2,232 research outputs found

    Adaptation to moving tactile stimuli and its effects on perceived speed and direction

    Get PDF
    Like other senses, tactile perception is subject to adaptation effects in which systematic changes in the pattern of sensory input lead to predictable changes in perception. In this thesis, aftereffects of adaptation to tactile motion are used to reveal the processes that give rise to tactile motion perception from the relevant sensory inputs. The first aftereffect is the tactile speed aftereffect (tSAE), in which the speed of motion appears slower following exposure to a moving surface. Perceived speed of a test surface was reduced by about 30% regardless of the direction of the adapting stimulus, indicating that the tSAE is not direction sensitive. Additionally, higher adapting speeds produced a stronger tSAE, and this dependence on adapting speed could not be attributed to differences in temporal frequency or spatial period that accompanied the different adapting speeds. The second motion aftereffect that was investigated is the dynamic tactile motion aftereffect (tMAE), in which a direction-neutral test stimulus appears to move in the opposite direction to previously felt adapting motion. The strength of the tMAE depended on the speed of the adapting motion, with higher speeds producing a stronger aftereffect. Both the tSAE and the tMAE showed evidence of an intensive speed code in their underlying neural populations, with faster adapting speeds resulting in stronger aftereffects. In neither case was any evidence of speed tuning found, that is, neither aftereffect was strongest with a match between the speeds of the adapting and test stimuli. This is compatible with the response properties of motion sensitive neurons in the primary somatosensory cortex. Despite these shared features, speed and direction are unlikely to be jointly coded in the same neurons because the lack of direction sensitivity of the tSAE requires neural adaptation effects to be uniform across neurons preferring all directions, whereas the tMAE requires direction selective adaptation

    Adaptation to moving tactile stimuli and its effects on perceived speed and direction

    Get PDF
    Like other senses, tactile perception is subject to adaptation effects in which systematic changes in the pattern of sensory input lead to predictable changes in perception. In this thesis, aftereffects of adaptation to tactile motion are used to reveal the processes that give rise to tactile motion perception from the relevant sensory inputs. The first aftereffect is the tactile speed aftereffect (tSAE), in which the speed of motion appears slower following exposure to a moving surface. Perceived speed of a test surface was reduced by about 30% regardless of the direction of the adapting stimulus, indicating that the tSAE is not direction sensitive. Additionally, higher adapting speeds produced a stronger tSAE, and this dependence on adapting speed could not be attributed to differences in temporal frequency or spatial period that accompanied the different adapting speeds. The second motion aftereffect that was investigated is the dynamic tactile motion aftereffect (tMAE), in which a direction-neutral test stimulus appears to move in the opposite direction to previously felt adapting motion. The strength of the tMAE depended on the speed of the adapting motion, with higher speeds producing a stronger aftereffect. Both the tSAE and the tMAE showed evidence of an intensive speed code in their underlying neural populations, with faster adapting speeds resulting in stronger aftereffects. In neither case was any evidence of speed tuning found, that is, neither aftereffect was strongest with a match between the speeds of the adapting and test stimuli. This is compatible with the response properties of motion sensitive neurons in the primary somatosensory cortex. Despite these shared features, speed and direction are unlikely to be jointly coded in the same neurons because the lack of direction sensitivity of the tSAE requires neural adaptation effects to be uniform across neurons preferring all directions, whereas the tMAE requires direction selective adaptation

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Haptic pop-out of movable stimuli

    Get PDF
    When, in visual and haptic search, a target is easily found among distractors, this is called a pop-out effect. The target feature is then believed to be salient, and the search is performed in a parallel way. We investigated this effect with movable stimuli in a haptic search task. The task was to find a movable ball among anchored distractors or the other way round. Results show that reaction times were independent of the number of distractors if the movable ball was the target but increased with the number of items if the anchored ball was the target. Analysis of hand movements revealed a parallel search strategy, shorter movement paths, a higher average movement speed, and a narrower direction distribution with the movable target, as compared with a more detailed search for an anchored target. Taken together, these results show that a movable object pops out between anchored objects and this indicates that movability is a salient object feature. Vibratory signals resulting from the movable ball were found to be a reasonable explanation regarding the sensation responsible for the pop-out of movability

    The interaction between motion and texture in the sense of touch

    Get PDF
    Besides providing information on elementary properties of objects, like texture, roughness, and softness, the sense of touch is also important in building a representation of object movement and the movement of our hands. Neural and behavioral studies shed light on the mechanisms and limits of our sense of touch in the perception of texture and motion, and of its role in the control of movement of our hands. The interplay between the geometrical and mechanical properties of the touched objects, such as shape and texture, the movement of the hand exploring the object, and the motion felt by touch, will be discussed in this article. Interestingly, the interaction between motion and textures can generate perceptual illusions in touch. For example, the orientation and the spacing of the texture elements on a static surface induces the illusion of surface motion when we move our hand on it or can elicit the perception of a curved trajectory during sliding, straight hand movements. In this work we present a multiperspective view that encompasses both the perceptual and the motor aspects, as well as the response of peripheral and central nerve structures, to analyze and better understand the complex mechanisms underpinning the tactile representation of texture and motion. Such a better understanding of the spatiotemporal features of the tactile stimulus can reveal novel transdisciplinary applications in neuroscience and haptics

    Doctor of Philosophy

    Get PDF
    dissertationThe study of haptic interfaces focuses on the use of the sense of touch in human-machine interaction. This document presents a detailed investigation of lateral skin stretch at the fingertip as a means of direction communication. Such tactile communication has applications in a variety of situations where traditional audio and visual channels are inconvenient, unsafe, or already saturated. Examples include handheld consumer electronics, where tactile communication would allow a user to control a device without having to look at it, or in-car navigation systems, where the audio and visual directions provided by existing GPS devices can distract the driver's attention away from the road. Lateral skin stretch, the displacement of the skin of the fingerpad in a plane tangent to the fingerpad, is a highly effective means of communicating directional information. Users are able to correctly identify the direction of skin stretch stimuli with skin displacements as small as 0.1 mm at rates as slow as 2 mm/s. Such stimuli can be rendered by a small, portable device suitable for integration into handheld devices. The design of the device-finger interface affects the ability of the user to perceive the stimuli accurately. A properly designed conical aperture effectively constrains the motion of the finger and provides an interface that is practical for use in handheld devices. When a handheld device renders directional tactile cues on the fingerpad, the user must often mentally rotate those cues from the reference frame of the finger to the world-centered reference frame where those cues are to be applied. Such mental rotation incurs a cognitive cost, requiring additional time to mentally process the stimuli. The magnitude of these cognitive costs is a function of the angle of rotation, and of the specific orientations of the arm, wrist and finger. Even with the difficulties imposed by required mental rotations, lateral skin stretch is a promising means of communicating information using the sense of touch with potential to substantially improve certain types of human-machine interaction

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Sensor Fusion in the Perception of Self-Motion

    No full text
    This dissertation has been written at the Max Planck Institute for Biological Cybernetics (Max-Planck-Institut für Biologische Kybernetik) in Tübingen in the department of Prof. Dr. Heinrich H. Bülthoff. The work has universitary support by Prof. Dr. Günther Palm (University of Ulm, Abteilung Neuroinformatik). Main evaluators are Prof. Dr. Günther Palm, Prof. Dr. Wolfgang Becker (University of Ulm, Sektion Neurophysiologie) and Prof. Dr. Heinrich Bülthoff.amp;lt;bramp;gt;amp;lt;bramp;gt; The goal of this thesis was to investigate the integration of different sensory modalities in the perception of self-motion, by using psychophysical methods. Experiments with healthy human participants were to be designed for and performed in the Motion Lab, which is equipped with a simulator platform and projection screen. Results from psychophysical experiments should be used to refine models of the multisensory integration process, with an mphasis on Bayesian (maximum likelihood) integration mechanisms.amp;lt;bramp;gt;amp;lt;bramp;gt; To put the psychophysical experiments into the larger framework of research on multisensory integration in the brain, results of neuroanatomical and neurophysiological experiments on multisensory integration are also reviewed

    Perception of the Body in Space: Mechanisms

    Get PDF
    The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again
    corecore