2,384 research outputs found

    Anti-Fall: A Non-intrusive and Real-time Fall Detector Leveraging CSI from Commodity WiFi Devices

    Full text link
    Fall is one of the major health threats and obstacles to independent living for elders, timely and reliable fall detection is crucial for mitigating the effects of falls. In this paper, leveraging the fine-grained Channel State Information (CSI) and multi-antenna setting in commodity WiFi devices, we design and implement a real-time, non-intrusive, and low-cost indoor fall detector, called Anti-Fall. For the first time, the CSI phase difference over two antennas is identified as the salient feature to reliably segment the fall and fall-like activities, both phase and amplitude information of CSI is then exploited to accurately separate the fall from other fall-like activities. Experimental results in two indoor scenarios demonstrate that Anti-Fall consistently outperforms the state-of-the-art approach WiFall, with 10% higher detection rate and 10% less false alarm rate on average.Comment: 13 pages,8 figures,corrected version, ICOST conferenc

    Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios

    Get PDF
    This paper presents our experience on a real case of applying an indoor localization system formonitoringolderadultsintheirownhomes. Sincethesystemisdesignedtobeusedbyrealusers, therearemanysituationsthatcannotbecontrolledbysystemdevelopersandcanbeasourceoferrors. This paper presents some of the problems that arise when real non-expert users use localization systems and discusses some strategies to deal with such situations. Two technologies were tested to provide indoor localization: Wi-Fi and Bluetooth Low Energy. The results shown in the paper suggest that the Bluetooth Low Energy based one is preferable in the proposed task

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Developing residential wireless sensor networks for ECG healthcare monitoring

    Get PDF
    Wireless technology development has increased rapidly due to it’s convenience and cost effectiveness compared to wired applications, particularly considering the advantages offered by Wireless Sensor Network (WSN) based applications. Such applications exist in several domains including healthcare, medical, industrial and home automation. In the present study, a home-based wireless ECG monitoring system using Zigbee technology is considered. Such systems can be useful for monitoring people in their own home as well as for periodic monitoring by physicians for appropriate healthcare, allowing people to live in their home for longer. Health monitoring systems can continuously monitor many physiological signals and offer further analysis and interpretation. The characteristics and drawbacks of these systems may affect the wearer’s mobility during monitoring the vital signs. Real-time monitoring systems record, measure, and monitor the heart electrical activity while maintaining the consumer’s comfort. Zigbee devices can offer low-power, small size, and a low-cost suitable solution for monitoring the ECG signal in the home, but such systems are often designed in isolation, with no consideration of existing home control networks and smart home solutions. The present study offers a state of the art review and then introduces the main concepts and contents of the wireless ECG monitoring systems. In addition, models of the ECG signal and the power consumption formulas are highlighted. Challenges and future perspectives are also reported. The paper concludes that such mass-market health monitoring systems will only be prevalent when implemented together with home environmental monitoring and control systems

    IoT driven ambient intelligence architecture for indoor intelligent mobility

    Get PDF
    Personal robots are set to assist humans in their daily tasks. Assisted living is one of the major applications of personal assistive robots, where the robots will support health and wellbeing of the humans in need, especially elderly and disabled. Indoor environments are extremely challenging from a robot perception and navigation point of view, because of the ever-changing decorations, internal organizations and clutter. Furthermore, human-robot-interaction in personal assistive robots demands intuitive and human-like intelligence and interactions. Above challenges are aggravated by stringent and often tacit requirements surrounding personal privacy that may be invaded by continuous monitoring through sensors. Towards addressing the above problems, in this paper we present an architecture for "Ambient Intelligence" for indoor intelligent mobility by leveraging IoTs within a framework of Scalable Multi-layered Context Mapping Framework. Our objective is to utilize sensors in home settings in the least invasive manner for the robot to learn about its dynamic surroundings and interact in a human-like manner. The paper takes a semi-survey approach to presenting and illustrating preliminary results from our in-house built fully autonomous electric quadbike

    Contactless WiFi Sensing and Monitoring for Future Healthcare:Emerging Trends, Challenges and Opportunities

    Get PDF
    WiFi sensing has recently received significant interest from academics, industry, healthcare professionals and other caregivers (including family members) as a potential mechanism to monitor our aging population at distance, without deploying devices on users bodies. In particular, these methods have gained significant interest to efficiently detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems stems from its practical deployments in indoor settings and compliance from monitored persons, unlike other sensors such as wearables, camera-based, and acoustic-based solutions. This paper reviews state-of-the-art research on collecting and analysing channel state information, extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, untapped areas, and related trends.This work aims to provide an overarching view in understanding the technology and discusses its uses-cases from a perspective that considers hardware, advanced signal processing, and data acquisition
    • …
    corecore