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Multiple time scale molecular dynamics enhances computational efficiency by updating slow mo-
tions less frequently than fast motions. However, in practice, the largest outer time step possible
is limited not by the physical forces but by resonances between the fast and slow modes. In this
paper we show that this problem can be alleviated by using a simple colored noise thermostatting
scheme which selectively targets the high frequency modes in the system. For two sample problem:s,
flexible water and solvated alanine dipeptide, we demonstrate that this allows the use of large outer
time steps while still obtaining accurate sampling and minimizing the perturbation of the dynamics.
Furthermore, this approach is shown to be comparable to constraining fast motions, thus provid-
ing an alternative to molecular dynamics with constraints. © 2011 American Institute of Physics.

[doi:10.1063/1.3518369]

. INTRODUCTION

Over the past two decades atomistic simulation of chem-
ical, material, and biological systems has become a routine
and important tool for understanding, analyzing, and predict-
ing experiment. Time scales of interest now often span into
the microsecond range so as to monitor processes such as
protein folding and transport through membranes. However,
the shortest atomic time scales in these systems, typically for
bonded interactions, such as stretches and bends, are of the
scale of femtoseconds and therefore time steps of this order
are required to stably evolve the system. As a result, billions
of steps are needed to reach the time scales of interest, making
such simulations a formidable challenge.

Chemical systems typically involve interactions oc-
curring on many time scales ranging from rapidly varying,
but cheap to calculate, bonded interactions to slow, but
expensive, long range electrostatics. Multiple time scale
methods can be used to exploit this separation in time scales
by updating the slow interactions less frequently than the fast
interactions, in principle, allowing significant computational
savings to be achieved.'* However, the maximum outer
time step which can be obtained is in practice limited by the
resonance between the slow and fast modes.>® This results in
energy building up in the high frequency modes, raising the
temperature of the system and leading to unstable trajectories
and incorrect sampling. As a result the fastest mode in the
system still dictates how frequently the slowest interactions
must be calculated, thereby limiting the maximum obtainable
speed-up.”3

A commonly used approach to delay the resonance bar-
rier is to remove the high frequencies in the system by
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constraining them.” For example, in water one can con-
strain the oxygen—hydrogen bond length and intramolecular
hydrogen—hydrogen distance. This allows a larger outer time
step to be used but requires prior knowledge of the coordi-
nates that comprise the fast modes. In simple systems these
coordinates may be known, but in complex biological and
materials systems this is not always the case and one could
risk constraining a degree of freedom which has vital impor-
tance to mechanism or function. The MOLLY method can be
viewed in a similar fashion since it requires prior specification
of coordinates of fast modes which are then used to filter out
the destabilizing components of the slow forces.” %11

It is now well established that large time steps can be
achieved while retaining full flexibility by coupling the sys-
tem to a bath.'>~'* We note that the bath serves two purposes:
to remove energy which builds up in the modes and to disrupt
the high frequency modes from resonating with the lower
frequencies. The most common choice is to couple each
atom in the system to a white noise Langevin (WNL) bath
which acts uniformly across the spectrum of the system.'>!?
However, as has been pointed out previously,'? the strength of
the system—bath coupling needed to stabilize large time steps
significantly disrupts the motion of the slow modes thereby
greatly hindering diffusive and orientational motion. As we
will show this leads to a situation where any computational
speed-ups gained by increasing the outer time step are largely
outweighed by the decrease in the rate at which different
configurations are explored. To avoid this, one would ideally
like to couple strongly to high frequency motion in the sys-
tem while leaving low frequencies unperturbed. This can be
achieved by transforming to the normal modes of the system
at each time step and then evolving using a strong coupling
to high frequencies with weak coupling to low ones. Indeed,
it has been shown for a simple biological system in implicit
solvent that this approach is very successful at removing

© 2011 American Institute of Physics

Downloaded 08 Jan 2011 to 129.67.105.96. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


https://core.ac.uk/display/147996615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.3518369
http://dx.doi.org/10.1063/1.3518369
http://dx.doi.org/10.1063/1.3518369
mailto: bb8@columbia.edu

014103-2 Morrone et al.

resonance issues while preserving dynamics.!> However, in
practice performing normal mode transformations at each
step for large systems is prohibitively expensive.

In this paper we attempt to reconcile the simplicity of
the WNL approach with the effectiveness of the targeted
normal mode approach by using tailored colored noise.
Recent work has made this possible by showing how the gen-
eralized Langevin equation (GLE) can be used to thermostat
molecular dynamics simulations using an extended WNL
formalism.'®2° Unlike white noise, colored noise can be
tailored to have a frequency dependent coupling which allows
for much greater flexibility in its application. For example a
simple colored noise thermostat was designed for use in Car-
Parrinello ab initio molecular dynamics simulations which
only targets atomic motion while allowing the high frequency
fictitious electronic degrees of freedom to evolve freely.'®
In this work we will demonstrate how colored noise can
instead be used to design a bath which heavily damps high
frequencies while leaving low frequencies largely unaffected.
The simple scheme which results allows the resonance barrier
to be postponed facilitating the use of large outer time steps
while yielding accurate sampling and minimal impact on the
dynamics. Applications of this approach to flexible water
and an aqueous solution of alanine dipeptide demonstrate
that significant increases in computational efficiency can
be achieved while requiring little a priori knowledge of the
system.

The outline of the paper is as follows: Sec. II briefly re-
views the colored noise thermostatting approach and shows
how colored noise profiles can be constructed in a transparent
way by combining simple analytic forms. The implementa-
tion of the GLE thermostat in a standard reference system
propagator algorithm (RESPA) (Ref. 4) is then discussed.
Section III outlines the simulations performed using this
scheme to calculate the static and dynamic properties of a
fully flexible model of liquid water and an aqueous solution
of alanine dipeptide. Section IV discusses the results of these
applications and Sec. V concludes.

Il. THEORY
A. Colored noise thermostats

For a particle of mass m with position x and momen-
tum p moving on a one-dimensional potential energy surface

V(x), the generalized Langevin equation is,?!~%3
x=p/m, (D
t
P=f(x)—/ dtK(t — 7)p() + R(1), 2
0

where K(t) is the memory kernel, R(¢) is a non-Markovian
“colored” random force, and f(x) = —dV(x)/dx is the force
due the potential. The fluctuation-dissipation theorem dictates
that for an equilibrium system at temperature 7', K(¢), and
R(t) are related by,

mkgT K(t) = (R(t)R(0)), 3

where kg is the Boltzmann constant.
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In the case where the random force is uncorrelated,
(R(t)R(0)) = b*8(1), the white noise Langevin equation,

X =p/m, “

p=fx)—yp+bé&() %)

is recovered. Here £(¢) is a Gaussian Markov process with
unit variance and the fluctuation dissipation theorem in
Eq. (3) reduces to,

2mkgTy = b*. (6)

This is commonly used as a tool to thermostat molecular dy-
namics simulations.

A colored noise thermostat can be implemented by ex-
actly mapping Eq. (2) onto a Markovian dynamics in an ex-
tended space consisting of a set of auxiliary momenta, s, that
are coupled to the system momentum, p, in the presence of a
Markovian bath.'®-1%:2425 The equations of motion are given
by

X =p/m, @)

(0)-(5) c()omn

where &(¢) is a vector of uncorrelated Gaussian noise. The
drift (or damping) matrix (I'), may be related to the diffusion
matrix (B) by a recasted fluctuation-dissipation theorem,'®23

mkgT(T +TT) = BB'. 9)

The matrix elements of I,

T
r= (" 7r (10)
Y sp rss
determine the form of the memory kernel that acts on the sys-
tem via

K1) =2yppd(t) — y 5 €T . (11)

If the extended momenta are uncoupled from the system equa-
tion, Eq. (8) reduces to the white noise Langevin equation
[Eq. (5)] with y,, = y. In the next section we will describe
how Eq. (11) can be used to design a drift matrix that yields
a colored noise profile such that the fast modes are strongly
coupled and slow modes weakly coupled to the bath.

B. Designing the colored noise profile

The effect of the bath on the system is determined by
the details of K (¢). Using the extended white noise Langevin
framework outlined above the effect of the bath and the form
of the memory kernel is determined by customizing the drift
matrix I [see Eq. (11)].

The expression given in the right-hand side of Eq. (11)
consists of two terms, a simple white noise component of
strength y,, and one that depends upon the coupling of the
auxiliary momenta. This second term is a scalar and is there-
fore invariant to the choice of basis. The time dependence of
the second term of Eq. (11) is contained in the matrix ex-
ponential of submatrix, I'; and it is therefore transparently
expressed in its eigenbasis. The eigendecomposition of the
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submatrix yields I'y; = UAU!, where A; j = A;é;; is the di-
agonal eigenvalue matrix. Matrix U is comprised of the set of
eigenvectors in its columns and may be used to rotate, Iy, into
the eigenbasis. The memory function is now expressed as,

K (1) = 2y,,8(t) — y Ue AUy, (12)

In order to recover correct equilibrium behavior in the t — oo
limit, it is a necessary but not sufficient condition that the real
part of the eigenvalues of I'y, are chosen to be positive.l&23
The resultant kernel consists of a linear combination of expo-
nential decaying forms, arising from the real eigenvalues, and
damped oscillatory ones from the complex conjugate pairs.

In considering the effect of a colored noise bath it is
physically intuitive to consider the memory spectrum, K (),
which is the Fourier transform of the memory kernel. Given
that the memory function may be expressed as a linear com-
bination of a white noise term and a set of exponential forms
with real or complex conjugate pairs of eigenvalues, the mem-
ory spectrum is readily computable. For a given eigenvalue
Aj = aj +ibj, the Fourier transform of the corresponding ex-
ponential function is a Lorentzian,

o0 .
/ dr e e!bil gl = 2 za—]z. (13)
oo aj + (w—bj)

The width and center of the Lorentzian are given by the real
and imaginary parts of the corresponding eigenvalue, respec-
tively. Therefore, the memory spectrum is expressible as a
constant 2y, from which a set of Lorentzian functions are
added or subtracted. In order to generate the correct equilib-
rium distribution, forms must be chosen such that K (w) is
always greater than zero.'8:%6

Yoo 31/4 1

I=| 3"/&Ve — v0) V3
1
—mv (Voo — Y0) -0

corresponds to a memory spectrum which possesses such a
form. The associated memory kernel and spectrum are given
by the following equations:

2 (oo — yo)e VN2 cos(it /2)

/3

K(t) = 2ya08(t) — 2
(15)

K(®) = 2Y00 — 2 —= Voo — Y0)

S
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Although the form of the memory function as given by
Eq. (12) appears simple, “translating” a chosen form into a
stable drift matrix is nontrivial. This is due to the fact that
although the basis in which the submatrix I, is expressed is
arbitrary with respect to the form of the memory function, this
choice of basis is crucial for the generation of stable dynamics
within the colored noise thermostat implementation. Namely,
a requirement of the integration of the equations of motion
is that the symmetric part of I' must be positive definite (see
Sec. IT C). Indeed, it is possible to choose forms of the kernel
based on Eq. (12) such that K(w) > 0 while violating this
condition.

Despite these difficulties, it is possible to construct drift
matrices which correspond to a memory spectrum of a desired
form where the matrix elements are transparently relatable to
the time dependence, namely the eigenvalues of I'y, are ex-
plicit parameters of I'. Drift matrices of this sort have already
appeared in the literature,'®!® and their details are summa-
rized in Appendix A. We now present such a form that is tai-
lored for the problem at hand.

In selecting the details of the colored noise profile it is
instructive to first consider the memory spectrum, which pro-
vides information about how strongly the modes of the sys-
tem exchange energy with the bath at a given frequency.?
Additionally, the w = 0 value of the memory spectrum is in-
versely proportional to the diffusion constant of a free particle
[f(x) = 0] coupled to the bath. Therefore, if a profile is re-
quired that couples the bath strongly to high frequency modes
and more weakly to low ones, one can start by constructing
a memory kernel whose spectrum is small at low frequencies
and large near the frequencies where strong coupling is de-
sired. The following drift matrix:

(Yoo — Y0) W\/ (Yoo — Y0)

(14)

The memory spectrum of Eq. (16) is shown schematically
in Fig. 1. It can be understood as a white noise of strength
from which a pair of Lorentzians of width @+/3/2 centered
at w = £@®/2 is subtracted. In this way the Lorentzian terms
can be thought of as partially “canceling out” the white noise
component at low frequencies. The shape is such that its value
is 2y at w = 0 and approaches a value 2y, as @ — o0. In
order to fulfill our design requirements of the noise profile,
we take the parameter y; to be an arbitrarily small (nonzero)
number. The parameter & is related to the frequency at which
the memory spectrum begins to rise rapidly. When the pa-
rameters are chosen to have positive values, R (w) is an even,
positive definite function, as is required to generate the correct
equilibrium distribution.



014103-4 Morrone et al. J. Chem. Phys. 134, 014103 (2011)
250 T I T I T I T T I T I T I T
200
“-E 150 -
= r AW _ %
S o} My \ -
M I | \
L | / \ \ 4
VAR \
50 /N \ —
L /7 W J
/o \\\
-y 5? . | 1 :12 e 1 | 1 |
-2000 -1000 0 1000 2000  -2000 -1000 0 1000 2000
-1 -1
o [ps'] o [ps']

FIG. 1. The shape of the memory spectra given by Eq. (16) is detailed schematically. In the left panel the white noise component (black line) is shown alongside
Lorentzians centered at £@/2 (blue and red dashed curves). The right panel shows the memory spectra which results from the subtraction of the sum of the
Lorentzians from the white noise component. The spectra is small near zero and plateaus to the value of the white noise component at large .

The colored noise profile expressed in Eqs. (14), (15),
and (16) provides a transparent and readily tunable form for
the drift matrix of the colored noise thermostat with an asso-
ciated memory spectrum of the shape that we desire. However
the coupling of the bath to system is nonlocal, and although
intuition can inform our choice of the shape of the memory
spectrum, one cannot a priori determine the exact values of
the parameters y., and @ which adequately couple to high fre-
quency modes and simultaneously minimize the perturbation
on low frequency modes.

In previous work, colored noise thermostats have been
successfully tuned according to the energy relaxation times
of harmonic oscillators coupled to the thermostat.'® However
in this work we find it more appropriate to estimate the
disturbance of the spectrum of a test harmonic oscillator
engendered by the colored noise thermostat. The velocity au-
tocorrelation function (and hence spectrum) for an oscillator
with frequency wy in the presence of the colored noise ther-
mostat may be exactly computed by matrix algebra.'®?” The
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FIG. 2. The spectra of SPC/Fw water computed from a microcanonical sim-
ulation (solid, black line), and simulations that employ the GLE-12 fs colored
noise parameter set (red, dashed line), and a white noise (blue, dotted-dashed
line) Langevin thermostat. The memory spectra that is obtained from the GLE
dynamics is given by the red, dotted line. The strength of the white noise bath
corresponds to the w — oo limit of this profile (y = 83.3 ps~1).

spectrum is both broadened and shifted with respect to the
free oscillator result, and the size of these differences provides
some measure of the strength of the system-bath coupling.
For frequencies that are small compared to the bath parameter
& and when yy is negligible, the ratio of the peak position of
the system—bath spectrum (wp) to that of the free spectrum
(wp) may be estimated by the following expression (see
Appendix B):

wp 1 O( @ 2)_
®o 1+€0’/—\°/‘°§Jr ("))

It is important to note that this estimate depends on the value
of the friction in the high frequency limit, and is a function of
the ratio y/@®. This underscores the nonlocality in frequency
space of the system—bath interaction.

Equation (17) provides an estimate of the impact of the
colored noise thermostat on the low frequency modes. In
order to ensure that the high frequency modes are sufficiently
damped, the parameter y., is set to be large. A lower bound
is provided by the white noise friction that is required to
stabilize any resonance instabilities that are present in the
system. Fine tuning can then be accomplished by testing
the performance of a set of noise profiles on a realistic
system in conjunction with a multiple time scale integrator.
However, since most biomolecular systems have similar
spectral features the profiles presented here should provide
good performance in a broad range of studies without
reparameterization. The parameters for the colored noise
profiles that will be utilized in this study are given in Table I.

A7)

TABLE I. The parameters sets of the drift matrix [Eq. (14)] which are uti-
lized in this study. Parameter sets are labeled according to the outer time step
with which they are used in conjunction. (see Sec. III).

Matrix No. Yoo (ps7H) v (ps™h) @ (ps7hH wp /@y
GLE-12 fs 83.33 0.01 300.0 0.93
GLE-16 fs 125.0 0.01 100.0 0.76
GLE-20 fs 200.0 0.01 75.0 0.63
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In order to gauge the impact of the colored noise thermo-
stat, the spectrum of a flexible water model?® in the presence
of a bath as defined by parameter set GLE-12 fs in Table I
is plotted in Fig. 2. The result is compared to microcanoni-
cal and white noise Langevin dynamics with a friction that is
equivalent to the @ — oo limit of the colored profile. It can
be readily seen that, when compared with the microcanonical
dynamics, the lower frequency modes are less disturbed than
those related to bending and stretching. It is the intramolecu-
lar modes that have been targeted for damping and one can see
that the impact of the colored bath on the oxygen—hydrogen
stretch at 2680 ps~! is comparable to that engendered by the
high-friction white noise bath. Furthermore we note that the
ratio of the low frequency peak positions of the thermostatted
spectra to the microcanonical peak positions is approximately
90%. This value is close to the estimate provided by Eq. (17),
which predicts a shift of 93% (see Table I).

C. Integration scheme

We now briefly outline the numerical method used to
evolve the system according to the equations of motion in
Eq. (8) and their integration within a standard RESPA mul-
tiple time scale scheme. For clarity the following equations
are shown for a single degree of freedom. However, extension
to more dimensions follows directly.

Integrators for molecular dynamics can be generated
Trotter factorization of the Liouville propagator.* A suitable
factorization to evolve the equations of motion of a system
coupled to a colored noise thermostat [Eq. (8)] over a time
step At is given by,'%20.29

iLAt iLpsA1/2 4Ly A2 i Ly At

e —e einAt/ZeinlAt/z‘ (18)

Each factor provides an analytic operation on the state of
the system. The operator e'+®! provides a coordinate shift
through a time step At,

X < x+ At£ (19)
m
while e’£»2! evolves the momenta by a time increment At,

p < p+ Atf(x). (20)

The combination of these two operations is the standard ve-
locity Verlet algorithm.* The outermost operation e'“»2! pro-
vides the effect of the colored noise thermostat on the system
momentum, p and evolves the additional thermostat degrees
of freedom, s. This operation can be shown to be, %20

pP < C1 p+ \/mkaCZE, (21)

where £ is a vector of independent Gaussian numbers. Here

p=<f) (22)

is a vector containing the system momentum, p, and extended
momenta s, and

Cp=e 2T, (23)
and

clc,=1-Clc,. (24)

J. Chem. Phys. 134, 014103 (2011)

Again, it is useful to note that this reduces to a standard in-
tegrator for the white noise Langevin thermostat*® when the
extended momenta are decoupled from the system. In order
to recover C, a Cholesky decomposition must be performed
on the expression in Eq. (24). This operation requires that the
symmetric part of the matrix T is positive definite.'8

When the system consists of more than the one de-
gree of freedom the ability of the extended momenta to re-
spond to the different frequencies experienced by each par-
ticle requires a local (massive) coupling.'® Hence for a sys-
tem of N particles with 3N components of momentum the
colored noise thermostat corresponding to the drift matrix in
Eq. (14) adds 6N additional variables in the form of the
auxiliary momenta, s. This compares favorably with those
required in local Nose-Hoover schemes which add 18N
variables if a typical chain of length three is chosen.’*:3!
Evolution of the auxiliary momenta in Eq. (21)is a3 x 3 ma-
trix multiplication and 3N of these operations are required for
each thermostat evolution of the N particle system. The local
nature of the thermostat makes the operation easily paralleliz-
able. For all the systems considered in this study we found the
cost of the thermostat operations to be small in comparison
to the force calculations which dominate the computational
cost.

To construct a multiple time scale scheme the forces are
partitioned into a sum of rapidly and slowly varying compo-
nents. In the case of three components, we may write the total
force as

f) = P+ P + O, (25)

where f(x) corresponds to the slowest forces, which can be
integrated with the largest time step, and f®(x) the fastest
ones which necessitate the smallest time step for stable inte-
gration. With this splitting of the forces the Liouville operator
can be factorized as,

M,
olLAT — eiU,,”At/z l_[ |:eiLmAZz/2eiL(,?’Arz/2

M;
. (3) . . 3)
% l—[ (ezL,, Al3/2 i Ly At 4L At3/2)
iLPALJ2 Ly Ab2 | LV A2
xe'tr SR cet s TR e-r , (26)

where the exponents of Lf,f) perform the evolution shown in

Eq. (20) under the force f®(x). The time steps for the inte-
gration of the medium and fast forces are then,

Aty = At/ M, 7)
and
Atz = At /(M M3), (28)

respectively, where the whole numbers M, and M3 are cho-
sen to be sufficiently large so as to allow stable integration of
the system under the forces f®(x) and f®(x). The thermo-
stat evolution is located in the middle loop so that the bath is
efficiently coupled to the fast system motions.
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lll. COMPUTATIONAL DETAILS

The colored noise RESPA scheme introduced in the pre-
vious section was used to perform simulations of pure water
and alanine dipeptide in explicit water. The water system con-
sisted of 1000 molecules simulated in a 31.07 A box. The ala-
nine dipeptide was described by the OPLS-AA force field3> 33
in a 20 A box containing 252 water molecules. The SPC/Fw
potential®® was used to model the interactions between water
molecules. All bonded terms (stretches, bends and torsions)
were treated as flexible.

The forces were partitioned into three levels as in
Eq. (25). The bonded terms were updated every 0.5 fs and
the non bonded interactions below 9 A were updated every
2 fs. The long range electrostatics, which dominate the com-
putational cost of the simulation, were updated at the outer
time step which was varied between 2 and 20 fs as discussed
below. The electrostatics were partitioned into short and long
range parts using the RESPA2 scheme.®3* The function that
switches between regions is a quintic spline which acts over
a4 A region.’® The cut off between the short and long range
electrostatics was chosen so as to optimize the computational
performance within our code. Larger cutoffs have been shown
to produce better stability within the MTS formalism® so for
maximum benefit the cutoffs used should be balanced with
performance depending on the exact implementation.

Due to the cost of calculating the long range electrostatic
interactions we wish to make the outer time step as large as
possible while still obtaining correct sampling. We therefore
performed simulations using time steps of 12 fs, 16 fs, and
20 fs. Resonance artifacts are extremely pronounced at these
outer time steps so the simulation must be stabilized with ei-
ther strong white noise damping or optimized colored noise
thermostats. The baseline results for dynamic and equilib-
rium properties were obtained from a microcanonical and a
white noise Langevin simulation, respectively, and were per-
formed using an outer time step of 2 fs. For the microcanoni-
cal results and each combination of thermostat and time step,
water statistics were collected over twelve independent runs
with initial velocities sampled from the Boltzmann distribu-
tion. For water a total of 12 ns of simulation time was per-
formed, while for alanine dipeptide 400 ns was necessary to
converge the properties reported.

IV. RESULTS AND DISCUSSION

For systems that exhibit large resonance artifacts, we now
show that an appropriately designed colored noise thermostat
is capable of yielding accurate sampling while simultaneously
minimizing the thermostat’s impact on diffusional and orien-
tational dynamics. In order to test this scheme, we perform
simulations on flexible water and a fully flexible simulation of
aqueous alanine dipeptide. The broad spectrum of frequencies
in aqueous systems range from fast intramolecular stretches
to slow diffusional modes (see Fig. 2). The strong coupling
between the modes makes this a challenging example to test
our approach. Hence, for flexible water simulations the reso-
nance barrier occurs at an outer time step of ~3 fs when the
microcanonical -RESPA algorithm is employed.®

J. Chem. Phys. 134, 014103 (2011)

In this work, we design colored noise thermostats that
are capable of stabilizing resonance artifacts for outer time
steps of 12, 16, and 20 fs while ensuring that the error in
the energies is within 0.5% of the baseline results. The pa-
rameters for these thermostats are given in Table I. In order
to provide comparison as to the effectiveness of our scheme,
we also perform simulations that use a white noise Langevin
(WNL) thermostat to yield comparable accuracy. These runs
utilize a friction of 14.2 ps~!, 40.0 ps~!, and 100.0 ps~' in
conjunction with outer times steps of 12 fs, 16 fs, and 20 fs,
respectively.

Additionally, recent work has shown that when rigid con-
straints are placed on the fastest degrees of freedom, a weak
Langevin coupling of ¥ = 1 ps~! is required to stabilize the
simulation at an outer time step of 12 fs.” We therefore per-
form simulations using a 2 fs outer time step with this friction.
This facilitates a comparison of the dynamical perturbation
arising from constrained dynamics using white noise stabi-
lization with that caused by fully flexible dynamics using our
colored noise scheme.

A. Water

We first apply our scheme to pure flexible water. In
Table II the average temperature and average bonded and
nonbonded potential energies given for combinations of
outer time step and method of resonance stabilization, either
white noise Langevin (WNL) or generalized (colored noise)
Langevin (GLE) thermostatting. The baseline result to which
the static properties of all stabilized runs are compared utilizes
an outer time step of 2 fs and a WNL thermostat with a fric-
tion of y = 1 ps~!. It can be seen that the GLE runs reproduce
baseline results to within an error of 0.5% for both the bonded
and nonbonded components of the energy. The chosen white
noise Langevin couplings exhibit comparable overall perfor-
mance at each corresponding outer time step. Upon study of
Table II, it can be seen that the error is up to four times larger
in the bonded energy as compared to the nonbonded energy
for the GLE runs. In the case of the WNL stabilized simu-
lations, it is up to ten times larger. This can be explained by
the fact that resonance instabilities are most severe in the high
frequency intramolecular modes. Therefore, as the error is not
uniformly distributed across the system, it is of great utility to

TABLE II. Average temperatures and bonded and nonbonded potential en-
ergies per atom of the flexible water system for different combinations of
thermostat and outer time step. The figures are reported to a precision within
the error of the calculation.

Outer time Van/N W/N
Thermostat step (fs) T (K) (kcal/mol) (kcal/mol)
WNL 2 300.0 —3.872 0.5227
GLE 12 301.5 —3.869 0.5245
GLE 16 301.4 —3.869 0.5247
GLE 20 302.0 —3.872 0.5236
WNL 12 301.7 —3.875 0.5278
WNL 16 301.7 —3.874 0.5285
WNL 20 302.3 —3.875 0.5246
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TABLE III. The dynamic quantities computed in the flexible water system.
The diffusion constant and the first order molecular dipole relaxation time
are given above. Figures are reported to statistical accuracy.

Thermostat Outer time step (fs) D (Azlps) Tdipole (PS)
NONE 2 0.25 4.5
WNL 2 0.22 4.8
GLE 12 0.24 4.7
GLE 16 0.20 5.6
GLE 20 0.16 6.7
WNL 12 0.095 8.0
WNL 16 0.044 14
WNL 20 0.019 26

. i 1 L
00 1 2 3 4 5

distance (A)

FIG. 3. The atom-atom radial distribution functions of water computed from
the baseline MTS white noise Langevin simulation with an an outer time step
of 2 fs (black circles), is plotted against the colored noise thermostatted MTS
prescription utilizing an outer time step of 12 fs (red solid line) and 20 fs
(blue dashed line). The inset depicts the first peak of gon(r) corresponding
to the OH covalent bond.

consider different components of the energy when assessing
resonance stabilization. Although the error in the temperature
is slightly elevated for runs with an outer time step of 20 fs, it
is within 0.5% for all other results. The errors in temperature
tend to correlate with those in the potential energy. However,
from the discussion above, the potential energy can be seen to
be a more sensitive measure of sampling accuracy.

In Fig. 3, the set of radial distributions of water of the
GLE-12 fs and GLE-20 fs stabilized runs are shown to be
in excellent agreement with the baseline calculations. The
GLE-16 fs results for clarity are not shown but are fully con-
sistent with the other results. The inset shows that the peak
corresponding to the oxygen hydrogen covalent bond is also
well reproduced. This finding is significant since, as discussed
above, the bonding energy tends to show a larger error than
the overall energy. This reflects the fact that these components
vary rapidly, thereby inducing a greater sensitivity to small
deviations in position. Overall, the results of Fig. 3 underline
the fact that the free energy surface is accurately reproduced
by the GLE resonance stabilized simulations.

Although both white and colored noise may be utilized
to stabilize resonance artifacts, these two techniques signif-
icantly differ in the degree to which they disturb dynamical
properties. In Table III we report the diffusion constant and
the relaxation time of the first order molecular dipole orienta-
tional correlation function for the resonance stabilized simu-
lations in comparison to the microcanonical baseline results.
The colored noise stabilized dynamics with an outer time step
of 12 fs differ by 4% from the NVE results as compared to the
difference of a factor of 2.5 that is obtained from the WNL-12
fs run. This finding is consistent with the selectivity of a col-
ored noise thermostat which only couples weakly to the low
frequency modes and therefore minimally perturbs dynami-
cal quantities that largely depend upon these slower modes
(see Fig. 2). It can be seen from Table III that the impact of
the GLE-12 fs profile on the dynamics is as good as and in
some cases better than that of the weak white noise friction

(y = 1 ps~!) which is necessary to stabilize a simulation that
employs constraints at a 12 fs outer time step.” Therefore the
present method of targeted damping of fast modes compares
very well to schemes where such modes are frozen.

The diffusion constant is extracted from the mean square
displacement, which aside from its physical meaning, is also
an indicator of the rate at which the simulation samples con-
figuration space. Therefore, in addition to producing highly
distorted dynamics, the strength of white noise coupling sig-
nificantly slows down the sampling rate, largely counterbal-
ancing any efficiency gained by utilizing a larger outer time
step.'® This drawback is alleviated by the use of the col-
ored noise thermostat, although it can be clearly seen from
Table III that the dynamical perturbation engendered by our
scheme increases with outer time step as a “stronger” colored
noise profile is necessary to stabilize the system. This arises
naturally as a greater number of modes begin to resonate at
larger outer time steps, thereby requiring strong coupling to
the bath across lower frequency modes to damp out such ar-
tifacts. In this manner, increased disturbance of the dynamics
is necessitated. The dynamics produced by the GLE-16 fs and
GLE-20 fs runs differ from the baseline results by approxi-
mately 20% and 35%, respectively. A comparison of the ratios
of the GLE to the microcanonical results in Table III confirms
that this degree of distortion can be reasonably estimated from
Eq. (17). However, if only equilibrium properties are de-
sired and the computational speed-up gained by increasing
the outer time step outweighs the decrease in the sampling
rate, these choices may still offer advantages.

B. Alanine

Multiple time scale techniques are often employed to
simulate biomolecular systems. In this section, we gauge the
applicability of our scheme to a fully flexible simulation of
alanine dipeptide in explicit water solvent. The use of this
model system allows us to readily test the impact of the cho-
sen colored noise profiles on conformational sampling and
dynamics. The colored noise profiles utilized are the same as
those presented in Sec. IV A and here we show their applica-
bility to more general systems.

In Table IV the energies of the alanine system for the cho-
sen combinations of thermostats and outer time steps are pre-
sented. As in the case of pure water, the colored noise profiles
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reproduce the average bonded and nonbonded potential ener-
gies of the baseline (WNL-2 fs) result to within 0.5%. The
bonded energies include the stretches, bends, and torsions of
alanine dipeptide in addition to the intramolecular interactions
of water. As also noted in Sec. IV A, the bonded energies,
which contain high frequency modes and most strongly ex-
hibit the resonance phenomena, possess a larger overall error
than the nonbonded energies. This behavior underlines why

J. Chem. Phys. 134, 014103 (2011)

our scheme of targeting fast motions for damping is success-
ful. Additionally the total and alanine dipeptide temperature
are reported, and can also be seen to be within 0.5% of the
baseline results.

The conformational space of alanine dipeptide is typi-
cally characterized as a function of the two dihedral angles
¥ and ¢.3%3% The Ramachandran plots of the baseline and
GLE-12 fs result are given in Fig. 4. It can be seen that they

WNL -2 fs

180
150
120

-150 =120

GLE - 12 fs

180 ==
150
120

-120
-150

-180
-180

=150

-120

=90 -60 =30 0

¢

FIG. 4. The free energy as a function of dihedral angles ¢ and ¥. The baseline WNL-2 fs (top panel) and GLE-12 fs (bottom panel) results are shown. The free
energy in conformation space decreases as the color varies from white to red. Isolines represent increments of 0.5 kcal/mol. The ag and Pyy regions are labeled

in each panel.
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TABLE IV. The total and alanine dipeptide temperatures, as well as the
bonded and nonbonded energy per atom are given for each combination of
outer time step and thermostatting scheme utilized for alanine dipeptide in
explicit solvent. The figures are reported to statistical accuracy.

Outer time TaLA Vab/N Vo /N
Thermostat step (fs) T (K) (K) (kcal/mol) (kcal/mol)
WNL 2 300.0 299.7 —3.828 0.5297
GLE 12 301.0 300.1 —3.825 0.5312
GLE 16 301.1 299.8 —3.823 0.5314
GLE 20 301.7 299.8 —3.826 0.5304
WNL 12 301.3 300.0 —3.829 0.5338
WNL 16 301.4 299.8 —3.828 0.5344
WNL 20 302.0 300.0 —3.828 0.5315

are in excellent agreement. The resultant free energy exhibits
a minimum in both the «-helical and the extended Py region.
These two regions are labeled in Fig. 4.

The mean first passage time is estimated from the sur-
vival probability of the transition between the ag and the Py
regions. The survival probability, S(¢), for a state in the ag
region to cross to the Py region may be defined in terms of an
average in conformation space over trajectories that reside in
the ag region at time ¢ = 0 and outside the Py region up to
time, ¢ and is given by,

SaR—>P[[(Z) = <l - gP]'(t)>haR(0)=1 ’ (29)

where h,, is unity inside the oy region and zero outside, and
gp, (t) is defined to be unity if the particle has passed into re-
gion Py at any time between 0 and 7 and is zero otherwise. The
Y range of the a-helical region is defined as —40° < ¢ < 10°
and the extended Py region as 110° < i < 180°. The ¢ range
for both regions is set to be —110° < ¢ < —60°.

The survival probabilities for the g — Py and Py — ag
transitions are plotted in Fig. 5. The mean first passage times
are presented in Table V. The equilibrium constant of the

1.0 ; , ; , ; , ; , ; ]
o= 08 —— NVE-2fs Ny
A osk -~ WNL - 2fs h
LI ———- GLE - 12fs 1
S o4l WNL - 12fs ]
= B \\ 4
7 0.2 —
[ 1 ; I . | . i

0.0 400 600 800 1000
1.0 T : T : T : ]
Txo0s -
3 i
A 0.6 _
& 04 -
S 02 .
0.0 ! : I \ I . ]

800 1200 1600 2000

time (ps)

FIG. 5. The survival probabilities for selected runs of the alanine dipeptide
system are shown for the transition from the ag to Py region (top panel)
and for the reverse process (bottom panel). Results are given for the baseline
microcanonical (solid black curve) and white noise Langevin (red dotted-
dashed curve) runs as well as the simulations that are resonance stabilized
with an outer time step of 12 fs utilizing colored (blue dashed curve) and
white (green dotted-dashed curve) noise.
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TABLE V. Table of mean first passage times, T, from the ag to Prj and Py
to ag regions are presented for various combinations of outer time steps and
thermostatting schemes. The average error for runs where the dynamics are
not strongly overdamped is &3 ps. Results are not given for the WNL-20
fs run due to the fact that too few transitions occurred in the course of the
simulation to generate a reliable estimate of 7.

Thermostat ~ Outer time step (fs)  T(aeg — Pi) (ps)  T(Pn — «ar) (ps)
NONE 2 79 142
WNL 2 85 163
GLE 12 87 156
GLE 16 105 193
GLE 20 121 234
WNL 12 190 340
WNL 16 435 790

ar = Py process is related to the ratio of the Py — oz mean
passage time to the wg — Py value and is ~1.8-1.9 in all
runs. Upon study of the mean first passage times, it can be
seen that the colored noise thermostated result with an outer
time step of 12 fs is perturbed by ~10% with respect to the
microcanonical result, and is again comparable with the re-
sults of the system when weakly coupled to a white noise bath
(y =1 ps™!). The colored noise thermostat causes a slightly
larger perturbation on the mean passage time when compared
to that exhibited in the diffusion of water (see Sec. IV A).
This likely arises from the dependence of this property on
torsional motions that lie in a higher frequency range than
diffusive modes, and are therefore more strongly coupled to
the bath. The large white noise friction that is necessary to
damp out resonance instabilities at an outer time step of 12 fs
increases passage times by a factor of ~2.5. The impact of
large WNL couplings on the conformational dynamics has
been noted in previous work.’® As in the case of pure wa-
ter, the degree of perturbation induced by the GLE thermostat
increases as a greater degree of energy stabilization is neces-
sary at larger outer time steps. The similarity of the results
obtained in this case and pure water underlines the fact the
thermostatting scheme presented in this work is transferable
between flexible water and typical solvated biomolecules.

V. CONCLUSIONS

In this paper, we have shown that by coupling a standard
multiple time scale scheme to a colored noise bath large outer
time steps can be employed while obtaining accurate sam-
pling and minimally perturbing the dynamics. The scheme
was illustrated with applications to flexible water and a fully
flexible simulation of aqueous alanine dipeptide. Our results
suggest that, when combined with our scheme, a 12 fs outer
time step seems a good compromise between size of outer
time step and minimizing the impact on the dynamics. With
this outer time step the damping needed to obtain potential en-
ergies within 0.5% of the benchmark values decreased diffu-
sion by only 4%. In contrast, stabilization of the simulation at
this outer time step using white noise decreases the diffusion
constant by over 2.5 times. Even more promising, the dynam-
ical perturbation due to our colored noise scheme compared
favorably with the weak white noise damping (y =1 ps™')
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required to stabilize a multiple time scale simulation in which
all bonds to hydrogen are constrained.’ This suggests that, in
conjunction with multiple time scale algorithms, this method
may be utilized in lieu of constraints.

In our serial code using a 12 fs outer time step yielded
a computational speed-up of 4.3 times compared to our
baseline MTS calculations using a 2 fs outer time step
and a 17 times speed up compared to flexible simulations
without a multiple time scale scheme that employ a 0.5 fs
time step. Even further increases may be achieved when the
computational architecture or parallelization scheme makes
long range electrostatics comparatively costly to evaluate.*
It is therefore clear that this scheme provides an efficient
approach to perform equilibration or configurational sam-
pling. Although our approach perturbs the dynamics we note
that the alanine dipeptide molecule used in our benchmark
simulation was specifically chosen to allow us to view many
transitions and hence converge the dynamical properties
within small bounds. In typical, large-scale biological system
where long time-scale processes are of interest this would not
be the case and hence the small change in the dynamics due to
this method will likely be dwarfed by the statistical errors. In
this case the ability to generate longer trajectories using this
approach facilitates a decrease in the statistical errors bars.

The similarities in the spectra of many aqueous and bio-
logical systems suggest that our noise profiles should provide
good out-of-the box performance for other fully flexible sys-
tems. However, the flexibility of the colored noise approach
affords such a large degree of versatility that further tuning
may yield improved results. Our matrices may also provide
a basis for other applications where energy must be rapidly
dissipated to ensure accurate sampling such as in the case
of fast-deposition metadynamics.*' The methods outlined in
Sec. II and Appendix A provide a starting point for such
developments.
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APPENDIX A: FURTHER APPLICATIONS
OF SIMPLE DRIFT MATRICES

It is often convenient to consider drift matrices whose el-
ements are transparently related to the time dependence of the
memory kernel (i.e., the eigenvalues of submatrix I'y,). This
facilitates the use of readily tunable colored noise profiles that
are based on a small set of parameters. In addition to the form
presented in this work [Eq. (14)], two other of such matrices
have appeared in the literature. The drift matrix for a simple
exponential noise is given by'®

0 Yod
Fy= ) (AD)
—J/Yoa a
where the memory function and spectra are
Ka(t) = yoae ", (A2)
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Ra(w) = 2ypa (A3)

a
a?+ w?’

Whereas the following drift matrix,”

0 \/Vo(d2+b2) \/Vo(az+b2)
2a 2a

2
g =|_ /7/0(612-0-17 ) p b ’
a
yo(a*+b?)
V24 b “

corresponds to a term of damped oscillatory noise whose
spectra is centered at w = +b:

(A4)

2 b2
Kg(t) = yoa + e % cos(br), (AS)
a
, a’ + b? a a
Kp(w) = + :
B( ) Yo a <a2+(w_b)2 a2+(w+b)2>

(A6)

In the above equations, the parameter, a, corresponds to the
real part and b to the magnitude of the imaginary part of the
eigenvalue(s) of submatrix, I'ss. As in Sec. II, the parameter
o is proportional to the value of the memory spectraatw = 0,
such that K (0) = 2.

Drift matrices that correspond to stable dynamics may
be combined such that the resultant memory function is a
weighted sum of the corresponding memory functions of each
component.'” For example, the drift matrix that corresponds
to the sum of the noise profiles of whose drift matrices are
given by 'T and °T is given by,

Cvop H2v ) V0 Vs
(1+2)l" — 1 Ysp 1 T, 0 (A7)
zy.sp 0 zrxx

where components are expressed in the notation of Eq. (10). In
this way, forms such as those presented here may be utilized
as “building blocks” for more flexible colored noise profiles.

Making use of this machinery, it is possible to design a
form that couples strongly to certain modes and weakly to
others. Equation (A7) may be applied to add together noise
profiles of the damped oscillatory [Eq. (A6)] or the “cancel-
ing” [Eq. (16)] type. It must be noted that this formalism has
drawbacks when compared to the profiles utilized in the main
text. Namely, the dimensionality of the resultant drift matrix
grows with the number of targeted modes and that the greater
sensitivity to the details of the spectra implies less robust per-
formance across different systems. However, this sensitivity
also facilitates fine control of the colored noise profile for very
specific applications.

APPENDIX B: DYNAMICAL PROPERTIES
OF A GLE DYNAMICS

In order to estimate the perturbation on the dynamical
properties of a system caused by coupling to a colored noise
thermostat one can study the behavior of a one-dimensional
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harmonic model. In this limit, microcanonical dynamical re-
sults in a §-function power spectrum peaked at the oscilla-
tor’s characteristic frequency wy. The presence of the noise
will modify the line shape of the peak, shifting its center and
broadening it. A measure of these two effects can be used to
estimate the magnitude of the disturbance.

To achieve this, one must consider the matrices I, (wo)
and B, (wy) which describe the dynamics in the full
X = (g, p, §) space.'® One can then find the stationary covari-
ance matrix C,, by solving I'y,C,, + Cq,,qup = qung and
compute the first order correlation matrix (x” (#)x(0)) and its
Fourier transform,

[(qu)ii(cqp)jj]_]/z - (BD)

1

r
Cl) = g2 i o
qp

6

3yw
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The position and value at the maximum of the C,, (@)
term can then be used to characterize the deformed peak.

When T, is built out of the 3 x 3 canceling noise matrix
in Eq. (14) and we set yy = 0 so as to consider the case of
small disturbance on the low-frequency modes we obtain,

0 ~1 0 0
- g y NENT RN TIE)
Tlo BBye Ve @

0 —Vy@&/J3 - 0
(B2)

Solving for C,,, (w) we obtain

(B3)

Cpplw) =

We then take @ to be much larger than all other frequen-
cies entering our problem, and write them as a ratio with re-
spect to @, i.e., wy <— wy/®, y < y/d, w < w/&. One then
finds the relevant extremal point, wp, and an estimate of the
peak width as Ap = 1/[7Cp,(wp)]. This leads to expressions
which can then be expanded in powers of wy, eventually yield-
ing

wo

wp = ——— + O((0/®)?) (B4)
[1+4 12
/3
and
~\4
Ap = M"’)z + O((wo/®)°). (B5)
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