101,404 research outputs found

    Analysis and equalization of data-dependent jitter

    Get PDF
    Data-dependent jitter limits the bit-error rate (BER) performance of broadband communication systems and aggravates synchronization in phase- and delay-locked loops used for data recovery. A method for calculating the data-dependent jitter in broadband systems from the pulse response is discussed. The impact of jitter on conventional clock and data recovery circuits is studied in the time and frequency domain. The deterministic nature of data-dependent jitter suggests equalization techniques suitable for high-speed circuits. Two equalizer circuit implementations are presented. The first is a SiGe clock and data recovery circuit modified to incorporate a deterministic jitter equalizer. This circuit demonstrates the reduction of jitter in the recovered clock. The second circuit is a MOS implementation of a jitter equalizer with independent control of the rising and falling edge timing. This equalizer demonstrates improvement of the timing margins that achieve 10/sup -12/ BER from 30 to 52 ps at 10 Gb/s

    Fine Tuning Classical and Quantum Molecular Dynamics using a Generalized Langevin Equation

    Get PDF
    Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted trajectories. By developing quantitative measures of the disturbance induced by the GLE to the Hamiltonian dynamics of a harmonic oscillator, we show that these analytical results accurately predict the behavior of strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with these techniques, improving the quality of results for the modelling of vibrational dynamics of molecules, liquids and solids

    Efficient multiple time scale molecular dynamics: using colored noise thermostats to stabilize resonances

    Get PDF
    Multiple time scale molecular dynamics enhances computational efficiency by updating slow motions less frequently than fast motions. However, in practice the largest outer time step possible is limited not by the physical forces but by resonances between the fast and slow modes. In this paper we show that this problem can be alleviated by using a simple colored noise thermostatting scheme which selectively targets the high frequency modes in the system. For two sample problems, flexible water and solvated alanine dipeptide, we demonstrate that this allows the use of large outer time steps while still obtaining accurate sampling and minimizing the perturbation of the dynamics. Furthermore, this approach is shown to be comparable to constraining fast motions, thus providing an alternative to molecular dynamics with constraints.Comment: accepted for publication by the Journal of Chemical Physic

    Measurement of aerodynamic and acoustic quantities describing flow around a body placed in a wind tunnel

    Get PDF
    Aerodynamically generated noise affects passenger comfort in cars, high-speed trains, and airplanes, and thus, automobile manufacturers aim for its reduction. Investigation methods of noise and vibration sources can be divided into two groups, i.e. experimental research and mathematical research. Recently, owing to the increase in computing power, research in aerodynamically generated noise (aero-acoustics) is beginning to use modem methods such as computational fluid dynamics or fluid-structure interaction. The mathematical model of turbulent flow is given by the system of partial differential equations, its solution is ambiguous and thus requires verification by physical experiment. The results of numerical methods are affected by the boundary conditions of high quality gained from the actual experiment. This article describes an application of complex measurement methodology in the aerodynamic and acoustic (vibro-acoustic) fields. The first part of the paper is focused on the specification of the experimental equipment, i.e. the wind tunnel, which was significantly upgraded in order to obtain the relevant aerodynamics and vibro-acoustics data. The paper presents specific results from the measurement of the aerodynamic and vibro-acoustic fields.Web of Science191282

    Characterizing mixed mode oscillations shaped by noise and bifurcation structure

    Full text link
    Many neuronal systems and models display a certain class of mixed mode oscillations (MMOs) consisting of periods of small amplitude oscillations interspersed with spikes. Various models with different underlying mechanisms have been proposed to generate this type of behavior. Stochastic versions of these models can produce similarly looking time series, often with noise-driven mechanisms different from those of the deterministic models. We present a suite of measures which, when applied to the time series, serves to distinguish models and classify routes to producing MMOs, such as noise-induced oscillations or delay bifurcation. By focusing on the subthreshold oscillations, we analyze the interspike interval density, trends in the amplitude and a coherence measure. We develop these measures on a biophysical model for stellate cells and a phenomenological FitzHugh-Nagumo-type model and apply them on related models. The analysis highlights the influence of model parameters and reset and return mechanisms in the context of a novel approach using noise level to distinguish model types and MMO mechanisms. Ultimately, we indicate how the suite of measures can be applied to experimental time series to reveal the underlying dynamical structure, while exploiting either the intrinsic noise of the system or tunable extrinsic noise.Comment: 22 page

    All-propulsion design of the drag-free and attitude control of the European satellite GOCE

    No full text
    This paper concerns the drag-free and attitude control (DFAC) of the European Gravity field and steady-state Ocean Circulation Explorer satellite (GOCE), during the science phase. GOCE aims to determine the Earth's gravity field with high accuracy and spatial resolution, through complementary space techniques such as gravity gradiometry and precise orbit determination. Both techniques rely on accurate attitude and drag-free control, especially in the gradiometer measurement bandwidth (5-100mHz), where non-gravitational forces must be counteracted down to micronewton, and spacecraft attitude must track the local orbital reference frame with micro-radian accuracy. DFAC aims to enable the gravity gradiometer to operate so as to determine the Earth's gravity field especially in the so-called measurement bandwidth (5-100mHz), making use of ion and micro-thruster actuators. The DFAC unit has been designed entirely on a simplified discrete-time model (Embedded Model) derived from the fine dynamics of the spacecraft and its environment; the relevant control algorithms are implemented and tuned around the Embedded Model, which is the core of the control unit. The DFAC has been tested against uncertainties in spacecraft and environment and its code has been the preliminary model for final code development. The DFAC assumes an all-propulsion command authority, partly abandoned by the actual GOCE control system because of electric micro-propulsion not being fully developed. Since all-propulsion authority is expected to be imperative for future scientific and observation missions, design and simulated results are believed to be of interest to the space communit
    • 

    corecore