χ p(yD|hDs)
. (5.7)

It is shown that the value of F (γ) is only affected by the channel SNR, while G(χb
i)

value is affected by both SNR and the mapping schemes.

First, we study the effects of the neighbour constellation points on the secrecy

rate. At high SNRs, the value of
∑

s∈χb
i
p(y|hs) is mostly determined by the cur-

rent transmitted symbol x and the nearest neighbour symbols. Let sn denote the

constellation symbols with smallest Euclidean distance to the transmitted symbol x
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while satisfying sn ∈ χb
i . It is reasonable to approximate G(χb

i) to

G(χb
i) =

m
∑

i=1

Eb,y

{

log2

∑

s∈χb
i
p(yM |

√
PShDs)

∑

s∈χb
i
p(yW |

√
PShEs)

}

≈
m
∑

i=1

Eb,y

{

log2
p(yD|hDx) +

∑l

k=1 p(yD|hDs
k
n)

p(yE|hEx) +
∑l

k=1 p(yE|hEskn)

}

≤
m
∑

i=1

Eb,y

{

log2

(

p(yD|hDx)

p(yE |hEx)
+

l
max
k=1

p(yD|hDs
k
n)

p(yE |hEskn)

)}

, (5.8)

where skn is the k-th (k = 1, . . . , l) symbol in sn. This equation shows that the

secrecy rate is reduced if more numbers of skn exist for every constellation symbol.

Thus, to achieve a high secrecy rate, the number of signal points in sub-constellation

χb
i need to be designed as small as possible.

Then, we investigate how to design the shape of the sub-constellations χb
i for

secure communications. Let λ (= λD or λE, depending on the channel considered)

denote the log-likelihood bit metric [47, 48] for the main channel or the wiretap

channel, respectively. The log-likelihood bit metric for ci = b is denoted as λ(cbi)

and the value of λ(cbi) is computed by

λ(cbi) = ln p(y|ci = b) (5.9)

= ln
∑

s∈χb
i

p(y|
√

PShs) (5.10)

≈ −min
s∈χb

i

|y −
√

PShs|2. (5.11)

Using this notation, the CS can then be rewritten as

CS = Eb,y

[

log2

m
∏

i=1

[

1 + exp(λE(C
b̄
i )− λE(C

b
i ))

1 + exp(λD(C
b̄
i )− λD(C

b
i ))

]]+

. (5.12)

It is important to note that the value of λE(C
b̄
i ) depends on the Euclidean distance

between y and all signal points on the sub-constellation χb̄
i , which is the complement

of the sub-constellation χb
i . Let Ki =

1+exp(λE(C b̄
i )−λE(Cb

i ))

1+exp(λD(C b̄
i
)−λD(Cb

i
))
, the secrecy rate is given

by

CS ≤ max
γ̄≥0

Eb,y

[

log2

(

m
∑

i=1

Ki

m

)m]+

, Ki > 0. (5.13)

The inequality in (5.13) is obtained by the arithmetic mean – geometric mean (AM-

GM) inequality, it can be written as equality if and only if K1 = K2 = . . .Ki . . . .
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5.2 The impact of constellation and mappings on mutual information

This equality condition in AM-GM inequality indicates that the shape of sub-

constellations χb
i and χb̄

i have to be as similar as possible.
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5.3 Well known mappings on 8-ary and 16-ary

constellations

Before introducing the optimal mapping for secrecy communication, the well known

mappings on 8-ary and 16-ary constellations are revised. Gray mapping is known

as the optimal mapping technique by its optimal mutual information performance,

this conjecture was supported by a number of simulation results, further studies on

signal mapping in [44] [53] indicate that the BICM mutual information of Gray map-

ping only has optimal performance for moderate to high SNR values. SP mapping

is introduced by G. Ungerboeck to jointly optimises the encoding and modulation

entity of CM schemes, while one special class of SP mapping, namely strictly reg-

ular set partitioning mapping shows optimal BICM capacity performance at low

SNR range [46]. After iterative decoding is introduced, a lot of error-floor removing

mappings, such as maximum square Euclidean weight (MSEW) mapping [45], M16a

and M16r mappings [49] are introduced due to excellent bit error rate (BER) per-

formances in bit interleaved coded modulation with iterative decoding (BICM-ID)

over AWGN and Reyleigh fading channels, respectively. We study the secrecy rate

performances of Gray, SP, MSEW and M16r mapping on 16-QAM constellation,

and Gray, SP, MSEW on 8-PSK constellation. In the remainder of this chapter, we

call the constellation point at the minimum Euclidean distance to the target point

the neighbour point.

5.3.1 Various mappings on 8PSK constellation

On 8PSK, Gray, SP and MSEW mappings are revised and the sub-constellations of

these mappings are presented.
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Figure 5.1: The sub-constellations of different mappings on 8-PSK constellation.
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5.3 Well known mappings on 8-ary and 16-ary constellations

In Fig.5.1, the filled and unfilled points denote that the bit value at the corre-

sponding bit position is equal to 1 and 0, respectively. The radius of the circle (dash

line) is set to 1 in order to provide unit average energy constellation symbols.

For Gray mapping, for the first bit and second bit sub-constellations, the two

filled and unfilled points have two neighbours at the minimum Euclidean distance

on their respective sub-constellations, while the remaining four constellation points

on each sub-constellation have one neighbour point. For the third bit, every con-

stellation point has only one neighbour point on the sub-constellations. The first

and second bit sub-constellations of SP mapping are similar to the second and third

bit of Gray mapping, while on the third bit sub-constellation of SP mapping, every

constellation point has no neighbour point on the sub-constellation. For MSEW

mapping, the first and second bit sub-constellations are the same as the second

and third bit sub-constellations, while for the third bit sub-constellation, only two

constellation points have one neighbour point.

5.3.2 Various mappings on 16QAM and (1,5,10) constella-

tions

For 16-ary constellations, Gray, SP, MSEW and M16r mappings are illustrated both

on 16QAM and (1,5,10) constellations. The Gray and SP mappings show optimal

BER performance over BICM and TCM, while MSEW and M16r mappings perform

low error floor over BICM-ID. Fig. 5.2 shows the sub-constellations of the mappings

on 16QAM constellation. The filled points represent the bit value at corresponding

bit position equal to 1, while the unfilled points designate the bit value equal to

0. The minimum Euclidean distance between two constellation symbols is equal to

1
2
√
10
, thus, the average constellation symbol energy is equal to 1.

We compare the neighbour points on the sub-constellations for Gray mapping

and SP mapping to demonstrate that the sub-constellation points on Gray mapping

are more “crowded” than the other mapping schemes.

For Gray mapping, on the first and third bit sub-constellations, there are four

filled points with two neighbours at the minimum Euclidean distance, while the

remaining four filled points only have one neighbour point. For the unfilled points,

four points have three neighbours and the other four points have two neighbours.

On the second and fourth bit constellations, four filled points have three neighbours
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5.3 Well known mappings on 8-ary and 16-ary constellations

1st bit

1111 0111 0011 1011

1101 0101 0001 1001

1100 0100 0000 1000

1110 0110 0010 1010

1111 0111 0011 1011

1101 0101 0001 1001

1100 0100 0000 1000

1110 0110 0010 1010

3rd bit

1111 0111 0011 1011

1101 0101 0001 1001

1100 0100 0000 1000

1110 0110 0010 1010

4th bit

1111 0111 0011 1011

1101 0101 0001 1001

1100 0100 0000 1000

1110 0110 0010 1010

1st bit

1001 1100 1101 1000

1110 1011 1010 1111

0101 0000 0001 0100

0010 0011 0110 0011

2nd bit 3rd bit 4th bit

1001 1100 1101 1000

1110 1011 1010 1111

0101 0000 0001 0100

0010 0011 0110 0011

1001 1100 1101 1000

1110 1011 1010 1111

0101 0000 0001 0100

0010 0011 0110 0011

1001 1100 1101 1000

1110 1011 1010 1111

0101 0000 0001 0100

0010 0011 0110 0011

SP

2nd bit

Gray

1st bit

0010 0001 0111 0100

1000 1011 1101 1110

0101 0110 0000 0011

1111 1100 1010 1001

3rd bit 4th bit

1st bit

0001 0010 1101 1000

1011 0111 1110 0100

1100 0000 1001 0011

0110 0101 1010 1111

2nd bit 3rd bit 4th bit

M16r

2nd bit

MSEW

0010 0001 0111 0100

1000 1011 1101 1110

0101 0110 0000 0011

1111 1100 1010 1001

0010 0001 0111 0100

1000 1011 1101 1110

0101 0110 0000 0011

1111 1100 1010 1001

0010 0001 0111 0100

1000 1011 1101 1110

0101 0110 0000 0011

1111 1100 1010 1001

0001 0010 1101 1000

1011 0111 1110 0100

1100 0000 1001 0011

0110 0101 1010 1111

0001 0010 1101 1000

1011 0111 1110 0100

1100 0000 1001 0011

0110 0101 1010 1111

0001 0010 1101 1000

1011 0111 1110 0100

1100 0000 1001 0011

0110 0101 1010 1111

Figure 5.2: The sub-constellations of Gray,SP, MSEW and M16r mapping on
16QAM constellation.
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Figure 5.3: The quasi-Gray, quasi-SP, quasi-MSEW and quasi-M16r mappings on
the (1, 5, 10) constellation.
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5.3 Well known mappings on 8-ary and 16-ary constellations

and the other four have two neighbours, four unfilled points have three neighbours

and the other four have two neighbours.

For SP mapping, the first bit sub-constellation is similar to the fourth bit sub-

constellation of Gray mapping. For the second bit sub-constellations, all filled points

have only one neighbour while four of the unfilled points have two neighbours and

the other four unfilled points have no neighbour point. For the third bit sub-

constellations, four filled and unfilled points have two neighbours and the other four

filled and unfilled points have one neighbour. For the fourth bit sub-constellations,

there is no neighbour point for every filled and unfilled point.

The (1, 5, 10) constellation is basically a APSK modulation, this kind of modu-

lation is not widely applied in daily life use, however, the APSK is commonly used in

satellite and deep space communication, as one major purpose of the satellite com-

munication is for the military use, it is meaningful to study the secrecy performance

of mappings on (1, 5, 10) constellation. The (1, 5, 10) constellation is generated by

placing one symbol at (0, 0) and rest of the symbols on two concentrically circles, the

radius of the inner circle and the radius of the outer circle are denoted as rinner and

router, respectively. To maximize the mutual information, it is indicated in [53] that

the optimal radius values are rinner = 1.8294 and router = 3.7851. The constellation

symbols are scaled by 1
4
√
10

after modulation in order to satisfy the symbol energy

condition E[|ES|2] = 1.

The strict Gray, SP and MSEW mappings are not applicable to the (1, 5, 10)

constellation, alternatively, quasi-Gray, quasi-SP and quasi-MSEW mappings are

generated on this constellation.
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5.4 The optimal mapping for optimal secrecy rate

performance

In this section, the design rule of signal mapping to achieve a high secrecy rate

is studied. The secrecy rate curves of BICM schemes are concave and one global

maximum value is achieved at medium SNR range. The “optimal” mapping that

is interested obtains larger global maximum value than other mappings. However,

the secrecy rate performance at low SNRs are not interested. Hereby, we recall the

relationship between MMSE and secrecy rate

CS = 0.1 log2 10

∫ γM,dB

γE,dB

γMMSE(γ)dγdB

=

∫ γM,dB

γE,dB

M(γdB)dγdB. (5.14)

Since γD,dB −γE,dB is constant in one transmission block, to maximise CS is equiva-

lent to maximizeM(γdB). Despite Gaussian input schemes obtain maximum M(γdB)

at γ → +∞, the global maximum values of various mappings in fig.4.2 is at medium

to high SNR range, it indicates that to maximise the secrecy rate, the error events

at the receiver has to be maximized at medium to high SNR. For BICM schemes,

the error events indicates the estimation error between the input bit sequences and

the estimation of the bits based on the observation of the received signals. Note that

the enhance of the secrecy rate performance is based on the cost of the detection

accuracy at the receiver, which implied lower throughput and system performance

for normal communications.

5.4.1 The distance spectrum

In the previous sections, the analysis show that the optimal mapping for secure

communication have following characteristics:

• The number of neighbour symbols with the minimum Euclidean distance to x

on χb
i has to be minimized.

• The points on the sub-constellations χb
i and χb̄

i has to be spread.

• The mapping maximizes the MMSE at medium to high SNR range.
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5.4 The optimal mapping for optimal secrecy rate performance

The first and second condition can be satisfied with no contradicting to each other

by maximizing the average Hamming distance of the mapping. For the third con-

dition, It has been proved that Gray mapping obtains the lowest MMSE among all

mappings, in other words, Gray mapping produces less error events than the other

mappings. The error events for a mapping scheme can be well described by the

distance spectrum.

Hereby, we introduce the distance spectrum N(de), which is defined as the ex-

pected number of error events Er(de, s) that are made at a Euclidean distance de,

averaged over entire sub-constellation points s ∈ χb
i and all bit positions i = 1, . . . , m

N(de) =
1

m2m

m
∑

i=0

1
∑

b=0

∑

s∈χb
i

Er(de, s). (5.15)

The error event Er(de, s) is equal to the Hamming distance between s and the other

constellation symbols, at Euclidean distance de. Specifically, for 16QAM, the de can

take value from the set (α, 2α, 4α, 5α, 8α, 9α, 10α, 13α, 18α), where α represents the

minimum squared Euclidean distance between two constellation points, while for

8PSK, the de values are chosen from (α, 5.828α, 6.828α). As (5.8) shows that the

the constellation symbols with smaller Euclidean distance to s have higher affects to

the secrecy rate performance than the distant symbols, thus, we concentrate on the

distance spectrum values with the minimum and the second minimum Euclidean

distances.

5.4.2 The optimal mapping for secrecy communication

In this section, we develop a new signal-mapping algorithm called maximum error

event (MEE) mapping. The algorithm is presented in Algorithm I. According to

Table 5.1: ALGORITHM I: MEE MAPPING

1 Set de = α.
2 Begin with an initial random mapping M. Compute the N(de).
3 Generate a new mapping M, compare NM(de) and NM(de)
4 Let M = maxN(de)(M,M).
5 Repeat step 3 and 4, until no new M.
6 Increase de, repeat 2 to 5.

MEE algorithm, the MEE mapping on 8PSK, 16QAM and (1,5,10) constellations
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5.4 The optimal mapping for optimal secrecy rate performance

are presented and the sub-constellations are shown. The distance spectrum of the

MEE mappings on 8PSK, 16QAM (1,5,10) are listed in the following tables.

Figure 5.4: The sub-constellations of MEE mappings, (a) are the sub-constellations
on 8-PSK constellation, (b) are the sub-constellations on 16QAM constellation.

Table 5.2: Values of N(de(n)) of mappings on the 8PSK.

8PSK Gray SP MSEW MEE

N(α) 0.67 1.17 1.50 1.67
N(5.828α) 1.33 1 1 0.667

It is shown in Table 5.2 that Gray mapping has a minimum value of N(α) = 0.67

and a maximum value of N(5.828α) = 1.33, it is expected to achieve the minimum

value of secrecy rate. For SP and MSEW mappings, the N(5.828α) values are the

same but SP mapping has smaller N(α) value, thus, MSEW mapping can achieve

higher secrecy rate performance than SP mapping, finally, for MEE mapping ,the

N(α) value is much larger than the other mappings, although the N(5.828α) value is

the minimum among all mappings, MEE mapping is expected to achieve maximum

secrecy rate.

In Table 5.3, the Gray mapping results in the minimum value of both N(α)

and N(2α), thus, Gray mapping should achieve the minimum value of secrecy rate
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5.5 Numerical results

Table 5.3: Values of N(de(n)) of mappings on the 16QAM.

16QAM Gray SP MSEW M16r MEE

N(α) 0.75 1.75 1.63 1.75 2.92
N(2α) 1.88 2.75 2.94 3.06 3.94

Table 5.4: Values of N(de(n)) of mappings on the (1, 5, 10) constellation.

(1,5,10) q-Gray q-SP q-MSEW q-M16r MEE

N(α) 0.47 0.64 0.75 0.75 0.97

among all mappings compared. The distance spectrum values of SP, MSEW and

M16r are very similar, their secrecy rate performances are expected to be similar at

a medium SNR range, MEE mapping achieves maximum N(α) and N(2α) values,

it is expected to achieve the maximum secrecy rate performance.

Table 5.5: MEE mapping on (1,5,10) constellation, r1 = 1.8294, r2 = 3.7851. The
constellation points are denoted as by radius and phase

constellation 0000 0001 0010 0011 0100 0101 0110 0111
(1,5,10,) r1, 0π r1,

8π
5

r2,
13π
10

r1,
2π
5

r2,
5π
10

r1,
6π
5

r2,
9π
10

r2,
15π
10

1000 1001 1010 1011 1100 1101 1110 1111
(1,5,10,) r2,

11π
10

r1,
4π
5

r2,
7π
10

r2,
19π
10

r2,
17π
10

r2,
3π
10

0, 0 r2,
1π
10

It is shown in Table 5.4 that MEE mapping achieves higher N(α) value than the

other mappings and Gray mapping obtains the lowest N(α) value. For MSEW and

M16r mappings, the N(α) value is the same, so their secrecy rate performance will

be very close. The SP mapping obtains a larger N(α) value than Gray mapping,

thus it will achieve a higher secrecy rate than Gray mapping.

5.5 Numerical results

In this section, the secrecy rate of various mappings discussed in this chapter are

simulated and compared. We begin the comparison of secrecy rate from the map-

pings on 16QAM and followed by the mappings on 8PSK, both constellations are

illustrated with SNR gap values equal to 0dB, 5dB and -5dB, respectively.
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Figure 5.5: The secrecy rate performances of various mappings on 16QAM constel-
lation, the full lines are with flat power allocation, while the dotted lines are with
the fast power allocation. The SNR gap ∆γ = 0dB

.

5.5.1 Example: secrecy rate performances on 16QAM

It is shown in Fig.5.5 that MEE mapping outperforms the other mappings at mod-

erate to high SNR values in terms of secrecy rate. When ∆γ = 0, Gray mapping

obtains higher secrecy rate than the rest of the mappings if the average SNR of the

main channel is smaller than 6dB, meanwhile, MEE mapping achieves the lowest

secrecy rate value in this SNR range. It is shown in Fig.5.5 that almost all mapping

schemes achieves the same secrecy rate value at γ̄M = 6dB and the secrecy rate of

MEE mapping surpasses other mapping schemes when the SNR grows larger than

6dB. The secrecy rate of SP mapping and MSEW mapping have very close perfor-

mance from 0dB to 20dB, comparing with their N(de) values, we can see that SP

mapping has a larger N(α) value than MSEW mapping (1.75 vs. 1.63), but MSEW

mapping obtains a larger N(2α) value than SP mapping (2.94 vs. 2.75). The N(α)

value of SP mapping and M16r mapping are equal, but the N(2α) value of M16r

mapping is 3.06, which is larger than the N(2α) = 2.75 of SP mapping, thus, the

secrecy rate performance of M16r mapping is higher than SP mapping. The dotted

curves show the secrecy rate of various mappings under fast PCP as proposed in

Chapter 4, the MEE mapping obtains the highest secrecy rate at high SNR while
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Figure 5.6: The secrecy rate performances of various mappings on 16QAM constel-
lation, the full lines are with flat power allocation, while the dotted lines are with
the fast power allocation. The SNR gap ∆γ = 5dB

.

Gray mapping achieves lowest value of secrecy rate.

Fig.5.6 and Fig.5.7 show the secrecy capacities of various mappings with SNR

gap equal to 5dB and -5dB, respectively. The secrecy rate of MEE remains highest

at high SNR range, while Gray mapping’s optimal performance is at low SNR range.

When ∆γ = 5dB, the secrecy rate of Gray mapping is surpassed by other mappings

around 9dB, while the secrecy rate of Gray mapping is surpassed by other mapping

schemes at 2dB when ∆γ̄ = −5dB. This is when γ̄D,dB − γ̄dB = 5dB, the interval of

[γE,dB, γD,dB] is very likely to be large and the differences between the M̄ of Gray

mapping and other mapping schemes are small. On the contrary, when ∆γ = −5dB,

no positive secrecy rate can be obtained during most of the fading realizations, it is

more likely to obtain small [γE,dB, γD,dB] interval, thus, Gray mapping obtains much

lower secrecy rate.
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Figure 5.7: The secrecy rate performances of various mappings on 16QAM constel-
lation, the full lines are with flat power allocation, while the dotted lines are with
the fast power allocation. The SNR gap ∆γ = −5dB

.
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5.5.2 Example: secrecy rate performances on 8PSK

In the case of 8PSK, we compare the secrecy rate performances of MEE mapping

with Gray, SP and MSEW mappings over Rayleigh fading channels in the following

figures with the SNR gap equal to 0dB, 5dB, -5dB, respectively.
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Figure 5.8: The secrecy rate performances of various mappings on 8PSK constella-
tion, the full lines are with flat power allocation, while the dotted lines are with the
fast power allocation. The SNR gap ∆γ = 0dB

.

In the 8PSK case, we compare Gray, SP, MSEW and MEE mappings in terms

of their secrecy rate performances. The SP mapping and MSEW mapping have

the same N(2α) value but the N(α) value of MSEW mapping is significantly larger

than SP mapping, thus, MSEW mapping obtains higher secrecy rate at high SNR

range, The N(α) value of MEE mapping is the largest, however, its N(2α) value

is smaller than others, MEE mapping still achieves the highest secrecy rate, but

with no significant advantage. Gray mapping achieves the lowest secrecy rate due

to the minimum N(α) value of all mappings. To demonstrate that MEE algorithm

is applicable to all constellations, the secrecy rate performances on (1,5,10) mapping

is simulated.
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Figure 5.9: The secrecy rate performances of various mappings on 8PSK constella-
tion, the full lines are with flat power allocation, while the dotted lines are with the
fast power allocation. The SNR gap ∆γ = 5dB

.
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Figure 5.10: The secrecy rate performances of various mappings on 8PSK constel-
lation, the full lines are with flat power allocation, while the dotted lines are with
the fast power allocation. The SNR gap ∆γ = −5dB

.
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5.5.3 Example: secrecy rate performances on (1,5,10) con-

stellation

The secrecy rate of various mappings on (1, 5, 10) constellation with SNR gap equal

to −5dB, 0dB and 5dB are compared in this section.
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(1,5,10) Q−Gray
(1,5,10) Q−SP
(1,5,10) M16r
(1,5,10) MEE
(1,5,10)Q−MSEW

Figure 5.11: The secrecy rate performances of various mappings on (1,5,10) constel-
lation, the full lines are with flat power allocation, while the dotted lines are with
the fast power allocation. The SNR gap ∆γ = 0dB

.

Fig. 5.11, Fig. 5.12 and Fig. 5.13 show the mutual information performance of

various mapping schemes when the average SNR in the main channel is 0dB, 5dB and

-5dB higher than the wiretap channel. The MEE mapping obtains maximum secrecy

rate value at a high SNR range in all figures. MEE mapping has the maximum N(α)

value among all mapping schemes, thus MEE mapping obtains the maximum secrecy

rate at a medium SNR range. It is illustrated that M16r and MSEW mapping

obtain a very similar secrecy rate across the entire SNR range. In terms of N(α)

value, both MSEW and M16r have N(α) = 0.75, this demonstrates that they show

similar secrecy rate performance. Gray mapping achieves the maximum secrecy

rate at a much lower SNR than other mappings, but at the cost of the secrecy

rate performance at high SNR. SP mapping achieves higher secrecy rate than Gray

mapping, but a lower secrecy rate than MSEW, M16r and MEE mapping.
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Figure 5.12: The secrecy rate performances of various mappings on (1,5,10) constel-
lation, the full lines are with flat power allocation, while the dotted lines are with
the fast power allocation. The SNR gap ∆γ = 5dB

.
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Figure 5.13: The secrecy rate performances of various mappings on (1,5,10) constel-
lation, the full lines are with flat power allocation, while the dotted lines are with
the fast power allocation. The SNR gap ∆γ = −5dB

.
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5.6 Conclusion

In this section, a new mapping algorithm is proposed as the optimal mapping rule

under secrecy constraint, the generated mapping, namely MEE mapping, achieves

the highest secrecy rate among all mappings. The distance spectrum is the crit-

ical parameter in the MEE mapping searching steps. The secrecy rate of Gray,

SP, MSEW, M16r and MEE mappings are compared on 16QAM and (1,5,10) con-

stellation, while Gray, SP, MSEW and MEE mappings are compared on 8PSK in

three cases: equal average channel SNR of both channels, the main channel is less

noisy than the wiretap channel on average and the main channel is noisier than

the wiretap channel on average. Considering the transmission power consumption

and secrecy rate performance, we draw conclusions from two aspects: on one hand,

Gray mapping achieves lowest secrecy rate at high SNR range, MEE performs at

a significantly higher secrecy rate than other mappings at a high SNR range for

all cases that are considered in this chapter. On the other hand, Gray mapping

achieves maximum secrecy rate at a much lower SNR than the other mappings, and

its secrecy rate performance at low SNR is optimal.
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Chapter 6

Secrecy capacity maximization for

BICM wiretap channel with a

trustful relay employing

decode-and-forward strategy

6.1 Introduction

The secrecy rate of theWyner wiretap channel model when all terminals are equipped

with single input single output (SISO) is studied in chapter 4. We show that the

maximum secrecy rate is a linear function of the SNR gap of both channels in deci-

bel. However, the study also indicates that positive secrecy rate is obtained only

when the main channel is less noisy than the wiretap channel. If both channels

inhabit Rayleigh fading, the transmission has to stop when the instantaneous SNR

of main channel γD is smaller than the wiretap channel γE. This limitation on

the confidential message transmission seriously decreased the transmission speed

seriously.

One solution to γD < γE is to equip multiple antennas on the transmitter, namely

a multiple input single output (MISO) or multiple input multiple output (MIMO)

strategy to increase the channels between the source to both destination and eaves-

dropper. Each antenna between the source and the destination/eavesdropper estab-

lishes a communication antenna pair. By using multiple antenna transmission, it

is possible to obtain positive secrecy rate if one or more sub-channels in the main
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channel

channel is less noisy than the sub-channels in the wiretap channel. The research on

Gaussian input case indicates that secrecy capacity can be optimized by using the

convex optimization technique to obtain positive secrecy capacity.

Another solution is to apply cooperative communication by introducing a trust-

ful helper relay to the communication party. In the this model, a pair of relay-

destination and relay-eavesdropper channels are established. When the original

source-destination and source-eavesdropper channel pair cannot achieve positive se-

crecy rate, the relay-destination and relay-eavesdropper channel pair may achieve

positive secrecy rate instead. The use of multiple relays in the wiretap channel is

studied in [80] [81] [75] [82], the relays can either work cooperatively to enhance

the secrecy rate, or based on the requirements of secrecy rate and the channel state

information the best relay is selected.

In this chapter, we focus on the advantages of cooperative communication over

the classical wiretap channel model. Due to optimal power allocation (PA) requiring

exhaustive searching, an alternative computation resource saving PA algorithm is

introduced and the secrecy rate is computed.

6.2 The general channel model of decode and for-

ward relay wiretap channel

In the DF scheme, the system model consists of one message source, one legitimate

destination, one eavesdropper and L relays. Two stage transmission is applied. In

the first stage, the source broadcasts the confidential message to all users, includ-

ing the relays, intended destination and the eavesdropper. In the second stage, the

i-th relay decodes the received signals from the source and re-encodes in the same

fashion as the source and sends signals to the destination and the eavesdropper.

Fig. 6.1 shows the wiretap channel model with L helping DF relays. The full lines

denote that the transmission happened in the first stage, while the dashed lines

represent the second stage transmission from the relay to the destination and the

eavesdropper. The notation hD, hE, hR,i are the channel coefficients between source

to destination, source to eavesdropper and source to the i-th relay, respectively, while

gD and gE are the channel coefficients of the relay to destination channel and the

relay to eavesdropper channel, respectively. As the relay only forwards the infor-
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6.3 No direct link between source and destination

Figure 6.1: The system model of relay helped wiretap channel with DF strategy.

mation decodes from the source message but not generate its own information, the

throughput of the relay-to-destination channel is always smaller than the throughput

of the source-to-relay channel. In the DF scheme, the information rate transmitted

in the channel between relay and destination is given by [76]:

CM = min{I(SNRSR), I(SNRRD)}, (6.1)

where I(SNRSR) denotes the mutual information in the source to relay channel

and I(SNRRD) is the mutual information in the relay to destination channel. If

I(SNRSD) ≤ I(SNRRD), the relay can not forward all of the information that it

received from the source, which normally should be avoided.

6.3 No direct link between source and destination

To start with, we consider a special case, which is that there is only one relay and the

direct links between the source and destination/eavesdropper are very weak com-

pared to the relay to destination/eavesdropper links. The relay in this model can

be regarded as a message source but with some power constraints. This assumption

models the case that destinations are of long distances from the source. The secrecy

rate and power allocation policy for this model is similar to the direct transmission

case. The maximum information rate at the destination receiver and the eavesdrop-
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6.3 No direct link between source and destination

per receiver are given by min{I(γD), I(γR)} and min{I(γE), I(γR)}, respectively.

We define the total available power as PT , the transmission power at the source is

denoted as PS and the transmission power at the relay is denoted as PR. We assume

the noises at destination and eavesdropper are Gaussian distributed with zero mean,

unit variance. The secrecy rate maximization problem is formulated to

max CS

s.t.

PS + PR ≤ PT . (6.2)

The ideal solution to this problem is to set γopt in the center of [γE,dB, γD,dB], which

indicates
γD,dB+γE,dB

2
= γopt. The values of γD,dB and γE,dB given by

γD,dB = 10 log10(PR|gD|2) (6.3)

γE,dB = 10 log10(PR|gE|2) (6.4)

the minimum PS is given by PS|hR|2 = PR|gD|2, thus the computed minimum total

transmission power P̂T is given by

P̂T =
100.1γopt

√

|gD|2|gE|2
(1 +

|gD|2
|hR|2

), (6.5)

and the optimal values for PS and PR are given by

PS =

√

|gD|2
|hR|4|gE|2

100.1γopt (6.6)

PR =

√

1

|hD|2|gE|2
100.1γopt (6.7)

if P̂T ≤ PT , the secrecy rate is maximized by using partial of the available power,

however, if P̂T > PT , the secrecy rate maximization problem is formulated to

max
γD,dB+γE,dB

2
(6.8)

s.t.

PS + PR = PT .

PS|hR|2 ≥ PR|gD|2.
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6.3 No direct link between source and destination

This condition is satisfied when PS|hR|2 = PR|gD|2, thus, the optimal solution is

given by

PS =
|gD|2

|gD|2 + |hR|2
PT , (6.9)

PR =
|hR|2

|gD|2 + |hR|2
PT . (6.10)
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Figure 6.2: secrecy rate performances of BICM scheme wiretap channel with one DF
relay helper and no direct source to destination links, the legends are representing
(E[10 log10 |gD|2], E[10 log10 |gE|2], E[10 log10 |hR|2])

Fig. 6.2 shows that the secrecy rate performances of the proposed PA algorithm

are much higher than the equal PA algorithm. When the value of PT increases, the

secrecy capacities with the proposed PA remain at high values while the secrecy

rate of the equal PA decreases to zero. The |hR|2 affects the minimum value of P̂T ,

larger |hR|2 value results in smaller P̂T , thus improving secrecy rate performance

and saving energy at the same time.
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6.4 The direct link between source and destina-

tion is not ignorable

Having analyzed the no direct link case, we now consider a more popular DF model,

where the direct links between source and destination/eavesdropper are not ignor-

able. In this case, the use of a relay is to cope with |hD| < |hE| in order to achieve

positive secrecy rate, or enhance the secrecy rate performance. The two time slots

transmission scheme is introduced, at the first time slot, all receivers listen to the

source, the source broadcasts the confidential message to the relay and the relay

performs decoding process; at the second time slot, the transmitter stops sending

message, meanwhile, the relay sends the re-encoded message to the destination. The

channel outputs are given by

yD =
√

PShDx+
√

PRgD,ix+ nD, (6.11)

yE =
√

PShEx+
√

PRgE,ix+ nE, (6.12)

where nD and nE are the Gaussian noises of measured at the destination receiver and

the eavesdropper receiver, respectively. For convenience, we assume nD ∼ CN(0, 1),

nE ∼ CN(0, 1). The channel SNR of the main channel (source and relay to the

destination) and the eavesdropper channel (source and relay to the eavesdropper)

are given by

γDF
D,i = PS|hD|2 + PR,i|gD,i|2, (6.13)

γDF
E,i = PS|hE|2 + PR,i|gE,I|2. (6.14)

The maximum transmission power at each fading realization is PT , the transmission

power PS and PR satisfies PS + PR ≤ PT .

Since in the DF scheme, the relay Ri has to successfully decode the message

received from the source S before forwarding the re-encoded message to the desti-

nation, thus, the amount of information transmitted by the relay is less or equal to

the amount of information received at the relay Ri, which is written as

log2(1 + |hR,i|2PS) > log2(1 + |hR,i|2PR,i), (6.15)
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thus we have the relationship between PS and PR,i

|hR,i|2PS > |gD,i|2PR,i (6.16)

The maximum information rate in the source to relay channel and relay to desti-

nation channel is affected by PS and PR and computed by the mutual information of

the corresponding channels. If the mutual information of the source to destination

channel I(γSR) is smaller than the mutual information of the relay to destination

channel I(γRD), the value of I(γRD) is equal to I(γSR) no matter how good the

channel quality is. To this end, we have the following relationships:

CRD = min{IγSR, I(γRD)}, (6.17)

CRE = min{IγSR, I(γRE)}, (6.18)

where CRD and CRE denote the maximum information rate in the relay to des-

tination channel and the maximum information rate in the relay to eavesdropper

channel, respectively. When both CRD and CRE equal to I(γSR), the relay provides

zero secrecy, which should be avoided.

6.5 Equal power allocation

One straightforward power allocation strategy in the relay network is to divide the

total transmission power equally onto the transmitter and the chosen relay. In this

thesis, the relay with maximum I(γSR) while satisfying I(γRD) > I(γRE) is chosen.

Assume the source and the relays have perfect knowledge of global CSI. The PS and

PR are given by

PS = PR =
PT

2
. (6.19)

The maximum information rate transmitted by the source while the relay can de-

code without error is defined by log2(1 + |hR,i|2 P2 ), which is the upper limit of the

information rate in relay to destination channel. The SNR gap in dB between the

destination and the eavesdropper is given by

∆γdB = γD,dB − γE,dB

= 10 log10
|hD,i|2 + |gD,i|2
|hE,i|2 + |gE,i|2

. (6.20)
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The SNR gap in dB remains constant when the transmission power varies during on

transmission block. The secrecy rate is maximized by setting γopt, which is the SNR

in dB that maximizes the transformed MMSE M(γdB) introduced in chapter 4, at

the center of [γE,dB, γD,dB]. The secrecy rate of the relay helped wiretap channel is

approximated by

CS ≈ M(γopt)(γD,dB − γE,dB)

= M(γopt)(10 log10
|hD,i|2 + |gD,i|2
|hE,i|2 + |gE,i|2

). (6.21)

The maximum secrecy rate is achieved by setting PT as

γE,dB + γD,dB

2
= γopt (6.22)

the optimal PT is given by

PT =

√

2
100.1γopt

(|hD,i|2 + |gD,i|2)(|hE,i|2 + |gE,i|2)
. (6.23)

The optimal transmission power is easy to compute in an equal power allocation

strategy. However, the positive secrecy rate can only be obtained if and only if

|hD,i|2 + |gD,i|2 > |hE,i|2 + |gE,i|2, (6.24)

where we assume hD,i < hE,i, therefore, gD,i has to be far larger than gE,i. In the next

section, we investigate an alternative fast power allocation policy that maximises

the secrecy rate.

6.6 Suboptimal power allocation strategy for DF

wiretap channel

The closed-form optimal power allocation policy to maximize secrecy rate is un-

known. However, similar to the PCP introduced in Chapter 4, a suboptimal power

allocation policy for DF wiretap channel can be obtained in closed-form. The trans-
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6.6 Suboptimal power allocation strategy for DF wiretap channel

mission power of the source PS and PR satisfies the following conditions

PS + PR,i ≤ PT , (6.25)

|hR,i|2PS > |gD,i|2PR,i. (6.26)

In the case of Gaussian input, the secrecy rate is given by

CG
S = log2(

1 + PS|hD|2 + PR|gD,i|2
1 + PS|hE|2 + PR|gE,i|2

). (6.27)

Hereby, we prove that the optimal transmission strategy of Gaussian input wiretap

channel is to let PS + PR = PT .

Initially we assume that |hD|2
|gD,i|2 = a, |hE |2

|gE,i|2 = b and a ≥ b. The secrecy rate is

given by

CG
S = M̄(γD,dB − γE,dB)

= 10M̄ log10(
PS|hD|2 + PR|gD,i|2
PS|hE|2 + PR|gE,i|2

)

= 10M̄ log10(
a|hE|2PS + b|gE,i|2PR

PS|hE|2 + PR|gE,i|2
)

≤ 3.3 log10(
a|hE|2PT

|hE |2PT

)

= 10M̄ log10(a). (6.28)

where M̄ value is increased as the SNR raises and achieves the maximum value at

SNR → ∞.

Otherwise, if a < b, PR,i needs to be maximized, the optimal PR,i value satisfies

PS + PR,i = PT , (6.29)

|hR,i|2PS = |gD,i|2PR,i. (6.30)

In summary, in the Gaussian input case, the optimal power allocation policy requires

the system to allocates all available power for transmission.

However, in the finite-alphabet input case, M̄ achieves maximum value at medium

SNR range and M̄ is 0 at high SNR range, which implies that the increment of trans-

mission power may result in a decrement of secrecy rate. Thus, the transmission
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power constraint of finite-alphabet input case is given by

PS + PR,i ≤ PT , (6.31)

|hR,i|2PS ≥ |gD,i|2PR,i. (6.32)

In order to maximize the secrecy rate, the optimal relay and the transmission

power PS, PR,i is selected based on the following rules

max
PS ,PR,i

CS (6.33)

s.t.

PS + PR,i ≤ PT

|hR,i|2PS > |gD,i|2PR,i,

Depending on the CSI of the channels, the power allocation policy for BICM

to maximize the secrecy rate is also considered in two cases: a ≥ b or a < b. In

the following sections, the terms source links and relay links specify the channels

between source to destination/eavesdropper and the channels between relay to des-

tination/eavesdropper.

6.6.1 The source links have a larger SNR gap than the relay

links

In this case, the use of relay will inevitably decrease the throughput as the relay

links can not achieve higher secrecy rate than the source links providing the same

transmission power. The optimal transmission strategy is to abandon the two time

slots algorithm but use normal direct link transmission scheme, in fact, the optimal

PA is presented in 4.23. We will focus in the other case that the relay links have

larger SNR gap than the source links as it has potential to enhance the secrecy rate

performance by allocating transmission power onto the relay. As it is mentioned in

the previous chapter that the total power can be more than the required transmission

power to achieve maximum secrecy performance, the additional power can be used

for energy harvesting.
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6.6.2 The relay links have larger SNR gap than the source

links

It is very common that a carefully chosen relay provides larger SNR gap than the

source links. In this case, where |hD|2
|hE |2 <

|gD,i|2
|gE,i|2 , the SNR gap is increased when PS

PR

decreases. However, the decreased PS value means that a smaller information rate

that relay can successfully decoded by the relay. The minimum PS is given by taking

equality for PS|hR,i|2 ≥ PR|gD,i|2, in this case, the SNR gap is maximized, which is

given by

max∆γ= 10 log10 PR(|hD|2
|gD,i|2
|hR,i|2

+ |gD,i|2)− 10 log10 PR(|hE|2
|gD,i|2
|hR,i|2

+ |gE,i|2)

= 10 log10(|hD|2
|gD,i|2
|hR,i|2

+ |gD,i|2)− 10 log10(|hE|2
|gD,i|2
|hR,i|2

+ |gE,i|2). (6.34)

Assume the optimal solution for transmission powers to maximize secrecy rate are

given by P̂S and P̂R. We start the analysis by considering two cases: the first case

is PT ≥ P̂T , the other case is PT < P̂T , where P̂T = P̂S + P̂R.

The P̂S and P̂R obtained by solving

γD,dB + γE,dB

2
= γopt, (6.35)

s.t.

P̂S|hR,i|2 ≥ P̂R|gD,i|2,

P̂T = P̂S + P̂R,

the P̂T is given by

P̂T = 100.1γopt

√

|gD,i|2 + |hR,i|2
(|hD|2|gD,i|2 + |hR,i|2|gD,i|2)(|hE|2|gD,i|2 + |hR,i|2|gE,i|2)

. (6.36)

If P̂T < PT , which indicates that both values of M̄ and ∆γ can be maximized,

the optimal PS and PR values are given by

PS =
|gD,i|2

|gD,i|2 + |hR,i|2
P̂T , (6.37)

PS =
|hR,i|2

|gD,i|2 + |hR,i|2
P̂T . (6.38)
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6.6 Suboptimal power allocation strategy for DF wiretap channel

The secrecy rate achieved in this case is the global maximum value.

In the other case, the total transmission power PT is not enough for the source

and relay to cooperate to achieve the global maximum of secrecy rate, following

similar steps in the section 6.6.1, the adaptive searching method is used to find the

optimal solution for PS and PR.

Firstly, we start by computing the maximum value of
γD,dB+γE,dB

2
, which is given

by

max
γD,dB + γE,dB

2
(6.39)

s.t.

PS + PR = PT ,

|hR,i|2PS ≥ |gD,i|2PR.

If the maximum value of
γD,dB+γE,dB

2
< γopt, the optimal transmission power is given

by

PS =
|gD,i|2

|gD,i|2 + |hR,i|2
PT , (6.40)

PR =
|hR,i|2

|gD,i|2 + |hR,i|2
PT . (6.41)

The secrecy rate achieved in this case is denoted as CS = M̄maxPR,PS
∆γ.

If the maximum value of
γD,dB+γE,dB

2
> γopt, according to

max
P̂S ,P̂R

{M̄∆γdB} ≥ max{M̄}∆γ, (6.42)

max
P̂S ,P̂R

{M̄∆γdB} ≥ M̄max{∆γ}. (6.43)

we find the PS and PR values that maximizes M̄, according to the following

constraints:

γD,dB + γE,dB

2
− γopt = 0, (6.44)

PS + PR = PT , (6.45)

|hR,i|2PS ≥ |gD,i|2PR. (6.46)

If there is at least one positive real root, the PR value is given by the minimum
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positive real root of the equation array and it is the minimum value to achieve area

maximum secrecy rate, we denote it by ṖR.

The optimal (PS, PR) pair is obtained by using the adaptive searching algorithm

presented in Table ?? but setting PR,min = ṖR and PR,max =
|hR,i|2

|gD,i|2+|hR,i|2PT .

In the case that there is no real root for PR, which means γopt is not achievable

for any pair of (PS, PR), the PR,min is obtained by

maxPS ,PR

γD,dB+γE,dB

2
, (6.47)

s.t

PS + PR = PT ,

|hR,i|2PS ≥ |gD,i|2PR. (6.48)

The optimal (PS, PR) pair is obtained by adaptive searching algorithm using the

same steps as the previous case.

6.7 Numerical results

In this section, the simulation results of secrecy rate of BICM schemes with DF relay

are presented. The direct links between the source to the destination/eavesdropper

are not ignorable. Firstly, we compare the secrecy rate performances with using DF

relays and direct transmission technique.

In Fig.6.2, the secrecy rate performances of the no direct link case are com-

pared. In terms of secrecy rate performance, the proposed PA algorithm greatly

outperforms the equal PA algorithm. It also indicates that the maximum secrecy

rate is determined by the SNR gap between relay to the destination and relay to

the eavesdropper, while a larger value of source to relay SNR improves the secrecy

rate performance when the total transmission power is low. The (2,1,2) and (2,1,6)

curves imply that the secrecy rate performance is only affected by the SNR difference

between relay to destination channel and relay to eavesdropper channel.

In Fig.6.3, It is shown that when PT < 0.1dB, the secrecy rate performances

of the proposed PA and equal gain PA are similar. However, as the PT value

increases, the proposed PA outperforms equal gain PA for all channel condition

cases. To demonstrate the poor source links case, the average channel gain of the

source to destination is chosen lower than the average channel gain of source to
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Figure 6.3: The secrecy rate performances comparison between the wiretap channel
employing equal PA and the proposed PA, the average channel gains are listed on the
legends. The number of relays is 1, the BICM scheme employs Gray mapping. The
full lines indicates the secrecy rate performances of various channel gain cases with
suboptimal PA algorithm, while the dotted lines are the secrecy rate performances
of corresponding cases with equal PA algorithm.
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Figure 6.4: The secrecy rate performances comparison between the wiretap channel
employing equal PA and the proposed PA, the average channel gains are listed on the
legends. The number of relays is 1, the BICM scheme employs MEE mapping. The
full lines indicates the secrecy rate performances of various channel gain cases with
suboptimal PA algorithm, while the dotted lines are the secrecy rate performances
of corresponding cases with equal PA algorithm.
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eavesdropper. For the relay to destination/eavesdropper channels, we assume that

the relay is well positioned and the average SNR of the relay to destination channel

is higher than the relay to eavesdropper channel. The simulation results show that

the secrecy rate is increased as the E[10 log10 |gD|2] − E[10 log10 |gE|2] value raises.

As it has been demonstrated that the source to relay mutual information determines

the maximum value of the relay to destination mutual information, we compare the

secrecy rate with E[|hR|2] = 5 and E[|hR|2] = 10. The simulation results show that

significant improvements on the secrecy rate performances are achieved by increasing

the E[|hR|2] value.
In Fig.6.4, we investigate the secrecy rate of MEE mapping. The proposed

PA obtains much higher secrecy rate values than the equal PA algorithm when

PT is large. However, when PT is small, equal gain PA performs slightly better

than proposed PA, this is because the closed-form approximation of the secrecy

rate of MEE mapping is only accurate around SNR = γopt, thus, the secrecy rate

performance obtained by proposed PA algorithm at low SNR is not optimal for

MEE mapping. Comparing with the Gray mapping case, for the same amount

of maximum input power constraint PT , the MEE mappping achieves significantly

higher secrecy rate values, which has also been demonstrated in the SISO wiretap

channel case. In order to show the secrecy rate performance at high SNR, the secrecy

rate performances with input power constraint from 0dB to 10dB are simulated. It

is shown that with equal PA, the secrecy rate decreases after PT increases higher

than 3dB, while the secrecy rate performances with the proposed PA remain at

maximum values. Despite the poor performance at the small PT value range, the

proposed PA algorithm maximizes the secrecy rate over a wide range of PT values.
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6.8 Conclusion

In this chapter, the secrecy rate of wiretap channels with a helper relay employing

DF strategy is studied. We show that optimal power allocation strategy can be

written in closed-form in most cases, while others need to use the adaptive searching

method due to the complexity of mathematical expression. By using the closed-

form approximation of the secrecy rate of BICM schemes, the computational cost

is considerably low. The secrecy rate performances of the proposed PA algorithm

are compared with the equal PA algorithm, it is shown that the secrecy rate of

proposed PA algorithm greatly out performed equal PA algorithm, especially when

there is a large amount of total available transmission power. We also show that

optimal secrecy rate and low energy cost can be simultaneously achieved as BICM

schemes obtains optimal secrecy rate performance at a certain finite value of total

input power, with the value depending on the channel conditions and the mapping

technique applied.
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Chapter 7

Conclusions and future work

7.1 Conclusion

In this thesis, the secrecy capacity exhibiting additive Gaussian noise with finite-

alphabet input schemes is studied. Firstly, a closed-form solution to the secrecy

capacity of is obtained by introducing logarithm transformations to the MMSE, the

simulation matches up to real system performances very well when the SNR gap is

small. Secondly, we introduce a fast, closed-form PCP algorithm to optimize the

secrecy capacity on medium to high SNRs, different to the Gaussian input case,

we show that the optimal secrecy capacity performance is achieved at a finite value

of input transmission power, by using the proposed PCP, secrecy capacity at high

SNR maintains high performance. Additionally, an EH algorithm is introduced with

the purpose of saving energy while achieving the target secrecy rate. Thirdly, the

mapping effects on secrecy capacity are investigated, a new mapping algorithm is

proposed as the optimal mapping rule under secrecy constraint, the generated map-

ping, namely MEE mapping, achieves the highest secrecy rate among all mappings.

The distance spectrum is the critical parameter in the MEE mapping searching

steps. The secrecy capacity performance of MEE mapping is compared with Gray,

SP, MSEW and M16r mappings on 16QAM, 8PSK and (1,5,10) constellations under

various channel conditions. We show that Gray mapping has the lowest secrecy ca-

pacity at high SNR, while MEE mapping achieves maximum secrecy capacity with

an additional cost of transmission power. Finally, the secrecy capacity of a DF relay

helped wiretap channel is studied, the optimal PA algorithm is introduced in various

cases, the simulation on secrecy capacity performance shows that the proposed PA
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algorithm greatly outperforms equal PA algorithm, especially at high SNR range.

7.2 Future research

As it is shown repeatedly in this thesis, the secrecy capacity performance of finite-

alphabet input is very different to the Gaussian input secrecy capacity. It is inter-

esting and greatly important to extend the research in this thesis for the purpose of

practical application.

In this work, we have shown that BICM has the potential to achieve higher

secrecy capacity than Gaussian input by using MEE mapping if the SNR gap is

small. It has been proved that signal shaping on BICM can optimize the mutual

information performance, thus, secrecy capacity performance can also be optimized

by using signal shaping techniques. It is fascinating to study the effects of signal

shaping on secrecy capacity to further improve the secrecy capacity performance.

The Amplify-and-forward (AF) algorithm is a widely used relay strategy for

cooperative communication, different to the DF algorithm, the relay in AF algorithm

does not decode the source message but amplify the received signal and forward to

the destination. It is clearly that the noise of the source link has been amplified

through this process, however, as the secrecy communication aims to maximize the

difference of mutual information between channels, the amplification of the noise in

AF has the potential advantage to achieve high secrecy performance as this process

can be regards as adding artificial noise to both receivers. Future work will be

focusing on the optimal PA algorithm for AF scheme under secrecy constraint.

The multiple antenna technique is widely applied in modern communication. In

this thesis, SISO and MISO wiretap channel models are studied and the optimal

PA algorithm is presented. However, the optimal beamforming algorithm for BICM

remains unstudied and considered the complexity of the transceiver design, designing

a computational cost saving, secrecy capacity maximization beamforming algorithm

is necessary. The successful design of MIMO wiretap channel beamforming can

greatly enhance the secrecy capacity performance and reduce the probability that the

main channel is more noisy than the wiretap channel. Future work will be focusing

on the secrecy capacity maximization and total transmission power minimization

over the MIMO wiretap channel model.

Throughout this thesis, perfect CSI knowledge of the wiretap channel is assumed
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at the transmitter. However, it is common that the eavesdropper is passive and the

transmitter is unable to obtain accurate wiretap CSI. Due to the imperfect CE of the

wiretap channel, the strict secrecy capacity is unobtainable. Instead, it is common

to measure the outage probability (OP) of the wiretap channel. The OP measures

the probability of the information rate that is higher than the secrecy capacity. Since

the closed-form approximation of the BICM capacity has been obtained, future work

is recommended to study the outage probability under the assumption of imperfect

wiretap CSI.

Although it can be established in theory that the confidential message can be

perfectly secured provided the information rate is smaller than the secrecy capacity,

the capacity approaching code is essential to achieve the secure throughput. As it has

been demonstrated in the previous chapters that the finite-alphabet input schemes

achieve the maximum secrecy capacity “around” SNR=γoptdB, it is intriguing to

investigate the code design algorithm and generate the code with a ”waterfall” BER

performance at SNR=γoptdB for the power adaptive, constant code rate system.

The future work will focus on designing capacity approaching code (LDPC code,

Turbo code) to maximize the secure throughput for finite-alphabet input.
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