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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Field measurements of the flow in the benthic boundary layer (BBL) of a tidal channel are presented which compare data 

collected in the wake of a marine renewable energy installation (MREI) with control data representative of the natural conditions. 

The results show significant flow modification in the wake of the MREI including a reduction in mean velocity, enhanced 

turbulence, and the breakdown of the natural structure and dynamics of the BBL. This study provides new information relevant to 

the environmental impact assessment of MREIs and to the design and consenting of marine renewable energy projects.  
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1. Introduction 

In the last decade there have been significant advances in tidal stream technologies with various turbine designs 

tested and numerous marine renewable energy installations (MREIs) deployed at sites around the world [1]. MREIs 

are designed to be deployed in energetic environments with high tidal flows where the available energy resource is 

maximized. These environments are found in tidal channels, where the local coastline and bathymetry constrain the 

flow leading to increased mean flow velocities and enhanced kinetic energy [2]. Tidal channels currently considered 
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for industrial developments typically have peak spring flow velocities in excess of 2.5 m s
-1

 and water depths in the 

range 25 - 50 m [3]. These sites are characterized by high levels of turbulence over a range of scales with high 

temporal and spatial variability [4-6]. 

Friction with the seabed leads to the formation of the benthic boundary layer (BBL) in tidal flows which is 

substantially non-stationary [7]. Early observations of the BBL in tidal channels focused on characterizing the 

velocity profile and shear stress across different bed configurations to understand sediment transport mechanisms 

[8]. Following the discovery of bursting phenomena in laboratory experiments [9-10] it was recognized that the 

dynamics of the BBL in tidal channels can be controlled by large, intermittent, and well-organized motions [11]. 

Bursting motions generated in the BBL have also been shown to interact with stratification in tidal channels and 

surface wave dynamics [12]. Further, these processes can interact with the larger scale dynamics related to the 

coastline and bathymetry, for example vortex shedding from islands and large eddies in the wake of headlands [13–

14]. Consequently, the natural dynamics of the BBL in tidal channels involves highly complex turbulence which 

presents a challenge for the survivability of tidal turbines [15] and the effectiveness of environmental monitoring 

technologies [16-17].  

It is not yet clear how exactly the presence of MREIs will affect the natural characteristics of the BBL in tidal 

channels. A detailed understanding of the dynamics of the wake flow behind MREIs is essential for understanding 

the ecological impacts [18], the effects on physical processes [19], and for the design of device arrays for optimal 

power output [20]. Extensive numerical modelling work has been undertaken over recent years to investigate the 

wake dynamics of tidal stream turbines [21]. Further insights are available from various experimental studies using 

scaled model turbines in laboratory simulations [22] which have shown that wake characteristics are strongly 

dependent on the natural turbulence conditions [23]. The highly complex structure of turbulence in tidal channels 

makes field observations essential to validate models of wake flows and gain confidence in predictions relevant to 

the design and optimization of devices.  

Most recent hydrodynamic measurements in tidal channels have been collected by moored acoustic Doppler 

current profiler (ADCP) deployments [5,24-25] which can have the advantage of depth coverage over most of the 

water column. However, the analysis of turbulence from ADCP data is limited as the instantaneous three-

dimensional velocity cannot be reliably resolved due to the assumptions of horizontal homogeneity between beams. 

In contrast, an acoustic Doppler velocimeter (ADV) can provide reliable velocity measurements at high sampling 

rates and within a small sampling volume to obtain detailed information on the properties of turbulence relevant to 

understanding the dynamics of the BBL [26] and the nature of unsteady loading on tidal turbines [15]. Previous 

studies have utilized ADVs mounted several meters from the seabed in tidal channels to characterize the natural 

turbulence at turbine hub height [6,14,27]. However, ADV assessments of the BBL in tidal channels are lacking and 

there are very few hydrodynamic field observations from around full-scale MREIs due to the operational difficulties 

of data collection. 

In this study, analysis of ADV data provides information on the mean flow and turbulence characteristics in the 

BBL of a tidal channel. Results from a control site representative of the natural conditions are compared to results 

from the wake of a tidal stream turbine foundation to provide essential information on the hydrodynamic impacts of 

MREIs. 

2. Method 

2.1. Study site 

The data used in this study were collected at the Fall of Warness (FoW) tidal test site at the European Marine 

Energy Centre (EMEC), UK, during summer 2013. FoW is a tidal channel located in the Orkney Islands between 

the islands of Eday and Muckle Green Holm (59°7’ to 59°11’N, 2°47’ to 2°50’W) and is an energetic marine 

environment which is representative of the sites targeted for tidal stream energy extraction globally. FoW is 

characterized by semidiurnal tidal currents exceeding 3.5 m s
-1

 during peak spring tides. The principal semidiurnal 

lunar (M2) and solar (S2) tidal constituents dominate the dynamics of the site which is subject to strong tidal currents 

due to the interaction of the North Sea and North Atlantic [28]. The tides flow from the north-west to the south-east 

during the flood tidal phase, and from the south-east to the north-west during the ebb tidal phase. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2017.08.169&domain=pdf
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for industrial developments typically have peak spring flow velocities in excess of 2.5 m s
-1

 and water depths in the 

range 25 - 50 m [3]. These sites are characterized by high levels of turbulence over a range of scales with high 

temporal and spatial variability [4-6]. 

Friction with the seabed leads to the formation of the benthic boundary layer (BBL) in tidal flows which is 

substantially non-stationary [7]. Early observations of the BBL in tidal channels focused on characterizing the 

velocity profile and shear stress across different bed configurations to understand sediment transport mechanisms 

[8]. Following the discovery of bursting phenomena in laboratory experiments [9-10] it was recognized that the 

dynamics of the BBL in tidal channels can be controlled by large, intermittent, and well-organized motions [11]. 

Bursting motions generated in the BBL have also been shown to interact with stratification in tidal channels and 

surface wave dynamics [12]. Further, these processes can interact with the larger scale dynamics related to the 

coastline and bathymetry, for example vortex shedding from islands and large eddies in the wake of headlands [13–

14]. Consequently, the natural dynamics of the BBL in tidal channels involves highly complex turbulence which 

presents a challenge for the survivability of tidal turbines [15] and the effectiveness of environmental monitoring 

technologies [16-17].  

It is not yet clear how exactly the presence of MREIs will affect the natural characteristics of the BBL in tidal 

channels. A detailed understanding of the dynamics of the wake flow behind MREIs is essential for understanding 

the ecological impacts [18], the effects on physical processes [19], and for the design of device arrays for optimal 

power output [20]. Extensive numerical modelling work has been undertaken over recent years to investigate the 

wake dynamics of tidal stream turbines [21]. Further insights are available from various experimental studies using 

scaled model turbines in laboratory simulations [22] which have shown that wake characteristics are strongly 

dependent on the natural turbulence conditions [23]. The highly complex structure of turbulence in tidal channels 

makes field observations essential to validate models of wake flows and gain confidence in predictions relevant to 

the design and optimization of devices.  

Most recent hydrodynamic measurements in tidal channels have been collected by moored acoustic Doppler 

current profiler (ADCP) deployments [5,24-25] which can have the advantage of depth coverage over most of the 

water column. However, the analysis of turbulence from ADCP data is limited as the instantaneous three-

dimensional velocity cannot be reliably resolved due to the assumptions of horizontal homogeneity between beams. 

In contrast, an acoustic Doppler velocimeter (ADV) can provide reliable velocity measurements at high sampling 

rates and within a small sampling volume to obtain detailed information on the properties of turbulence relevant to 

understanding the dynamics of the BBL [26] and the nature of unsteady loading on tidal turbines [15]. Previous 

studies have utilized ADVs mounted several meters from the seabed in tidal channels to characterize the natural 

turbulence at turbine hub height [6,14,27]. However, ADV assessments of the BBL in tidal channels are lacking and 

there are very few hydrodynamic field observations from around full-scale MREIs due to the operational difficulties 

of data collection. 

In this study, analysis of ADV data provides information on the mean flow and turbulence characteristics in the 

BBL of a tidal channel. Results from a control site representative of the natural conditions are compared to results 

from the wake of a tidal stream turbine foundation to provide essential information on the hydrodynamic impacts of 

MREIs. 

2. Method 

2.1. Study site 

The data used in this study were collected at the Fall of Warness (FoW) tidal test site at the European Marine 

Energy Centre (EMEC), UK, during summer 2013. FoW is a tidal channel located in the Orkney Islands between 

the islands of Eday and Muckle Green Holm (59°7’ to 59°11’N, 2°47’ to 2°50’W) and is an energetic marine 

environment which is representative of the sites targeted for tidal stream energy extraction globally. FoW is 

characterized by semidiurnal tidal currents exceeding 3.5 m s
-1

 during peak spring tides. The principal semidiurnal 

lunar (M2) and solar (S2) tidal constituents dominate the dynamics of the site which is subject to strong tidal currents 

due to the interaction of the North Sea and North Atlantic [28]. The tides flow from the north-west to the south-east 

during the flood tidal phase, and from the south-east to the north-west during the ebb tidal phase. 
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2.2. Data collection 

Data were collected during FLOWBEC (FLOW and Benthic Ecology project) platform deployments in 2013 

[29]. A SonTek/YSI ADVOcean operating at 5 MHz was used to collect high-precision three-dimensional flow 

velocity data with a resolution of 0.1 cm s
-1

 and an accuracy of ± 1 % of the measured velocity. The ADV was set at 

a sampling rate of either 16 Hz or 20 Hz, recording for 25 minute bursts separated by five minutes. Each sample 

includes three instantaneous velocity components in Cartesian coordinates ( , ,u v w ).  

The ADV probe was mounted within a mooring frame and oriented facing upwards so that the ~2 cm
3
 sampling 

volume was approximately 85 cm above the seabed and at approximately 34 m depth. The probe was positioned so 

that the flow through the sampling volume was unobstructed along the axis of tidal flow to minimize any 

interference from frame components as much as possible given practical limitations. The ADV was configured so 

that the v component of velocity was oriented approximately parallel with the tidal flow directions, the u component 

was therefore approximately transverse to the flow, and the w component was vertical. Flow in the ebb direction was 

approximately in the +v direction while the flood flow was approximately in the -v direction. The +w component of 

velocity was oriented vertically downward towards the bed, and the -w component of velocity was oriented 

vertically upwards. 

Data from two platform deployments are considered in this study. The first platform deployment was from June 

3
rd

 - 15
th

 and was positioned 15 m downstream (during flood) from the seabed installed Atlantis AK-1000 tidal 

turbine foundation (composed of a tripod base with three 4 m high ballast blocks and a 10 m high central piling) to 

provide the “MREI present” dataset. The second platform deployment was positioned nearby in the same site for 

recording control data out of the wake of any installations from June 18
th

 - July 5
th

 to provide the “Control” dataset. 

Analysis was focused over a flood-ebb cycle from each deployment selected to give the best comparison from 

available data considering spring-neap variations and meteorological conditions. The selected data provide a typical 

flood-ebb cycle for the two platform deployments occurring between spring and neap, with the tidal range above the 

platform observed to be approximately 1.5 m. The comparisons of the two selected 14 hour data sections (Table 1) 

are the focus of this study. 

 

Table 1. Summary of selected ADV data. 

Dataset Distance 

from bed  

Sampling 

frequency 

Burst 

duration 

Burst 

interval 

Samples 

per burst 

Bursts 

selected 

Coverage of 

selected data 

MREI present 85 cm 20 Hz 25 min 5 min 30 000 28 June 3
rd

 - 4
th

  

Control 85 cm 16 Hz 25 min 5 min 24 000 28 June 18
th

 - 19
th

 

2.3. Data processing and computation of turbulence characteristics 

Data were inspected to ensure that signal correlation values were in excess of 70 % as required by the 

manufacturer’s guidelines [30] indicating high quality velocity data. However, even in ideal operating conditions 

ADVs are susceptible to various sources of errors and noise which can compromise the quality of measurements 

[31-32]. In particular, aliasing of the Doppler signal can lead to spikes in the record which should be removed before 

analysis. Spikes were detected by the phase-space thresholding method [33] and replaced with a cubic polynomial 

fitted to 12 points on either side of the spike.  

Statistical quantities were computed using five minute non-overlapping windows, and therefore five windows per 

burst. Five minutes was determined empirically to be the longest duration which was statistically stationary as 

longer windows require detrending and shorter windows tend to underestimate the variance of large scale turbulent 

motions [6]. Velocity data are described by a fluctuating (denoted by a prime) and mean component (denoted by an 

overbar) for each five minute window following the Reynolds decomposition u u u′= + , v v v′= +  and 

w w w′= + . Further bulk statistics were obtained using standard formulae for u , v , and w  to give standard 

deviation ( σ ), skewness, and kurtosis. 

Turbulence characteristics were computed in a directionally invariant form to account for the natural variation in 

flow direction relative to the probe orientation. Turbulence kinetic energy is the energy per unit mass associated 
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with the turbulent fluctuating components of flow velocity and defined here as 2 2 2
1 / 2 '( ' ' )T u vKE w= + + . Turbulent 

stresses are described by the Reynolds stress 
12 2 /2

(  )u wRE v wS +′ ′ ′ ′=  which characterizes the vertical transfer of 

momentum. The estimated RES can be used to evaluate the shear (or friction) velocity 
1/2

( )fv RES=  which is the 

characteristic velocity scale that describes the hydraulic stresses. It is also useful to define the mean horizontal 

velocity  
1/ 22 2

 ( ) /Hv u v v v+=  with associated instantaneous and fluctuating components which are assigned 

direction by the  component oriented along the approximate flow axis so that negative values correspond to flood 

and positive values correspond to ebb. The relative turbulence intensity 
1/2

( ) / HTI TKE v=  quantifies the 

magnitude of velocity fluctuations with respect to the mean horizontal flow and is expressed here as a %. 

Power spectral density () estimates are computed using an overlapping segment-averaging method with a 

Hamming smoothing window and 50 % segment overlap.  

The correlation function  describes the strength of the correlation between two time series for a given time lag 

. The prevailing (integral) scales of velocity fluctuations are obtained from the autocorrelation of the horizontal 

velocity component ( ) ( ) ( )
2

' ' '' ' /
H H HH Hv v vR v t v tτ τ σ= +  and the autocorrelation of the vertical velocity 

component ( ) ( ) ( )
2

' ' '' ' /w w wR w t w tτ τ σ= + as ' ' ' ' ( )
H H H Hv v v vI R dτ τ∫=   and ' ' ' ' ( )w w w wI R dτ τ∫=  where the 

autocorrelation functions are integrated between the limits 0τ =  and the first instance where autocorrelation 

reaches zero, e.g., ' '( ( ) 0)
H Hv vRτ τ = . Spatial context is provided using Taylor’s frozen turbulence hypothesis and the 

integral length scales ' ' ' '  H H H HHv v v vL v I= and ' ' ' '  Hw w w wL v I= . 

The correlation between velocity components relates to the three-dimensional structure of turbulent motions and 

is characterized by the cross-correlation function ( ) ( ) ( )' ' ' '' ' / ( )
H HH v wwvR v t twτ τ σ σ= + . 

3. Results 

3.1. Mean flow velocity 

Instantaneous and mean flow velocity data for a flood-ebb cycle are presented (Fig. 1). Mean flow data show a 

clear semidiurnal tidal pattern at both the control site and in the presence of the MREI. In both cases, the  

component of velocity is dominant and approximately oriented parallel to the flow axis. For all velocity components 

the magnitude of fluctuations scale with the magnitude of mean velocity and are greatest during peak flows. In both 

datasets, the first approximately six hours of the records relate to the flood phase and provide data on the wake flow 

in the presence of the MREI. The mean horizontal velocity accounts for differences in probe orientation and flow 

direction (visible as the difference in the sign of  component results) and suggests a slight flood dominance in the 

control and a clear reduction in the mean flow velocity associated with the MREI. Although ebb peak values of Hv  

are similar in the two datasets, there is a clear difference in flood peak values of Hv , i.e., -122.9 cm s
-1

 in the control 

observations compared to -85.4 cm s
-1

 in the presence of the MREI corresponding to a 31 % velocity deficit behind 

the MREI.  

3.2. Bulk turbulence characteristics 

The first four moments of all three components of velocity show that bulk statistics are strongly linked to the 

mean horizontal velocity at the site (Fig. 2). Skewness and kurtosis variations are similar between deployments, with 

increased asymmetry and intermittency occurring during slack conditions. Trends for velocity standard deviation σ

are similar between deployments; however, despite the substantially greater velocities recorded during the flood 

phase in the control, σ is highest during flood conditions in the presence of the MREI. This result suggests that the 

velocity deficit observed in the wake of the MREI is associated with comparatively high velocity fluctuations and 

enhanced turbulence.   

Velocity fluctuations are investigated in more detail by comparing further turbulence characteristics (Fig. 3). 

Trends are again driven by the tidal pattern in mean horizontal velocity in the site. However, comparison of flood 

and ebb for each dataset indicates significant differences associated with flow direction.  in the control results is 

relatively balanced with peak ebb  reaching 762.2 cm
2
 s

-2
 and peak flood  measured at 878.2 cm

2
 s

-2
. This 

slight increase may be expected in the natural flow due to the slight flood dominance of peak velocities. However, 

the data in the presence of the MREI demonstrate much greater directional differences. The ebb peak  is 
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includes three instantaneous velocity components in Cartesian coordinates ( , ,u v w ).  

The ADV probe was mounted within a mooring frame and oriented facing upwards so that the ~2 cm
3
 sampling 

volume was approximately 85 cm above the seabed and at approximately 34 m depth. The probe was positioned so 

that the flow through the sampling volume was unobstructed along the axis of tidal flow to minimize any 

interference from frame components as much as possible given practical limitations. The ADV was configured so 

that the v component of velocity was oriented approximately parallel with the tidal flow directions, the u component 

was therefore approximately transverse to the flow, and the w component was vertical. Flow in the ebb direction was 

approximately in the +v direction while the flood flow was approximately in the -v direction. The +w component of 

velocity was oriented vertically downward towards the bed, and the -w component of velocity was oriented 

vertically upwards. 

Data from two platform deployments are considered in this study. The first platform deployment was from June 

3
rd

 - 15
th

 and was positioned 15 m downstream (during flood) from the seabed installed Atlantis AK-1000 tidal 

turbine foundation (composed of a tripod base with three 4 m high ballast blocks and a 10 m high central piling) to 

provide the “MREI present” dataset. The second platform deployment was positioned nearby in the same site for 

recording control data out of the wake of any installations from June 18
th

 - July 5
th

 to provide the “Control” dataset. 

Analysis was focused over a flood-ebb cycle from each deployment selected to give the best comparison from 

available data considering spring-neap variations and meteorological conditions. The selected data provide a typical 

flood-ebb cycle for the two platform deployments occurring between spring and neap, with the tidal range above the 

platform observed to be approximately 1.5 m. The comparisons of the two selected 14 hour data sections (Table 1) 

are the focus of this study. 

 

Table 1. Summary of selected ADV data. 

Dataset Distance 

from bed  

Sampling 

frequency 

Burst 

duration 

Burst 

interval 

Samples 

per burst 

Bursts 

selected 

Coverage of 

selected data 

MREI present 85 cm 20 Hz 25 min 5 min 30 000 28 June 3
rd

 - 4
th

  

Control 85 cm 16 Hz 25 min 5 min 24 000 28 June 18
th

 - 19
th

 

2.3. Data processing and computation of turbulence characteristics 

Data were inspected to ensure that signal correlation values were in excess of 70 % as required by the 

manufacturer’s guidelines [30] indicating high quality velocity data. However, even in ideal operating conditions 

ADVs are susceptible to various sources of errors and noise which can compromise the quality of measurements 

[31-32]. In particular, aliasing of the Doppler signal can lead to spikes in the record which should be removed before 

analysis. Spikes were detected by the phase-space thresholding method [33] and replaced with a cubic polynomial 

fitted to 12 points on either side of the spike.  

Statistical quantities were computed using five minute non-overlapping windows, and therefore five windows per 

burst. Five minutes was determined empirically to be the longest duration which was statistically stationary as 

longer windows require detrending and shorter windows tend to underestimate the variance of large scale turbulent 

motions [6]. Velocity data are described by a fluctuating (denoted by a prime) and mean component (denoted by an 

overbar) for each five minute window following the Reynolds decomposition u u u′= + , v v v′= +  and 

w w w′= + . Further bulk statistics were obtained using standard formulae for u , v , and w  to give standard 

deviation ( σ ), skewness, and kurtosis. 

Turbulence characteristics were computed in a directionally invariant form to account for the natural variation in 

flow direction relative to the probe orientation. Turbulence kinetic energy is the energy per unit mass associated 
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with the turbulent fluctuating components of flow velocity and defined here as 2 2 2
1 / 2 '( ' ' )T u vKE w= + + . Turbulent 

stresses are described by the Reynolds stress 
12 2 /2

(  )u wRE v wS +′ ′ ′ ′=  which characterizes the vertical transfer of 

momentum. The estimated RES can be used to evaluate the shear (or friction) velocity 
1/2

( )fv RES=  which is the 

characteristic velocity scale that describes the hydraulic stresses. It is also useful to define the mean horizontal 

velocity  
1/ 22 2

 ( ) /Hv u v v v+=  with associated instantaneous and fluctuating components which are assigned 

direction by the  component oriented along the approximate flow axis so that negative values correspond to flood 

and positive values correspond to ebb. The relative turbulence intensity 
1/2

( ) / HTI TKE v=  quantifies the 

magnitude of velocity fluctuations with respect to the mean horizontal flow and is expressed here as a %. 

Power spectral density () estimates are computed using an overlapping segment-averaging method with a 

Hamming smoothing window and 50 % segment overlap.  

The correlation function  describes the strength of the correlation between two time series for a given time lag 

. The prevailing (integral) scales of velocity fluctuations are obtained from the autocorrelation of the horizontal 

velocity component ( ) ( ) ( )
2

' ' '' ' /
H H HH Hv v vR v t v tτ τ σ= +  and the autocorrelation of the vertical velocity 

component ( ) ( ) ( )
2

' ' '' ' /w w wR w t w tτ τ σ= + as ' ' ' ' ( )
H H H Hv v v vI R dτ τ∫=   and ' ' ' ' ( )w w w wI R dτ τ∫=  where the 

autocorrelation functions are integrated between the limits 0τ =  and the first instance where autocorrelation 

reaches zero, e.g., ' '( ( ) 0)
H Hv vRτ τ = . Spatial context is provided using Taylor’s frozen turbulence hypothesis and the 

integral length scales ' ' ' '  H H H HHv v v vL v I= and ' ' ' '  Hw w w wL v I= . 

The correlation between velocity components relates to the three-dimensional structure of turbulent motions and 

is characterized by the cross-correlation function ( ) ( ) ( )' ' ' '' ' / ( )
H HH v wwvR v t twτ τ σ σ= + . 

3. Results 

3.1. Mean flow velocity 

Instantaneous and mean flow velocity data for a flood-ebb cycle are presented (Fig. 1). Mean flow data show a 

clear semidiurnal tidal pattern at both the control site and in the presence of the MREI. In both cases, the  

component of velocity is dominant and approximately oriented parallel to the flow axis. For all velocity components 

the magnitude of fluctuations scale with the magnitude of mean velocity and are greatest during peak flows. In both 

datasets, the first approximately six hours of the records relate to the flood phase and provide data on the wake flow 

in the presence of the MREI. The mean horizontal velocity accounts for differences in probe orientation and flow 

direction (visible as the difference in the sign of  component results) and suggests a slight flood dominance in the 

control and a clear reduction in the mean flow velocity associated with the MREI. Although ebb peak values of Hv  

are similar in the two datasets, there is a clear difference in flood peak values of Hv , i.e., -122.9 cm s
-1

 in the control 

observations compared to -85.4 cm s
-1

 in the presence of the MREI corresponding to a 31 % velocity deficit behind 

the MREI.  

3.2. Bulk turbulence characteristics 

The first four moments of all three components of velocity show that bulk statistics are strongly linked to the 

mean horizontal velocity at the site (Fig. 2). Skewness and kurtosis variations are similar between deployments, with 

increased asymmetry and intermittency occurring during slack conditions. Trends for velocity standard deviation σ

are similar between deployments; however, despite the substantially greater velocities recorded during the flood 

phase in the control, σ is highest during flood conditions in the presence of the MREI. This result suggests that the 

velocity deficit observed in the wake of the MREI is associated with comparatively high velocity fluctuations and 

enhanced turbulence.   

Velocity fluctuations are investigated in more detail by comparing further turbulence characteristics (Fig. 3). 

Trends are again driven by the tidal pattern in mean horizontal velocity in the site. However, comparison of flood 

and ebb for each dataset indicates significant differences associated with flow direction.  in the control results is 

relatively balanced with peak ebb  reaching 762.2 cm
2
 s

-2
 and peak flood  measured at 878.2 cm

2
 s

-2
. This 

slight increase may be expected in the natural flow due to the slight flood dominance of peak velocities. However, 

the data in the presence of the MREI demonstrate much greater directional differences. The ebb peak  is 
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comparable with the control at 622.4 cm
2
 s

-2
 while the peak flood  measured in the wake of the MREI reaches 

1234.2 cm
2
 s

-2
, much higher than the control results despite the significant decrease in mean velocity. 

 

 
Fig. 1. Comparison of flow velocity data at a control site (left panels) and 15 m from a MREI (right panels) during a comparable flood-ebb cycle. 

Instantaneous values are shown by dots and mean values computed for five minute windows are shown by the solid lines. The flood phase 

corresponds to  values which are recorded in the wake of a turbine foundation during MREI present results.  

 

The analysis of  and   indicates further differences between the datasets. In both the control and MREI 

presence, the ebb phase is dominant for  and  . However, flood data in the wake of MREI are highly irregular 

and do not have the clear relation with flow velocity seen in the control. These results suggest some breakdown of 

the natural turbulence structure in the wake of the MREI related to increased  and reduced mean velocity. 

The wake flow of the MREI is also characterized by a clear increase in  which is approximately 10 % higher 

during flood than in ebb in the presence of the MREI. In contrast,  in the control measurements is comparable in 

both flow directions suggesting that  in the natural flow is balanced between the ebb and flood phases. In both 

cases, very high TI values are associated with slack conditions and division by near-zero Hv .  

  and   can be plotted against the absolute mean horizontal velocity (Fig. 4) to further investigate the 

apparent increase in these turbulence characteristics observed in the wake of the MREI. These results provide 

striking evidence confirming that the flood measurements in the wake of the MREI are consistently characterized by 

elevated  and  associated with a reduction in Hv . At high flows,  in the wake is up to almost 40 % 

which is a 10 – 15 % increase compared to the control results. 
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Fig. 2. Comparison of velocity bulk statistics results for a flood-ebb cycle. In each case, color corresponds to the velocity component. Mean, 

standard deviation (σ), skewness, and kurtosis are computed using five minute windows and standard formulae with a -3 correction applied to 

kurtosis.  

3.3. Power spectra 

The  results for the horizontal and vertical fluctuating velocity components during the ebb and flood phases 

are presented (Fig. 5). Spectra were computed using the average of 50 % overlapping five minute segments for the 

horizontal and vertical velocity components. In each case, the results are shown for the ADV burst during the 

observed peak flood and ebb flows in the selected data. The power spectra reveal the existence of well-established   

-1 and -5/3 frequency () scaling regions for horizontal velocity expected for high-Reynolds number wall-bounded 

turbulence [34]. Significantly higher   magnitudes for   compared to   at low-frequencies demonstrate 

anisotropy at larger scales consistent with boundary layer turbulence. At peak flows there are no clear differences in 

spectral characteristics which can be attributed to the flow direction, and there is no dominant spectral frequency 

component of the MREI wake.  

3.4. Autocorrelation functions and integral scales 

Autocorrelation functions and integral scales are also considered for five minute windows from the ADV bursts 

during the observed peak flood and ebb flows. Results are presented which provide information on the prevailing 

horizontal and vertical scales of turbulence (Fig. 6). The averaged autocorrelation functions are shown for each case 

and used to compute the integral time and length scales. As with the power spectra, the autocorrelation and integral 

scales for the different flow directions and deployments are generally comparable, with the horizontal scales 

dominant in all cases. However, ' 'w wI  and the integral length scales calculated in the wake of MREI are less than in 

all other cases and in particular are reduced when compared against flood results at the control site.  
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Fig. 3. Comparison of turbulence characteristics for a flood-ebb cycle. Mean horizontal velocity (), turbulence kinetic energy (), Reynolds 

stress (), friction velocity (), and relative turbulence intensity () are computed using five minute windows. 

 

 
Fig. 4. Turbulence kinetic energy () and relative turbulence intensity () plotted against the absolute mean horizontal velocity (||). In 

both cases results are separated by dataset and by flow direction. A best fit polynomial is shown for  points, and a straight line fitted to  
points in excess of 50 cm s-1. 
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Fig. 5. Power spectral density (PSD) estimates for the horizontal and vertical velocity components with 95 % confidence intervals. Example 

slopes are shown for the well known / inertial subrange scaling law and the  scaling law for boundary layer turbulence.  

 

 
Fig. 6. Comparison of autocorrelation function results for  (shown in black) and  (shown in red) for peak flood and ebb flows. The thick line 

shows the average result for each case which is used to calculated the integral scales shown.  

3.5. Cross-correlation functions 

The relationship between horizontal and vertical velocity fluctuations is investigated using the cross-correlation 

functions (Fig. 7). As before, results are presented for five minute windows from the ADV bursts during the peak 

observed flood and ebb flows. The data at the control site demonstrate a strong correlation centered at   0 in both 

flood and ebb with the opposite sign corresponding to the change in direction of Hv . This implies that turbulent 

fluctuations in the flow direction are associated with downwards vertical motions in both the flood and ebb, 

providing evidence of the dominance of overturning coherent structures in the natural flow. The ebb results for the 

two deployments are similar as expected; however, there is a clear difference between flood results which suggests 

significant modification to the structure of turbulence in the wake of the MREI. The otherwise consistently observed 

relationship between velocity components is shown to break down in the wake flow, leaving a weak positive 

correlation at   0 during the flood in the presence of the MREI.  
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Fig. 7. Comparison of cross-correlation function for the vertical and horizontal components of velocity during peak flood and ebb flows. The 

thick line shows the average result for each case.  

4. Conclusions 

Field measurements of the flow in a tidal channel have revealed the hydrodynamic impact of a full-scale MREI. 

Velocity measurements 85 cm from the seabed were used to derive turbulence characteristics to quantify and 

interpret the dynamics of the BBL. Analysis focused on the comparison of a flood-ebb cycle recorded 15 m from a 

tidal stream turbine foundation and at a control site representative of the natural flow conditions. 

Mean velocity results showed a clear reduction in peak mean velocity in the wake of the MREI corresponding to 

a 31 % velocity deficit compared to the control site. This reduced mean velocity was associated with comparatively 

high velocity fluctuations linked to systematic directional variations in turbulence characteristics. The wake flow 

was clearly linked to enhanced  and a 10 - 15 % increase in . Spectral characteristics were consistent with 

boundary layer turbulence and did not indicate a dominant spectral frequency of the MREI wake. However, the 

prevailing scales of turbulence were reduced during peak flow in the MREI wake.  and   results suggested that 

the MREI wake was associated with the breakdown of the natural turbulence structure, with further evidence of 

modification to the three-dimensional structure of turbulence provided by the clear reduction in the cross-correlation 

of the vertical and horizontal velocity components.  

The point measurements in this study proved to be useful for considering turbulence at fine-scales and the MREI 

wake dynamics in detail. However, to understand how the revealed effects vary spatially then an array of such 

measurements would be needed to provide information on the vertical and horizontal extents of the impacts. Further 

field observations are necessary to investigate the wake dynamics of operational marine energy devices of different 

designs. 

This study provides information on the natural dynamics of the BBL in a tidal channel and much-needed insights 

into the hydrodynamic impacts of marine renewable energy developments near the bed. These results inform related 

observations of ecological impacts of MREIs [35], and provide evidence of the modified flow conditions that may 

be linked to changes in the behavior of mobile marine animals and benthic biota observed in such sites. 
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Fig. 7. Comparison of cross-correlation function for the vertical and horizontal components of velocity during peak flood and ebb flows. The 

thick line shows the average result for each case.  

4. Conclusions 

Field measurements of the flow in a tidal channel have revealed the hydrodynamic impact of a full-scale MREI. 

Velocity measurements 85 cm from the seabed were used to derive turbulence characteristics to quantify and 

interpret the dynamics of the BBL. Analysis focused on the comparison of a flood-ebb cycle recorded 15 m from a 

tidal stream turbine foundation and at a control site representative of the natural flow conditions. 

Mean velocity results showed a clear reduction in peak mean velocity in the wake of the MREI corresponding to 

a 31 % velocity deficit compared to the control site. This reduced mean velocity was associated with comparatively 

high velocity fluctuations linked to systematic directional variations in turbulence characteristics. The wake flow 

was clearly linked to enhanced  and a 10 - 15 % increase in . Spectral characteristics were consistent with 

boundary layer turbulence and did not indicate a dominant spectral frequency of the MREI wake. However, the 

prevailing scales of turbulence were reduced during peak flow in the MREI wake.  and   results suggested that 

the MREI wake was associated with the breakdown of the natural turbulence structure, with further evidence of 

modification to the three-dimensional structure of turbulence provided by the clear reduction in the cross-correlation 

of the vertical and horizontal velocity components.  

The point measurements in this study proved to be useful for considering turbulence at fine-scales and the MREI 

wake dynamics in detail. However, to understand how the revealed effects vary spatially then an array of such 

measurements would be needed to provide information on the vertical and horizontal extents of the impacts. Further 

field observations are necessary to investigate the wake dynamics of operational marine energy devices of different 

designs. 

This study provides information on the natural dynamics of the BBL in a tidal channel and much-needed insights 

into the hydrodynamic impacts of marine renewable energy developments near the bed. These results inform related 

observations of ecological impacts of MREIs [35], and provide evidence of the modified flow conditions that may 

be linked to changes in the behavior of mobile marine animals and benthic biota observed in such sites. 
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