1,069 research outputs found

    Robotic Marine Exploration

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Fall 2020Develop a cheap alternative robot design that can map the seafloor accurately.http://deepblue.lib.umich.edu/bitstream/2027.42/164448/1/Robotic_Marine_Exploration.pd

    Laboratory Apparatus For Gas Turbine Combustion Development

    Get PDF
    The next generation of combustor technology will be required to meet the demands of a world more focused on greenhouse gases and global warming. Due to this new focus on emission control, combustors must produce less NO x , while operating in a higher pressure environment that is more prone to combustion instabilities. This work focuses on the development of a lab and combustor that will be used for the next generation combustor development. The lab development includes layout and organization, facilities, measurement and instrumentation, automation of the testing process, and an imaging tool for diagnostics. A Lean Direction Injection (LDI) single element combustor has been designed, built, and tested. Results included chemiluminescence imaging and measurements of combustion instabilities. Initial results are promising for future controls and combustion development. A three axis translation table has been developed to support diagnostic efforts. Initial performance measurements indicate the table will be capable of fast scanning of flames compared to other translation options. In addition to achieving the desired performance, the size of the table was kept compact without sacrificing travel, allowing more access to the burners, and more burners to be mounted onto the table. One of the first projects will be the application of the Laser-induced Fluorescence Triple-integration Method (LIFTIME) method to the LDI to assist combustion controls development. After the experience gained with the charge coupled device (CCD) camera, we see potential to use this in parallel with the LIFTIME system to better map the flame. The image processing capabilities of the LabVIEW software have been briefly explored, and look promising as a method for automated flame geometry analysis to improve the flame mapping. In addition to the application of LIFTIME to the LDI, the exploration of the combustion control using the variable injector position, and the variable impedance exit area will begin. Due to the work presented in this thesis, a fully-functional combustion lab is available for current and future students, and more in-depth combustion research can now begin. In addition to providing resources for the students of our research group, this lab will continue to support Senior Design students as well as those in graduate level combustion courses

    Advanced Turbine Technology Applications Project (ATTAP)

    Get PDF
    ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing

    Heater Control for Thermionic Power Generation

    Get PDF
    The purpose of this report is to detail the conceptualization, analysis, budget, manufacturing, and assembly the heater for a thermionic energy converter for portable energy generation. This proof of concept will be created to provide a full thermionic energy converter with a reliable and satisfactory heater than can be used in future systems. The report highlights the feasibility and realities in the design and fabrication of the system

    Automotive Stirling engine development program

    Get PDF
    The major accomplishments were the completion of the Basic Stirling Engine (BSE) and the Stirling Engine System (SES) designs on schedule, the approval and acceptance of those designs by NASA, and the initiation of manufacture of BSE components. The performance predictions indicate the Mod II engine design will meet or exceed the original program goals of 30% improvement in fuel economy over a conventional Internal Combustion (IC) powered vehicle, while providing acceptable emissions. This was accomplished while simultaneously reducing Mod II engine weight to a level comparable with IC engine power density, and packaging the Mod II in a 1985 Celebrity with no external sheet metal changes. The projected mileage of the Mod II Celebrity for the combined urban and highway CVS cycle is 40.9 mpg which is a 32% improvement over the IC Celebrity. If additional potential improvements are verified and incorporated in the Mod II, the mileage could increase to 42.7 mpg

    Space Shuttle Main Engine - The Relentless Pursuit of Improvement

    Get PDF
    The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper

    Design of a wireless ureteropyeloscope

    Get PDF
    Ureteroscopy is a form of endoscopy that concerns itself with the urinary system. Flexible ureteropyeloscopes are instruments used to access the urinary system for diagnostic and therapeutic procedures. An average ureteropyeloscope requires a repair for every 3 to 13 hours of use, or alternatively 6 to 15 procedures. Therefore, there is a need to increase the durability of the ureteropyeloscope to lower the frequency of repairs required. In addition, the number of cables in the workspace needs to be reduced for improved handling by the clinician. The present study details the design of an ureteropyeloscope, which is modelled after currently existing instruments. Current endoscopes use fibre-optics for lighting area of interest as well as image acquisition. However, the ureteropyeloscope discussed was developed with a camera at the distal end of the insertion tube as its image acquisition system. The images captured were transmitted to a monitor for viewing via a wireless transmission module. The ureteropyeloscope discussed in the study was aimed at increasing the durability of the deflection unit of the ureteropyeloscope, with primary component made of nitinol, and reducing the number of cables around the workstation by using wireless means to transmit images from image acquisition system to monitor

    Scalability study for robotic hand platform

    Get PDF
    The goal of this thesis project was to determine the lower limit of scale for the RIT robotic grasping hand. This was accomplished using a combination of computer simulation and experimental studies. A force analysis was conducted to determine the size of air muscles required to achieve appropriate contact forces at a smaller scale. Input variables, such as the actuation force and tendon return force, were determined experimentally. A dynamic computer model of the hand system was then created using Recurdyn. This was used to predict the contact (grasping) force of the fingers at full-scale, half-scale, and quarter-scale. Correlation between the computer model and physical testing was achieved for both a life-size and half-scale finger assembly. To further demonstrate the scalability of the hand design, both half and quarter-scale robotic hand rapid prototype assemblies were built using 3D printing techniques. This thesis work identified the point where further miniaturization would require a change in the manufacturing process to micro-fabrication. Several techniques were compared as potential methods for making a production intent quarter-scale robotic hand. Investment casting, Swiss machining, and Selective Laser Sintering were the manufacturing techniques considered. A quarter-scale robotic hand tested the limits of each technology. Below this scale, micro-machining would be required. The break point for the current actuation method, air muscles, was also explored. Below the quarter-scale, an alternative actuation method would also be required. Electroactive Polymers were discussed as an option for the micro-scale. In summary, a dynamic model of the RIT robotic grasping hand was created and validated as scalable at full and half-scales. The model was then used to predict finger contact forces at the quarter-scale. The quarter-scale was identified as the break point in terms of the current RIT robotic grasping hand based on both manufacturing and actuation. A novel, prototype quarter-scale robotic hand assembly was successfully built by an additive manufacturing process, a high resolution 3D printer. However, further miniaturization would require alternate manufacturing techniques and actuation mechanisms

    Rapid Prototyping to Roll-to-Roll Manufacturing of Microfluidic Devices

    Get PDF
    Microfluidics constitutes a widely applicable field of enabling technologies with great potential to revolutionize healthcare and biotechnology. The ability to miniaturize and parallelize processes with microfluidics is seen as a solution for many problems with diagnostics technologies and accessibility. Unfortunately, fabricating microfluidics often require extremely expensive, time consuming, and specialized high-precision methods, making both prototyping and commercial-scale mass manufacturing difficult to accomplish. In this work, we evaluate the feasibility of using a unique roll-to-roll (R2R) micropatterning manufacturing process coupled with Additive Manufacturing (3D printing) to rapidly prototype and produce microfluidic devices at high-volume on film or paper backings for applications in biotechnology. The first part of this process involved using Innovation Engineering approaches to navigate the customer discovery process to define the market areas in microfluidics that were of most value. Next, we identified key feasibility metrics for assessing products made with this process by looking at both manufacturability and functionality. Feature dimensions of products fabricated in the R2R process were evaluated at each step of production to determine manufacturability. Functionality was then assessed using microfluidic mixing patterns to compare the mixing efficiency of our film product to those manufactured with a current industry standard method. Ultimately, we found that fabrication of microfluidic patterns was feasible in the R2R production method, and that the devices created had functionality comparable to traditional microfluidic devices. This work will serve as a platform for further investigations into the high-volume manufacturing and prototyping of microfluidic patterns for applications in diagnostics and other areas of biotechnology

    A Systems Engineering Reference Model for Fuel Cell Power Systems Development

    Get PDF
    This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering \u27roadmap , or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization is generally, quite low. Three major problems plague the fuel cell industry preventing successful commercialization today. Because of the immaturity of FC technology and, the shortage of workers intimately knowledgeable in FC technology, and the lack of FC systems engineering, process developmental knowledge, the necessity for a commercialization process model becomes evident. This thesis presents a six-phase systems engineering developmental reference model for new product development of a Solid Oxide Fuel Cell (SOFC) Power System. For this work, a stationary SOFC Power System, the subject of this study, was defined and decomposed into a subsystems hierarchy using a Part Centric Top-Down, integrated approach to give those who are familiar with SOFC Technology a chance to learn systems engineering practices. In turn, the examination of the SOFC mock-up could gave those unfamiliar with SOFC Technology a chance to learn the basic, technical fundamentals of fuel cell development and operations. A detailed description of the first two early phases of the systems engineering approach to design and development provides the baseline system engineering process details to create a template reference model for the remaining four phases. The NPD reference template model\u27s systems engineering process, philosophy and design tools are presented in great detail. Lastly, the thesi
    • …
    corecore