91 research outputs found

    The Impact of Situational Complexity and Familiarity on Takeover Quality in Uncritical Highly Automated Driving Scenarios

    Get PDF
    In the development of highly automated driving systems (L3 and 4), much research has been done on the subject of driver takeover. Strong focus has been placed on the takeover quality. Previous research has shown that one of the main influencing factors is the complexity of a traffic situation that has not been sufficiently addressed so far, as different approaches towards complexity exist. This paper differentiates between the objective complexity and the subjectively perceived complexity. In addition, the familiarity with a takeover situation is examined. Gold et al. show that repetition of takeover scenarios strongly influences the take-over performance. Yet, both complexity and familiarity have not been considered at the same time. Therefore, the aim of the present study is to examine the impact of objective complexity and familiarity on the subjectively perceived complexity and the resulting takeover quality. In a driving simulator study, participants are requested to take over vehicle control in an uncritical situation. Familiarity and objective complexity are varied by the number of surrounding vehicles and scenario repetitions. Subjective complexity is measured using the NASA-TLX; the takeover quality is gathered using the take-over controllability rating (TOC-Rating). The statistical evaluation results show that the parameters significantly influence the takeover quality. This is an important finding for the design of cognitive assistance systems for future highly automated and intelligent vehicles

    Automated driving: A literature review of the take over request in conditional automation

    Get PDF
    This article belongs to the Special Issue Autonomous Vehicles TechnologyIn conditional automation (level 3), human drivers can hand over the Driving Dynamic Task (DDT) to the Automated Driving System (ADS) and only be ready to resume control in emergency situations, allowing them to be engaged in non-driving related tasks (NDRT) whilst the vehicle operates within its Operational Design Domain (ODD). Outside the ODD, a safe transition process from the ADS engaged mode to manual driving should be initiated by the system through the issue of an appropriate Take Over Request (TOR). In this case, the driver's state plays a fundamental role, as a low attention level might increase driver reaction time to take over control of the vehicle. This paper summarizes and analyzes previously published works in the field of conditional automation and the TOR process. It introduces the topic in the appropriate context describing as well a variety of concerns that are associated with the TOR. It also provides theoretical foundations on implemented designs, and report on concrete examples that are targeted towards designers and the general public. Moreover, it compiles guidelines and standards related to automation in driving and highlights the research gaps that need to be addressed in future research, discussing also approaches and limitations and providing conclusions.This work was funded by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0; the Spanish Ministry of Economy, Industry and Competitiveness under the TRA201563708-R and TRA2016-78886-C3-1-R project; open access funding by the Johannes Kepler University Linz

    The implication of non-driving activities on situation awareness and take-over performance in level 3 automation

    Get PDF
    The driver's take-over performance is of great importance for driving safety in conditionally automated driving since the driver is required to respond appropriately to control the vehicle if there is a system failure. The engagement of different non-driving activities (NDAs), considered as the main factor of the driver's take-over performance has been investigated in this study from both perspectives of the driver's situation awareness and take-over quality. The activities are divided into 2 groups, which are active interaction mode and passive interaction mode based on the engagement of human and object. The results suggest that the engagement of NDAs could reduce the driver's situation awareness. Driver's attention level is different for each activity. Particularly, active interaction mode NDAs requests more mentally demanding and drivers are not sensitive to the driving situation change when they are doing such activities. In addition, there is no significant difference in the maximum lateral error with NDAs engagement. However, it takes more time to achieve a safe control transition for drivers who are doing the NDAs. The active interaction mode NDAs request even more time. Moreover, the transition process could benefit from steering wheel haptic feedback torque, which can be considered as an effective take-over assistance system

    Takeover performance evaluation using driving simulation: a systematic review and meta-analysis

    Get PDF
    Introduction: In a context of increasing automation of road transport, many researchers have been dedicated to analyse the risks and safety implications of resuming the manual control of a vehicle after a period of automated driving. This paper performs a systematic review about drivers' performance during takeover manoeuvres in driving simulator, a tool that is widely used in the evaluation of automated systems to reproduce risky situations that would not be possible to test in real roads. Objectives: The main objectives are to provide a framework for the main strategies, experimental conditions and results obtained by takeover research using driving simulation, as well as to find whether different approaches may lead to different outcomes. Methodology: First, a literature search following the PRISMA statement guidelines and checklist resulted in 36 relevant papers, which were described in detail according to the type of scenarios and takeover events, drivers' engagement in secondary tasks and the assessed takeover performance measures. Then, those papers were included in a meta-analysis combining PAM clustering and ANOVA techniques to find patterns among the experimental conditions and to determine if those patterns have influence on the observed takeover performance. Conclusions: Less complex experiments without secondary task engagement and conducted in low-fidelity simulators are associated with lower takeover times and crash rates. The takeover time increases with the time budget of the first alert, which reduces the pressure for a driver's quick intervention. (c) 2021, The Author(s)
    corecore