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ABSTRACT

Abstract

Low-density parity-check (LDPC) codes and turbo codes are two classes of

capacity-approaching codes. LDPC codes with iterative decoding based on belief

propagation (BP) have been shown to achieve an error performance only a frac-

tion of a decibel away from the Shannon limit. In BP decoding, the reliability

of each code symbol, measured by its log-likelihood ratio (LLR), is taken as the

input and processed iteratively. We consider LDPC coded transmissions with

M-ary phase-shift keying modulation and pilot-symbol-assisted (PSA) channel

estimation over time correlated Rayleigh fading channels. The correct concep-

tual approach is presented for deriving the LLR expression for a general q-ary

code. Its bit-error probability (BEP) performance is compared with that of the

conventional metric which does not take into account the information concerning

the channel estimation accuracy. Simulation results show that this LLR met-

ric outperforms the conventional metric in both BEP performances and average

number of decoding iterations required for convergence. Following similar ideas,

we study turbo coded transmissions and propose generalizations of the BCJR

algorithm and the soft-output Viterbi algorithm (SOVA) for turbo decoding over

fading channels with PSA channel estimation. We show how the channel estimate

and the estimation error variance enter in determining the a priori probabilities
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and explain why the minimum mean-square error (MMSE) channel estimator

should be used in the receiver. Both the works demonstrate the importance of

incorporating the knowledge of channel estimation accuracy into the iterative

decoding processes.

The knowledge of the channel statistics is crucial for the computation of the

MMSE estimates and the estimation error variances. However, it might be diffi-

cult or costly to make precise measurement of the statistics at the receiver. To

this end, we propose a SOVA based soft-output detector for LDPC coded trans-

missions over block-wise static fading channels, which is based on joint maximum-

likelihood detection of data sequence and channel. This receiver does not require

explicit channel estimation or knowledge of channel fading statistics. Computer

simulations show that the proposed detector has substantially better BEP per-

formance than the conventional system with PSA channel estimation.

Binary LDPC codes have been extensively studied and widely used. The

extension of LDPC codes to q-ary alphabets has been shown to have better per-

formance than binary codes. We consider, in particular, LDPC codes over integer

residue rings, and propose a doubly multistage decoder (DMD) for LDPC codes

over Z2m , m > 1, which fuses the multistage decoding approaches of Armand et.

al. and Varnica et. al. Two variants of the DMD are considered. The first (resp.,

second) performs BP (resp., offset min-sum (OMS)) decoding in each decoding

stage and is referred to as DMD-BP (resp., DMD-OMS). Computer simulations

show the DMD-BP (resp., DMD-OMS) achieving coding gains of up to 0.43 dB

(resp., 0.67 dB) over standard BP decoding at a bit error rate of 10−6 on an

v
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additive-white-Gaussian-noise channel, while requiring significantly less compu-

tational power. Remarkably, DMD-OMS outperforms DMD-BP, yet has lower

computational complexity than DMD-BP. Snapshots of the LLR densities of the

decoded bits midway through the decoding process explain the superiority of the

DMD over standard BP decoding.
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Chapter 1

Introduction

In 1948, Shannon [1] demonstrated in a landmark paper that there exist codes

that can achieve reliable transmission, i.e., the probability of error at the receiver

can be made arbitrarily small, at any rate R less than the channel capacity C.

Based on Shannon’s theory, for a coded system with code rate R, a theoretical

limit on the minimum signal-to-noise ratio (SNR), which is often referred to as

the Shannon limit [2], is required to achieve error-free communication.

In Shannon’s work, it was pointed out precisely that randomly chosen codes,

along with maximum likelihood decoding (MLD), can provide capacity achieving

performance. However, he gave no guidance about how to construct such good

codes. Since Shannon’s work, much effort has been put into constructing codes

with good error-correcting capability and developing efficient decoding algorithms

for these codes.

In 1993, the first capacity-approaching code – turbo code [3] was invented. It
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1. INTRODUCTION

was shown [3] that turbo codes with iterative decoding over the additive white

Gaussian noise (AWGN) channel with binary phase-shift keying (BPSK) mod-

ulation can achieve a bit-error probability (BEP) of 10−5 at an SNR of 0.7 dB,

which is within 1 dB of the Shannon limit. This exceeds the performance of all

previously known codes with comparable length and decoding complexity. Fol-

lowing the advent of turbo codes and iterative decoding, low-density parity-check

(LDPC) codes, introduced by Gallager in 1960s [4], were rediscovered and the

performance of long LDPC codes was shown to be only a fraction of a decibel

away from the Shannon limit over the AWGN channel [5–7]. The remarkable

capacity-approaching performance of turbo and LDPC codes enable communica-

tion systems to operate in a low SNR region very close to the Shannon limit. The

energy required for transmission can be significantly reduced. This offers great

advantage to modern communication systems, especially for source nodes with

limited power supply.

Over the last two decades, the study of turbo and LDPC codes has been

extended to wireless channels. A substantial amount of research was conducted

into the transceiver design of capacity-approaching codes over fading channels,

aiming to achieve reliable communications at low SNRs. For transmissions over

fading channels, in addition to AWGN, signals also suffer from various types of

amplitude and phase distortions, which are usually characterized by the coher-

ence time (or the Doppler spread), the coherence bandwidth (or the maximum

delay spread) and the fading profile. The fading effects can severely degrade the

performance of the communication system, unless measures are taken to compen-
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sate for them at the receiver. To combat against the fading effect, the channel

state information (CSI) is usually required at the receiver. The technique of pilot

symbol assisted modulation (PSAM) is one of the most commonly adopted ap-

proaches for CSI acquisition, whereby pilot signals with deterministic information

are inserted into the data signal sequence and transmitted together with data sig-

nals through the channel. In general, the CSI can be more accurately acquired

when more pilot signals are used and higher energy is allocated to each of the

pilot signals. However, the transceivers involving capacity-approaching codes are

usually designed to operate in relatively low SNR regions. The energy alloca-

tion to the pilot signals is strictly limited, and it becomes much more difficult

to acquire reliable channel estimates at these SNRs. On one hand, we want to

use strong codes to save transmission energy, by reducing the required SNR to as

close to the Shannon limit as possible. On the other hand, a sufficiently high SNR

is required to perform reliable CSI acquisition, which is crucial for the success of

the error-free decoding at the receiver. These two conflicting requirements make

it a great challenge to design energy-efficient transceivers over fading channels

with reliable CSI acquisition.

The strong error correcting capability of turbo and LDPC codes is mainly

attributed to their random-like coding structures, as originally envisioned by

Shannon in deriving the Shannon limit. However, because of the lack of structure,

optimum decoding of these codes is prohibitively complex. In particular, decoding

complexity increases exponentially with the length of the code (which is known as

an NP-hard problem). In the ensuing years after the invention of turbo codes and
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the rediscovery of LDPC codes, a large amount of research was conducted into the

development of sub-optimum decoding algorithms with reasonable complexity.

For LDPC codes, the sub-optimum iterative decoding via belief propagation

(BP) [8], which is commonly known as the sum-product algorithm (SPA), has

been frequently used for decoding, during which, the log-likelihood ratio (LLR),

representing the reliability information of the bit to be decoded, is refined itera-

tively when it is passed back and forth between check nodes and variable nodes.

This linear-time algorithm, which was initially designed for binary codes, was

shown to be effective with acceptable complexity, especially for binary LDPC

decoding. In [9], it was reported that nonbinary LDPC codes can outperform

their binary counterparts. For nonbinary codes, although the BP algorithm still

provides reasonably good decoding performance, its complexity has increased

dramatically. This is because the amount of computations required in each BP

iteration increases quadratically with the size of the code alphabet, and also more

iterations is usually required for the BP decoder to converge to a reliable solution

for nonbinary codes than that for binary codes. When the size of the code alpha-

bet is large, the high decoding complexity precludes the use of the standard BP

decoder for real applications. Hence, designing efficient low-complexity decoders

for nonbinary codes has become an imperative task for researchers.

In this chapter, we first give an overview of the iterative decoding problem

for nonbinary LDPC codes in Section 1.1. A literature review on the transceiver

design over fading channels will be given in Section 1.2. In particular, several

channel estimation techniques and detector structures, involving the decoding of
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turbo and LDPC codes, will be discussed and analyzed. In Section 1.3, we will

summarize our main contributions. Finally, we present the organization of the

thesis in Section 1.4.

1.1 Overview of Nonbinary LDPC Codes and

Decoding

Nonbinary LDPC codes were first considered by Davey and MacKay in 1998 in [9].

In the same paper, they showed that nonbinary LDPC codes can achieve better

error performance than the binary counterparts. Motivated by this promising

result, nonbinary LDPC codes, especially codes over Galois fields (GF(q)) [9–19],

have been extensively studied. References [9–13] discussed the design and analysis

of codes over GF(q). The generalization for the SPA for decoding q-ary LDPC

codes was presented in [9]. The SPA based on fast Fourier transforms (FFT)

was presented in [14,15]. In order to reduce decoding complexity, the log-domain

SPA was proposed in [16]. With this approach, the multiplications in the SPA are

replaced with additions and subtractions, and a look-up table is used to perform

the additional exponential and logarithmic computations in the log-domain SPA.

In [17], the min-sum (MS) algorithm was generalized to the LLR domain for

decoding nonbinary codes. An extended MS algorithm was proposed in [18] and

further elaborated in [19], where only critical elements are considered at the check

node processing to save computations and correction techniques are applied at

the variable node processing to improve performance.
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Recently, the study of nonbinary LDPC codes has been extended beyond finite

field codes and includes in particular, codes over integer residue rings (Zq). See

e.g. [20–25]. References [21] and [22] laid the theoretical foundation of LDPC

codes over rings, by showing that the asymptotic spectra of LDPC ensembles

over Zq approaches the spectrum of a random code. The structure and design of

LDPC codes over integer rings were discussed in [23,24]. The decoding algorithms

developed for codes over GF(q) can be applied, in general, to codes over Zq with

some modifications. In [25], the FFT-based SPA is extended to codes over abelian

groups and rings.

In [26], a multistage decoding algorithm for LDPC codes over Z2m , m > 1,

was proposed. The algorithm involves the repeated application of BP decoding

to exploit the natural ring epimorphism Z2m → Z2k : r �→∑k−1
i=0 ri2

i with kernel

2kZ2m where
∑m−1

i=0 ri2
i is the 2-adic expansion of r. In particular, the standard

BP decoder is used to sequentially decode the canonical image of a Z2m code

over Z2k , and the a priori probabilities of the code symbols are refined after

every stage, based on the decoding outcome. Some coding gains can be achieved

from this decoding approach over standard BP decoding on an AWGN channel.

However, this comes at the expense of increased decoding complexity. One of our

studies in this thesis will focus on exploiting the structures of codes over Z2m to

develop more efficient decoding algorithms.
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1.2 Transceiver Design and LLR Computations

over Fading Channels

Capacity-approaching codes can achieve reliable transmission at SNRs extremely

close to the Shannon limit over the AWGN channel. During the iterative decoding

process, the LLR of each received code bit is taken as the soft information input

to the decoder and refined after each iteration. Therefore, using the correct LLR

metric is crucial for reliable decoding.

In the literature, several LLR metrics or approximate metrics have been pro-

posed for various channels. Gallager derived the LLR metric for the AWGN chan-

nel in [4]. In [27, 28], the LLR metric was derived based on two-symbol-interval

observations for the case of differentially encoded phase shift keying over nonco-

herent channels and it was shown that its bit error performance is much better

than that of the approximate metric proposed by Hall and Wilson in [29]. Over

the same channel, reference [30] derived the LLR metric for BPSK transmission

with PSAM. In [31], the authors presented a more accurate method of comput-

ing the initial LLRs for LDPC decoding over Chi-square based optical channels,

which enhances the performance of optical transmissions. Reference [32] intro-

duced a measure for the accuracy of the LLRs and studied several linear LLR

approximations.

The LLR computation for transmissions over fading channel is more complex,

because the transmitted signals are perturbed by an unknown complex fading

gain, which will severely degrade the performance of the system. To compensate
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for the fading effect, the CSI is usually acquired at the receiver. The accuracy

of the acquired CSI plays an important role in determining the overall system

performance, especially when the channel varies rapidly with time [33–37]. Hence,

there are two main concerns for LDPC or turbo decoding over fading channels.

Firstly, how can we acquire the CSI more accurately? Secondly, how should we

use the acquired information to correctly compute the LLRs or the a posteriori

probabilities?

In [38], the authors considered the joint probability density function of two

consecutive received signals conditioned on each possible value of the information

code bit concerned, i.e., p(r(k), r(k − 1)|Δφ(k)), and derived the correct LLR

metric for the transmission with binary differential phase-shift keying (BDPSK)

modulation over slow Rayleigh fading channels. Reference [39] extended the work

in [38], by taking into account the information of channel autocorrelation, and

showed that the error performance using the derived metric over time-correlated

fading channels is better than that of the existing metrics. In differential detec-

tion, the information carried in r(k) is retrieved by using r(k−1) as the reference,

because the signal r(k−1) contains some information of the channel gain experi-

enced by r(k). In other words, one-symbol channel estimation is implicitly used in

the differential encoding and detection scheme, which is not efficient in combating

fading. This explains why substantial performance loss is incurred in differential

detection, compared with coherent detection, where an accurate reference symbol

can readily be estimated. More recent techniques, such as multiple symbol dif-

ferential detection (MSDD) [40–42], can reduce this performance gap by making
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observations over several consecutive differentially encoded symbols. However,

the major drawback of the MSDD is its complexity, which grows exponentially

with the observation symbol interval.

Alternatively, the receiver could acquire the CSI explicitly through some chan-

nel estimation process. The channel estimates can be obtained through blind

channel estimation by using only unknown data signals [43, 44]. However, be-

cause of the high computational complexity and low estimation accuracy, the

blind estimation technique is not commonly used. For practical applications, pi-

lot symbol assisted (PSA) channel estimation appears to be more attractive due

to its simplicity and robustness. The conventional PSAM was first introduced

and studied in 1991 [45]. Different structures of PSAM detectors were proposed

in [46–51] for various types of fading channels. PSAM schemes are also used for

channel estimation or synchronization in advanced wireless communication sys-

tems, such as multiple-input-multiple-output systems and orthogonal-frequency-

division-multiplexing systems [52–55].

In [56–65], iterative decoding of LDPC or turbo codes with PSAM channel

estimation is discussed. However, the approaches adopted in [56–65] for the LLR

computations are sub-optimum. In particular, in [56–62], the channel estimates

are assumed to be perfect and the LLR metric based on that for the AWGN

channel derived in [4] is used. The information regarding channel estimation

accuracy has been neglected. In [63–65], the receiver is assumed to contain a

channel estimator with a certain structure. By processing the received pilot

information with the assumed channel estimator, the estimated channel gain and
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the estimation error variance are obtained. The problem of this ’structured’

approach is that the LLR metric varies with the estimator structure, even for the

same received signal sequence.

In PSAM schemes, the initial channel estimates are obtained from only the

received pilot signals. The data signals, which also contain a substantial amount

of information on the CSI, are not utilized. The accuracy of channel estimation

should be improved if both data signals and pilot signals are used. In fact, in

the early 1980s, the idea of using data signals for channel estimation had been

introduced [66–68], which was even several years earlier than the invention of the

PSAM. In the proposed symbol-by-symbol detection scheme [66–68], which will

be called PSAM-DF, the past received message signals and their decisions are fed

back to estimate the channel gain for the current received message symbol. A

stream of pilot signals is used to start up the transmission as a training sequence

by providing channel estimates for the initial data signals. Meanwhile, to prevent

“run way” due to a burst of decision errors, streams of pilot symbols are period-

ically inserted into the transmitted data sequence to refresh the memory of the

receiver. Besides pilot signals, data signals are also utilized in channel estimation

in the PSAM-DF scheme, which is an improvement over the conventional PSAM

system. However, one drawback of the PSAM-DF receiver is that the effective-

ness of the PSAM-DF relies on the accuracy of the past decisions. The channel

estimates may not be reliable when the operating SNR is low and there are plenty

of decision errors. Furthermore, a firm symbol decision is required immediately

after the corresponding signal is received. The decision only depends on the cur-
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rent and past received signals, while the additional information on the current

detection contained in the future transmissions is completely neglected.

To improve on the PSAM-DF, the maximum-likelihood sequence detector

(MLSD) based on trellis search was proposed in [69] and [70], which is also known

as the generalized likelihood ratio test (GLRT) detector [71]. In the MLSD,

decisions are made based on the joint maximum-likelihood (ML) detection of the

data sequence and the channel gain, which is more robust and reliable than the

symbol-by-symbol detection in the PSAM-DF. The firm symbol decision is not

required during the time when the corresponding signal is received. Instead, it is

decided at a later stage when sufficient information has been collected from the

future received signals. Another advantage of the MLSD is that it does not require

explicit channel estimation or knowledge of channel statistics (KCS). Here, KCS

refers to the channel fading characteristics only, which includes, in particular, the

fading model and the parameters associated with it.

For the PSAM-DF and the MLSD, hard decision output is produced, which

contains only part of the information from the received signals. A significantly

large amount of information is lost, which includes, in particular, the reliabilities

of the hard decisions. Moreover, in the MLSD, sequence detection is carried

out using path search. Since the transmitted sequence is uncoded, the minimum

relative Hamming distance between contending paths during the path search is

only one. We expect that the decisions would be more reliable if the relative

Hamming distance between contending paths increases. These ideas motivate us

to develop new detectors with more reliable soft decision output, which could be

11
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used with iterative decoding of LDPC or turbo codes.

1.3 Main Contributions

1.3.1 Doubly Multistage Decoding

We consider LDPC codes over Z2m , m > 1 and propose a new decoding algorithm

that enables a higher coding gain over standard BP decoding to be achieved,

yet with less computational burden. The new algorithm fuses the multistage

decoding approach of [26] and the augmented decoding approach of [72], which

is a multistage decoding approach for binary codes, as additional iterations are

performed following modifications to the input LLRs of the code bits. For this

reason, we refer to the proposed decoder as a doubly multistage decoder (DMD).

Two variants of the DMD are considered. The first performs BP decoding

[8] in each decoding stage and is referred to as DMD-BP. The second performs

offset min-sum (OMS) decoding in each stage and is referred to as DMD-OMS.

The motivation for studying the DMD-OMS is that the OMS decoder is a good

approximation to the BP decoder and can achieve small or negligible performance

degradation compared to BP decoding at significantly lower computational cost

[73, 74, 126, 127]. For moderate-length codes, computer simulations show the

DMD-BP (resp., DMD-OMS) achieving coding gains of up to 0.43 dB (resp., 0.67

dB) over standard BP decoding at a bit error rate of 10−6 on an AWGN channel,

while requiring significantly less computational power. Remarkably, DMD-OMS

outperforms DMD-BP, yet has lower computational complexity than DMD-BP.

12
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For short codes, even larger coding gains over standard BP decoding can be

achieved. For long codes however, performance improvements are modest which

is not surprising since for large codelengths, the performance of BP decoding is

already close to the ML decoding performance. Thus, DMD-BP and DMD-OMS

are suited for codes of short to moderate lengths.

1.3.2 The LLR Metric for PSAM with Imperfect CSI

LDPC decoding over time-selective, frequency-flat, Rayleigh fading channels is

considered in this thesis. We will present the correct conceptual approach for

deriving the LLR metric of a q-ary code with M-ary phase-shift keying (MPSK)

modulation and PSAM channel estimation. Unlike the suboptimum approaches

in [56–65], which assume either structured channel estimators or perfect chan-

nel estimations, our derivation starts from first principles without assuming any

receiver structure and demonstrates how the pilot information should be incorpo-

rated into the LLR computation. In particular, we show how the channel estimate

and the estimation error variance enter in determining the reliability of each re-

ceived coded symbol. The derivation shows why the minimum mean-square error

(MMSE) channel estimator and the estimation error variance should enter in the

receiver.

The metric derived will be called the PSAM-LLR. The BEP performance,

the convergence speed and the robustness will be compared between the PSAM-

LLR metric and the conventional metric which does not take into account the

information concerning the channel estimation accuracy, which will be called

13
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approximate PSAM-LLR (A-PSAM-LLR) metric. Through simulations studies,

we show that the PSAM-LLR has substantially better error performance and

lower error floors than the A-PSAM-LLR. Furthermore, the PSAM-LLR requires,

on average, fewer decoding iterations for convergence than the A-PSAM-LLR.

Our unstructured approach explains clearly why it is suboptimum to derive

the metrics based on the channel estimates obtained from some predetermined

estimators [56–65]. Our work demonstrates the importance of incorporating the

knowledge of the channel estimation accuracy in the iterative decoding process.

1.3.3 The LLR Computation via SOVA with Implicit CSI

The computation of the PSAM-LLR metric requires perfect KCS, which includes

the exact channel model and the autocorrelation function of the channel gain.

However, it could be very complicated or computationally costly to obtain the

KCS accurately, especially when the channel statistics varies with time. When a

wrong channel model is used or the parameters that define the autocorrelation

function are measured wrongly, the receiver will suffer from serious performance

degradation. To build a more robust receiver with iterative decoding of LDPC

codes for the cases when acquiring accurate KCS is difficult or impossible, extend-

ing the work in [70], we propose a more general soft-input soft-output sequence

detection scheme using path search on the trellis of convolutional codes, which

does not require KCS.

Since the MLSD is an ML detector, it can be combined perfectly with the soft-

output Viterbi algorithm (SOVA) [75], which is an ML based decoder. We will
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propose an algorithm based on the SOVA which converts the hard decision output

of the MLSD to soft decisions. We will present how the soft information, in term of

LLR, should be computed based on the MLSD with convolutional codes via SOVA

over block-wise static Rayleigh fading channels with unknown channel statistics,

and demonstrate that LDPC coded transmissions can be more reliably recovered

using iterative decoding with the obtained LLRs. The algorithm is developed

based on the GLRT, by maximizing the ML probability density function of the

convolutionally encoded data sequence with respect to the channel gain, so no

explicit channel estimation is required. For this reason, we call it SOVA with

implicit CSI (SOVA-ICSI). We will show that the LLR output of the SOVA-ICSI

is computed solely based on the received signal sequence, which does not require

KCS. Compared with the systems with differential detection [39], [40–42] and the

PSAM systems [56–65], all of which require precise KCS, the SOVA-ICSI detector

is more robust and much less demanding, and thus it can be used more widely in

real applications. Through computer simulations, we demonstrate that iterative

decoding of LDPC codes with the SOVA-ICSI detector has substantially better

BEP performance and greater robustness against SNR mis-estimations than that

with the conventional SOVA and PSA channel estimation.

We emphasize that when the receiver has accurate KCS, it is crucial to con-

sider the channel estimation accuracy in the iterative decoding process. However,

when KCS is not available, the channel estimation accuracy cannot be obtained

accurately. Therefore, for the SOVA-ICSI detector, the discussion of the channel

estimation accuracy is not involved.
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1.3.4 Generalizations of BCJR Algorithm for Turbo De-

coding over Fading Channels

The BCJR algorithm [76] was invented in 1974. One of the main advantages of the

algorithm is its capability of producing reliable soft-decision output. The BCJR

algorithm was initially designed for soft-decision MAP decoding of convolutional

codes. Following the discovery of turbo code, the BCJR algorithm has been

widely considered in turbo decoding [3] and turbo equalization [77]. In recent

years, turbo codes were intensively studied over fading channels [58–62,78, 79].

We will propose a generalization of the BCJR algorithm over time-selective

frequency-flat Rayleigh fading channels with PSAM channel estimation, which

will be called the PSAM-BCJR. In the PSAM-BCJR, we use the correct con-

ceptual approach to derive the exact probability density functions. Both the

channel estimates and the estimation accuracy are taken into consideration in

the PSAM-BCJR algorithm. An approximate BCJR algorithm, called A-PSAM-

BCJR, is obtained by assuming the estimation error variance is equal to zero. In

the simulations, we compare the BEP performance of the turbo decoding of the

PSAM-BCJR and A-PSAM-BCJR algorithms, showing that the former achieves

noticeable performance gain over the latter. The role of the channel estimation

accuracy in iterative decoding will be emphasized.
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1.3.5 Our Contributions towards Green ICT

In the light of the developments of global warming and its impact on our en-

vironment, the importance of green information and communication technology

(ICT) has been widely recognized. Researchers have paid more attention to envi-

ronmentally sustainable computing, which includes, in particular, the study and

design of networking and communications systems with minimum resource usage

whenever possible [80].

In this thesis, we focus on the design of transceiver structures and decoding

algorithms over fading channels, aiming to reduce the energy consumption from

both the transmitter and the receiver. Our work contributes towards green ICT

by proposing transceivers that enable more reliable communication in relatively

low SNR regions, and require on average significantly less computational power

to recover the message. The resource utilization in our designs is more efficient.

1.4 Organization of the Thesis

The organization of the thesis is given as follows.

In Chapter 2, we will give a short review on LDPC and turbo codes and the

iterative decoding algorithms.

In Chapter 3, we will introduce the doubly multistage decoding algorithm and

explain its superiority from both the BEP performance and the computational

complexity.

In Chapter 4, we present the derivation of the PSAM-LLR metric over time-
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selective, frequency-flat, Rayleigh fading channels and highlight the importance

of incorporating the knowledge of the channel estimation accuracy.

In Chapter 5, we consider block-wise static Rayleigh fading channels, and

develop the SOVA-ICSI for the computation of the LLRs with implicit CSI. The

advantages of the SOVA-ICSI will be demonstrated through simulations.

In Chapter 6, generalizations of the BCJR algorithm over time-selective,

frequency-flat, Rayleigh fading channels with PSAM channel estimation are de-

rived. The performance of turbo decoding with the derived algorithms will be

investigated.

Finally, we summarize our contributions and make suggestions for future re-

search in Chapter 7.
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Chapter 2

Literature Review

In this chapter, we will first introduce the evolution of capacity-approaching codes

and give a brief history of turbo and LDPC codes. The iterative decoding algo-

rithm via BP will be reviewed for LDPC codes and the main shortcoming of

BP decoding for nonbinary LDPC codes will be pointed out. Finally, we will

recapitulate the principle of turbo decoding and discuss the differences between

the BCJR algorithm and the SOVA. In this chapter, we will only consider BPSK

modulation over the AWGN channel.

2.1 History of Capacity-Approaching Codes

In 1948, Shannon published his paper “A Mathematical Theory of Communica-

tion” in the Bell Systems Technical Journal [1]. In this work, Shannon pointed

out that every communication channel has a speed limit, measured in binary

digits per second, which is known as the channel capacity. Although the fun-
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damental limits on communication efficiency is stated clearly and the existence

of “good” codes is assured, Shannon’s methodology provides no insight on code

constructions to actually achieve these limits, since his derivation is based on the

sophisticated average performance of a randomly chosen ensemble of codes which

eliminate all detailed system structures.

Following Shannon’s ground-breaking work, various error correcting codes

were designed, which mainly include linear block codes, such as Hamming codes

(1950) [81], Reed-Muller codes (1954) [82, 83], BCH codes (1959) [84, 85] and

Reed-Solomon codes (1960) [86], and convolutional codes [87].

For both block codes and convolutional codes, the code design involves a

large amount of structures, either algebraic or topological. These code structures

guarantee that the codes have good minimum distance and require simple decod-

ing algorithms. However, the random-like properties, as originally envisioned by

Shannon in deriving the Shannon limit, have been ignored. This is why these

codes usually fall far short of achieving the performance promised by Shannon.

Motivated by the ideas of Batill and Hagenauer on random-like coding design

[88–90], Berrou, Glavieux and Thitimajshima successfully designed a random-

like code with just enough structure for decoding. This code was named turbo

code. The concept of turbo codes was first introduced during the International

Conference on Communications in 1993 [3] and was further elaborated upon in

1996 [91], and in 1998 [92], respectively. The first version of turbo codes was

the parallel concatenated convolutional codes (PCCCs). It was shown in [3]

that PCCCs with iterative decoding via the BCJR algorithm over the AWGN
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channel with BPSK modulation can achieve a BEP of 10−5 at an SNR of 0.7 dB,

which is within 1 dB of the Shannon limit. Besides PCCCs, several variations of

turbo codes have also been proposed in the literature, such as serial concatenated

convolutional codes (SCCCs) [93–96], and hybrid parallel and serial concatenated

turbo codes [97–99]. References [100–106] give theoretical justifications of the

superiority of turbo codes and provide insights into iterative turbo decoding.

Following the advent of turbo codes and iterative decoding, another type of

capacity-approaching code - the LDPC code, was rediscovered through the work

of MacKay and Neal [2,8]. In fact, LDPC codes were first discovered by Gallager

in his doctoral dissertation [4] in the 1960s. However, for the next several decades,

this remarkable discovery was largely forgotten primarily because computers of

the time could not simulate the performance of these codes with meaningful

block lengths at low error rates. During this period, Tanner noted Gallager’s

work and he generalized LDPC codes in 1981 [107], by introducing a graphical

representation of LDPC codes, called Tanner graphs. After the invention of

turbo codes, it was proved, through computer simulations, that long LDPC codes

with iterative decoding based on BP [8] can achieve an error performance only

a fraction of a decibel away from the Shannon limit [5–7] and soon after, LDPC

codes became a hot research topic.

In this chapter, we will briefly review important concepts regarding turbo and

LDPC codes, and the standard decoding techniques.
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2.2 LDPC Codes and BP Decoding

2.2.1 Code Construction

An LDPC code is simply a linear block code with a parity-check matrix that is

very sparse, i.e., it only contains a small number of nonzero entries. Gallager [4]

proposed constructing LDPC codes by randomly selecting the positions of the

nonzero entries in the parity check matrix such that the row weights are the same

and the column weights are also the same. Codes of this form are referred to as

regular LDPC codes. On the other hand, if the row/column weight distribution

is not uniform, the LDPC code will be called irregular.

However, this random code design from Gallager did not guarantee good BEP

performance. Early work on LDPC code design can be found in [108, 109]. In

recent years, based on different asymptotic analysis tools such as density evolu-

tion [5–7, 110] and extrinsic information transfer (EXIT) charts [111–113], nu-

merous LDPC codes with good error performance were designed, such as repeat-

accumulate codes [114–116] and quasi-cyclic codes [117–119]. Efficient code con-

struction techniques, such as the bit-filling algorithm [120] and the progressive

edge-growth construction [121, 122], were also invented. Through years of ex-

periments, researchers have found some binary LDPC codes with exceptionally

good performance, which can be retrieved online from the website maintained by

David MacKay [123].
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2.2.2 LDPC Decoding

LDPC codes can be decoded in various ways. Iterative decoding based on BP

is most commonly used for LDPC decoding. There are other types of decoding

algorithms. The majority-logic algorithm [159], the bit-flipping (BF) algorithm

[124, 159] and the weighted BF algorithm [124, 159] are computationally simple,

but they have relatively poor error performances. The MS algorithm [125] and its

variants, such as the offset min-sum (OMS) algorithm and the normalized min-

sum (NMS) algorithm [126,127], are approximations of BP decoding. Some trade-

off between error performance and decoding complexity can be achieved using

these algorithms. Recently, Feldman et al. [128] proposed linear programming

(LP) decoding for LDPC codes. This LP decoder has the desirable ML certificate

property, i.e., its failure to find an ML codeword is always detectable. However,

the much higher complexity compared to standard BP decoding precludes its use

in practice.

In the literature, it has become a common practice to compare the decoding

performance of a newly designed decoding algorithm with that of the BP decoder.

Hence, the BP decoder has been widely regarded as the “standard” decoder for

LDPC codes, and used as a benchmark of measuring decoding performance. For

this reason, we will refer to it as the standard BP decoding algorithm. A brief

review on standard BP decoding is given in the following section.
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2.2.3 Standard BP Decoding Algorithm

2.2.3.1 Time Domain Implementation

Using the Tanner graph representation, each LDPC code can be represented by

a bipartite graph, which has two disjoint subsets of nodes, called variable nodes

and check nodes. There is one variable node for each coded symbol, and one

check node corresponding to each parity-check constraint.

Given a q-ary LDPC codes with an m×n parity-check matrix H = [hij ], there

are n variable nodes and m check nodes. Denote the code alphabet by Ωq and

a codeword by x = [x1, x2, . . . , xn]T , where each xj ∈ Ωq. The input to the BP

decoder is the a priori probability vectors for all coded symbols. Let the a priori

probability vector of the j-th coded symbol be pj = [p0
j , p

1
j , . . . , p

q−1
j ]T , where pb

j

is the probability that the j-th coded symbol xj is equal to b.

Each iteration of standard BP decoding involves two types of operations, row

operations and column operations. Let M(j) be the set of check nodes connected

to the jth variable node and L(i) the set of variable nodes connected to the ith

check node. Denote the message passed from the jth variable node to the ith

check node by qji = [q0
ji, q

1
ji, . . . , q

q−1
ji ]T , where qb

ji is the probability that xj is equal

to b, given the information obtained via the i′ check node for all i′ ∈M(j) \ {i}.

Similarly, the message passed from the ith check node to the jth variable node

is denoted by rji = [r0
ji, r

1
ji, . . . , r

q−1
ji ]T , where rb

ji is the probability that the ith

parity-check constraint

∑
j′∈L(i)\{j}

hij′xj′ = −hijxj (2.1)
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is satisfied when xj = b, given that the other variable nodes are independent with

probabilities given by the elements of qj′i for all j′ ∈ L(i) \ {j}.
The standard BP decoding algorithm for a general q-ary LDPC code is given

as follows:

Step 1: the values of the qji are initialized by pj, i.e., qji = pj for all

i ∈M(j).

Step 2: For each 1 ≤ i ≤ m and j ∈ L(i), update rij element-wise as

rb
ji =

∑
x∈Ωn

q :xj=b

P ((2.1) is satisfied|x)
∏

j′∈L(i)\{j}
q

xj′
j′i ,

for all b ∈ Ωq.

Step 3: For each 1 ≤ j ≤ n and i ∈ M(j), update qij element-wise as

qb
ji = αpb

j

∏
i′∈M(j)\{i}

rb
ji′

for all b ∈ Ωq, where α is a suitable normalization factor such that
∑

b∈Ωq
qb
ji = 1.

Step 4: Find the codeword estimate x̂ with each entry x̂j given by x̂j :=

arg maxb∈Ωq{qb
j} where

qb
j = αpb

j

∏
i′∈M(j)

rb
ji′,

and α is chosen to ensure that
∑

b∈Ωq
qb
j = 1.

Step 5: If Hx̂ = 0, then output x̂ and exit. Otherwise, repeat Step 2 to Step

4, until a codeword estimate is found satisfying Hx̂ = 0 or a predefined number

of iterations is reached, whichever is earlier.
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2.2.3.2 Log/LLR Domain Implementation

The standard BP decoding algorithm can also be implemented in the log-domain

or LLR-domain. For the log-domain standard BP decoder, the inputs to the

decoder become the a priori LLR vectors, defined by Λj = [λ0
j , λ

1
j , . . . , λ

q−1
j ]T ,

where λb
j = log p0

j/p
b
j . Note that the first entry of Λj is always equal to zero

and it is introduced only for ease of presentation. The messages passed between

variable nodes and check nodes, rji and qji, take the same forms as those for

the time domain implementation, but they are interpreted as LLR vectors now.

With these notations, the log-domain standard BP decoding algorithm is given

as follows:

Step 1: the values of the qji are initialized by Λj, for all i ∈ M(j).

Step 2: For each 1 ≤ i ≤ m and j ∈ L(i), update rij element-wise as

rb
ji =

⊕
x∈Ωn

q :xj=b

P ((2.1) is satisfied|x)
∑

j′∈L(i)\{j}
q

xj′
j′i

−
⊕

x∈Ωn
q :xj=0

P ((2.1) is satisfied|x)
∑

j′∈L(i)\{j}
q

xj′ ,
j′i

for all b ∈ Ωq, where the operator ⊕ is defined as

a⊕ b := − log(exp(−a) + exp(−b)) = min(a, b) − log
(
1 + exp(−|a− b|))

Step 3: For each 1 ≤ j ≤ n and i ∈ M(j), update qij as

qij = Λj +
∑

i′∈M(j)\{i}
rji′

Step 4: Find the codeword estimate x̂ with x̂j given by x̂j := arg maxb∈Ωq{qb
j}
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where

qb
j = λb

j

∑
i′∈M(j)

rb
ji′,

Step 5: If Hx̂ = 0, then output x̂ and exit. Otherwise, repeat Step 2 to Step

4, until a codeword estimate is found satisfying Hx̂ = 0 or a predefined number

of iterations is reached, whichever is earlier.

• Remark

1. The computational load of the time-domain BP algorithm mainly comes

from the multiplication operations, which is usually much more costly than addi-

tions. In the log-domain BP algorithm, multiplications are replaced by additions,

but evaluation of exponential and logarithm functions are required, which can be

computed to any arbitrary accuracy using a truncated Taylor series expansion or

roughly estimated using a look-up table.

For binary LDPC codes, the LLR inputs Λj and message variables rji and qji

can be taken as scalars. Thus, the second step of the log-domain BP algorithm

can be simplified further as:

Step 2*: For each 1 ≤ i ≤ m and j ∈ L(i), update rij as

rji = 2 tanh−1
( ∏

j′∈L(i)\{j}
tanh

qj′i
2

)

The computation of rij can be done without examining the parity-check con-

straints and the complexity of the log-domain standard BP decoder is further

reduced. In general, the log-domain algorithm is used more frequently than the

time-domain algorithm, especially for decoding binary LDPC codes.

2. For both the time-domain and log-domain BP algorithms, the computa-
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tional complexity is linearly proportional to the size of the parity check matrix

H , and is quadratic with respect to the size of the code alphabet. When LDPC

codes with large code alphabet are used, the standard BP algorithm is not com-

putationally efficient. In Chapter 3, we will consider a specific class of nonbinary

codes, and propose a decoding algorithm that can achieve better error perfor-

mance, while requiring significantly less computational power, than the standard

BP algorithm.

3. The standard BP decoder only requires the a priori LLRs (or equivalently

the a priori probabilities) as input. The reliability of the decoding outcome is

highly dependent on the accuracy of the LLRs. Therefore, how to compute the

LLRs from the channel output is crucial for reliable decoding. For transmission

over the AWGN channel, the exact LLR metric has been derived in [4]. In

Chapters 4 and 5, we will discuss how to compute the LLRs more reliably for

fading channels.

2.3 Turbo Codes and Iterative Turbo Decoding

In this section, we will present the most fundamental form of the turbo code,

i.e., the PCCCs. The turbo decoding principle will be reviewed with theoretical

justifications and discussions. Finally, the BCJR algorithm and the SOVA will

be introduced briefly.
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(0)x

(2)x
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Figure 2.1: Block diagram of turbo encoder

2.3.1 Turbo Encoding

An encoder for a classical turbo code formed by PCCCs is shown in Fig. 2.1.

The two convolutional encoders are usually identical and both of them are chosen

to be recursive systematic codes of rate half. An interleaver is used to permute

the input bits such that the two encoders operate on the same block of input

message bits, but in a different order. Since both encoders are systematic, it is

only necessary to transmit the input bits once, and thus the overall code has rate

R = 1/3. (Note that the code rate can be increased to 1/2 through puncturing

by alternately deleting the encoded bits from the nonsystematic branches of the

two convolutional encoders. In this thesis, we will not consider this feature.)

2.3.2 Principle of Turbo Decoding

The message sequence is represented as m = [m(1) m(2) . . . m(K)]. Let the

encoded sequences from the three output branches be x(0), x(1) and x(2), as shown
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in Fig. 2.1. Obviously, x(0) = m. Assume that the encoded sequence is modulated

using BPSK and transmitted through an AWGN channel.

The principle of iterative turbo decoding at the receiver is developed from the

maximum a posteriori probability (MAP) decision rule, which would select

m̂(k) = max
t={0,1}

P (m(k) = t|r(0), r(1), r(2)),

where r(0) is the received systematic bit sequence, corresponding to x(0), and

r(1) and r(2) are the received parity bit sequences corresponding to x(1) and x(2),

respectively.

From Bayes’ rule, the formula can be developed as

max
t={0,1}

P (m(k) = t|r(0), r(1), r(2))

= max
t={0,1}

p(r(0), r(1), r(2)|m(k) = t)P (m(k) = t)

= max
t={0,1}

∑
m:m(k)=t

p(r(0), r(1), r(2)|m)P (m)

Conditioned on the message sequence m, the received signals r(0), r(1) and r(2)

are statistically independent, i.e.,

p(r(0), r(1), r(2)|m) = p(r(2)|m)p(r(0), r(1)|m) (2.2)

Using (2.2) and applying Bayes’ rule again, we obtain

max
t={0,1}

P (m(k) = t|r(0), r(1), r(2))

= max
t={0,1}

∑
m:m(k)=t

p(r(2)|m)p(r(0), r(1)|m)P (m)

= max
t={0,1}

∑
m:m(k)=t

p(r(2)|m)P (m|r(0), r(1)) (2.3)
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The exact evaluation of (2.3) leads to the MAP decision. However, it is far too

complex. In the iterative turbo decoding algorithm, the distribution separation

is assumed, i.e.,

P (m|r(0), r(1)) ≈
K∏

l=1

P (m(l)|r(0), r(1)) (2.4)

The term P (m(l)|r(0), r(1)) represents the soft information produced by the

first decoder which has access only to r(0) and r(1). It can be interpreted as the

a priori information to the second convolutional decoder. Therefore, we have

max
t={0,1}

P (m(k) = t|r(0), r(1), r(2))

≈ max
t={0,1}

∑
m:m(k)=t

p(m, r(2))

= max
t={0,1}

P (m(k) = t|r(2)) (2.5)

Note that the a posteriori probability (APP) decoding algorithm can be used

to compute the probability P (m(k) = t|r(2)), with the a priori probability given

by P (m(k)|r(0), r(1)).

Now we consider the LLR approach. Define the a posteriori LLR as

λ(m(k)) = log
P (m(k) = 0|r(0), r(1), r(2))

P (m(k) = 1|r(0), r(1), r(2))

Using the soft-output APP decoding algorithm on the second decoder, we

have

λ(m(k)) ≈ λ2,e(m(k)) + log
P (m(k) = 0|r(0), r(1))

P (m(k) = 1|r(0), r(1))
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where λ2,e((m(k))) is the extrinsic information contributed by the second decoder.

Applying the same argument to the a posteriori LLR

log
P (m(k) = 0|r(0), r(1))

P (m(k) = 1|r(0), r(1))
,

we obtain

λ(m(k)) ≈ λ2,e(m(k)) + λ1,e(m(k)) + λ0(m(k)), (2.6)

where λ1,e(m(k)) is the extrinsic information contributed by the first decoder and

λ0(m(k)) = log
P (m(k) = 0|r(0))

P (m(k) = 1|r(0))

is the a posteriori LLR of the systematic bits.

Equation (2.6) describes the key principle of iterative turbo decoding. The

block diagram of the iterative turbo decoder is shown in Fig. 2.2, where the soft-

output APP decoders correspond to the constituent convolutional encoders in

Fig. 2.1, and the interleaver is the same as that used in the turbo encoder. Note

that to avoid the accumulation of repeated ‘old’ information, only the extrinsic

information should be exchanged between the APP decoders.

2.3.3 APP Decoding Algorithm

The APP algorithm for convolutional decoding with unequal a priori probabilities

of the information bits was originally invented by Bahl, Cocke, Jelinek, and Raviv

[76] in 1972, which is named BCJR algorithm. Since the BCJR algorithm only

leads to minor improvements in term of BEP, compared to the Viterbi algorithm,
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Figure 2.2: Block diagram of turbo decoder

while requiring much higher computational power, it was not widely used for

decoding of convolution codes. With the invention of turbo codes in 1993, the

BCJR algorithm became the major representative of the soft-input soft-output

(SISO) algorithms that can be used for turbo decoding.

For a convolutional code, the LLR can be expressed as

λ(m(k)) = log
P (m(k) = 0|r)
P (m(k) = 1|r)

= ln

∑
(s,s′)∈Σ0

k
p(s(k) = s′, s(k + 1) = s, r)∑

(s,s′)∈Σ1
k
p(s(k) = s′, s(k + 1) = s, r)

,

where r is the received sequence observed at the channel output, and Σ0
k (resp.,

Σ1
k) is the set of all state pairs (s′, s) such that the state transition from s′ to s

corresponds to the kth input message bit being the 0-bit (resp., 1-bit).

In the BCJR algorithm, the probability density function p(s(k) = s′, s(k+1) =

s, r) is expressed the products of three density functions as

p(s′, s, r) = βk+1(s)γk(s
′, s)αk(s

′)

The values of γk(s
′, s) can be easily computed for BPSK transmissions over the
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AWGN channel. The values of αk(s
′) are computed by the forward recursion as

αk+1(s) =
∑

s′∈Ωk

γk(s
′, s)αk(s

′)

The values of the βk+1(s) can be calculated by an analogous procedure, called

the backward recursion, as

βk(s
′) =

∑
s∈Ωk

γk(s
′, s)βk+1(s)

where Ωk is the set of all possible states at time k.

Unlike the Viterbi algorithm, the BCJR algorithm needs to go through the

trellis twice, once in the forward direction and once in the backward direction.

Moreover, the values of αk(s
′) or βk+1(s) must be stored and the storage grows

exponentially with the constraint length of the convolutional code and linearly

with the length of the code. Due to these limitations, another type of SISO algo-

rithm, i.e., the SOVA, is used when there are strict requirements on computational

complexity or memory space.

The SOVA was introduced by Hagenauer and Hoeher [75] in 1989. It is an

extension of the Viterbi algorithm [129]. The basic operation of the SOVA is

identical to that of the Viterbi algorithm. The only difference is that a reliability

indicator is attached to the hard-decision output for each bit decision in the

SOVA. The combination of the hard-decision output and the reliability indicator

forms a estimate of the a posteriori LLR. The SOVA is computationally simpler

than the BCJR algorithm, but its performance with iterative turbo decoding is

not as good. More details of the BCJR algorithm and the SOVA can be found

in [159].
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There are other SISO algorithms available, such as the Max-log-MAP algo-

rithm [130], but they are not very commonly used. In the thesis, we focus on the

BCJR algorithm and the SOVA for turbo decoding. In Chapter 5, we will con-

sider the LLR computation based on the SOVA with implicit CSI over block-wise

static Rayleigh fading channels, where iterative channel estimation and decoding

will be investigated for a turbo-like coding structure. In Chapter 6, we will pro-

pose generalizations of the BCJR algorithm and the SOVA for transmissions over

time-selective Rayleigh flat fading channels with PSAM channel estimation, and

study their performance in turbo decoding.

35



Chapter 3

Doubly Multistage Decoding of

LDPC Codes Over Z2m

It is now well known that nonbinary LDPC codes can outperform their binary

counterparts, a fact first reported in [9]. The study of nonbinary LDPC codes

extends beyond finite field codes and includes in particular, codes over integer

residue rings. See e.g. [20–25]. In [26], a multistage decoding algorithm for

LDPC codes over Z2m , m > 1, was proposed. This algorithm repeatedly invokes

the standard BP decoder to sequentially decode the canonical image of a Z2m

code over Z2k , first for k = 1, then k = 2, and so on – thus exploiting the natural

ring epimorphism Z2m → Z2k : r �→∑k−1
i=0 ri2

i with kernel 2kZ2m where
∑m−1

i=0 ri2
i

is the 2-adic expansion of r. Unfortunately, the coding gains that this decoding

approach achieves over standard BP decoding on an AWGN channel are modest

and in fact outweighed by the increase in computational burden.
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We present a new decoding algorithm for Z2m codes that enables a higher

coding gain over standard BP decoding to be achieved, yet with less computa-

tional burden. The new algorithm fuses the multistage decoding approach of [26]

and the augmented decoding approach of [72], which is a multistage decoding

approach for binary codes, as additional iterations are performed following mod-

ifications to the input LLRs of the code bits. For this reason, we refer to the

proposed decoder as a doubly multistage decoder. Two variants of the DMD are

considered. The first performs BP decoding [8] in each decoding stage and is

referred to as DMD-BP. The second performs OMS decoding in each stage and is

referred to as DMD-OMS. The motivation for studying the DMD-OMS is that the

OMS decoder is a good approximation to the BP decoder and can achieve small

or negligible performance degradation compared to BP decoding at significantly

lower computational cost [73, 126, 127]. For moderate-length codes, computer

simulations show the DMD-BP (resp., DMD-OMS) achieving coding gains of

up to 0.43 dB (resp., 0.67 dB) over standard BP decoding at a bit error rate

of 10−6 on an AWGN channel, while requiring significantly less computational

power. Remarkably, DMD-OMS outperforms DMD-BP, yet has lower computa-

tional complexity than DMD-BP. For short codes, even larger coding gains over

standard BP decoding can be achieved. For long codes however, performance

improvements are modest which is not surprising since for large codelengths, the

performance of BP decoding is already close to ML decoding performance. Thus,

DMD-BP and DMD-OMS are suited for codes of short to moderate lengths. A

description of the DMD follows.
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3.1 Description of DMD Algorithm

3.1.1 Preliminaries

Let Cm be a length-N linear code over Z2m with parity-check matrix Hm := [hm
ij ].

Further, let the canonical image of Cm over Z2k , 1 ≤ k ≤ m, be denoted by Ck

and its parity-check matrix by Hk := [hk
ij ] which is equal to Hm mod 2k. In [24],

it is shown that the presence of zero divisors amongst the nonzero entries of the

parity-check matrix of a Z2m code may inhibit the convergence of the decoder.

Moreover, the optimal set of edge weights (i.e., the edge weights that result in

convergence at the lowest channel SNR) of the Tanner graph representation of

the codes considered there, do not contain zero divisors. For these reasons, we

will take all the nonzero entries in Hm to be units of Z2m . Consequently, the sets

{j : hk
ij �= 0} (respectively, {i : hk

ij �= 0}) are identical for all k and so we denote

them by L(i) (respectively, M(j)). Moreover, by [131, Cor. 4.7(i)], given a code

over Z2m that is not free, there exists a free code over Z2m of the same length and

minimum distance but of higher rate. (A free code over Z2m is a Z2m-submodule

with a basis.) Therefore, we further assume that Cm is free.

For a codeword x := (x1, . . . , xN) ∈ ZN
2m of Cm, let

xbin := (x1,0, . . . , x1,m−1, . . . , xN,0, . . . , xN,m−1) ∈ ZmN
2

be its natural binary representation, i.e.,
∑m−1

k=0 xj,k2
k is the 2-adic expansion

of xj . Thus, xj,0 is the (first) least significant bit (LSB) of xj , xj,1 is the

second LSB, and so on. In particular, the mth LSB xj,m−1 is also the most
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significant bit (MSB) of xj . Suppose xbin is transmitted through a binary-

input-continuous-output AWGN channel using binary signaling and received as

y := (y1,0, . . . , y1,m−1, . . . , yN,0, . . . , yN,m−1) ∈ 	mN . From y, one obtains for

each xj,k, the pair of a priori probabilities p0
xj,k

:= P{xj,k = 0|yj,k} and p1
xj,k

:=

P{xj,k = 1|yj,k}, and the a priori LLR of xj,k, i.e., Λxj,k
= log

p0
xj,k

p1
xj,k

.

3.1.2 Flow of the DMD

Unlike the multistage decoder in [26] which attempts to recover x from y by

decoding the canonical images of Cm sequentially over m stages starting with C1,

the DMD does so by decoding a coset of C1 in ZN
2 in each stage starting with C1

itself – a strategy similar in spirit to the multistage algebraic decoding approach

of [132] for free, linear Z2m codes. This key difference between the DMD and the

multistage decoder in [26] is necessary for an LLR modification strategy similar

to that in [72], to be incorporated.

In the kth decoding stage, the DMD computes a codeword estimate x̂k of Ck

which, in its natural binary representation, has the form

(x̂1,0, . . . , x̂1,k−2, x̂1,k−1, . . . , x̂N,0, . . . , x̂N,k−2, x̂N,k−1).

If the codeword estimate x̂k−1 found at the end of the (k − 1)th decoding stage

is not a codeword of Ck−1, then in the kth stage, a standard BP decoder SDk for

Ck is used to obtain x̂k, before advancing to the (k + 1)th decoding stage. Thus,

the kth decoding stage does not make use of the decoding decision made in the

preceding stage in this case.
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If, on the other hand, x̂k−1 is a codeword of Ck−1, then in the kth stage, a

modified BP or OMS decoder MDk is used to compute x̂k by leveraging on x̂k−1.

For DMD-BP, MDk is a modified BP decoder while for DMD-OMS, MDk is a

modified OMS decoder. If x̂k is a codeword of Ck, we advance to the (k + 1)th

decoding stage, otherwise, we proceed to a channel output correction phase which

involves, in part, further iterations of MDk in the hope of eventually obtaining

a valid codeword of Ck. We refer to the concatenation of MDk and the channel

output correction phase as the augmented modified BP/OMS decoder for Ck, or

AMDk in short. Regardless of whether a valid codeword is eventually obtained

when the channel output correction phase terminates, we will subsequently pro-

ceed to the (k + 1)th decoding stage.

Obviously, if k = m, there is no (k + 1)th stage to proceed to. Fig. 3.1

summarizes the flow of our doubly multistage decoding approach. Note that for

k = 1, MDk and SDk are actually identical. (This will be apparent from the

description of MDk below.) For this reason, Fig. 3.1 shows the first decoding

stage containing only AMDk while subsequent stages contain both AMDk and

SDk. We proceed to describe MDk followed by the channel output correction

phase.

3.1.3 The modified BP/OMS decoder

Recall, the modified BP/OMS decoder MDk computes a codeword estimate x̂k

of Ck by leveraging on the valid codeword x̂k−1 of Ck−1 obtained in the (k − 1)th
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Figure 3.1: Flowchart of the DMD
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decoding stage which, in its natural binary representation, has the form

(x̂1,0, . . . , x̂1,k−2, . . . , x̂N,0, . . . , x̂N,k−2).

Thus, the goal of MDk is to determine x̂1,k−1, . . . , x̂N,k−1. Consequently, when

applying MDk to the Tanner graph associated to Hk, the variable nodes will

represent the xj,k−1 whose values we wish to estimate. For convenience, the

variable node representing xj,k−1 will be referred to as xj,k−1 as well.

The inputs to MDk are the a priori LLRs of the xj,k−1. Each iteration of

MDk involves two types of operations, row operations and column operations.

A row (resp., column) operation involves the computation of check-to-variable

(resp., variable-to-check) node messages. The message qk−1
ji passed from the jth

variable node to the ith check node is the LLR log
q0
ji

q1
ji
, where qb

ji is the probability

that xj,k−1 = b, given information obtained via the i′ check node for all i′ ∈
M(j) \ {i}. The values of the qk−1

ji are initialized by Λxj,k−1
, i.e., qk−1

ji = Λxj,k−1

for all i ∈ M(j).

For DMD-BP, the message rk−1
ji passed from the ith check node to the jth

variable node is the LLR log
r0
ji

r1
ji
, where rb

ji is the probability that the ith parity-

check constraint

∑
j′∈L(i)\{j}

hk
ij′

(
k−2∑
k′=0

x̂j′,k′2k′
+ xj′,k−12

k−1

)

= −hk
ij

(
k−2∑
k′=0

x̂j,k′2k′
+ xj,k−12

k−1

)
(3.1)

is satisfied when xj,k−1 = b and the other variable nodes are independent with

probabilities given by the elements of qk−1
j′i for j′ ∈ L(i) \ {j}. Following [17,
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Section III], rk−1
ji is computed as

rk−1
ji =

⊕
x′∈Z

k|L(i)|
2 : xj,k−1=1

P ((3.1) is satisfied|x′)
∑

j′∈L(i)\{j}
xj′,k−1q

k−1
j′i

−
⊕

x′∈Z
k|L(i)|
2 : xj,k−1=0

P ((3.1) is satisfied|x′)
∑

j′∈L(i)\{j}
xj′,k−1q

k−1
j′i (3.2)

where x′ := {x̃j}j∈L(i), x̃j := (x̂j,0, . . . , x̂j,k−2, xj,k−1) and a⊕b := − log(exp(−a)+

exp(−b)) = min(a, b) − log
(
1 + exp(−|a− b|)).

Further, qk−1
ji is computed as

qk−1
ji = Λxj,k−1

+
∑

i′∈M(j)\{i}
rk−1

ji′ (3.3)

An estimate x̂j,k−1 of xj,k−1 is given by x̂j,k−1 := sgn(qk−1
j ), where

sgn(a) :=

⎧⎪⎨
⎪⎩

0 : a ≥ 0

1 : a < 0

and

qk−1
j := log

q0
j

q1
j

= Λxj,k−1
+
∑

i∈M(j)

rk−1
ji

with qb
j denoting the probability that xj,k−1 = b, given the information obtained

via the ith check node for all i ∈M(j). Finally, if x̂kH
T
k = 0 where

x̂k =

(
k−1∑
k′=0

x̂1,k′2k′
, . . . ,

k−1∑
k′=0

x̂N,k′2k′
)

then a valid codeword of Ck has been found. Otherwise, further iterations are

performed until a valid codeword is obtained or the prescribed maximum number

of iterations is reached, whichever is earlier. This completes the description of

MDk for DMD-BP.
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For DMD-OMS, the message rk−1
ji passed from the ith check node to the jth

variable node is obtained by first computing an approximation r̂k−1
ji of the LLR

of r1
ji and r0

ji, and then reducing the absolute value of r̂k−1
ji by a predetermined

positive constant fc called the offset of the OMS algorithm. Following [125,

Section 3.4 & Appendix A.3], r̂k−1
ji is computed as

r̂k−1
ji = min

x′∈Z
k|L(i)|
2 : xj,k−1=1

P ((3.1) is satisfied|x′)
∑

j′∈L(i)\{j}
xj′,k−1q

k−1
j′i

− min
x′∈Z

k|L(i)|
2 : xj,k−1=0

P ((3.1) is satisfied|x′)
∑

j′∈L(i)\{j}
xj′,k−1q

k−1
j′i . (3.4)

Then, following [126, Section III-B], rk−1
ji is obtained from r̂k−1

ji using the rule

rk−1
ji =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r̂k−1
ji − fc : r̂k−1

ji > fc

r̂k−1
ji + fc : r̂k−1

ji < −fc

0 : otherwise.

For simplicity, we keep fc fixed over all iterations executed by MDk, as in [126].

For the same reason, we also keep fc fixed over all m stages of DMD-OMS.

(Remarks: (i) In fact, for the codes considered in [126], the analysis therein

suggests that varying fc in each iteration achieves little additional improvements

in performance; (ii) For the case where fc is unchanged for all iterations executed

by MDk, We conjecture that the optimal value of fc for each of the m stages is

the same. The premise for this conjecture is that for each k, MDk decodes some

coset of C1 and all cosets of C1 have the same weight distribution. If this conjecture

is true, then the optimal offset may be found by determining the optimal offset

for the code C1 under OMS decoding.)
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The variable-to-check node messages and the estimates of xj,k−1 are com-

puted in the exact same manner as described above. Thus, MDk in DMD-BP

and DMD-OMS only differ in the way the check-to-variable node messages are

computed. This completes the description of MDk for DMD-OMS.

3.1.4 The channel output correction phase

Recall, we enter the channel output correction phase while in the kth decoding

stage if MDk fails to deliver a valid codeword of Ck. The first task of this

correction phase is to identify the variable nodes that participate in at least

one unsatisfied parity-check constraint to form a set, Vk. For xj,k−1 ∈ Vk, we

denote by d(xj,k−1) the number of unsatisfied parity-check constraints that xj,k−1

participates in and refer to this quantity as the d-value of xj,k−1. The nodes in Vk

are then sorted in descending order of their d-values with ties broken by further

sorting the nodes that are tied in ascending order of the absolute value of their

initial LLRs obtained from the channel output.

Denoting the first node in the sorted set by x̃1,k−1, second node by x̃2,k−1

and so on, we then set the a priori LLR Λx̃1,k−1
of x̃1,k−1 to −∞ as in [72] and

run a maximum of I1 iterations of MDk. If the resulting codeword estimate

is a codeword of Ck, we exit the correction phase immediately and proceed to

the (k + 1)th decoding stage. On the other hand, if the resulting codeword

estimate is not a codeword of Ck, we set Λx̃1,k−1
to +∞ and run a maximum of

I1 iterations of MDk again, after restoring the a priori LLRs obtained from the

channel output. If a codeword of Ck is found, we proceed to the (k+1)th decoding
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stage. Otherwise, we restore the a priori LLRs obtained from the channel output

again, and repeat the above procedure to modify them. This time however, we

modify Λx̃1,k−1
and Λx̃2,k−1

to yield the following four pairs of modified a priori

LLRs:

Λx̃1,k−1
= −∞, Λx̃2,k−1

= −∞

Λx̃1,k−1
= −∞, Λx̃2,k−1

= +∞

Λx̃1,k−1
= +∞, Λx̃2,k−1

= −∞

Λx̃1,k−1
= +∞, Λx̃2,k−1

= +∞

In like manner, starting with the first pair, we run a maximum of I2 iterations

of MDk. If a codeword of Ck is found, we proceed to the (k + 1)th decoding

stage, otherwise we go on to the next pair. If a codeword is still not obtained

after exhausting all four pairs, we start over, this time by modifying Λx̃1,k−1
,

Λx̃2,k−1
and Λx̃3,k−1

to yield eight triplets of modified a priori LLRs. This process

continues until we have exhausted a prescribed maximum number L of modified

a priori LLRs or a valid codeword of Ck is found, whichever is earlier. We name

L the correction limit of the AMD. Note that one can choose different values

for L at different stages of the DMD. For simplicity however, we only consider

the case when all the AMD’s have the same value of L.
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3.2 Simulation Results

In this section, we demonstrate via computer simulations, the superiority of the

DMD over standard BP decoding as well as the multistage BP decoder of [26] on

an AWGN channel with BPSK signaling. Each BEP data point is obtained from

collecting at least 1000 bit errors.

To this end, we first consider two rate-1/2, randomly generated, regular codes

of column weight 3 and row weight 6. One code is a Z4 code, the other, a Z8 code.

Both codes have an equivalent binary length of 1200 bits. The nonzero entries of

their parity-check matrices are drawn uniformly from the units of their respective

code alphabets. Moreover, both codes are free. In our simulations, Ii is set to 20

for i = 1, . . . , L. The maximum number of iterations of the component decoders

SDk and MDk of the DMD is also set to 20 for all k. For each code, we varied the

DMD-OMS’s offset value fc from 0.1 to 2.0 in steps of 0.1, simulated the DMD-

OMS at a fixed SNR of 2.6 dB, as shown in In Figs. 3.2(a) and (b), and picked

the fc that yielded the best BEP performance. We obtained fc = 0.6 for the Z4

code and fc = 0.5 for the Z8 code. These values are near optimal as the optimal

offset for the OMS decoder has been shown to be rather insensitive to SNR and

is more a function of the code [126]. In comparison, the BEP performance for the

canonical image C1 of the Z4 and Z8 code under OMS decoding with the offset

value fc ranging from 0.1 to 2.0 is also shown in Figs. 3.2(a) and (b). The offset

values that yield the best BEP performance matched the offset values obtained by

simulating the DMD-OMS, thus providing some numerical evidence to support
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our conjecture in Section 3.1.3.

Fig. 3.3 and Fig. 3.4 show the BEP performance of the Z4, respectively, Z8

code, when decoded using DMD-BP and DMD-OMS for L = 3, 5, 7. The BEP

performance of standard BP decoding and the multistage decoder of [26] are

also shown for comparison. The maximum number of iterations for the former

decoder, which is SD2 for the Z4 code and SD3 for the Z8 code, is also set to

20. Similarly, the maximum number of iterations performed in each stage of the

latter decoder is 20.

For the Z4 code, Fig. 3.3 shows that with L = 3, DMD-BP achieves a coding

gain of 0.14 dB, 0.19 dB and 0.26 dB over standard BP decoding at a BEP of

10−4, 10−5 and 10−6, respectively. Not surprisingly, larger gains are observed

when L = 5 and L = 7. In particular, at a BEP of 10−6, DMD-BP achieves a

coding gain of 0.32 dB and 0.37 dB over standard BP decoding when L is equal to

5 and 7, respectively. Remarkably, DMD-OMS provides even larger coding gains

despite the OMS decoder being an approximation of the BP decoder. At a BEP

of 10−6, DMD-OMS achieves a coding gain of 0.32 dB, 0.39 dB and 0.45 dB over

standard BP decoding when L is equal to 3, 5 and 7, respectively. That DMD-

OMS outperforms standard BP decoding is not too surprising as it has already

been reported elsewhere that for binary codes, OMS decoding can in some cases

outperform BP decoding with properly chosen offsets. For example, in [74], the

authors report the OMS decoder achieving a coding gain of about 0.2 dB over

BP decoding for a moderate-length code at a BEP of 10−7. The margin by which

DMD-OMS outperforms DMD-BP is consistent with this result.
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Figure 3.2: (a) BEP performance of DMD-OMS at different offset values for the

Z4 code at the SNR of 2.6 dB; (b) BEP performance of DMD-OMS at different

offset values for the Z8 code at the SNR of 2.6 dB

49



3. DMD ALGORITHM

2 2.5 3 3.5 4

10
−6

10
−5

10
−4

10
−3

Eb/No(dB)

B
E

P

 

 
standard BP decoder
multistage decoder
DMD−BP, L=3
DMD−BP, L=5
DMD−BP, L=7
DMD−OMS, L=3
DMD−OMS, L=5
DMD−OMS, L=7

Figure 3.3: BEP performance of 1200-bit long regular Z4 code under various

decoding strategies

For the Z8 code, Fig. 3.4 shows that with L = 3, DMD-BP achieves a coding

gain of 0.16 dB, 0.25 dB and 0.31 dB over standard BP decoding at a BEP of

10−4, 10−5 and 10−6, respectively. Further, at a BEP of 10−6, DMD-BP achieves

a coding gain of 0.36 dB and 0.43 dB over standard BP decoding when L is 5

and 7, respectively. In contrast, at a BEP of 10−6, DMD-OMS achieves a coding

gain of 0.53 dB, 0.62 dB and 0.67 dB over standard BP decoding when L is equal

to 3, 5 and 7, respectively, so we again see DMD-OMS outperforming DMD-BP.
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Figure 3.4: BEP performance of 1200-bit long regular Z8 code under various

decoding strategies
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Having showed that both DMD-BP and DMD-OMS outperform standard BP

decoding for moderate-length codes, we focus henceforth on demonstrating the

performance of DMD-BP for short regular codes, moderate-length irregular codes,

and long regular codes.

In Figs. 3.5(a) and (b), we consider short regular code of rate 1/2, column

weight 3, row weight 6 and an equivalent binary length of 500 bits over Z4 and

Z8, respectively. It can be observed that the additional coding gain over standard

BP decoding that DMD-BP achieves is larger for this short code. In particular,

for the Z4 code, at a BEP of 10−5, DMD-BP achieves a coding gain of 0.39 dB,

0.5 dB and 0.59 dB over standard BP decoding when L is equal to 3, 5 and

7, respectively. These larger coding gains are due in part to the fact that the

codelength N is now very small so that the normalized correction limit L/N is

not so insignificant for the values of L considered. Consequently, the correction

phase is more effective in enabling a valid codeword estimate to be found when

MDk initially fails to do so. Similar observations can be made for the Z8 code.

In Figs. 3.6(a) and (b), we consider rate-1/2, regular code of equivalent binary

length 12000 over Z4 and Z8, respectively. It can be observed that there is not

much difference in performance between DMD-BP and the multistage decoder

of [26]. Further, the additional coding gain over standard BP decoding afforded

by DMD-BP is only about 0.1 dB, with increasing values of L yielding little addi-

tional improvements. As stated earlier, this is not surprising since for long codes,

the performance of standard BP decoding is already close to ML decoding per-

formance. Hence, the performance gains of DMD-BP over standard BP decoding
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Figure 3.5: (a) BEP performance of 500-bit long regular Z4 code under various

decoding strategies; (b) BEP performance of 500-bit long regular Z8 code under

various decoding strategies
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will understandably be small.

In Fig. 3.7, we consider a rate-1/2, irregular Z4 code whose canonical image

over Z2, i.e., C1, is the “PEGirReg504x1008” code in [123]. Thus this Z4 code

has an equivalent binary length of 2016 bits. Clearly, DMD-BP significantly

outperforms standard BP decoding although error floors are observed at a BEP

of around 10−6. This is expected since (i) C1 exhibits an error floor at the BEP of

around 10−6, (ii) DMD-BP decodes C1 in the first decoding stage and a decoding

error in this stage will propagate to the next.

3.3 LLR Density Analysis

Next, we will show the effect of the channel output correction phase on the LLR

densities of the decoded bits in the vicinity of the decision boundaries, to provide

insight into why DMD-BP performs better than standard BP decoding. To this

end, we will continue to use the moderate-length, regular Z8 code considered in

Section 3.2.

We begin by noting that, regardless of which decoder is used, decoded bit

errors occur most frequently in the position of the MSBs and least frequently in

the position of the LSBs. The distribution of decoded bit errors arising from the

independent transmission of 105 codewords at an SNR of 3 dB is summarized in

Table 3.1. As we shall see in the next section, at this SNR value, the average

computational complexity of DMD-BP will be lower than that of the standard BP

decoder. We will therefore compare the (expected) LLR densities of the decoded
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Figure 3.6: (a) BEP performance of 12000-bit long regular Z4 code under various

decoding strategies; (b) BEP performance of 12000-bit long regular Z8 code under

various decoding strategies
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Figure 3.7: BEP performance of 2016-bit long irregular Z4 code under various

decoding strategies
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Number of errors (×103)

LSB 2nd LSB MSB overall

standard BP decoder 0.776 14.762 144.028 159.566

DMD-BP, L = 3 0.657 8.284 30.621 39.562

DMD-BP, L = 5 0.593 6.703 24.452 31.748

DMD-BP, L = 7 0.522 5.520 19.680 25.722

Table 3.1: Distribution of decoded bit errors for Z8 code

LSBs through to the decoded MSBs resulting from the two decoding approaches

at this SNR value.

To that end, we compute the LLR densities corresponding to the standard

BP decoder after it has performed 5 iterations. The LLR Λ(xj,k−1) of the kth

LSB xj,k−1 of the jth code symbol xj is given by

Λ(xj,k−1) = log

∑
ξ∈Z2m : (ξ)k−1=0

qξ
j∑

ξ∈Z2m : (ξ)k−1=1

qξ
j

(3.5)

where qξ
j is the pseudo-posteriori probability that xj = ξ given the channel output,

computed in the final iteration, and (ξ)k−1 is the (k−1)th coefficient in the 2-adic

expansion of ξ.

To compute the LLR densities of the kth LSBs under doubly multistage de-

coding, we set each call to the component decoders SDk′ and MDk′ in stage k′,

1 ≤ k′ < k, to incur a maximum of 20 iterations; for the remaining m − k + 1

stages, we set each call to SDk′ and MDk′, k ≤ k′ ≤ m, to incur 5 iterations.

The desired densities will then correspond to the completion of 5 iterations of
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either MDk or SDk′ for some k′ ≥ k. If SDk′ is not invoked in stage k′ for all

k′ ≥ k – which means that a valid codeword of Ck is generated in stage k by MDk

and the pseudo-posteriori probabilities q0
j and q1

j computed in the final iteration

of MDk, are not superceded by the pseudo-posteriori probabilities computed by

SDk′ in stage k′ for all k′ > k – then the LLR of xj,k−1 is given by

Λ(xj,k−1) = log
q0
j

q1
j

.

On the other hand, if SDk is invoked in stage k – which means that a codeword

estimate of Ck is generated in stage k by SDk rather than by MDk – then the

LLR of xj,k−1 is given by (3.5) with m replaced by k′ and qr
j reinterpreted as the

pseudo-posteriori probability that xj = r given the channel output, computed in

the final iteration of SDk′, where k′ ≥ k such that SDk′ is the last instance of

standard BP decoding invoked by DMD-BP. Note that we are therefore taking

into account the possibility that the pseudo-posteriori probabilities computed by

SDk in stage k, are superceded by the pseudo-posteriori probabilities computed

by SDk′ in stage k′ for some k′ > k.

Figs. 3.8(a), (b) and (c) show the LLR densities of the decoded LSBs through

to the MSBs generated from our computer simulations. At a glance, Figs. 3.8(a)

and (b) do not appear to be congruent to Table 3.1. To reconcile them, we magnify

Figs. 3.8(a) and (b) around the critical value of LLR = 0 in Figs. 3.9(a) and (b).

For clarity, we only show the densities for bit 0. These magnifications show

that for both the first and second LSBs, the LLR density function corresponding

to DMD-BP experiences a sharp vertical drop, crossing below the LLR density
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function corresponding to the standard BP decoder, as the LLR crosses below

zero from above. Moreover, the larger the correction limit L, the further the

former density function drops below the latter density function in the negative

LLR region. Fig. 3.9(c), which magnifies Fig. 3.8(c) around LLR = 0, shows

a similar but less dramatic drop in the LLR density function corresponding to

DMD-BP as the LLR crosses below zero from above.

The mechanism of the channel output correction phase accounts for the dis-

continuities in the expected density functions under doubly multistage decoding.

Recall, when MDk fails to deliver a valid codeword of Ck, AMDk enters the

correction phase. There, the a priori LLRs of one or more selected nodes will be

modified to −∞ or +∞. The Gaussian distribution of the initial LLRs is conse-

quently broken, leading to the observed discontinuities. These discontinuities are

nevertheless desirable since the area under the graph of the LLR density function

for negative LLR values, determines the bit error rate of the corresponding de-

coder. Since the LLR density functions corresponding to DMD-BP fall below the

LLR density functions corresponding to standard BP decoding in the negative

LLR region, the superiority of the former decoder is immediate.

Similar observations can be made for the other codes considered in Section 3.2

as shown in Figs. 3.10 and Figs. 3.11. Further, the same analysis can be applied

to explain the superiority of DMD-OMS over standard BP decoding.
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Figure 3.8: LLR density of various bit positions for the Z8 code: (a) LSB (b) 2nd

LSB (c) MSB
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Figure 3.9: LLR density of various bit positions for the Z8 code around LLR=0:

(a) LSB (b) 2nd LSB (c) MSB
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Figure 3.10: LLR density of various bit positions for the Z4 code: (a) LSB (b)
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Figure 3.11: LLR density of various bit positions for the Z4 code around LLR=0:
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3.4 Complexity Analysis

We next consider the price to pay in terms of the increase in decoding complex-

ity for the above improvements in coding gain reported in Section 3.2 for our

moderate-length, regular Z4 and Z8 codes. Since the majority of the operations

performed in log-domain BP and OMS decoding are (real) additions and subtrac-

tions, we will count the number of additions/subtractions incurred by the DMD

as a measure of its complexity. In the following analysis, we assume that the cost

of one (real) multiplication/division is equivalent to the cost of two additions,

and the cost of a subtraction is equal to the cost of an addition. (In a hardware

implementation, the cost of these arithmetic operations will be the number of

clock cycles needed to complete a given operation.) We further assume that the

exponential and logarithm functions are both computed using the first 9 terms

of their Taylor series expansions. Thus, evaluating an exponential or logarithm

function requires 40 additions.

Recall that in the first of the m stages of the DMD, only the augmented

modified decoder AMDk is deployed while in each subsequent stage, either the

standard BP decoder SDk or AMDk is used. Thus, the average number of

additions needed by the DMD to decode Cm is given by

Θ :=

m∑
i=1

(PkIMDk
δMDk

+ (1 − Pk)ISDk
δSDk

) (3.6)

where Pk is the probability that AMDk is used in the kth stage, δMDk
and δSDk

are the number of additions per iteration required by MDk and SDk, respectively,

while IMDk
and ISDk

are the average number of iterations required by AMDk
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and SDk, respectively. Clearly, Pk is always equal to 1 for k = 1.

For DMD-BP, the number of additions per iteration required by MDk is given

by

δMDk
:= ρN × (2γ + ρ+ 167), for all k

where ρ and γ denote the column and row weight of Cm, respectively. For DMD-

OMS, the number of additions per iteration required by MDk is given by

δMDk
:= ρN × (2γ + ρ− 4), for all k

The number of additions per iteration required by SDk is given by

δSDk
:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρN × (2γ + ρ+ 167) : k = 1

ρN × (12γ + 3ρ+ 945) : k = 2

ρN × (56γ + 7ρ+ 4417) : k = 3

In contrast, the average number of additions needed by SDm to decode Cm is

given by

θ := I ′SDm
δSDm

where I ′SDm
is the average number of iterations needed by the standard BP de-

coder to decode Cm.

By collecting all relevant statistics from our computer simulations, the ratio

η := Θ/θ of the (average) complexity of the DMD to that of the standard BP

decoder when applied to our Z4 (respectively, Z8) code is computed for the differ-

ent values of L considered and plotted against Eb/N0 in Fig. 3.12 (respectively,

Fig. 3.13). Note that the vertical axes in both figures are in logarithmic scale,

i.e., what is actually plotted is 20 log10 η against Eb/N0.

65



3. DMD ALGORITHM

From Fig. 3.12, it is observed that at lower SNR’s, DMD-BP has higher com-

plexity than the standard BP decoder and its complexity increases exponentially

with L, as the number of additional iterations required in the channel output

correction phase increases exponentially with L when the noise power is large.

However, as SNR increases, the complexity of DMD-BP decreases dramatically

and drops below that of the standard BP decoder at an SNR of 2.2 dB when

L = 3, 2.6 dB when L = 5, and 3 dB when L = 7. In particular, at an SNR

of 3.6 dB which corresponds to a BEP of about 10−6, the complexity of DMD-

BP is 32% of that of the standard BP decoder. In contrast, DMD-OMS is only

more complex than the standard BP decoder for L = 7 at lower SNR’s. As with

DMD-BP, its complexity decreases rapidly as SNR increases. At an SNR of 2.2

dB, its complexity when L = 7 is already less than that of the standard BP de-

coder. Remarkably, DMD-OMS requires less than 3% of the number of additions

required by the standard BP decoder for SNR values exceeding 3.2 dB.

Similar observations can be made from Fig. 3.13. In particular, at an SNR

of 3.4dB, the complexity of DMD-BP (resp., DMD-OMS) is only 10% and 1% of

that of the standard BP decoder.

3.5 Concluding Remarks

Unlike the multistage decoder in [26] which decodes the m canonical images of

Cm sequentially over m stages, the DMD decodes cosets of C1 in ZN
2 repeatedly

over m stages. This modification enables the channel output correction phase to
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Figure 3.12: The complexity ratio associated with decoding the Z4 code
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Figure 3.13: The complexity ratio associated with decoding the Z8 code

68



3. DMD ALGORITHM

be incorporated in each decoding stage. We have demonstrated that the DMD

can outperform standard BP decoding in terms of both BEP performance and

complexity for moderate-length codes. Moreover, we have revealed the effect of

the channel output correction phase on the LLR densities of the decoded bits in

the vicinity of the decision boundaries, thus providing insight into why the DMD

performs better than standard BP decoding. We have also showed that the DMD

yields larger performance improvements for short codes. On the other hand, very

little performance improvements are achieved for long codes. We emphasize that

this is due to the fact that for long codes, the performance of BP decoding is

already close to ML decoding performance. Thus, DMD is suitable for short to

moderate-length codes.

Finally, we point out that while we have only considered two variants of the

DMD, other variants are possible. For example, we could employ a modified nor-

malized min-sum decoder in place of the modified OMS decoder in each decoding

stage of the DMD. (See [126] for details of the NMS decoder.) We could also use

the extended min-sum decoder of [19] in place of the standard BP decoder in each

stage of the DMD. We have nevertheless not considered these other possibilities

due to space constraints.
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Chapter 4

The LLR Metric for q-ary LDPC

Codes with MPSK Modulation

over Rayleigh Channels with

Imperfect CSI

The capacity-approaching codes, i.e., LDPC and turbo codes, can achieve reli-

able transmission at SNRs extremely close to the Shannon limit over the AWGN

channel. During the iterative decoding process, the LLR of each received code

bit is taken as the soft information input to the decoder and refined after each

iteration. Therefore, using the correct LLR metric is crucial for reliable decoding.

Gallager derived the LLR metric for the AWGN channel in [4]. We focus on

the time-selective, frequency-flat, Rayleigh fading channels, for which acquiring
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4. PSAM-LLR METRIC

the CSI is essential and the PSAM is frequently used for channel estimation.

Iterative decoding of LDPC and turbo codes with PSAM channel estimation is

discussed in [56–65]. In [56–62], the channel estimates are assumed to be perfect

and the LLR metric based on that for the AWGN channel derived in [4] is used.

In [63–65], the channel estimator is assumed to have a certain structure. By

processing the received pilot information with the assumed channel estimator,

the estimated channel gain and the estimation error variance are obtained. The

problem of this ’structured’ approach is that the LLR metric varies with the

estimator structure, even for the same received signal sequence.

In this chapter, we present the correct conceptual approach for deriving the

LLR metric of a q-ary code over time-selective, frequency-flat, Rayleigh fading

channels with MPSK modulation and PSAM channel estimation. The derivation

starts from first principles without assuming any receiver structure and demon-

strates how the pilot information should be incorporated into the LLR computa-

tion. In particular, we demonstrate how the channel estimate and the estimation

error variance enter in determining the reliability of each received coded symbol.

The derivation shows why the MMSE channel estimator and the estimation error

variance enter in the receiver. The decoding metric derived will be called the

PSAM-LLR. As our simulation studies will show, the accuracy of the channel

estimates, as measured by the channel estimation error variance, plays a crucial

role in determining the error performance of the iterative decoder as well as the

average number of iterations it takes to converge to a decision. The conventional

LLR as used in [56–62] can be seen to be a special case of the PSAM-LLR when
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the channel estimation error variance is assumed to be zero. This conventional

LLR ignores the accuracy of the CSI, and is an approximate metric. We will call

it the approximate PSAM-LLR (A-PSAM-LLR).

In transmitting an LDPC code, a very low SNR per symbol is usually used.

The SNR per symbol of the pilot symbols is also very small. The channel es-

timation error variance is therefore usually high, and this should naturally be

reflected in the reliability of each received code symbol when the CSI is used in

its computation. In a time-selective fading channel, the channel estimation error

variance varies with the position with respect to the pilot symbols, because of the

channel decorrelation. Thus, the reliabilities of the code symbols also vary due to

the different degrees of accuracy of the CSI, and this must be clearly reflected in

the soft information input to the iterative decoder. Hence, performance degrada-

tion is expected for the A-PSAM-LLR, because the information of the estimation

error variance is neglected. The simulation results verify that the PSAM-LLR has

substantially better error performance, faster convergence speed and lower error

floors than the A-PSAM-LLR. Our unstructured approach explains clearly why

it is suboptimum to derive the metrics based on the channel estimates obtained

from some predetermined estimators [56–65].

4.1 System Model

Let Cq be a q-ary linear block code. Assume that we have q = 2Vc and the number

of constellation points of the MPSK modulation is M = 2Vm , where Vc and Vm are
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positive integers and Vm is an integer multiple of Vc. We define κ = Vm/Vc. The

system model is shown in Fig. 4.1. A q-ary message sequence m is fed into the

encoder of the code Cq. The coded symbol sequence is sequentially divided into

sub-sequences of length κ symbols and each sub-sequence is mapped to a MPSK

signal with phase φ = Γ(x1, x2, . . . , xκ), where Γ(·) is a one-to-one function that

uniquely maps every sequence of κ variables, each of which belongs to the set

{0, 1, . . . , q − 1}, onto a phase φ ∈ {2mπ
M

}M−1
m=0 . The signal sequence generated

is then shuffled by a block interleaver to protect the transmission against burst

errors in the fading channel. After that, the signal sequence is partitioned into

sub-blocks of length B. Let s(l, b) =
√
Ese

jφ(l,b) denote the b-th complex baseband

signal in the l-th sub-block, where φ(l, b) is the information content in s(l, b). Note

that each MPSK signal contains κ coded symbols. We use x(l, b, v) to denote the

v-th coded symbol in the b-th complex baseband signal in the l-th sub-block. A

known pilot symbol p(l) is placed at the beginning of each sub-block, denoted by

s(l, 0). The pilot symbols are spaced B symbol intervals apart from one another.

B is called the pilot symbol spacing. Each received signal can be expressed as

r(l, b) = c(l, b)s(l, b) + n(l, b), (4.1)

where r(l, b) denotes the received signal over the b-th interval in the l-th sub-block,

and {n(l, b)} is a set of statistically independent, complex, Gaussian random

variables, each with mean zero and variance N0. The channel gains {h(k)|h(k) =

c(l, b), k = (l−1)(B+1)+b+1} are modeled as a correlated, zero-mean, complex,

Gaussian process with autocorrelation function E[h(k)h∗(k − i)] = 2Rc(i).
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Figure 4.1: System Model

Note that the receiver structure shown in the dotted rectangle in Fig. 4.1 is

proposed based on our derivation result and it will be discussed later in section

4.3.

4.2 Metric Derivation

We assume that the channel SNR and the CSI statistics are fixed and known by

the receiver. Let rp(l) denote the received signal corresponding to the pilot signal

p(l). For the b-th signal in the l-th sub-block, define its observation window of

length W = 2Q + 1 as the received signals within a distance of Q signals from

it. Note that each observation window contains 2K pilot signals (K preceding

and K succeeding), where K = 
 Q
B+1

�, except near the beginning or end of
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the transmitted sequence. Denote the vector formed by the pilot signals within

the observation window of the b-th interval in the l-th sub-block, by S(l) =

[rp(l −K + 1), rp(l −K + 2) . . . , rp(l +K)]T .

For a q-ary code, the LLR metric Λx for a coded symbol x is a vector of length

q − 1, which is represented as Λx = [λ1
x, λ

2
x, . . . , λ

q−1
x ]T , where λi

x = ln P (x=0)
P (x=i)

. By

definition, the log-likelihood ratio λi(l, b, v) for the v-th coded symbol in the b-th

complex baseband signal in the l-th sub-block is computed based on the received

signal r(l, b) and the pilot signal vector S(l) as

λi(l, b, v) = ln
P (x(l, b, v) = 0|r(l, b),S(l))

P (x(l, b, v) = i|r(l, b),S(l))
, (4.2)

Assuming that the a priori probabilities of the information symbols are equal,

by Bayes’ rule, we get

λi(l, b, v) = ln
p(r(l, b)|x(l, b, v) = 0,S(l))

p(r(l, b)|x(l, b, v) = i,S(l))
.

By introducing the instantaneous channel gain c(l, b), the numerator and the

denominator of the likelihood ratio in λi(l, b, v) can be rewritten in the form

p(r(l, b)|x(l, b, v) = i,S(l))

=

∫
p
(
r(l, b), c(l, b)|x(l, b, v) = i,S(l)

)
dc(l, b)

=

∫
p
(
r(l, b)|x(l, b, v) = i,S(l), c(l, b)

)
p
(
c(l, b)|x(l, b, v) = i,S(l)

)
dc(l, b), (4.3)

Since x(l, b, v) takes on the values in {0, 1, . . . , q − 1} with equal probability, the

phase φ(l, b) conditioned on x(l, b, v) = i is uniformly distributed over the set of
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all possible phases corresponding to the event x(l, b, v) = i, which is denoted by

Φi(v). It is not difficult to see that
∣∣Φi(v)

∣∣ = M
q
.

Conditioned on c(l, b) and any particular phase corresponding to x(l, b, v) = i,

the only randomness in r(l, b) is due to the AWGN n(l, b), which is independent

of the pilot signal set S(l). Hence, the first term in the integrand in the last line

of (4.3) can be expressed as

p(r(l, b)|x(l, b, v) = i, c(l, b))

=
∑

φ∈Φi(v)

q

M

1

πN0
exp
[
−|r(l, b) − ejφE

1
2
s c(l, b)|2

N0

]
. (4.4)

Next, we consider the term p(c(l, b)|x(l, b, v) = i,S(l)). The channel gain c(l, b) is

independent of the transmitted information φ(l, b) or x(l, b, v). Since the channel

gains are jointly Gaussian, c(l, b) and S(l) are also jointly Gaussian. Thus, c(l, b)

conditioned on S(l) is a Gaussian random variable with mean E[c(l, b)|S(l)] =

ĉ(l, b) and variance var[c(l, b)|S(l)] = 2σ̃2(l, b) [156]. We will show later how

to compute ĉ(l, b) and 2σ̃2(l, b) based on the knowledge of the autocorrelation

function of the channel gain. Now, we have

p(c(l, b)|x(l, b, v) = i,S(l))

=
1

π2σ̃2(l, b)
exp
[
−|c(l, b) − ĉ(l, b)|2

2σ̃2(l, b)

]
. (4.5)

Substituting (4.4) and (4.5) into (4.3), exchanging the order of integration and

76



4. PSAM-LLR METRIC

summation, combining the exponents, and performing the integration, we obtain

p(r(l, b)|x(l, b, v) = i,S(l))

=
qα

Mπβ

∑
φ∈Φi(v)

exp
[ γφ

β2σ̃2(l, b)N0

]
, (4.6)

where

α = exp[−|r(l, b)|2
N0

− |ĉ(l, b)|2
2σ̃2(l, b)

], (4.7)

β = 2σ̃2(l, b)Es +N0, (4.8)

γφ =
∣∣2σ̃2(l, b)

√
Esr(l, b)e

−jφ +N0ĉ(l, b)
∣∣2. (4.9)

Substituting (4.6)–(4.9) back into the expression of λi(l, b, v) and after simplifi-

cation, we obtain

λi(l, b, v) = ln

∑
φ∈Φ0(v) exp(ψφ)∑
φ∈Φi(v) exp(ψφ)

, (4.10)

where

ψφ =
2
√
Es

2σ̃2(l, b)Es +N0
Re{r(l, b)ĉ∗(l, b)e−jφ}.

We refer to this LLR metric in (4.10) as the PSAM-LLR.

Observe that the numerator and the denominator of the likelihood ratio in

λ(l, b, v) are summation of exponential functions. By assuming that
∑

i exp(xi) ≈

exp(maxi xi), an approximation of the metric, after simplification, can be ex-

pressed as

λi(l, b, v) =
2
√
Es

2σ̃2(l, b)Es +N0

Re
{
r(l, b)ĉ∗(l, b)(e−jφ0(v) − e−jφi(v))

}
, (4.11)
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where

φi(v) = arg max
φ∈Φi(v)

ψφ (4.12)

We refer to the LLR metric in (4.11) as the simplified-PSAM-LLR (S-PSAM-

LLR). Note that if the size of the code alphabet is equal to the number of con-

stellation points of the MPSK modulation, i.e., Vc = Vm, the PSAM-LLR and

the S-PSAM-LLR are trivially the same. Through simulations, we will show in

general that these two metrics yield similar performance and can be treated as

an alternative to each other.

If it is assumed that the channel estimation is perfect, it is easy to obtain

λi(l, b, v) = ln

∑
φ∈Φ0(v) exp(ψapp

φ )∑
φ∈Φi(v) exp(ψapp

φ )
, (4.13)

where

ψapp
φ =

2
√
Es

N0
Re{r(l, b)ĉ∗(l, b)e−jφ}.

We refer to this metric in (4.13) as the A-PSAM-LLR.

Similarly, assuming
∑

i exp(xi) ≈ exp(maxi xi), we simplify (4.13) and get

λi(l, b, v) =
2
√
Es

N0

Re
{
r(l, b)ĉ∗(l, b)(e−jφ0(v) − e−jφi(v))

}
, (4.14)

where φi(v) is defined in (4.12), and we refer to this metric in (4.14) as the

Simplified-Approximate-PSAM-LLR (SA-PSAM-LLR) metric, which is an alter-

native to the A-PSAM-LLR metric.

Next, we show how to compute ĉ(l, b) and 2σ̃2(l, b). By [156], the conditional

mean is the MMSE estimate of c(l, b) and the conditional variance is the MSE.
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We get

ĉ(l, b) = ωH
o (b)S(l). (4.15)

Here, ωo(b) is the optimum weight vector of the MMSE estimator and is given

by ωo(b) = R−1p(b). R = E[S(l)S(l)H ] = Es2σ
2G +N0I is the auto-correlation

matrix, and p(b) = E[S(l)c∗(l, b)] =
√
Es2σ

2v(b) is the cross-correlation vector,

where G = [Gij ] is a 2K×2K matrix whose ij-th element is Gij = Rc((i−j)(B+

1)). I is the identity matrix, and v(b) is a 2K × 1 column vector with the i-th

element given by Rc((i−K)(B + 1) − b). The conditional variance 2σ̃2(l, b) can

be expressed as

2σ̃2(l, b) = 2Rc(0) − pT (b)(R−1)Tp(b) (4.16)

Note that when the SNR goes to infinity, the term N0

Es
approaches zero, and the

MSE tends to

2σ̃2(l, b)∞ = 2Rc(0)(1 − v(b)H(G−1)Hv(b)). (4.17)

If the normalized fade rate fdTs > 0, this MSE 2σ̃2(l, b)∞ is not equal to zero. In

other words, the CSI at the receiver cannot be perfectly acquired even when the

SNR is very large because of channel decorrelation.

• Remark

Consider the important case of BPSK-modulated binary code. Simplifying (4.10)

and (4.13), we get the PSAM-LLR metric (4.18) and the A-PSAM-LLR metric
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(4.19).

λ(l, b) =
1

Es

N0
2σ̃2(l, b) + 1

4
√
Es

N0
Re{r(l, b)ĉ∗(l, b)} (4.18)

λ(l, b) =
4
√
Es

N0
Re{r(l, b)ĉ∗(l, b)} (4.19)

In (4.18), the term 4
√

Es

N0
Re{r(l, b)ĉ∗(l, b)}, which represents the component of the

LLR calculated based on the channel output and the channel estimate, is scaled

down by the factor of 1
Es
N0

2σ̃2(l,b)+1
to account for the channel estimation errors.

Intuitively, one can expect that the reliability of each received code bit should

depend on the channel output, the channel estimate and the accuracy of the

channel estimate. It is convenient to neglect the estimation errors and use the

A-PSAM-LLR metric (4.19) as an approximation to the PSAM-LLR, only when

the estimation errors are very small. However, this A-PSAM-LLR metric was

widely used, while the channel estimation accuracy was ignored [56–62].

Error floors have been observed in PSAM systems, as reported in [59] and [60],

in which the A-PSAM-LLR metric is used as the reliability function and the

reason can be seen from the structure of the PSAM-LLR metric. Because of

the channel decorrelation, the CSI cannot be estimated perfectly even as the

SNR goes to infinity, as shown in (4.17). Compared to the PSAM-LLR metric,

the term 1
Es
N0

2σ̃2(l,b)+1
, which accounts for the channel estimation inaccuracy, is

missing in the A-PSAM-LLR expression. This term is strictly less than one and

thus the A-PSAM-LLR metric always over-estimates the reliability of the channel

output. Because of the non-zero irreducible MSE 2σ̃2(l, b), the term Es

N0
2σ̃2(l, b)

dominates the denominator when the SNR is high. As a result, the scaling factor
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1
Es
N0

2σ̃2(l,b)+1
becomes much smaller than one. Hence, the A-PSAM-LLR metric will

exceedingly over-estimate the reliability information and become less accurate.

This explains why error floors are observed in high SNR regions in [59, 60].

4.3 Receiver Design

To compute the LLR information using the PSAM-LLR metric in (4.10), we

need the knowledge of the MMSE estimate ĉ(l, b) and the MSE 2σ̃2(l, b). Hence,

the MMSE channel estimator is required at the receiver and the MSE should

be computed for each channel estimate. Dictated by the PSAM-LLR metric,

the receiver structure is shown in the dotted rectangle in Fig. 4.1. The MMSE

estimator provides the channel estimate ĉ(l, b) and MSE 2σ̃2(l, b). The LLR for

each coded symbol is then computed using the proposed LLR metrics. After

deinterleaving, the LLR soft information is then passed to the BP decoder to

obtain the estimated message m̂. This process is referred to as standard BP

decoding.

Another decoding process, called iterative channel estimation and decoding,

is shown in Fig. 4.1 with the dotted path included. Initially, the received pi-

lot signals are used by the MMSE estimator to estimate the channel gain and

the MSE, based on which, the LLRs of the coded symbols are computed and

passed to the BP decoder. After several BP iterations, tentative coded symbol

decisions, which are either in the form of soft information or hard information,

are obtained. These decisions are mapped to MPSK signals, reinterleaved with
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pilot signals reinserted, and then fed back to the MMSE channel estimator. New

channel estimates and MSEs are computed based on these tentative decisions

and the received signal sequence. The LLR information is updated using the new

estimates and then passed to the BP decoder for further decoding. This process

can be repeated several times before making the final decision. Note that this

process of iterative channel estimation and decoding can provide better BEP per-

formance than the standard BP decoding, which will be demonstrated in section

4.4, but it is much more computationally involved.

4.4 Simulation Study and Discussion

In our simulations, the binary code used is a rate-half, regular, (1008, 504) LDPC

code of column weight three, adopted from [123]. Two types of the commonly used

nonbinary codes, namely codes over Galois field GF(q) [9] and codes over integer

residue ring Zq [24] are considered. The nonbinary codes used in our simulations

are randomly generated, rate-half, regular codes of column weight three, having

an equivalent binary length of 1008 bits. The sum-product algorithm is used with

a maximum of 50 iterations. Each BEP data point is obtained from collecting at

least 1000 bit errors.

In all the simulations, we choose the block interleaver of size 1008 × 10. The

observation window length is fixed at W = 801. The SNR refers to the energy per

message bit Eb over the power N0 of the AWGN. By assuming that a pilot signal

takes up the same amount of energy as a data signal, the energy per transmitted
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signal is Es = RVmB
B+1

Eb.

In our simulations, we follow Jakes’s isotropic scattering model [152] by as-

suming that the real and imaginary parts of h(k) are independent, each with

autocorrelation

Rc(i) = σ2J0(2πfdTsi)

where fd is the relative Doppler shift between the transmitter and the receiver,

Ts is the symbol period and J0(·) is the Bessel function of the first kind of order

zero.

4.4.1 Effects of Interleaver

We first study the effect of size of block interleavers using binary codes with BPSK

modulation, under the assumption of perfect CSI. For simplicity, the length of the

interleaver is chosen to be equal to the length of the LDPC code, i.e., n = 1008.

The BEP performance of interleavers of different widths is compared and shown

in Fig. 4.2. It is observed that as the size of the interleaver increases, better

BEP performance can be achieved. The marginal BEP improvement becomes

insignificant when the interleaved BEP performance is close to that of the uncor-

related fading channel. To achieve a targeted BEP, interleavers with large sizes

are required for channels with lower fade rates.

On the other hand, although increasing the size of interleaver can help to break

the memory of the correlated fading channel, it also increases the latency of the

system, because the receiver has to obtain all the data signals in an interleaved
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Figure 4.2: Effects of size of interleavers over Rayleigh fading channels with

normalized fade rates fdTs = 0.005 and fdTs = 0.02 with perfect CSI

block before it starts to decode the message.

For all the simulations in this section, the uniform interleaver of size 1008×10

is chosen, unless otherwise specified.

4.4.2 Effects of Pilot Symbol Spacing

Consider binary codes with BPSK modulation. The effects of pilot symbol spacing

B on the BEP performance are investigated at two SNRs at the normalized fade

rates of fdTs = 0.005 and fdTs = 0.02, as shown Fig. 4.3(a). It is observed that

as pilot spacing B increases, the BEP performance improves at low values of B.
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This is because the proportion of energy devoted to the pilot symbols decreases

as B increase, and thus, the energy per data signal Es increases, giving rise to

the improvement in the BEP.

As B increases further, the pilot signals are further away from the interval

where the channel gain is to be estimated. The correlation between them becomes

weaker. Moreover, the number of pilot signals within the observation window

also decreases. For these two reasons, the channel estimates become less accurate

when B increases. Since the pilot spacing B is large, the increase in energy per

data symbol Es when B increases further becomes negligibly small. The decrease

in channel estimation accuracy becomes the dominating factor and causes degra-

dation in the BEP performance. The optimal performance is achieved at B = 5

at fdTs = 0.02, and in the range between 9 and 11 at fdTs = 0.005.

Alternative, the optimal value of the pilot symbol spacing can be approx-

imately determined by examining the PSAM-LLR metric in (4.18). We can

roughly treat the multiplication factor 1
Es
N0

2σ̃2(l,b)+1
as the scaling down factor on

the SNR. Hence, by considering the equivalent SNR,

SNRequ =
1

Es

N0
2σ̃2(l, b) + 1

Es

N0

=
Es

2σ̃2(l, b)Es +N0

=
RBEb

2σ̃2(l, b)RBEb + (B + 1)N0

we plot the graph of the equivalent SNR against the pilot symbol spacing B, as

shown in Fig. 4.3(b). It can be observed that the optimal pilot symbol spacing

obtained in this way approximately agrees with that from simulations.
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Figure 4.3: (a) Effects of pilot symbol spacing at normalized fade rates fdTs =

0.005 and fdTs = 0.02; (b) Equivalent SNR interpretation of the optimum pilot

symbol spacing
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4.4.3 Standard BP Decoding with BPSK Modulation

In this section, we compare the performance the PSAM-LLR metric (4.18) and

the A-PSAM-LLR metric (4.19) with BPSK modulated binary LDPC code trans-

mitted at the normalized fade rates of fdTs = 0.005 and fdTs = 0.02, as shown

in Figs. 4.4(a) and (b). It is observed that the A-PSAM-LLR is a good approxi-

mation to the PSAM-LLR at low SNRs. As the SNR increases, the PSAM-LLR

achieves more significant performance gain over the A-PSAM-LLR. Noticeable

error floors can be observed for the performance curves of the A-PSAM-LLR

when BEP reaches 10−5, while no error floor is observed in this region for the

PSAM-LLR metric. At the higher fade rate, when the pilot symbols are placed

far apart (B = 30), the channel estimates are very poor and the MSEs are quite

large. The A-PSAM-LLR exceedingly over-estimates the channel LLR informa-

tion when the SNR is high and the soft input to the BP decoder computed using

A-PSAM-LLR metric is inaccurate. As a result, the BEP of the A-PSAM-LLR

approaches 0.5, while the PSAM-LLR still gives reasonable performance. To il-

lustrate how the PSAM-LLR improves the error floor performance, we choose an

irregular (1008, 504) binary code, which has an error floor at a BEP of around

10−5. It can be observed, from Figs. 4.5(a) and (b), that the error floor of the

PSAM-LLR metric remains at the BEP of 10−5, while that of the A-PSAM-LLR

is approximately one decade higher at the fade rate fdTs = 0.02 and half decade

higher at the fade rate fdTs = 0.005.

We also compare, in TABLE 4.1 and TABLE 4.2, the time complexity of
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Figure 4.4: Performance comparison of LLR metrics under BPSK modulation

over Rayleigh fading channels with various normalized fade rates: (a) fdTs =

0.005; (b) fdTs = 0.02.
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Figure 4.5: Comparison of error floors with irregular codes under BPSK mod-

ulation over Rayleigh fading channels with various normalized fade rates: (a)

fdTs = 0.005; (b) fdTs = 0.02.
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Eb
N0

Average Number of BP Iterations

B=10 B=20 B=30

PSAM-LLR A-PSAM-LLR PSAM-LLR A-PSAM-LLR PSAM-LLR A-PSAM-LLR

5.5 17.208 17.646 22.244 23.020 28.388 29.323

6.0 11.242 11.552 14.554 15.257 19.498 20.637

6.5 7.573 7.766 9.637 10.099 12.677 13.684

7.0 5.771 5.859 6.844 7.111 8.478 9.073

Table 4.1: Average number of BP iterations required for the PSAM-LLR metric

and the A-PSAM-LLR metric over Rayleigh fading channels with normalized fade

rate fdTs = 0.005

the two metrics in term of the average number of BP iterations required for

convergence. It is observed that the PSAM-LLR achieves faster convergence

than the A-PSAM-LLR. At the fade rate fdTs = 0.02, when the SNR is 7.0dB

and B is 20, the PSAM-LLR saves as many as 3.8 BP iterations, compared to

the A-PSAM-LLR. Note that the MSE can be computed offline, and thus the

PSAM-LLR metric is more efficient in processing long data streams.

4.4.4 Standard BP Decoding under QPSK and 8PSK Mod-

ulation

Figs. 4.6(a) and (b) show the performance comparison of the various LLR metrics

using the binary LDPC code under QPSK modulation with Gray coding. Observe

that the PSAM-LLR and the S-PSAM-LLR yield exactly the same performance.
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Eb
N0

Average Number of BP Iterations

B=10 B=20

PSAM-LLR A-PSAM-LLR PSAM-LLR A-PSAM-LLR

7.0 12.123 13.834 30.980 34.837

7.5 7.903 8.582 18.904 23.218

8.0 6.060 6.282 11.053 13.532

8.5 5.024 5.107 7.400 8.305

Table 4.2: Average number of BP iterations required for the PSAM-LLR metric

and the A-PSAM-LLR metric over Rayleigh fading channels with normalized fade

rate fdTs = 0.02

In the Appendix, we prove that, for binary codes, the PSAM-LLR (resp., the A-

PSAM-LLR) equals to the S-PSAM-LLR (resp., the SA-PSAM-LLR) under Gray

coded QPSK. For 8PSK modulation, as shown in Figs. 4.7(a) and (b), the PSAM-

LLR and the S-PSAM-LLR yield similar BEP performance, so the S-PSAM-LLR

can be used as a simplified alternative to the PSAM-LLR metric. Likewise, the

A-PSAM-LLR and the SA-PSAM-LLR are alternatives of each other.

Similar to the BPSK case, for both QPSK and 8PSK, the A-PSAM-LLR

metric, which ignores the channel estimation accuracy, has high error floors and

performs significantly worse than the PSAM-LLR metric, especially in high SNR

regions.
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Figure 4.6: Performance comparison of LLR metrics under QPSK modulation

over Rayleigh fading channels with various normalized fade rates: (a) fdTs =

0.005; (b) fdTs = 0.02.
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Figure 4.7: Performance comparison of LLR metrics under 8PSK modulation over

Rayleigh fading channels with various normalized fade rates: (a) fdTs = 0.005;

(b) fdTs = 0.02.
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4.4.5 Effects of SNR Estimation Error

The computation of the PSAM-LLR metric requires the knowledge of the SNR

at the receiver. Figs. 4.8(a) and (b) demonstrate the effect of SNR estimation

errors for BPSK modulated binary LDPC code transmitted at the normalized fade

rates of fdTs = 0.005 and fdTs = 0.02, respectively. The horizontal axis indicates

the estimation errors (in dB), with positive values representing over-estimation,

and negative values, under-estimation. It can be observed that the PSAM-LLR

metric performs better than the A-PSAM-LLR metric under SNR estimation

errors. For both metrics, under-estimation results in detrimental degradation in

the BEP performance and an over-estimation of 2 − 5 dB tends to improve the

performance, but the performance drops very quickly if the SNR is over-estimated

further, with the A-PSAM-LLR deteriorating much faster than the PSAM-LLR.

4.4.6 Space Diversity with Multiple Receive Antennas

Antenna diversity technique is effective in mitigating the fading effect to improve

the quality and reliability of a wireless link. When a message signal is transmitted

through one transmit antenna and received by M receive antennas, M diversity

channels are formed, all of which carry the same information-bearing signal. If it

is assumed that the receive antennas are spaced sufficiently far apart such that

the multipath components in the signal have significantly different propagation

delays at the receive antennas, the M channels can be assumed to be mutually
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Figure 4.8: Robustness comparison between PSAM-LLR and A-PSAM-LLR sub-

jected to SNR mis-estimation over Rayleigh fading channels with various normal-

ized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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statistically independent. Consequently, it can be derived that the LLR metric

for this single-input multiple-output system is equal to the summation of the

LLRs from all the M diversity channels, each of which is computed independently

based on the received signal sequence from the corresponding diversity channel.

As the number of receive antennas or the order of diversity M increases, the

probability that a transmitted symbol is received in deep fade, decreases and

thus the detection is more reliable.

In this section, we consider the PSAM-LLR metric and study the diversity

effect by assuming that all the diversity channels have the same SNR and ex-

perience independent fading with identical spectrum. The error performance for

diversity reception of different orders is plotted against the total mean received

SNR per message bit, γb, given by

γb =
Eb

N0

M∑
m=1

E[c2m],

as shown in Figs. 4.9(a) and (b), where E[c2m] is the average power gain of the

m-th channel. The plots clearly illustrate the advantage of diversity reception in

overcoming the performance degradation caused by fading. However, when the

order of diversity exceeds a certain limit, increasing the diversity order may have

detrimental effect on the performance. This is because at a given total mean

received SNR γb, the received SNR per branch, i.e., γb

M
, decreases as the number

of receive antennas increases. As a result, the energy devoted to the pilot signals

drops and the accuracy of channel estimation in each branch decreases. When the

diversity order is so high that the pilot signals do not have sufficient energy for
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channel estimation, the performance will get worse. The incapability of obtaining

reliable channel estimates can even overweigh the advantage of diversity reception

in minimizing the effect of deep fade. It can be observed, in Fig. 4.9(b), that

when the γb is less than 6.5 dB, the error performance when M = 2 is better

than that when M = 3 for the case B = 10 at normalized fade rate fdTs = 0.02.

4.4.7 Iterative Channel Estimation and Decoding

In this section, we consider a two-stage process of iterative channel estimation

and decoding with hard decision feedback for the binary LDPC code under BPSK

modulation. The decoding process is described as follows. Suppose that the A-

PSAM-LLR metric is used. In the first stage, the LLR values are computed using

this metric from only the pilot signals within an observation window of length

W = 801. The hard-decision tentative code-bit estimates are taken after 10

BP iterations. These hard-decision estimates are reinterleaved and pilot symbols

are reinserted. Assuming this resulting symbol sequence is equal to the actual

transmitted sequence, which means that all signals can be interpreted as pilot

signals, at the second stage, the channel gains are re-estimated using the received

signals from a shorter observation window of length W̄ = 81. New LLR values are

obtained using the same metric. A maximum of 50 BP iterations are performed

to get the final decision. If the PSAM-LLR metric is used, the process is the

same as described above except that at each stage, the channel estimation MSE

is calculated in addition, and the LLRs are computed using the PSAM-LLR

metric.
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Figure 4.9: Effects of diversity for the PSAM-LLR over Rayleigh fading channels

with various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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Figure 4.10: BEP performance comparison of iterative channel estimation and de-

coding and standard BP decoding under BPSK modulation over Rayleigh fading

channels at normalized fade rate fdTs = 0.02
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Figure 4.11: Performance comparison of iterative channel estimation and decod-

ing with different LLR metrics under BPSK modulation over Rayleigh fading

channels with normalized fade rate fdTs = 0.005
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Figure 4.12: Performance comparison of iterative channel estimation and decod-

ing with different LLR metrics under BPSK modulation over Rayleigh fading

channels with normalized fade rate fdTs = 0.02
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Figure 4.13: Performance comparison of iterative channel estimation and decod-

ing with different LLR metrics under BPSK modulation over Rayleigh fading

channels with normalized fade rate fdTs = 0.05
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Fig. 4.10 shows that this two-stage process of iterative channel estimation and

decoding achieves a BEP performance gain of around 1.5−2 dB over the standard

BP decoding at fdTs = 0.02. The performance comparisons of the iterative chan-

nel estimation and decoding between the PSAM-LLR and A-PSAM-LLR with

BPSK modulation are shown in Fig. 4.11, Fig. 4.12 and Fig. 4.13 at normal-

ized fade rate of fdTs = 0.005, fdTs = 0.02 and fdTs = 0.05, respectively. It is

observed that the PSAM-LLR outperforms the A-PSAM-LLR in the high SNR

region, especially when the fade rate is high. The reasons are as follows. The

tentative decisions after the initial ten iterations using the PSAM-LLR metric are

more accurate than those using the A-PSAM-LLR metric. When these tentative

decisions are fed back, more accurate channel re-estimates and more reliable soft

information are obtained for the PSAM-LLR metric, and thus the BEP perfor-

mance is better. As the normalized fade rate increases, the channel estimates

are less accurate and the estimation error variance 2σ̃2
m(l, b) increases. The term

1
Es
N0

2σ̃2(l,b)+1
becomes much less than unity, especially when the SNR is high. The

LLRs obtained from the A-PSAM-LLR metric are thus less accurate. As a result,

the difference in the accuracies of the tentative decisions between the PSAM-LLR

metric and the A-PSAM-LLR metric at the first stage of the iterative channel

estimation decoder becomes larger as the fade rate increases. This explains why

the performance gap between the two metrics increases with the increase of the

fade rate.

Similar observations can be made from the two-stage process of iterative chan-

nel estimation and decoding for QPSK modulation, as shown in Figs. 4.14(a) and
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(b), and for 8PSK modulation, as shown in Figs. 4.15(a) and (b).

4.4.8 Quaternary Codes with QPSK Modulation

In this section, the standard BP decoding of the quaternary codes with non-

Gray coded QPSK modulation is considered. Figs. 4.16(a) and (b) show the

comparison between the PSAM-LLR and the A-PSAM-LLR for the GF4 code.

It is observed that significant performance gain is achieved by the PSAM-LLR

metric over the A-PSAM-LLR metric. Error floors are observed at the BEP of

around 10−5 when the A-PSAM-LLR metric is used, while they are not observed

for the PSAM-LLR metric. Similar observations can be made for the Z4 code,

as shown in Figs. 4.17(a) and (b). The performance of binary code, GF4 code

and Z4 code under QPSK modulation is compared in Figs. 4.18(a) and (b).

It is observed that the BEP performance of the Z4 code is better than that of

the GF4, both of which exceed that of the binary code. For each of the three

codes, the PSAM-LLR metric always outperforms the A-PSAM-LLR metric. In

general, nonbinary codes can be used with MPSK modulations to improve the

BEP performance, especially when our PSAM-LLR metric is used.

4.5 Conclusion

In this chapter, we have derived the PSAM-LLR metric and several approxima-

tions for an MPSK-modulated PSAM system over time-selective, frequency-flat,

Rayleigh fading channels. We have also shown that the PSAM-LLR metric, which
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Figure 4.14: Performance comparison of iterative channel estimation and decod-

ing with different LLR metrics under QPSK modulation over Rayleigh fading

channels with various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.

105



4. PSAM-LLR METRIC

7 7.5 8 8.5 9 9.5 10
10

−5

10
−4

10
−3

10
−2

Eb/No(dB)

B
E

P

 

 
PSAM−LLR, B=10
A−PSAM−LLR, B=10
PSAM−LLR, B=20
A−PSAM−LLR, B=20

(a)

7 7.5 8 8.5 9 9.5 10

10
−5

10
−4

10
−3

10
−2

Eb/No(dB)

B
E

P

 

 
PSAM−LLR, B=10
A−PSAM−LLR, B=10
PSAM−LLR, B=20
A−PSAM−LLR, B=20

(b)

Figure 4.15: Performance comparison of iterative channel estimation and decod-

ing with different LLR metrics under 8PSK modulation over Rayleigh fading

channels with various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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Figure 4.16: Performance comparison between PSAM-LLR and A-PSAM-LLR

with GF4 code under QPSK modulation over Rayleigh fading channels with var-

ious normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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Figure 4.17: Performance comparison between PSAM-LLR and A-PSAM-LLR

with Z4 code under QPSK modulation over Rayleigh fading channels with various

normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.

108



4. PSAM-LLR METRIC

7 8 9 10 11 12

10
−5

10
−4

10
−3

10
−2

Eb/No(dB)

B
E

P

 

 
Binary code, PSAM−LLR
Binary code, A−PSAM−LLR
GF(4) code, PSAM−LLR
GF(4) code, A−PSAM−LLR
Z

4
 code, PSAM−LLR

Z
4
 code, A−PSAM−LLR

(a)

7 8 9 10 11 12

10
−5

10
−4

10
−3

10
−2

Eb/No(dB)

B
E

P

 

 
Binary code, PSAM−LLR
Binary code, A−PSAM−LLR
GF(4) code, PSAM−LLR
GF(4) code, A−PSAM−LLR
Z

4
 code, PSAM−LLR

Z
4
 code, A−PSAM−LLR

(b)

Figure 4.18: Performance comparison between PSAM-LLR and A-PSAM-LLR

under QPSK modulation for binary code, GF4 code and Z4 code over Rayleigh

fading channels with various normalized fade rates and pilot symbol spacings:

(a) fdTs = 0.005 with pilot spacing B = 20; (b) fdTs = 0.02 with pilot spacing

B = 10.
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takes into account the information concerning the channel estimation accuracy,

achieves better BEP performance and faster convergence speed. We note that the

PSAM-LLR metric relies on the accuracy of the computation of the estimation

MSE, which is quite complicated in some cases (e.g., when soft decision feedback

is used). These problems will be investigated in our future studies.

It is important to note also that the PSAM-LLR is derived based on the

assumption that perfect KCS is available at the receiver. When this information

is not available, the estimation MSE cannot be computed and the PSAM-LLR

metric cannot be used. In this case, the receiver with PSAM channel estimation

may not have good performance.
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Chapter 5

The LLR Computation via SOVA

with Implicit CSI

In the previous chapter, we discussed the importance of incorporating the knowl-

edge of the channel estimation accuracy into the iterative decoding process and

pointed out that significant performance loss will be incurred if this information

is neglected. The discussions on the PSAM-LLR metric and the role of the chan-

nel estimation accuracy rely on the assumption of perfect KCS at the receiver.

However, in practice, it could be very complicated and computationally costly

to obtain it accurately, especially when the channel statistics varies with time.

When the wrong channel model is used or the parameters that define the auto-

correlation function are measured wrongly, the PSAM receiver will suffer from

severe performance degradation.

In this chapter, we will consider the case when KCS is not available at the
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receiver. Here, KCS refers to the channel fading characteristics only, which in-

cludes, in particular, the fading model and the parameters associated with it.

The spectrum density of the AWGN is known. Since the explicit channel esti-

mates and the channel estimation accuracy cannot be obtained accurately, we

consider the MLSD [70] approach via trellis search, which does not require KCS.

We will incorporate convolutional codes into the MLSD to increase the relative

Hamming distance between contending paths and thus improve the reliability of

the decisions.

Since the MLSD can be combined perfectly with the SOVA [75], which is an

ML based decoder, we propose an algorithm based on SOVA, which produces a

reliability indicator together with the hard-decision output for each bit decision

in the MLSD. We will present how the soft information, in term of LLR, should

be computed based on MLSD with convolutional codes via SOVA over block-wise

static Rayleigh fading channels with unknown channel statistics, and demonstrate

that the LDPC coded transmissions can be more reliably recovered using iterative

decoding with the obtained LLRs. The algorithm is developed based on the

maximum-likelihood sequence detection, which does not require explicit channel

estimation. For each survivor path, an implicit channel estimate is obtained from

the received signals and the tentative decisions of the path. For these reasons,

we name the algorithm as SOVA with implicit CSI (SOVA-ICSI). We will show

that the LLR output of the SOVA-ICSI can be computed solely based on the

received signal sequence, which does not require KCS. Compared with the systems

with differential detection [39–42] and the PSAM systems [56–65], all of which
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require the precise KCS, the SOVA-ICSI detector is more robust and much less

demanding of knowledge of the channel, and thus it can be used more widely in

real applications.

Through computer simulations, we show that the iterative decoding of LDPC

codes with the SOVA-ICSI has substantially better BEP performance and stronger

robustness against signal-to-noise ratio mis-estimation than that with conven-

tional SOVA with PSAM channel estimation. Moreover, the SOVA-ICSI is more

conveniently used for iterative channel estimation and decoding (ICED). Since

the channel refinement is automatically carried out when the updated soft in-

formation is fed back to the SOVA-ICSI detector as the input, external channel

estimation structures are not required and thus no extra computational power

is required for the refinement of the channel estimates. Simulation studies show

that the BEP performance of ICED via SOVA-ICSI is much better than that of

the conventional ICED with hard-decision feedback. We will start this chapter

by introducing the system model.

5.1 System Model

The system model is shown in Fig. 5.1. A binary message sequence m is first

encoded by the outer LDPC encoder. The encoded sequence is then shuffled

by a block interleaver. The interleaved sequence u′ = [u′(1), u′(2), . . . , u′(qK)

is sequentially divided into q blocks of length K, each of which is individually

encoded by a convolutional encoder of rate R = 1/n and constraint length v.
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Figure 5.1: System model of the receiver with SOVA-ICSI

LDPC
Decoder SOVA Channel

Estimator Demod1

LDPC
Encoder

Conv.
Encoder

Pilot
Insertion Mod

Fading
Channel

m̂

m

Figure 5.2: System model of the receiver with SOVA-PSAM
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Note that for the convolutional encoding of each block, additional v − 1 input

bits are required to flush the memory. It will be more convenient if we consider

the sequence u = [u(1), u(2), . . . , u(q(K + v − 1))], which is formed inserting all

the flushing bits into the message sequence u′, as the input to the convolutional

encoder, where u(i(K + v − 1) + j) = u′(iK + j), for 0 ≤ i ≤ q, 0 ≤ j ≤ K

and {u(i(K + v − 1) + j)}0≤i≤q,K<j≤K+v−1 are the flushing bits. The encoded

sequence is denoted by x = [x(1),x(2), . . . ,x(k), . . . ,x(q(K + v − 1))], where

x(k) = [x(1)(k), x(2)(k), . . . x(n)(k)] and x(i)(k) is the output from the i-th output

branch of the convolutional encoder. We further assume that the a priori LLR

of the bit u(k) is given by La(k) = log P (u(k)=0)
P (u(k)=1)

.

The coded sequence x is modulated using BPSK. The baseband data signal se-

quence is denoted by s = [s(i)(k)]1≤i≤n,1≤k≤q(K+v−1), and s(i)(k) =
√
Es exp(jπx(i)(k)),

where Es denotes the energy of each modulated signal. Pilot symbols (signals)

are inserted periodically into the data signal sequence with pilot symbol spacing

B. For simplicity, we assume each pilot symbol takes bit value 0 and energy Es,

i.e., the baseband pilot signal has the form
√
Es exp(jπ0).

The signal sequence is transmitted through a frequency-flat quasi-static or

block-wise static fading channel. Assume the channel gains remain constant

within every interval consisting of W consecutive transmitted signals, which is

referred to as a fading block, and W is called the fading block length.

Denote the received data signal sequence by r = [r(i)(k)]1≤i≤n,1≤k≤q(K+v−1),

and each of the received signals can be expressed as

r(i)(k) = h(i)(k)s(i)(k) + n(i)(k), (5.1)
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where h(i)(k) is the channel gain experienced during the transmission of x(i)(k),

and n(i)(k) is the complex AWGN with mean zero and variance N0.

The SOVA-ICSI detector is used to decode the convolutional code and gen-

erate soft output for each LDPC encoded bit. After deinterleaving, the soft

information is passed to the BP decoder to obtain the estimated message m̂.

For comparison, the system model for the conventional SOVA with PSAM

channel estimation, which is referred to as the SOVA-PSAM, is shown in Fig. 5.2.

Note that the same transmitter structure is used and the same fading channel

is assumed. At the receiver, the channel gain for each received data signal is

estimated from the pilot symbols, using a moving average channel estimator [59].

Assuming that the estimated channel gain is perfect, the conventional SOVA is

used to decode the inner convolutional code. The soft output, after deinterleaving,

is fed to the LDPC decoder to obtain message estimates. Note that since KCS is

not available, the MMSE estimates cannot be computed at the receiver. Based

on the information available, we can only use the moving average estimator for

channel estimation in the PSAM scheme and assume that the channel estimates

are equal to the real channel gains.

5.2 Metric Derivation

At the receiver, the SOVA-ICSI detector is used to generate soft decisions from

the received signals, as shown in Fig. 5.1. The SOVA-ICSI is based on the

SOVA, whereby a survivor is selected by comparing the reliability metrics of the
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contending paths when they merge into the same state on the trellis. We will

first compute the reliability metric for the SOVA-ICSI detector.

Suppose that the tentative decisions on a hypothesized path are given by

u[1,t] = [u(1), u(2), . . . u(t)], where t ≤ qK, and the transmitted signal sequence

corresponding to u[1,t] is denoted by s[1,t]. We will compute the ML probability

density function for the path segment containing L tentative decisions from t′ =

t−L+1 to t, and use it as a measure of the reliability of this hypothesized path.

Here, the reliability of a path segment is used to represent that of the entire path

and we will justify this later. We call L the window length of the SOVA-ICSI.

For the ease of representation, let v = u[t′,t] = [u(t′), u(t′ + 1), . . . u(t)], where

t′ = max{t−L+1, 1}, and denote the transmitted signal vector corresponding to v

by s(v). Note that v is one segment of the path u[1,t]. Given u[1,t′−1], the segment

v and the transmitted signal vector s(v) are of one-to-one correspondence. We

assume that v is only a short segment, such that the transmitted data signals in

s(v) are all inside the fading block centered at the transmission interval of s(1)(t),

which is the transmitted signal corresponding to the code bit from the first branch

of the convolutional encoder at time t. Let r(v) the vector of the received data

signals corresponding to s(v), and let rp(t) denote the vector formed by all the

received pilot signals within this fading block. For the ease of presentation, we

will simply use s, r and rp to denote s(v), r(t) and rp(v), respectively, in this

section.

Since the received signals r and rp are inside the same fading block, they

experience the same fading, denoted by h. Since KCS is not available at the
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receiver, h is assumed to be an unknown constant. Following [70], the probability

density function is maximized with respect to the channel gain h, as

max
h

p(v, r, rp|h),

Using Bayes’ rule, we get

p(v, r, rp|h) = p(r, rp|v, h)P (v|h). (5.2)

Since the a priori probability of the message v is independent of the parameter

h, we have

P (v|h) = P (v)

Conditioned on the channel gain and the transmitted signal sequence, each of

the received signals is Gaussian distributed and statistically independent of one

another. Substituting the probability density function of p(r, rp|h,v) into (5.2),

we obtain

p(v, r, rp|h) =
1

(πN0)J
exp
(
−||r − hs||2 + ||rp − h

√
EsI||2

N0

)
P (v), (5.3)

where I is a vector of the same length as rp with each entry equal to 1, and J is

the total number of received signals in r and rp.

From [70], for a given hypothesis v (or equivalently s), the optimum value of

the channel gain, obtained by maximizing (5.3), is given by

ĥ(s) =
sHr +

√
EsI

Hrp

||s||2 + Es||I||2 (5.4)
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Substitute (5.4) into (5.3), and after simplification, the likelihood function is

written as a function of v, as

max
h

p(v, r, rp|h) = p(v, r, rp|ĥ(s))

=
1

(πN0)J
exp
(
− 1

N0
(||r||2 + ||rp||2 − |sHr +

√
EsI

Hrp)|2
||s||2 + Es||I||2 )

)
P (v)

Note that for a 0-1 random variable y,

logP (y = i) =
1

2
cos(πi) log

P (y = 0)

P (y = 1)︸ ︷︷ ︸
La(k)

+Cy, for i = 0, 1

where Cy = 1
2
(logP (y = 0) + logP (y = 1)) is independent of the realization of

y. Hence, the term P (v) can be written as the summation of the a priori LLR

values as

P (v) = exp
( t∑

k=t′

1

2
cos(πu(k))La(k) + Cu(k)

)

Now, we define the reliability metric for the path segment v as

M∗(v) = log p(v, r, rp|ĥ(s))

=
(
log

1

(πN0)J
− ||r||2 + ||rp||2

N0
+

t∑
k=t′

Cu(k)

)
︸ ︷︷ ︸

constant

+
|sHr +

√
EsI

Hrp|2
N0(||s||2 + Es||I||2)

+

t∑
k=t′

1

2
cos(πu(k))La(k).

By cancelling the additive constant, we obtain the simplified metric as

M(v) =
|sHr +

√
EsI

Hrp|2
N0(||s||2 + Es||I||2) +

t∑
k=t′

1

2
cos(πu(k))La(k), (5.5)
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We refer to this metric in (5.5) as the SOVA-ICSI metric.

Next, we explain why the reliability metric of the selected segment pro-

vides a reasonably good measure of the reliability of the whole path. Con-

sider two contending paths, denoted by u[1,t] = [u(1), u(2), . . . u(t)] and u′
[1,t] =

[u′(1), u′(2), . . . u′(t)], entering the same state, as shown in Fig. 5.3. If the two

paths have converged before time t′, i.e., u(k) = u′(k) for k ≤ t′, as shown

in Fig. 5.3(a), the difference between the two hypothesized input sequences

u[1,t] = [u(1), u(2), . . . u(t)] and u′
[1,t] = [u′(1), u′(2), . . . u′(t)] can be fully charac-

terized by the segments u[t′,t] and u′
[t′,t]. Hence, the survivor path can be reliably

determined by comparing the metrics M(u[t′,t]) and M(u′
[t′,t]).

On the other hand, if the two paths have not converged at time t′, as shown

in Fig. 5.3(b), the difference in the metrics M(m[t′,t]) and M(m′
[t′,t]) can only

provide a partial reliability measure in selecting the survivor path. We refer to

this case as the path divergence problem. It can be shown that the probability of

encountering the path divergence problem is small when the window length L is

sufficiently large, and it decreases very rapidly with the increase of L [133, 134].

However, it is not desirable to choose large values of L. The reasons are as follows.

Firstly, the choice of L is restricted by the fading characteristics of the chan-

nel, since the transmitted signals r[t′,t] are required to be within the same fading

block. Thus, the value of L is restricted by the fading block length of the channel.

Secondly, it has been well known that the joint maximization of the channel and

the data suffers from phase and divisor ambiguities [135]. In the SOVA-ICSI,

the pilot signals are shared by the contending hypothesized sequences, and help
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to minimize these ambiguities. If more data signals are considered in the joint

estimation, more pilot signals should be used to minimize performance degra-

dation caused by these ambiguities. Since pilots are the transmission overhead,

which increase the transmission bandwidth, the number of pilot signals used in

transmissions is usually limited. Hence, the value of L should be chosen based

on the frequency of pilot insertion, in order to minimize performance loss due to

phase and divisor ambiguities.

To minimize the occurrence of the path divergence problem, large window

lengths are preferred. However, small values of window length L help resolve the

phase and divisor ambiguities. With a deliberate choice of the window length

L, we can strike a good balance and obtain more reliable soft decisions from the

SOVA-ICSI. We will show, in section 5.5, that optimum value of L exists, and

the SOVA-ICSI with optimum L always outperforms the SOVA-PSAM.

5.3 SOVA-ICSI

With the SOVA-ICSI metric in (5.5), the SOVA-ICSI is described as follows:

Step 1. Initialize the set of available states, S = {S0}, where S0 is the all

zero state. Initialized the survivor for state S0 as d0(S0) = ∅, and the reliability

vector as Λ0(S0) = ∅.

Step 2. Beginning from time t = 1, compute the set of current available

states S′ from the previous states S. For each state Si in S′, do the followings:

Compute the path metric using (5.5) for each path enter the state Si. If
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Figure 5.3: Trellis diagrams illustrating the two situations encountered in the

SOVA-ICSI
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only one path enters Si from the previous state Sj , store this path as the sur-

vivor and the reliability vector is updated as Λt(Si) = [Λt−1(Sj),∞]. If two

paths enter the state Si from the previous state Sj and Sj′, respectively, de-

note the tentative decisions for this two path as ut = [u(1), u(2), . . . , u(t)] and

u′
t = [u′(1), u′(2), . . . u′(t)], and the corresponding path metrics as M(ut) and

M(u′
t). Select the path with the larger metric as the survivor. Without loss of

generality, assume Δ(t) = M(ut)−M(u′
t) > 0 and hence ut is selected as the sur-

vivor. Suppose the reliability vector Λt−1(Sj) = [λt−1(1), λt−1(2), . . . , λt−1(t−1)],

the reliability vector Λt(Si) = [λt(1), λt(2), . . . , λt(t)] is updated as

λt(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{Δ(t), λt−1(k)}, if u(k) �= u′(k)

λt−1(k), if u(k) = u′(k)

for k = 1, 2 . . . , t− 1

λt(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ(t), if u(t) �= u′(t)

+∞, if u(t) = u′(t)

(The details of the reliability update can be found in [159, Section 12.5].)

Step 3 Increase t by 1 and update S by S′. If t ≤ q(K + v − 1), repeat step

2; otherwise, stop.

5.4 Iterative Channel Estimation and Decoding

The receiver structure for the conventional iterative channel estimation and de-

coding with hard decision feedback is shown in Fig. 5.4(a). After demodulation,

the initial channel estimates are obtained from the pilot signals. Assuming that
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the estimated channel gains are perfect and the a priori LLR λin
1 is zero, the

SOVA is used to decode the inner convolutional code. The soft output λout
1 , is

deinterleaved and then passed to the LDPC decoder. After a fixed number of

iterations, which is referred to as the internal-iteration, the extrinsic informa-

tion, which is obtained by subtracting the input LLR λin
0 from the a posteriori

LLR λout
0 , is reinterleaved and fed back to the SOVA decoder as the new a priori

information. At the same time, tentative hard decisions are determined based

on λout
0 , which are reinterleaved and convolutionally encoded. Assuming this en-

coded sequence is equal to the actual transmitted data sequence, which means

that all the data signals can be interpreted as pilot signals, the channel gains are

re-estimated. With new channel estimates and new a priori information, SOVA

produces new LLR output λout
1 . Again, the extrinsic information, obtained by

λout
1 − λin

1 , is deinterleaved and passed to the LDPC decoder. This process is

repeated for several super-iterations, before making the final decision. We refer

to this decoding process as the ICED-SOVA-PSAM.

The receiver for the iterative channel estimation and decoding with the SOVA-

ICSI detector is much simpler. As shown in Fig. 5.4(b), no feedback path is used

since explicit channel estimation is not required. Similar to the ICED-SOVA-

PSAM, the extrinsic information is exchanged between the LDPC decoder and

the SOVA-ICSI decoder. We refer to this decoding process as the ICED-SOVA-

ICSI.

Note that in each super-iteration, the extrinsic information is exchanged be-

tween the LDPC decoder and the SOVA-PSAM or the SOVA-ICSI decoder. This
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Figure 5.4: System models of iterative channel estimation and decoding: (a)

ICED-SOVA-PSAM; (b) ICED-SOVA-ICSI.

process resembles the turbo decoding process, which has been discussed in Chap-

ter 2. In the literature, this is known as the ‘turbo-like’ decoding [136–138]. In

ICED-SOVA-PSAM and ICED-SOVA-ICSI, besides the performance gain due to

more accurate channel estimates, additional coding gain is also achieved from the

turbo-like coding structure.

5.5 Simulation Studies

In this section, we present the simulation results which illustrate the superiority

of the SOVA-ICSI. We choose the simplest maximum-free-distance convolutional

code of rate half with the generator given by [5 7] in octal. The rate-half, regular,
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(1008, 504) LDPC code of column weight three, adopted from [123], is chosen and

BP decoding or the sum-product algorithm is used in the LDPC decoder, with a

maximum of 50 iterations. Each BEP data point is obtained from collecting at

least 1000 bit errors.

A block interleaver of size 1008×100 is chosen. The time-selective, frequency-

flat, slow, Rayleigh fading channel is assumed, which follows Jakes’s isotropic

scattering model [152]: the real and imaginary parts of the channel gain are

assumed to be independent, each with autocorrelation

Rc(k) = σ2J0(2πfdTsk)

where fd is the relative Doppler shift between the transmitter and the receiver,

Ts is the symbol period and J0(·) is the Bessel function of the first kind of order

zero. Two normalized fade rates, fdTs = 0.001 and fdTs = 0.005, are considered.

We assume that this fading channel can be approximated to be the block-wise

fading with fading block length W = 1
4fdTs

.

5.5.1 Comparison between SOVA-ICSI and SOVA-PSAM

In Figs. 5.5(a) and (b), we compare the performance of BP decoding between

the SOVA-ICSI and SOVA-PSAM for convolutional codes with different length K

with various pilot symbol spacings at the normalized fade rate of fdTs = 0.001.

It can be observed that the SOVA-ICSI outperforms the SOVA-PSAM by 0.6

dB, 0.35 dB and 0.17 dB at the BEP of 10−5 when B is equal to 50, 30 and

10, respectively when K = 8, and the performance gain of the SOVA-ICSI is
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0.6 dB, 0.55 dB and 0.45 dB over the SOVA-PSAM when B is equal to 50, 30

and 10, respectively when K = 200. Moreover, the performance with the short

convolutional code is better than that with the long convolutional code.

Similar observations can be made at the normalized fade rate of fdTs = 0.005,

as shown in In Figs. 5.6(a) and (b).

5.5.2 Effect of window length in SOVA-ICSI

In this section, we study the effect of the window length L for the SOVA-ICSI.

Figs. 5.7(a) and (b) show the BEP of the BP decoding with SOVA-ICSI at

different window lengths at the fade rate fdTs = 0.001. It is observed that when

L is less than 10, the BEP performance degrades with the decrease of L. This is

because when L is small, the reliability metric is computed based on a very short

segment. The probability of encountering the path divergence problem is thus

quite significant. Hence, the BEP increases with the decrease of L.

When L is sufficiently large, the occurrence of the path divergence problem is

almost negligible and the minimum BEPs are achieved when the window lengths

are around 10 to 12.

When L increases further, more data signals are considered in the joint op-

timum decision in SOVA-ICSI. The number of pilot signals is not sufficient to

overcome the phase and divisor ambiguities. This explains why the BEP shoots

up when the window length is further increased. Moreover, when the pilot spac-

ing is short, there would be more pilot signals within each fading block, which

can be used to resolve the phase and divisor ambiguities. Hence, larger window
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Figure 5.5: BEP performance comparison of SOVA-ICSI and SOVA-PSAM at

the normalized fade rate of fdTs = 0.001 with various parameters: (a) L = 10,

K = 8; (b) L = 10, K = 200.
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Figure 5.6: BEP performance comparison of SOVA-ICSI and SOVA-PSAM at

the normalized fade rate of fdTs = 0.005 with various parameters: (a) K = 8; (b)

K = 200.
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length can be used for the SOVA-ICSI. It can be observed in Fig. 5.7(a) that

for B = 50, the BEP increases immediately after hitting the optimum value at

L = 10, while for B = 10, the BEP remains almost the same at the minimum

value from L = 10 to L = 18, and rises only when L goes beyond 19.

Similar trends are observed at the fade rate of fdTs = 0.005, as shown in Figs.

5.8(a) and (b). The optimum values of L, for the short convolutional encoder with

K = 8, are obtained at 6, 7 and 8 for B = 15, B = 10 and B = 5, respectively.

For K = 200, the optimum values are obtained at 7, 7 and 8 for B = 15, B = 10

and B = 5, respectively. Compared with Figs. 5.7(a) and (b), the u-shape curves

have much narrower bases, and the BEP rises very quickly when L deviates away

from the optimum value, suggesting that the performance of the SOVA-ISCI is

more sensitive to the window length. This can be explained as follows. Since

the fading block length W is approximated by 1
4fdTs

, the fading block at the

fade rate of fdTs = 0.005 is only one-fifth of the length of the fading block at

fdTs = 0.001. There are much fewer pilot signals in the fading block, which can

only effectively resolve the phase and divisor ambiguities for the SOVA-ICSI with

short window lengths. For these window lengths, the probability of occurrence of

the path divergence problem in the SOVA-ICSI is still considerably high. Thus,

if a smaller value of L is chosen, the SOVA-ICSI will suffer significantly from

the path divergence problem and the performance degrades rapidly. On the

other hand, when L increases further, the phase and divisor ambiguities could no

longer be resolved effectively and the BEP also increases very fast. Therefore,

sharp u-shape curves are observed.
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Based on Figs. 5.7(a) and (b), we choose the window length L to be 10 for

all the simulations at the normalized fade rate of 0.001 in section 5.5.1. For

the normalized fade rate of 0.005, since the performance is very sensitive to the

window length, we choose the optimum L for each case, as indicted in Figs. 5.6(a)

and (b).

5.5.3 Effect of SNR Mis-estimation

Figs. 5.9(a) and (b) show the performance of the SOVA-ICSI and the SOVA-

PSAM subjected to SNR estimation errors at the normalized fade rate of fdTs =

0.001. The horizontal axis indicates the estimation errors (in dB), with pos-

itive values representing over-estimation and negative values denoting under-

estimation. It can be observed that over-estimation results in detrimental BEP

performance degradation and an under-estimation of around 3dB tends to im-

prove the performance for both the algorithms. Furthermore, it can be observed

that the curves of the SOVA-ICSI have broader u-shaped bases, suggesting that

the SOVA-ICSI is more robust than the SOVA-PSAM, subjected to SNR mis-

estimation errors. Similar observations can be made at the normalized fade rate

of fdTs = 0.005, as shown in In Figs. 5.10(a) and (b).

5.5.4 Iterative Channel Estimation and Decoding

In this section, the two receiver structures with iterative channel estimation and

decoding are considered, namely, the ICED-SOVA-PSAM and the ICED-SOVA-
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Figure 5.7: Effect of the window length L in the SOVA-ICSI at the normalized

fade rate of fdTs = 0.001: (a) Eb/N0 = 6.5 dB, K = 8; (b) Eb/N0 = 7.5 dB,

K = 200.
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Figure 5.8: Effect of the window length L in the SOVA-ICSI at the normalized

fade rate of fdTs = 0.005: (a) Eb/N0 = 8 dB, K = 8; (b) Eb/N0 = 8.5 dB,

K = 200.
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Figure 5.9: Robustness comparison between SOVA-ICSI and SOVA-PSAM under

SNR mis-estimation at the normalized fade rate of fdTs = 0.001: (a) Eb/N0 = 6.5

dB, L = 10, K = 8; (b) Eb/N0 = 7.5 dB, L = 10, K = 200.

134



5. SOVA-ICSI ALGORITHM

−10 −5 0 5 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR mis−estimation(dB)

B
E

P

 

 

SOVA−ICSI, B=10
SOVA−ICSI, B=15
SOVA−PSAM, B=10
SOVA−PSAM, B=15

(a)

−10 −5 0 5 10

10
−5

10
−4

10
−3

10
−2

10
−1

SNR mis−estimation(dB)

B
E

P

 

 

SOVA−ICSI, B=10
SOVA−ICSI, B=15
SOVA−PSAM, B=10
SOVA−PSAM, B=15

(b)

Figure 5.10: Robustness comparison between SOVA-ICSI and SOVA-PSAM

under SNR mis-estimation at the normalized fade rate of fdTs = 0.005: (a)

Eb/N0 = 8 dB, L = 7, K = 8; (b) Eb/N0 = 8 dB, L = 7, K = 200.
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ICSI. For each receiver, 10 super-iterations are performed, with a maximum of 5

internal-iterations in each super-iteration.

In Figs. 5.11, 5.12, 5.13 and 5.14, the BEP performances of SOVA-ICSI,

SOVA-PSAM, ICED-SOVA-PSAM and ICED-SOVA-ICSI are compared for the

convolutional code with different lengths at the two normalized fade rates. The

performance of the SOVA-PSAM with perfect CSI is obtained using the SOVA-

PSAM receiver structure assuming the CSI is perfectly known at the receiver.

Similarly, the ICED-SOVA-PSAM with perfect CSI assumes the ICED-SOVA-

PSAM receiver structure with perfect knowledge of CSI.

It can be observed that the ICED-SOVA-ICSI (resp., the ICED-SOVA-PSAM)

has much better performance than the SOVA-ICSI (resp., the SOVA-PSAM), and

the performance gain of using iterative channel estimation and decoding is around

1 − 1.5 dB at the BEP of 10−5. Not surprisingly, the ICED-SOVA-ICSI outper-

forms the ICED-SOVA-PSAM by approximately 0.5 dB. In Figs. 5.11 and 5.12,

it is observed that the performance of the ICED-SOVA-ICSI is better than that

of the SOVA-PSAM with perfect CSI. This is because the implicit channel esti-

mation in the ICED-SOVA-ICSI has been quite accurate. The performance loss

due to estimation errors is smaller compared to the performance gain from the

additional coding gain of the turbo-like coding structure. On the other hand,

when the fade rate is higher, the channel varies more rapidly and it is expected

that accurate channel estimation becomes much more difficult. As shown in Fig.

5.13, the performance of the ICED-SOVA-ICSI is worse than that of the SOVA-

PSAM with perfect CSI. In this case, the channel estimates are less accurate and
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the loss in the BEP performance due to estimation errors is huge. The additional

coding gain of the ICED-SOVA-ICSI is not sufficiently large to compensate the

performance loss due to the decreasing estimation accuracy. However, it can

be observed that the performance gap between the ICED-SOVA-ICSI and the

SOVA-PSAM with perfect CSI decreases as the BEP drops. In Fig. 5.14, this

performance gap decreases with the decrease of the BEP, and eventually when

the BEP is less than 10−4, the ICED-SOVA-ICSI outperforms the SOVA-PSAM

with perfect CSI. This is expected because when the BEP is low, the channel esti-

mates from the data signals are more accurate and consequently the performance

degradation caused by channel estimation errors becomes smaller.

5.6 Conclusion

In this chapter, the SOVA-ICSI detector is proposed for the transmission over a

flat quasi-static fading channel, which produces soft-decision output. The SOVA-

ICSI does not require explicit channel estimation or the channel fading statistics.

We show that the SOVA-ICSI has substantially better BEP performance than the

conventional receiver with PSA channel estimation. Since the channel statistics

is not available, the channel estimation accuracy cannot be obtained. Note that

if the channel statistics is available, the SOVA-ICSI can be generalized to take

into account the information of the channel estimation accuracy. This extension

will be investigated in our future studies.
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Figure 5.11: BEP performance comparison of ICED-SOVA-ICSI, ICED-SOVA-

PSAM, SOVA-ICSI and SOVA-PSAM at the normalized fade rate of fdTs = 0.001

with K = 8.
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Figure 5.12: BEP performance comparison of ICED-SOVA-ICSI, ICED-SOVA-

PSAM, SOVA-ICSI and SOVA-PSAM at the normalized fade rate of fdTs = 0.001

with K = 200.
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Figure 5.13: BEP performance comparison of ICED-SOVA-ICSI, ICED-SOVA-

PSAM, SOVA-ICSI and SOVA-PSAM at the normalized fade rate of fdTs = 0.005

with K = 8.
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Figure 5.14: BEP performance comparison of ICED-SOVA-ICSI, ICED-SOVA-

PSAM, SOVA-ICSI and SOVA-PSAM at the normalized fade rate of fdTs = 0.005

with K = 200.
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Chapter 6

Generalizations of the BCJR

Algorithm for Turbo Decoding

over Flat Rayleigh Fading

Channels with Imperfect CSI

In Chapter 4, we derived the PSAM-LLR metric from the first principle of prob-

ability theory for the transmissions over time-selective, frequency-flat, Rayleigh

fading channels with PSAM channel estimation. The main difference between the

PSAM-LLR metric and the conventional LLR metric, the A-PSAM-LLR metric,

is that the information concerning the channel estimation accuracy is taken into

the computation of the LLR for the former and neglected for the latter. The de-

coding performance of LDPC codes with these metrics is studied, demonstrating
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the superiority of the PSAM-LLR metric and the importance of incorporating the

knowledge of the channel estimation accuracy in the iterative decoding process.

In this chapter, we consider the transmission of turbo codes over the same

channel. For turbo decoding, besides the a posteriori LLRs, the iterative de-

coder also requires the APP decoding algorithm for the constituent convolutional

codes, as discussed in Chapter 2. The conventional BCJR algorithm and the

SOVA are only applicable for the AWGN channel. In this chapter, we will pro-

pose generalizations of the BCJR algorithm and the SOVA for the transmissions

over time-selective, frequency-flat, Rayleigh fading channels with PSAM channel

estimation. These algorithms will be applied to decode turbo codes formed by

PCCCs, together with the LLR metrics derived in Chapter 4, and their BEP per-

formances will be evaluated and compared. Furthermore, iterative channel esti-

mation and decoding technique will be considered for both hard-decision feedback

and soft-decision feedback.

Our work here reinforces the importance of incorporating the knowledge of

the channel estimation accuracy in the iterative decoding process when precise

KCS is available at the receiver.

6.1 System Model

The system model is shown in Fig. 6.1. A binary information bit sequence

m = [m(1) m(2) . . .m(K)] is encoded by a turbo encoder of PCCCs, as shown

in Fig. 6.2, where m(k) takes on a value of {0, 1} with a priori LLR given by
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Figure 6.1: System model of decoding turbo codes over fading channels with

PSAM channel estimation
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Figure 6.2: Block diagram of turbo encoder
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Figure 6.3: Simplified system model

La(m(k)) = ln P (m(k)=0)
P (m(k)=1)

. The turbo coded sequence is then shuffled by a block

channel interleaver. (Note that we refer to the interleaver in Fig. 6.2 as the code

interleaver.) The interleaved sequence is sequentially mapped to BPSK signals

with energy Es. Pilot signals are periodically inserted with pilot spacing B.

Without loss of generality, we can assume that every pilot signal has the same

energy as a data signal and takes the form p =
√
Ese

jπ0. After that the signal

sequence is transmitted through a time-selective, frequency-flat, Rayleigh fading

channel.

As we discussed in Chapter 2, to decode the PCCCs, the extrinsic information

is exchanged iteratively between the two constituent convolutional codes using the

turbo principle and the SISO APP decoder is required to compute the extrinsic

information. Hence, we will focus on the APP decoding algorithm or the BCJR

algorithm for convolutional codes over the time-selective, frequency-flat, Rayleigh

fading channels. To this end, it is sufficient to consider the simplified system mode

as shown in Fig. 6.3.
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Assume that the message sequence m = [m(1) m(2) . . .m(K)] is convolution-

ally encoded by the convolutional encoder rate R = 1/n. The n output streams

of convolutionally encoded message are denoted by x1,x2, . . . ,xn, and for each

i = 1, 2, . . . , n, xi = [xi(1) xi(2) . . . xi(K)].

Note that the convolutional encoder under consideration may not return to the

all-zero state after encoding the message m. The reasons are as follows. For the

turbo encoder as shown Fig. 6.2, we usually deliberately append v−1 flushing bits

to drive the first convolutional encoder to the all-zero state at the end of encoding.

However, after the message sequence with the appended flushing bits is permuted

by the code interleaver, it is not guaranteed that the second convolutional encoder

will end up in the all-zero state. Hence, it is frequently assumed that the first

encoder is driven to the all-zero state, and the second encoder can end up in any

possible state. Our generalization of the BCJR algorithm is derived to be capable

of handling both the cases.

After encoding, a block interleaver is used. After BPSK modulation and pilot

insertion, the signal sequence is transmitted through a time-selective, frequency-

flat, Rayleigh fading channel. Each received signal can be expressed as

ri(k) = ci(k)
√
Ese

jπxi(k) + ni(k), (6.1)

where ri(k) denotes the received signal corresponding to the transmission of xi(k),

and {n(l, b)} is a set of statistically independent, complex, Gaussian random

variables, each with mean zero and variance N0. The channel gains {ci(k)} are

modeled as a correlated, zero-mean, complex, Gaussian process with known au-
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tocorrelation function.

We will first derive the PSAM-BCJR algorithm, based on which, the receiver

is designed.

For ease of representation, we use x(k) to denote the vector [x1(k), x2(k), . . . , xn(k)]T ,

r(k) to denote the vector [r1(k), r2(k), . . . , rn(k)]T and c(k) to denote the vector

[c1(k), c2(k), . . . , cn(k)]T . Furthermore, let r denote the row vector [r(1), r(2), . . . , r(K)].

6.2 PSAM-BCJR Algorithm

Let S denote the set of all the received pilot signals. From the definition, the a

posteriori LLR for the message bit m(k), where 1 ≤ k ≤ K, can be expressed as

λ(m(k)) = ln
P (m(k) = 0|r, S)

P (m(k) = 1|r, S)
, (6.2)

Making using of the trellis structure of the convolutional code, the a posteriori

probability P (m(k) = 0|r, S) can be rewritten as

P (m(k) = 0|r, S) =
p(m(k) = 0, r|S)

p(r|S)

=

∑
(s,s′)∈Σ0

k
p(s(k) = s′, s(k + 1) = s, r|S)

p(r|S)

where Σ0
k denotes the set of all state pairs (s′, s) such that if the current state

s(k) is s′ and the incoming message input is 0 bit, the next state s(k+ 1) will be

s. Rewrite P (m(k) = 1|r, S) in the same way, (6.2) can be expressed as

λ(m(k)) = ln

∑
(s,s′)∈Σ0

k
p(s(k) = s′, s(k + 1) = s, r|S)∑

(s,s′)∈Σ1
k
p(s(k) = s′, s(k + 1) = s, r|S)

, (6.3)
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Note that the convolutional code has 2v possible states and for each state, if

the incoming message is fixed, there is only one possible next state. Thus the

summation extends over a set of 2v state pairs.

Now we consider the join probability density function p(s(k) = s′, s(k + 1) =

s, r|S). For simplicity, we denote p(s(k) = s′, s(k + 1) = s, r|S) in a shorter form

as p(s′, s, r|S). Now, the probability density function p(s′, s, r|S) is rewritten as

p(s′, s, r|S) = p(s′, s, rt<k, r(k), rt>k|S), (6.4)

where rt<k = [r(1), r(2), . . . , r(k − 1)] and rt>k = [r(k + 1), r(k + 2), . . . , r(K)].

Applying Bayes’ rule, we obtain

p(s′, s, r|S) = p(rt>k|s′, s, rt<k, r(k), S)p(s′, s, rt<k, r(k)|S)

= p(rt>k|s′, s, rt<k, r(k), S)p(s, r(k)|s′, rt<k, S)p(s′, rt<k|S)

Conditioned on s(k + 1) = s, the future received signal vector rt>k does not

depend s(k) = s′, or the previous received signals rt<k, or the current received

signal r(k). Thus, we get

p(rt>k|s′, s, rt<k, r(k), S) = p(rt>k|s, S) (6.5)

Conditioned on the current state s′, the joint pdf of next state s and the received

signal r(k) is independent of the previous received signals, which leads to

p(s, r(k)|s′, rt<k, S) = p(s, r(k)|s′, S) (6.6)
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Now we define

αk(s
′) = p(s′, rt<k|S)

βk+1(s) = p(rt>k|s, S)

γk(s
′, s) = p(s, r(k)|s′, S)

From (6.5) and (6.6), we can write (6.4) as

p(s′, s, r|S) = βk+1(s)γk(s
′, s)αk(s

′) (6.7)

In the BCJR algorithm, the values of αk(s
′) and βk+1(s) can be computed

recursively from the forward and backward recursions as, (we refer reader to ref-

erence [159] for the details.)

Forward recursion:

αk+1(s) =
∑

s′∈Ωk

γk(s
′, s)αk(s

′) (6.8)

where Ωk is the set of all possible states at time k. Since the encoder always starts

from the all-zero state, this forward recursion begins with the initial condition

α0(s
′) = 1 if s′ is the all-zero state and α0(s

′) = 0 otherwise.

Backward recursion:

βk(s
′) =

∑
s∈Ωk

γk(s
′, s)βk+1(s) (6.9)

where Ωk is the set of all possible states at time k + 1. If it is known that the

ending state is the all-zero state, the backward recursion begins with the initial
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condition βK(s′) = 1 if s′ is the all-zero state and βK(s′) = 0 otherwise. On the

other hand, if we have no information about the ending state, we may assume

that all states are possible. In this case, the backward recursion begins with the

initial condition βK(s′) = 1/2v for all possible states.

Note that both the forward and the backward recursion can be computed if

γk(s
′, s) is available. Now we will derive the expression for γk(s

′, s). Using Bayes’

rule, we start by rewriting γk(s
′, s) as

γk(s
′, s) = p(s, r(k)|s′, S)

=
p(s′, s, r(k)|S)

P (s′|S)

=
P (s′, s|S)

P (s′|S)

p(s′, s, r(k)|S)

P (s′, s|S)

Since both the events s(k) = s′ and s(k + 1) = s are independent of the pilot

signals, we have

γk(s
′, s) =

P (s′, s)
P (s′)

p(s′, s, r(k)|S)

P (s′, s|S)

= P (s(k + 1) = s|s(k) = s′) · p(r(k)|s(k) = s′, s(k + 1) = s, S) (6.10)

The first term of the product in (6.10) is the a priori probability of m(k), i.e.,

P (s(k + 1) = s|s(k) = s′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P (m(k) = 0) if (s′, s) ∈ Σ0
k

P (m(k) = 1) if (s′, s) ∈ Σ1
k

0 otherwise

Note that a priori LLR La(m(k)) = ln P (m(k)=0)
P (m(k)=1)

is a constant, which is inde-

pendent of the realization of the random variable m(k). The a priori probability
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P (m(k) = i) for i = 0 or 1 can be expressed as

P (m(k) = i) = Gke
(1−i)La(m(k)),

where Gk = (1 + eLa(m(k)))−1 is a constant, independent of m(k).

Now we consider the second term in (6.10). It is reasonable to assume that

P (s(k + 1) = s|s(k) = s′) �= 0, i.e., (s′, s) ∈ Σ0
k or (s′, s) ∈ Σ1

k, otherwise (6.10)

simply equals to zero. Let x(k) = [x1(k), x2(k), . . . , xn(k)]T be the corresponding

convolutional encoder output when the state transition is from s′ to s. By in-

troducing the instantaneous channel gain vector c(k) = [c1(k), c2(k), . . . , cn(k)]T ,

the second term in (6.10) can be rewritten in the form of

p(r(k)|s(k) = s′, s(k + 1) = s, S)

=p(r(k)|x(k), S)

=

∫
. . .

∫
︸ ︷︷ ︸

n

p(r(k), c(k)|x(k), S)dc(k)

=

∫
. . .

∫
︸ ︷︷ ︸

n

p(r(k)|c(k),x(k), S) · p(c(k)|x(k), S)dc(k) (6.11)

Conditioned on c(k) and x(k), the only randomness in r(k) is due to the

AWGN, which is independent of the pilot signal set S. Since the AWGN is

independent for each received signal, the first term in the integrand in the last
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line of (6.11) can be expressed as

p(r(k)|c(k),x(k), S) = p(r(k)|c(k),x(k))

=
n∏

i=1

p(ri(k)|ci(k), xi(k))

=

n∏
i=1

1

πN0
exp
[
−|ri(k) − ejπxi(k)E

1
2
s ci(k)|2

N0

]
(6.12)

Next, we consider the term p(c(k)|x(k), S). Since c(k) is independent of the

transmitted information x(k), we have

p(c(k)|x(k), S) = p(c(k)|S).

Assuming that the channel interleaver is perfect, the memory of the channel is

perfectly broken and thus the channel gains c1(k), c2(k), . . . , cn(k) are statistically

independent. We have

p(c(k)|x(k), S) =

n∏
i=1

p(ci(k)|S).

As the channel gains are jointly Gaussian, ci(k) and S are also jointly Gaussian.

Thus, ci(k) conditioned on S is a conditional Gaussian random variable with

conditional mean E[ci(k)|S] and conditional variance var[ci(k)|S]. From [156], for

jointly Gaussian random variables, we have

E[ci(k)|S] = ĉi(k)

var[ci(k)|S] = (2σ̃2)i(k),

where ĉi(k) and (2σ̃2)i(k) can be computed by (4.15) and (4.16), respectively,

as in Chapter 3. Hence, the probability density function p(ci(k)|Si(k)) can be
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expressed as

p(ci(k)|S) =
1

π(2σ̃2)i(k)
exp
[
−|ci(k) − ĉi(k)|2

(2σ̃2)i(k)

]
and subsequently, we have

p(c(k)|x(k), S) =
n∏

i=1

1

π(2σ̃2)i(k)
exp
[
−|ci(k) − ĉi(k)|2

(2σ̃2)i(k)

]
. (6.13)

Substituting (6.12) and (6.13) into (6.11), and then exchanging the order of in-

tegration and product leads to

p(r(k)|s(k) = s′, s(k + 1) = s, S)

=

n∏
i=1

∫
p(ri(k)|ci(k), xi(k)) · p(ci(k)|Si(k))dci(k)

=
n∏

i=1

∫
1

πN0

exp
[
−|ri(k) − ejπxi(k)E

1
2
s ci(k)|2

N0

] 1

π(2σ̃2)i(k)
exp
[
−|ci(k) − ĉi(k)|2

(2σ̃2)i(k)

]
dci(k)

(6.14)

Combining the exponents, doing a completion of squares in the combined ex-

ponent and performing the integration, each integral in (6.14) can be evaluated

as ∫
p(ri(k)|ci(k), xi(k)) · p(ci(k)|Si(k))dci(k)

=
Ai(k)

πBi(k)
exp
[ Ci(k)

Bi(k)N0(2σ̃2)i(k)

]
, (6.15)

where

Ai(k) = exp[−|ri(k)|2
N0

− |ĉi(k)|2
(2σ̃2)i(k)

], (6.16)

Bi(k) = (2σ̃2)i(k)Es +N0, (6.17)

Ci(k) =
∣∣(2σ̃2)i(k)

√
Esr

i(k)e−jπxi(k) +N0ĉ
i(k)

∣∣2. (6.18)
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Substituting (6.15)–(6.18) back into the expression of p(r(k)|s′, s, S) and after

simplification, we obtain

p(r(k)|s′, s, S) =

n∏
i=1

Di(k)

πBi(k)
exp
(2

√
Es

Bi(k)
Re[ri(k)ĉi(k)∗(1 − 2xi(k))]

)
(6.19)

where

Di(k) = exp
(((2σ̃2)i(k) − Bi(k))|ri(k)|2

Bi(k)N0
+

(N0 − Bi(k))|ĉi(k)|2
(2σ̃2)i(k)Bi(k)

)
Finally, we have obtained the expression for γk(s

′, s) as

γk(s
′, s) = Gk

n∏
i=1

Di(k)

πBi(k)︸ ︷︷ ︸
constant

e(1−m(k))La(m(k))
n∏

i=1

exp
(2

√
Es

Bi(k)
Re[ri(k)ĉi(k)∗(1 − 2xi(k))]

)

Note that the term Gk

∏n
i=1

Di(k)
πBi(k)

is a function of k, which is independent of

the current state s′ or the next state s of the decoding trellis. Note also that

both the denominator and the numerator of the LLR expression in (6.4) contain

the common term
∏K

k=1Gk

∏n
i=1

Di(k)
πBi(k)

, and thus the term Gk

∏n
i=1

Di(k)
πBi(k)

can be

cancelled. We can reformulate the expression for γk(s
′, s) as

γk(s
′, s) = e(1−m(k))La(m(k))

n∏
i=1

exp
( 2

√
Es

(2σ̃2)i(k)Es +N0

Re[ri(k)ĉi(k)∗(1 − 2xi(k))]
)

(6.20)

We refer to the BCJR algorithm with forward recursion in (6.8), backward recur-

sion in (6.9), and γk(s
′, s) in (6.20) as the PSAM-BCJR Algorithm.

If all the channel estimates ĉi(k) are assumed to be perfect, γk(s
′, s) can be

computed as

γk(s
′, s) = e(1−m(k))La(m(k))

n∏
i=1

exp
(2

√
Es

N0
Re[ri(k)ci(k)∗(1 − 2xi(k))]

)
(6.21)
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We refer to this algorithm with γk(s
′, s) in (6.21) as the Approximate PSAM-

BCJR (A-PSAM-BCJR) Algorithm.

• Remark

For SOVA, the reliability metric of a path m is defined as

M(v) = log p(r|m, S)P (v)

Following a similar derivation procedure, we can obtain

M(v) =

k=K∑
k=1

(
log p(r(k)|x(k), S) + La(m(k))

)

where p(r(k)|x(k), S) is computed using (6.14). We will call this generalization

of the SOVA as the PSAM-SOVA. Similarly, if the channel estimation is assumed

to be perfect, p(r(k)|x(k), S) can be computed using (6.14) with Bi(k) replaced

by N0, and the SOVA based on this reliability metric is called A-PSAM-SOVA.

6.3 Turbo Decoding with PSAM-BCJR/A-PSAM-

BCJR algorithm

In this section, we will reformulate the turbo decoding algorithm with the newly

developed PSAM-BCJR/A-PSAM-BCJR algorithm, based on the turbo principle

in Chapter 2. We denote the a priori input to the constituent decoder 1 by

λin
1 (m(k)) and its output by λout

1 (m(k)). The a priori input to the constituent

decoder 2 is denoted by λin
2 (m(k)) and its output by λout

2 (m(k)). The turbo

decoding with the PSAM-BCJR algorithm is described as follows:
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Step 1. Compute the LLR for each message bit m(k) using the PSAM-LLR

in (4.18), denoted by λ0(m(k)).

Step 2. Set the a priori input λin
1 (m(k)) to be La(m(k)). Set the iteration

number to be zero.

Step 3. Run the PSAM-BCJR algorithm on constituent decoder 1, with the

a priori input λin
1 (m(k)), and obtain the output λout

1 (m(k)). Obtain the extrinsic

information by λout
1 (m(k))−λin

1 (m(k))−λ0(m(k)), which, after interleaving (using

the code interleaver), is passed to constituent decoder 2 as the a priori input

λin
2 (m(k)).

Step 4. Run the PSAM-BCJR algorithm on constituent decoder 2, with the

a priori input λin
2 (m(k)), and obtain the output λout

2 (m(k)). Obtain the extrinsic

information by λout
2 (m(k)) − λin

2 (m(k)) − λ0(m(k)), which, after deinterleaving

(using the code interleaver), is passed to constituent decoder 2 as the a priori

input λin
1 (m(k)).

Step 5. Increase the iteration number by one. If the iteration number is

less than or equal to the predefined maximum number of iterations, repeat step

3 and step 4. Otherwise, stop and output the soft decision as λout
1 (m(k)) (the

deinterleaved version of λout
2 (m(k))).

The turbo decoding with the A-PSAM-BCJR algorithm is obtained by re-

placing the PSAM-BCJR algorithm in steps 3 and 4 by the A-PSAM-BCJR

algorithm, and using the A-PSAM-LLR metric (4.19) to compute the initial LLR

values λ0(m(k)). In this scheme, the channel estimation accuracy is ignored and

the channel estimates are assumed to be perfect.

156



6. PSAM-BCJR ALGORITHM

6.4 Receiver Structure

Governed by the fact that the knowledge of the MMSE estimate and the MSE

is required in order to implement the PSAM-BCJR or the A-PSAM-BCJR algo-

rithm, the MMSE channel estimator is used at the receiver.

In this section, we will consider three types of receiver structures with MMSE

channel estimator for turbo decoding via the PSAM-BCJR or A-PSAM-BCJR

algorithm, namely, standard turbo decoding, ICED with hard decision feedback,

and ICED with soft decision feedback.

6.4.1 Standard Turbo Decoding

The standard turbo decoder is shown in Fig. 6.1. After the signal sequence is

received at the receiver, the data signals and the pilot signals are separated and

demodulated. We assume that the channel gain over a particular transmission

interval is correlated with the channel gains which are within the observation

window of length W = 2Q + 1, and statistically independent to all the other

channel gains. Therefore, to estimate the channel gain for a received signal, we

only need to consider the nearest 2L pilot signals (L preceding and L succeeding),

where L = 
 Q
B+1

�. The MMSE estimate and the MSE can be obtained for each

coded bit through the MMSE channel estimator using 2L received pilot signals.

The received data signals, together with their corresponding channel estimates

and the MSEs, are deinterleaved, and then passed to the turbo decoder. Turbo

decoding with the PSAM-BCJR or A-PSAM-BCJR algorithm will be performed.
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Figure 6.4: System model of iterative channel estimation and decoding with hard

decision feedback over fading channels with PSAM channel estimation

After a predefined number of iterations is reached, the final decision is made.

This process is referred to as the standard turbo decoding.

6.4.2 ICED with Hard Decision Feedback

The ICED with hard decision feedback is shown in Fig. 6.4. Initially, the standard

turbo decoding, as described in section 6.4.1, is performed for several iterations.

In the last iteration, we also compute the soft LLR decisions for each code bit

xi(k) using the PSAM-BCJR algorithm with the following equation,

λ(xi(k)) = ln

∑
(s,s′)∈Σ0

k(xi(k)) p(s(k) = s′, s(k + 1) = s, r|S)∑
(s,s′)∈Σ1

k(xi(k)) p(s(k) = s′, s(k + 1) = s, r|S)
, (6.22)

where Σ0
k(x

i(k)) (resp., Σ1
k(x

i(k))) denotes the set of all state pairs (s′, s) such

that if the current state s(k) is s′ and the next state s(k+ 1) is s, the ith branch
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of the convolutional code will output bit-0 (resp., bit-1).

The soft tentative code-bit decisions will be passed through a hard limiter,

where

êjπxi(k) =

⎧⎪⎨
⎪⎩

1 : if λ(xi(k)) ≥ 0

−1 : if λ(xi(k)) < 0

Assume that the actual transmitted data signal for the code bit xi(k) is equal to

√
Esêjπxi(k). Now every data signal can also be treated as a pilot signal. After

interleaving, pilot signals are reinserted. For the code bit xi(k), a new channel

estimate and the corresponding MSE is computed using the MMSE estimator

from the set of received signals, consisting of the received signal ri(k), the nearest

L̄ received signal preceding ri(k) and the nearest L̄ received signals succeeding

ri(k). With the updated channel estimates and MSEs, standard turbo decoding

will be used for further processing. This process can be repeated several times

before the receiver makes the final decision. We refer to this process as the

ICED with hard decision feedback. Borrowing the terminology in Chapter 5.3, we

will call the iteration within the turbo decoding as internal-iteration. The cycle

from using standard turbo decoding to obtain tentative decisions to the moment

when updated channel estimates are fed back to the turbo decoder will be called

super-iteration.

6.4.3 ICED with Soft Decision Feedback

In the ICED with soft decision feedback, as shown in Fig. 6.5, a nonlinear limiter

is used in the soft decision feedback, instead of a hard limiter. Following [146],
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Figure 6.5: System model of iterative channel estimation and decoding with soft

decision feedback over fading channels with PSAM channel estimation

the nonlinear function in the limiter is chosen as

êjπxi(k) = tanh
(λ(xi(k))

2

)
.

The other procedures in decoding are the same as those of the ICED with hard

decision feedback.

6.5 Simulation Study and Discussion

In the simulation studies, the turbo code under consideration has the same

structure as shown in Fig. 6.2, which is composed of two rate half recursive

convolutional encoders, each of which has the generator polynomial given by

1 + D + D3/1 + D + D2 + D3. The trellis of the upper encoder is terminated
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with 3 flushing bits, while the trellis of the lower encoder is left open. The data

frame consists of 1021 data bits and 3 flushing bits. A pseudo-random interleaver

is chosen as the code interleaver. In all the simulations, a block interleaver of

size 128 × 120 is chosen as the channel interleaver. Thus, each interleaver block

contains exactly five codewords. The standard turbo decoding is performed with

a total of 12 iterations. In all simulations, we choose L = 400 and L̄ = 40. Each

BEP data point is obtained from collecting at least 1000 bit errors.

In our simulations, we follow Jakes’s isotropic scattering model [152] by as-

suming that the real and imaginary parts of h(k) are independent, each with

autocorrelation

Rc(i) = σ2J0(2πfdTsi)

where fd is the relative Doppler shift between the transmitter and the receiver,

Ts is the symbol period and J0(·) is the Bessel function of the first kind of order

zero. The SNR in all the graphs refers to the energy per message bit Eb over the

power N0 of the AWGN of the fading channel.

6.5.1 Standard Turbo Decoding

In this section, we will study the performance of standard turbo decoding over

flat Rayleigh fading channels with two normalized fade rates. The standard turbo

decoding is carried out with a total of 12 iterations.

The BEP performance of standard turbo decoding using the PSAM-BCJR

and the A-PSAM-BCJR algorithms is shown in Figs. 6.6(a) and (b). It can be
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observed that the PSAM-BCJR outperforms the A-PSAM-BCJR, and the per-

formance gain increases with the increase of the SNR. When the BEP is between

10−5 and 10−6, error floors, which are inherited from the turbo code, are ob-

served for both the PSAM-BCJR and the A-PSAM-BCJR. As a result, the two

algorithms have similar performance at the error floor region.

In comparison, the BEP performance of standard turbo decoding using the

PSAM-SOVA and the A-PSAM-SOVA algorithms is shown in Figs. 6.7(a) and

(b). It is observed that, unlike the BCJR algorithms, the PSAM-SOVA and the

A-PSAM-SOVA give similar error performance, which suggests that the channel

estimation accuracy only has a minor effect. Moreover, as a sub-optimum MAP

algorithm, the performance of the PSAM-SOVA is much worse than that of the

PSAM-BCJR for standard turbo decoding over time-selective flat Rayleigh fading

channels, as shown in Figs. 6.8(a) and (b).

6.5.2 Iterative Channel Estimation and Decoding

In this section, we study and compare two types of receiver structures with iter-

ative channel estimation and decoding. The first type is the two-stage decoding,

similar to what we have considered in Section 4.4.7, Chapter 3, where the ten-

tative decisions obtained after 5 initial turbo iterations are fed back for channel

re-estimation, and with the updated channel estimated, another 7 turbo itera-

tions are performed before making the final decision. The BEP performance for

the two-stage iterative channel estimation and decoding of turbo codes with the

PSAM-BCJR and the A-PSAM-BCJR algorithms is shown in Figs. 6.9(a) and
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Figure 6.6: Performance comparison of standard turbo decoding between the

PSAM-BCJR and A-PSAM-BCJR algorithms over Rayleigh fading channels with

various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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Figure 6.7: Performance comparison of standard turbo decoding between the

PSAM-SOVA and A-PSAM-SOVA algorithms over Rayleigh fading channels with

various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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Figure 6.8: Performance comparison of standard turbo decoding between the

PSAM-BCJR and PSAM-SOVA algorithms over Rayleigh fading channels with

various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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(b). It is observed that the PSAM-BCJR still gives better performance than

the A-PSAM-BCJR, but the performance gain is only marginal. Error floors are

observed for both algorithms. Similar observations are observed when the soft

decision feedback is used, as shown in Figs. 6.10(a) and (b).

Next we will consider another type of iterative channel estimation and de-

coding structure, where the tentative decisions are fed back after every turbo

iteration. Since only one internal-iteration is used in each super-iteration, we

will name it as the iterative channel estimation and decoding with one internal-

iteration. In our simulations, a total of 12 super-iterations are performed. As

shown in Figs. 6.11(a) and (b) and Figs. 6.12(a) and (b), the PSAM-BCJR

only has a marginal performance gain over the A-PSAM-BCJR. In the error floor

region, the two algorithms have similar performance.

Note that compared to the standard turbo decoding scheme, the performance

gain of the PSAM-BCJR over the A-PSAM-BCJR has decreased significantly

when the iterative channel estimation and decoding technique is used. To explain

this, we need to look into the feedback structures. When the tentative decisions

are fed back, they are passed through a nonlinear limiter. It is assumed that the

output sequence from the limiter is equal to the actual BPSK modulated signal

sequence and all data signals are treated as pilot signals. New channel estimates

and MSEs are computed based on the MMSE criterion from the received signals,

which include both the pilot signals and the data signals. Since the tentative

decisions are not perfect, date signals with erroneous decisions will be used. As

a result, the channel estimates are less accurate than those obtained from trans-
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Figure 6.9: Performance comparison of two-stage ICED with hard decision feed-

back between the PSAM-BCJR and PSAM-SOVA algorithms over Rayleigh fad-

ing channels with various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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Figure 6.10: Performance comparison of two-stage ICED with soft decision feed-

back between the PSAM-BCJR and PSAM-SOVA algorithms over Rayleigh fad-

ing channels with various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.

168



6. PSAM-BCJR ALGORITHM

3 3.5 4 4.5 5 5.5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No(dB)

B
E

P

 

 
PSAM−BCJR, B=10
A−PSAM−BCJR, B=10
PSAM−BCJR, B=20
A−PSAM−BCJR, B=20
PSAM−BCJR, B=30
A−PSAM−BCJR, B=30

(a)

3 3.5 4 4.5 5 5.5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(dB)

B
E

P

 

 
PSAM−BCJR, B=10
A−PSAM−BCJR, B=10
PSAM−BCJR, B=20
A−PSAM−BCJR, B=20

(b)

Figure 6.11: Performance comparison of ICED with hard decision feedback be-

tween the PSAM-BCJR and PSAM-SOVA algorithms over Rayleigh fading chan-

nels with various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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Figure 6.12: Performance comparison of two-stage ICED with soft decision feed-

back between the PSAM-BCJR and PSAM-SOVA algorithms over Rayleigh fad-

ing channels with various normalized fade rates: (a) fdTs = 0.005; (b) fdTs = 0.02.
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mitting a stream of real pilot signals. More importantly, the estimation accuracy

is over-estimated and the MSE is under-estimated. Performance degradation is

expected from the PSAM-BCJR algorithm, which requires the precise knowledge

of the MSE of the channel estimation. Therefore, the PSAM-BCJR only gives

a marginal performance improvement over the A-PSAM-BCJR when iterative

channel estimation and decoding with decision feedback is used.

6.5.3 Performance Comparison among Various Decoding

Schemes

The performance comparison of the standard turbo decoding, the two-stage it-

erative channel estimation and decoding, and the iterative channel estimation

and decoding with one internal-iteration is demonstrated in Fig 6.13 and 6.14.

It is observed that the standard turbo decoding, which is the simplest scheme in

complexity, performs the worst. A performance gain of 1− 1.5 dB over the stan-

dard turbo coding is obtained when the two-stage iterative channel estimation

and decoding is used. The iterative channel estimation and decoding with one

internal-iteration requires the highest computational power, but it has the best

BEP performance. In addition, the BEP performance with soft decision feedback

is always better than that with hard decision feedback, albeit the performance

gain is not significant. For all the schemes, error floors exist. In the error floor

region, the four feedback receivers considered have similar performance.
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Figure 6.13: Performance comparison of standard turbo decoding, two-stage

ICED and ICED with one internal-iteration over Rayleigh fading channels with

normalized fade fdTs = 0.005 and pilot symbol spacing B = 20
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Figure 6.14: Performance comparison of standard turbo decoding, two-stage

ICED and ICED with one internal-iteration over Rayleigh fading channels with

normalized fade fdTs = 0.02 and pilot symbol spacing B = 10
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6.6 Conclusions

We have proposed generalizations of the BCJR algorithm and the SOVA for the

transmissions over time-selective, frequency-flat, Rayleigh fading channels with

PSAM channel estimation, which could be used in turbo decoding as the SISO

algorithms for the constituent convolutional codes. We show that the perfor-

mance of the PSAM-BCJR is better than the A-PSAM-BCJR, which neglects

the information regarding the channel estimation accuracy, the performance gain

is not as significant as that for LDPC decoding, due to the existence of error floors

of the turbo codes in relatively high BEP regions. However, we emphasize that

this work demonstrates the correct conceptual approach of extending the BCJR

algorithm and the SOVA to fading channels with PSAM channel estimation.

We also verify that the PSAM-BCJR algorithm achieves better BEP perfor-

mance than the PSAM-SOVA for turbo decoding over time-selective, frequency-

flat, Rayleigh fading channels with PSAM channel estimation, which agrees with

the fact for the AWGN channel.

The technique of iterative channel estimation and decoding is studied in detail.

We note that the performance gain of the PSAM-BCJR over the A-PSAM-BCJR

decreases significantly when the iterative channel estimation and decoding tech-

nique is used, compared to that when the standard turbo decoding scheme is

employed. The reason lies in the inaccuracy of the computation of the estimation

MSE when the data signals are used as pilots in the feedback system. In fact, how

to estimate the channel gain and obtain the exact MSE with decision feedback is
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a difficult and challenging task, which is still under active research. We will look

into these problems in our future papers.
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Chapter 7

Summary of Contributions and

Suggestions for Future Work

7.1 Summary of Contributions

Over fading channels, the transmitted signals suffer from power attenuation and

phase shift. To compensate for these distortions, the CSI is usually required at

the receiver through PSAM. Accurate CSI acquisition requires sufficient number

of pilot signals with significantly high transmission energy. However, in the SNR

regions close to the Shannon limit, the energy available for the pilots is strictly

limited. Hence, it is a challenging task to design energy-efficient transceivers over

fading channels with reliable CSI acquisition.

In this thesis, we have considered several transceiver designs for the trans-

mission of LDPC or turbo codes over fading channels. For the time-selective,
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frequency-flat, Rayleigh fading channels, we present the correct conceptual ap-

proach for deriving the PSAM-LLR metric of a q-ary code with MPSK modulation

and PSAM channel estimation. Unlike the suboptimum approaches in [56–65],

which assume either structured channel estimators or perfect channel estimation,

our derivation starts from first principles without assuming any receiver struc-

ture and demonstrates how the pilot information should be incorporated into the

LLR computation. In particular, we show how the channel estimate and the esti-

mation error variance enter in determining the reliability of each received coded

symbol. Using a similar conceptual approach, we propose a generalization of

the BCJR algorithm, which we call PSAM-BCJR. Through simulation studies,

we show that the PSAM-LLR metric (resp., the PSAM-BCJR algorithm) can

achieve better BEP performance than the conventional A-PSAM-LLR metric

(resp., the A-PSAM-BCJR algorithm), which ignores the information concern-

ing the channel estimation accuracy. Our work demonstrates the importance of

incorporating the knowledge of the channel estimation accuracy in the iterative

decoding process when KCS is available.

On the other hand, if KCS is not available or cannot be reliably acquired

at the receiver, it will be difficult to obtain the channel estimate and estimation

variance accurately. The transceiver with PSAM channel estimation is not robust.

In this case, we propose the SOVA-ICSI detector, which combines the MLSD with

the SOVA decoder. The SOVA-ICSI detector is based on maximum-likelihood

sequence detection, which does not require explicit channel estimation. Moreover,

the SOVA-ICSI detector does not require KCS, because the soft LLR output can
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be computed solely based on the received signal sequence. Compared to the

PSAM system in Chapter 4, the SOVA-ICSI detector is more robust and much

less demanding, and thus it can be used more widely in real applications.

We have also proposed the DMD for LDPC codes over integer residue rings.

We show through computer simulations that the DMD can achieve significant

coding gains over standard BP decoding, while requiring significantly less compu-

tational power. Snapshots of the LLR densities are used to explain the superiority

of the DMD over standard BP decoding.

7.2 Proposals for Future Research

7.2.1 Implementation of DMD over Fading Channels

For the nonbinary LDPC codes over Z2m , we have designed the DMD for the

transmission with BPSK modulation over the AWGN channel and shown that

better BEP performance can be achieved with less computational complexity,

compare to standard BP decoding.

In our future research, we will apply LDPC codes over Z2m and the DMD

to various types of fading channels. Firstly, we will study the case when LDPC

codes over Z2m are transmitted over the time-selective, frequency-flat, Rayleigh

fading channels with PSAM channel estimation, whereby the a posteriori LLRs

are computed using either the PSAM-LLR metric or the A-PSAM-LLR metric,

which are derived in Chapter 4. The decoding performance of the DMD can be

compared with that of the standard BP decoder. Also, we can investigate the
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effect of estimation accuracy on the DMD, by comparing the BEP performances

of the PSAM-LLR and the A-PSAM-LLR.

Likewise, we are also going to consider the case when LDPC codes over Z2m

and the DMD are applied with the SOVA-ICSI detector over block-wise static

Rayleigh fading channels with unknown channel statistics.

7.2.2 Channel Estimation with Soft Decision Feedback

In Chapters 4 and 6, we discussed iterative channel estimation and decoding. We

note that the performance gain of the PSAM-LLR (resp., the PSAM-BCJR) over

the A-PSAM-LLR (resp., the A-PSAM-BCJR) decreases significantly when the

iterative channel estimation and decoding technique is used, compared to that

when the standard BP (resp., turbo) decoding scheme is adopted. The reason

is that when the tentative decisions are fed back, it is assumed that these deci-

sions are all correct and thus the data signals are treated as pilots. New channel

estimates and MSEs are computed based on this assumption. As a result, the esti-

mation accuracy is over-estimated and the MSE is significantly under-estimated.

The PSAM-LLR and the probability density function in the PSAM-BCJR cannot

be computed accurately, so only a marginal performance improvement is obtained

when iterative channel estimation and decoding is used. This is leading us to in-

vestigate further on the correct methodology to compute the channel estimate

and the MSE when decision feedback is used.
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7.2.3 LP Decoding for Nonbinary Codes

Feldman et al. [128] proposed the LP approach to decode arbitrary binary linear

codes and showed the close relationship between the LP decoding and the iterative

BP decoding for LDPC codes. One desirable feature of the LP decoder is that

it is more amenable to analysis. Its performance can be completely described in

terms of pseudocodewords and some exact combinatorial characterizations of the

conditions can be found to guarantee LP decoding success. More attractively,

the LP decoder has the ML certificate property, i.e., if LP outputs an integral

solution, it must be the ML codeword.

However, the complexity of LP decoding is usually very high. This disad-

vantage is exacerbated when LP is used to decode non-binary codes. Refer-

ences [147,148] proposed some LP formulations for general non-binary codes, but

they contain too many variables and constraints, which makes the decoding very

costly. In our future studies, we will look into the problem of LP formulations

for nonbinary codes over GF(q) and Zq and develop more efficient algorithms for

LP decoding.
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Appendix

In a QPSK-modulated SIMO system with Gray coding, we will show that the

PSAM-LLR in (4.10) is equal to the S-PSAM-LLR in (4.11). This is equivalent

to showing∑
φ(l,b)∈Φ(l,b)|x(l,b,v)=0

exp(ψm)∑
φ(l,b)∈Φ(l,b)|x(l,b,v)=1

exp(ψm)
=

maxφ(l,b)∈Φ(l,b)|x(l,b,v)=0
exp(ψm)

maxφ(l,b)∈Φ(l,b)|x(l,b,v)=1
exp(ψm)

(7.1)

The phase of constellation signals of QPSK with Gray coding can be expressed

as

φ(l, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π/4, for x(l, b, 1) = 0, x(l, b, 2) = 0

3π/4, for x(l, b, 1) = 1, x(l, b, 2) = 0

−π/4, for x(l, b, 1) = 0, x(l, b, 2) = 1

−3π/4, for x(l, b, 1) = 1, x(l, b, 2) = 1

For v = 1, the left hand side (LHS) of (7.1) is

LHS =
exp(Re{Aej(θ−π/4)}) + exp(Re{Aej(θ+π/4)})

exp(Re{Aej(θ−3π/4)}) + exp(Re{Aej(θ+3π/4)})
=

exp(A cos(θ − π/4)) + exp(A cos(θ + π/4))

exp(A cos(θ − 3π/4)) + exp(A cos(θ + 3π/4))

181



APPENDIX

where A = 2
√

Es

2σ̃2
m(l,b)Es+No,m

|rm(l, b)ĉ∗m(l, b)| and θ = ∠rm(l, b)ĉ∗m(l, b). Using the

trigonometric identity: cos(α + β) = cosα cosβ − sinα sin β, we get

LHS =
exp(A cos θ cosπ/4)[exp(A sin θ sin π/4) + exp(−A sin θ sin π/4)]

exp(A cos θ cos 3π/4)[exp(A sin θ sin 3π/4) + exp(−A sin θ sin 3π/4)]

Since sinα = sin(π − α), we have

LHS =
exp(A cos θ cosπ/4)

exp(A cos θ cos 3π/4)

In a similar way, the right hand side (RHS) of (7.1) leads to

RHS =
exp(A cos θ cos π/4) max{exp(A sin θ sin π/4), exp(−A sin θ sin π/4)}

exp(A cos θ cos 3π/4) max{exp(A sin θ sin 3π/4), exp(−A sin θ sin 3π/4)}
=

exp(A cos θ cosπ/4)

exp(A cos θ cos 3π/4)

Therefore, equation (7.1) holds.
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