2,945 research outputs found

    Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites

    Get PDF
    Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation endeavours. In particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G, Non-Terrestrial Networks aimed at deploying satellite systems either as a stand-alone solution or as an integration to terrestrial networks in mobile broadband and machine-type communication scenarios. However, typical satellite channel impairments, as large path losses, delays, and Doppler shifts, pose severe challenges to the realisation of a satellite-based NR network. In this paper, based on the architecture options currently being discussed in the standardisation fora, we discuss and assess the impact of the satellite channel characteristics on the physical and Medium Access Control layers, both in terms of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB) and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis shows that the main technical challenges are related to the PHY/MAC procedures, in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic Repeat reQuest (HARQ) and, depending on the considered service and architecture, different solutions are proposed.Comment: Submitted to Transactions on Vehicular Technologies, April 201

    Linear transmitter design for MSAT terminals

    Get PDF
    One of the factors that will undoubtedly influence the choice of modulation format for mobile satellites, is the availability of cheap, power-efficient, linear amplifiers for mobile terminal equipment operating in the 1.5-1.7 GHz band. Transmitter linearity is not easily achieved at these frequencies, although high power (20W) class A/AB devices are becoming available. However, these components are expensive and require careful design to achieve a modest degree of linearity. In this paper an alternative approach to radio frequency (RF) power amplifier design for mobile satellite (MSAT) terminals using readily-available, power-efficient, and cheap class C devices in a feedback amplifier architecture is presented

    Advanced Algorithms for Satellite Communication Signal Processing

    Get PDF
    Dizertační práce je zaměřena na softwarově definované přijímače určené k úzkopásmové družicové komunikaci. Komunikační kanály družicových spojů zahrnujících komunikaci s hlubokým vesmírem jsou zatíženy vysokými úrovněmi šumu, typicky modelovaného AWGN, a silným Dopplerovým posuvem signálu způsobeným mimořádnou rychlostí pohybu objektu. Dizertační práce představuje možné postupy řešení výpočetně efektivní digitální downkonverze úzkopásmových signálů a systému odhadu kmitočtu nosné úzkopásmových signálů zatížených Dopplerovým posuvem v řádu násobků šířky pásma signálu. Popis navrhovaných algoritmů zahrnuje analytický postup jejich vývoje a tam, kde je to možné, i analytické hodnocení jejich chování. Algoritmy jsou modelovány v prostředí MATLAB Simulink a tyto modely jsou využity pro ověření vlastností simulacemi. Modely byly také využity k experimentálním testům na reálném signálu přijatém z družice PSAT v laboratoři experimentálních družic na ústavu radioelektroniky.The dissertation is focused on software defined receivers intended for narrowband satellite communication. The satellite communication channel including deep space communication suffers from a high level of noise, typically modeled by AWGN, and from a strong Doppler shift of a signal caused by the unprecedented speed of an object in motion. The dissertation shows possible approaches to the issues of computationally efficient digital downconversion of narrowband signals and the carrier frequency estimation of narrowband signals distorted by the Doppler shift in the order of multiples of the signal bandwidth. The description of the proposed algorithms includes an analytical approach of its development and, if possible, the analytical performance assessment. The algorithms are modeled in MATLAB Simulink and the models are used for validating the performance by the simulation. The models were also used for experimental tests on the real signal received from the PSAT satellite at the laboratory of experimental satellites at the department of radio electronics.

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    MSAT voice modulation considerations

    Get PDF
    The challenge for Mobile satellite (MSAT) voice services is to provide near toll quality voice to the user, while minimizing the power and bandwidth resources of the satellite. The options for MSAT voice can be put into one of two groups: Analog and Digital. Analog, nominally narrowband single sideband techniques, have a shown robustness to the fading and shadowing environment. Digital techniques, a combination of low rate vocoders and bandwidth efficient modems, show the promise of enhanced fidelity, as well as easier networking to the emerging digital world. The problems and tradeoffs to designers are many, especially in the digital case. Processor speed vs. cost and MET power requirements, channel coding, bandwidth efficiency vs. power efficiency etc. While the list looks daunting, in fact an acceptable solution is well within the technology. The objectives are reviewed that the MSAT voice service must meet, along with the options that are seen for the future

    Analogue and digital linear modulation techniques for mobile satellite

    Get PDF
    The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Satellite-aided land mobile communications system implementation considerations

    Get PDF
    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization
    corecore