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ABSTRACT 

Cruise, Dustin L. M.S.M.E., Purdue University, August 2014. Laboratory 
Apparatus for Gas Turbine Combustion Development. Major Professors: Galen 
King, Hukam Mongia, School of Mechanical Engineering. 
 

The next generation of combustor technology will be required to meet the 

demands of a world more focused on greenhouse gases and global warming. 

Due to this new focus on emission control, combustors must produce less NOx, 

while operating in a higher pressure environment that is more prone to 

combustion instabilities. 

This work focuses on the development of a lab and combustor that will be 

used for the next generation combustor development. The lab development 

includes layout and organization, facilities, measurement and instrumentation, 

automation of the testing process, and an imaging tool for diagnostics. 

A Lean Direction Injection (LDI) single element combustor has been 

designed, built, and tested. Results included chemiluminescence imaging and 

measurements of combustion instabilities. Initial results are promising for future 

controls and combustion development.  

A three axis translation table has been developed to support diagnostic 

efforts. Initial performance measurements indicate the table will be capable of 

fast scanning of flames compared to other translation options. In addition to
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achieving the desired performance, the size of the table was kept compact 

without sacrificing travel, allowing more access to the burners, and more burners 

to be mounted onto the table. 

One of the first projects will be the application of the Laser-induced 

Fluorescence Triple-integration Method (LIFTIME) method to the LDI to assist 

combustion controls development. After the experience gained with the charge 

coupled device (CCD) camera, we see potential to use this in parallel with the 

LIFTIME system to better map the flame. The image processing capabilities of 

the LabVIEW software have been briefly explored, and look promising as a 

method for automated flame geometry analysis to improve the flame mapping.  

In addition to the application of LIFTIME to the LDI, the exploration of the 

combustion control using the variable injector position, and the variable 

impedance exit area will begin.  

Due to the work presented in this thesis, a fully-functional combustion lab is 

available for current and future students, and more in-depth combustion research 

can now begin. In addition to providing resources for the students of our research 

group, this lab will continue to support Senior Design students as well as those in 

graduate level combustion courses. 
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CHAPTER 1.  INTRODUCTION 

1.1 Motivation 

Each day, approximately 30,000 commercial aircraft take off around the 

world, transporting people and products. With this current volume and future 

projected growth, emissions become an increasing concern for climate change. 

Aircraft contribute 7-9% of annual CO2 production [1], and the NOx output is 

particularly significant because its high altitude introduction forms more ozone 

than ground based sources. To combat the harmful effects of these emissions, in 

1983 the United Nations, through the International Civil Aviation Organization, 

(ICAO), formed the Committee on Aviation Environmental Protection (CAEP). 

CAEP has the task of creating regulations to limit the impact commercial aviation 

has on the environment. Since its founding, CAEP has released four sets of 

emissions regulations with the newest standard, CAEP/6, being adopted in 2008 

[2]. Figure 1-1 shows the reductions CAEP has made on NOx since its beginning, 

with an overall decrease of  53% since CAEP/1.  

To achieve the CAEP goals, the FAA and NASA each have created 

projects, CLEEN and ERA, respectively, to provide guidelines to aircraft and 

engine manufacturers in developing future technology. These projects are 

focused on the technology for the N+2 generation, entering service sometime 
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after 2020 [2]. The emissions goals of these projects are to reduce CO2 output 

through a 50% reduction of fuel burn, and reduce NOx by 75% [3]. To meet these 

goals, NASA’s ERA project is critically examining all parts of the aircraft, from 

lightweight composites for the airframe, to unducted propulsors for the engine [4]. 

Of all the components being investigated, the combustor will play one of the most 

critical roles for reducing CO2 and NOx.  

 

 

Figure 1-1: History of ICAO NOx regulations for engines. The NASA ERA N+2 
generation goal is a 75% reduction of the CAEP/6 NOX standard by 2020. 

One technology researched in the past for meeting goals like these was 

variable geometry. It has been researched for applications such as zone 

equivalence ratio control and instability suppression, and has shown promising 

results. However, it has not been applied to flight hardware because the other 

technologies needed to use it, sensors, actuators, and electronics, are not, as yet, 

sufficiently robust enough for flight. Each of these areas are rapidly progressing, 
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so variable geometry may eventually become feasible for production 

implementation [5]. Considering the potential impact that improved mixing and 

instability suppression could have towards N+2 and future goals, the research 

community should now be exploring the combination of the two. The work of this 

thesis begins the study of variable geometry with the development of a laboratory 

scale test rig, and equipment to support it. 

1.2 Background 

The initial stage of this research project was to determine the current state 

of combustion design and associated turbine hardware. In this section, reviewed 

are the next generation gas turbine technologies that will impact the combustor. 

The NASA ERA project provides an excellent glimpse into this future, as reported 

by Lee and Suder [2], [4]. 

1.2.1 NASA ERA Technology 

One of the most significant changes for the next generation combustor is 

increasing the overall pressure ratio (OPR) from 45 to 55. This will increase the 

engine’s efficiency, giving an expected fuel burn reduction of 2.5%. The impact 

on the combustor will be a higher inlet temperature and pressure. This increase 

in temperature will negatively impact NOx formation as it’s exponentially related to 

flame temperature. Keeping NOx down with the increased OPR is seen as one of 

the biggest challenges for the next generation combustor. 

Critical to reducing flame temperature and NOx is lean burning [6]. Lean 

burning will be accomplished by putting more air, from reduced liner cooling, 
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through the fuel nozzle to produce a leaner mixture. Advanced ceramic matrix 

composite (CMC) liners and environmental barrier coatings (EBC), capable of 

2700°F, are being developed for this need, and will allow a 60% reduction in 

cooling. This reduction is predicted to decrease NOx levels by 40%; however this 

reduction in linear cooling will not have a positive impact on combustion 

instabilities. Combustion instabilities are due to the interaction of combustion 

heat release and the natural acoustic modes of the combustor. Liner cooling 

helps dampen instabilities, so with its reduction, the instability amplitude will 

increase.  

One solution being worked on through ERA is high frequency modulation 

of the fuel supply, which is a form of feedback control. This method has shown 

very promising results in the lab, but hasn’t been turned into flight-ready 

hardware due to the cost and complexity of the actuators [2].  

The addition of feedback control to the engine has the potential to address 

instabilities along with many of the combustor challenges such as pattern factor 

and emissions minimization. To make feedback control possible, high 

temperature sensors and electronics are needed that can function properly 

around the combustor environment [7]. Under the ERA project, 600°C pressure 

sensors and 500°C signal conditioning electronics are being developed, allowing 

combustor pressures to be measured [8].  

As stated earlier, mixture preparation is the key to lean burning and NOx 

reductions. Many advanced mixing concepts that have been developed use 

premixing of the fuel and air. This has been deemed impractical with the higher 
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OPR due to auto-ignition and flashback concerns. Lean Direct Injection (LDI) is 

seen as the best mixer configuration for high OPRs because fuel is added at the 

flame front, reducing the chance of auto-ignition and flashback [9]. The next 

generation LDI fuel nozzles, besides having increased air flow, will most likely be 

multi-element arrays composed of smaller diameter fuel nozzles (Figure 1-2). 

There are several advantages to this array configuration. The first is an array of 

nozzles reduces the radial distance from each nozzle to the flame front, 

decreasing the distance fuel must be injected. Second, the turbulence and shear 

created between the individual nozzles of the array enhance mixing [10]. Lastly, 

the array configuration allows fuel staging amongst the nozzles, which has been 

shown to increase the range of operability [3]. 

 

Figure 1-2: Woodward’s ERA concept for using arrays of Swirler-Venturi Lean 
Direct Injectors (SV-LDI). The center injector in each 9 point module is used as a 

pilot [4]. 

1.2.2 Variable Geometry 

An idea not being addressed by the ERA project is variable geometry. 

Variable geometry is the physical modification of the geometry by an actuator in 

real time. A common example is the variable area exhaust nozzle for an 
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afterburner. Its function is to increase the nozzle exit area to account for the 

increase in mass flow from the afterburner process [11]. Variable geometry 

research for gas turbine combustors has covered two areas – zone equivalence 

ratio control [12], and combustion instabilities suppression [3].  

Zone equivalence ratio control is accomplished by controlling the amount of 

air flow into a zone, given a measured rate of fuel. There have been several 

configurations researched [13], [14], [15], but they all function in a similar manner, 

by adjusting the mixer inlet area. Typically, when an adjustment is made to one 

zone’s mixer area, a counter adjustment is made at another part of the 

combustor to keep the total pressure drop across the combustor constant. In the 

past, this adjustment mechanism had been in the form of devices like registers, 

or variable vane angle swirlers [16], [17]. One of the more recent examples by 

Giuliani et al. [4] uses a pintle style injector, a concept borrowed from the rocket 

community, to vary the mixer effective area. 

The work of Giuliani et al. focused on increasing the operability of the 

combustor by controlling the flame transition (attached/detached). They showed 

the air flow through a fixed geometry combustor could only be decreased by 30% 

before a flame transition occurred, attaching the flame to the hardware. Under 

the same air flow reduction, they used the injector to reduce the mixer effective 

area, keeping the fluid velocity high enough to keep a detached, stable flame. 

This method allowed them to decrease air flow by up to 50% while still keeping a 

detached flame. 
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1.3 Overview of Thesis 

This work begins the study of variable geometry and combustion design, 

with the development of an experimental setup. This task is divided into three 

main parts:   

1. Development of lab infrastructure to support combustion experiments, 

including facilities, measurement and instrumentation, and laboratory 

automation.   

2. Development of an atmospheric LDI combustor with variable geometry 

features, including design, and initial testing using chemiluminescence 

imaging.  

3. Development of a multiaxis translation table for use with optical 

diagnostics, to spatially locate multiple burners, providing rapid testing and 

transition between them.  

 



8 
 

 

8
 

CHAPTER 2.  LAB INFRASTRUCTURE 

2.1 Introduction 

This experiment is located in the Applied Laser Spectroscopy Laboratory in 

the Mechanical Engineering building. This lab, formerly known as the Flame 

Diagnostics Laboratory, has a long and successful history of optical diagnostic 

development, and application to flames. The focus of this new section of the lab 

is advanced combustor design, combustion control, and diagnostic techniques. 

This section will detail the lab layout, facilities development, measurement and 

instrumentation, a charge-coupled device (CCD) camera for flame imaging, and 

the automation of the equipment in the lab. 

2.2  Facilities 

Figure 2-1is an overhead layout of this section of the lab. The combustors 

are placed on the translation table underneath a fume head. Optics tables are on 

each side of the translation table. The larger table is for beam generation and 

tuning, while the smaller table is for collection. Most of the equipment is remotely 

controlled by a National Instruments PXI-1033 chassis interfaced through a 

computer. Details of the equipment will be covered in the following sections. 
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Figure 2-1: Overhead view of lab layout showing optics tables, combustor location on translation table (red), main air 
line (green), gas regulator panel, and mass flow controllers. 
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The main air supply for combustion comes from a building air compressor. 

Since the distance from the wall source to the test area was rather far, time was 

taken to run ¾” pipe for this section to minimize pressure losses. This system 

has been measured to 40 cfm output with a 10 psi drop in line pressure. The 

limitation in output was the measurement device, and it’s believed more flow is 

available based on the small pressure drop in the line. At the wall outlet, a 

cartridge filter was installed to catch any debris before entering the regulators.  

Any gas bottles are kept outside the lab, either in the oxidizer room across 

from the B102 lab, or the fuel storage area outside of the building. They enter the 

B102 lab in 3/8” stainless tubing from the ceiling, and distribute next to each 

fume hood. The lines at the fume hood are quick connect fittings marked by color 

for fuel, oxidizer, or inert. For safety, there is a normally closed solenoid valve in 

each line that can be actuated by an emergency shut off button near the 

entrance to the lab. If gas flow needs to be shut off, it is done so outside at the 

bottle. Normally the bottles are opened during the day and closed at night if an 

experiment will be run that day. In cases of extreme cold (<20° F), the regulators 

outside were found to leak significantly, so the bottle is only opened during the 

experiment. 

A liquid fuel line was installed to be used with Jet-A, or other similar 

aviation fuels. Figure 2-2 shows a diagram of this system. The fuel is kept in a 

stainless tank rated for 300 psi. Nitrogen gas from a bottle next to the fuel tank is 

used to pressurize the fuel tank from the top. The liquid pickup is located at the 

bottom of the fuel tank. Both the nitrogen gas bottle and fuel tank are kept in a 
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gas cabinet that is vented out of the lab for safety. An instrument rack panel was 

fabricated to meter the fuel flow rate by a needle valve and pressure reading. 

Plumbing and valves were included on this panel to purge the fuel line going to 

the burner with nitrogen if needed. Before this system was tested, the experiment 

was switched to gaseous fuel. To finish the liquid fuel system if needed, it should 

be pressure tested for leaks, and a more accurate metering method installed.  

 

 



 
 

 

1
2
 

 

Figure 2-2: Overhead layout of liquid fuel line (pink) running from gas cabinet, where fuel tank and N2 bottle are stored, 
to experiment. Fuel tank is pressurized by N2 bottle and metered by panel near experiment.  
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2.3 Measurement and Instrumentation 

The compressed air and gasses flow from their sources to a regulator 

panel located underneath the collection optics table. Each line on the regulator 

panel consists of a shut off valve, gas regulator (Matheson 3476-A), and a 

pressure gauge. These regulators allow each line’s downstream pressure to be 

adjustable, an important feature with the mass flow controllers.  

Mass flow controllers (MFCs) (Porter 203A) are used to meter the gas 

supplies to the combustor. These mass flow controllers have a built-in thermal 

mass flow meter, measuring true mass flow based on the cooling effect the 

process gas has on an internal heating element. They have an internal PI 

controller that adjusts the proportional control valve to meter the flow. The gains 

of the controller can be adjusted for each valve. This proved to be a useful 

feature in the case of controlling a flame, where one valve needs to track another 

valve to keep a constant equivalence ratio. The valve gains were adjusted to give 

a quick settling time, and each respond with a similar rate to give equivalence 

ratio stability. Having too high of an upstream pressure to the valves causes 

them to oscillate regardless of gain setting. A stable upstream pressure was 

found to be 50 psi.  

The MFCs come calibrated from the factory with an accuracy of +/- 1% full 

scale (FS). The calibration is based on a specific gas, but a correction factor can 

be applied if a different gas is used. Up to four MFCs are controlled by the 

PCIM4 controller box. This desired flow rate can either be set at the front panel of 
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the controller box, or can be remotely controlled by a computer through an 

interface on the back.  

An orifice plate flow meter (Lambda Square Oripac 5300) was installed in 

the air line just upstream of the pressure regulators. This orifice plate will be used 

in parallel with the MFCs to measure air flow supply rate, and has an accuracy of 

+/- .6% FS. The range of this flow meter, specified upon purchase, is 4-20 cfm 

with a pressure drop at 20 cfm of 80 inches of water. A differential pressure 

transducer (OMEGA PX2300-5DI) with a range of 0-5 psid, and accuracy of +/-

 .25% FS, is used to measure the pressure drop across the plate. The measured 

pressure drop across the plate is referenced to a calibration given by the 

manufacturer to find volumetric flow rate. To account for density variations, an 

absolute pressure transducer (AST 4100) and thermocouple (TBD) are installed 

just upstream of the plate. 

2.4 CCD Camera 

A common tool in any combustion lab is a CCD camera used for flame 

imaging. The system assembled for this lab consists of a UV lens, a CCD 

monochrome image sensor, a frame grabber, and software. To image hydroxyl at 

310 nm, the equipment has to be UV capable. Only a few UV lens manufacturers 

exist and the one selected was a Coastal Optics 105mm f/4.5 lens designed for 

250 nm to 650 nm (Figure 2-3 and Figure 2-4). It has a focal range of .5 m to 

infinity, and an aperture range of f/4.5 to f/32. It comes with a SLR F mount, so 

an F to C-mount adapter is used to attach it to the CCD body (Figure 2-5).  
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Figure 2-3: JENOPTIK’s CoastalOpt 105 mm UV-Vis SLR lens with aperture 
range f/4.5 –f/32, and focus adjustment of .5 m – infinity [19]. 

 

Figure 2-4: CoastalOpt 105 mm transmission curve showing excellent 
transmission from 250 nm to 650 nm [19]. 
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Figure 2-5: JAI 4200CL-UV image sensor body, with C-mount lens interface, and 
Camerlink serial communication to frame grabber [20].  

 

Figure 2-6: Transmission curve of Kodak KAI-4021 image sensor used in JAI 
4200 UV CCD camera. UV sensitive option allows transmission at 310 nm with 

quantum efficiency of 8% [21]. 

The CCD imager (JAI RM-4200CL-UV) is a 2048 x 2048, monochrome 

sensor, with the front glass of the sensor removed to improve UV transmission 

(Figure 2-5 and Figure 2-6). This sensor has an electronic programmable shutter 

with a maximum frame rate of 30 frames per second. The camera interfaces to 

an external frame grabber (NI PCIe-1430), mounted in a PCIe slot of the main 
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computer. The camera functions such as shutter speed, gains, output type, etc., 

are controlled through JAI’s Dualtap software (Figure 2-7). National Instruments© 

LabVIEW software is used to actually acquire an image. To acquire multiple 

images, as when doing time-average imaging, the main VI that runs the MFCs 

and pressure sensors was modified to also control the camera (Figure 2-8). This 

VI will capture a specified number of photos and save to the main drive for later 

processing.  

 

Figure 2-7: JAI’s Dualtap software used to adjust sensor settings and debug 
camera through serial command line.   
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Figure 2-8: Main VI showing camera controls to set number of images to capture, 
and capture button that begins automated capture process. Images are 

automatically saved to a file specified. 

Filters were purchased for CH*/OH* flame chemiluminescence imaging. 

These filters thread into the front of the main lens. The CH* filter (Edmund’s 65-

199) is a 50 mm diameter hard coated filter centered at 436 nm with a full width 

at half maximum (FWHM) of 10 nm (Figure 2-9). A narrow band filter was desired 

for imaging OH*, but the cost was prohibitively high, due to the materials needed 

for imaging in the ultraviolet. Instead, a less expensive alternative was found in 

the form of Schott UV glass (Hoya U340). This filter’s transmission is much wider 

than a typical band-pass filter (Figure 2-10), but at less than $100 each, was 

worth trying. 
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Figure 2-9: Edmund’s Optics 436nm band-pass CH* filter, with 10 nm FWHM and 
95% efficiency at 436 nm.  

 

Figure 2-10: Hoya Optics U340 Schott UV glass filter. Filter has above 80% 
efficiency at 310 nm, but is wider than most band-pass filters used for 

chemiluminescence and is still being evaluated.  
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2.5 Laboratory Automation 

A National Instruments (NI) PXI-1033 is used to automate the majority of 

the equipment in the lab. The equipment interfaced with this module includes the 

mass flow controllers, the P3 pressure sensor, orifice plate pressure sensors, 

translation table, and CCD camera. Figure 2-11 is the front panel of the Virtual 

Instrument (VI) used to run this equipment. This automation reduces the 

workload on the test operator, reduces the testing time, and provides some 

unique features over manual control. One of the most useful functions is the 

pressure and equivalence ratio control of the burner. In the combustion 

community, the air flow through the combustor is typically given as a pressure 

drop across the mixer, rather than the mass flow rate of air. This pressure drop 

across the mixer is measured with the P3 pressure sensor (OMEGA PX140), and 

sampled by the PXI-1033 chassis. A PID controller running on the host computer 

compares this pressure with the desired pressure drop, and adjusts the air flow 

from the MFC accordingly. Also, it is more convenient to adjust fuel flow rate by 

Fuel to Air Ratio (FAR), or equivalence ratio, rather than direct fuel flow rate. The 

VI uses the current air flow setting to calculate the required fuel flow rate for a 

specified equivalence ratio, and adjusts the fuel flow rate from the MFC. The 

operation of the translation table through the VI will be covered in chapter 4.  

2.6 Conclusion and Future Work 

The lab facilities and infrastructure have been developed to support future 

combustor development and diagnostic efforts. The development includes lab 
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layout and organization, facilities, measurement and instrumentation, automation 

of most processes associated with testing, and an imaging tool for diagnostics. 

One of the more important tasks for the immediate future will be ending 

the construction phase that existed to build up the lab, so that work can begin 

with the laser diagnostics. There is a need for more instrumentation with the 

combustor, adding pressure sensors to the confinement for acoustical 

measurement, and thermocouples to capture the thermal boundary conditions.



 
 

  

2
2
 

 

Figure 2-11: Main VI for lab automation. Main user inputs are flow controller enable button (“Flame ON”), desired 
equivalence ratio and pressure drop, and camera controls.
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CHAPTER 3.  LDI COMBUSTOR DESIGN 

3.1 Introduction 

In parallel to building the lab facilities was the design and construction of the 

first combustor available to the lab – a single element Lean Direct Injection (LDI) 

combustor. This combustor would be used by multiple groups of students: those 

within the research group, ME 597 Gas Turbine Combustion I (GTCI) for the Fall 

2013 semester, ME 597 Gas Turbine Combustion II (GTCII) for the Spring 2014 

semester, and undergraduate Senior Design students (ME 463), also for the 

Spring 2014 semester. During the semester, each class would focus on a single 

component of the LDI to study, modify, and test. Each class had their own needs 

of the LDI which were all incorporated during the design process. After the 

requirements were defined, the design was completed, and manufactured by an 

outside machine shop. 

From the efforts of the students and course instructors, several 

accomplishments were achieved with the LDI combustor: 

 Advanced Swirler Design and Testing – GTCI 

 CFD and Chemiluminescence Imaging – GTCII 
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 Design and fabrication of fuel injector actuators, a variable impedance 

exit area, stereoscopic imagers, and improved confinements – ME 

463, Spring 2014 

The following sections will discuss the design of the LDI, hardware 

developed by the Purdue classes, and the experimental results of the classes 

and research students.  

3.2 LDI Combustor Design 

3.2.1 Need for Developmental Combustor 

Mechanical Engineering Professor Galen King and Professor Hukam 

Mongia saw an opportunity to get non-research students access to combustor 

design and experimental testing, and also frame it in a way that benefitted the 

research group with the products of these classes. The experimental testing 

portion of the courses would require a baseline combustor, whose components 

were modular to make part revisions inexpensive and easy for the class students. 

The major components to be designed and manufactured for this baseline 

combustor were the swirler, venturi, fuel injector, burner housing, and 

confinement (Figure 3-1). The requirements used to design the LDI were: 

 LDI with throat area = .195 in2 

 Inexpensive, replaceable, and quick to change swirlers 

 Variable axial injector position: +/- .125” 

 Independent coflow circuit for dome cooling 

 Expandable to 4 single element LDIs for development progression 
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Figure 3-1: LDI cutaway view showing main components: fuel injector, venturi, 
swirler, and burner housing. 

3.2.2 Existing Burner 

To save time and expenses, a combustor from a previous project (Figure 

3-2) was adapted for the LDI. This combustor could originally be set up in either 

a Rijke (open-open) or Schmidt (open-closed) configuration. From the original 

combustor, the base plate, coflow circuit, sintered dome, and 4” confinement 

chamber were adapted for the LDI, saving many hours and expense.  
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Figure 3-2: Original tube combustor that was reconfigured for LDI. Base plate, 4” 
confinement, coflow circuit, and sintered dome were reused. Photo courtesy of 

Andrew C. Nobel.  

3.2.3 LDI Design Features 

The mixer design is based around a pressure atomizer injector our 

research group previously possessed. This injector is similar to those used for a 

Swirl-Venturi LDI (SV-LDI) mixer configuration (Figure 3-3) [22]. This 

configuration and geometry was adopted for the LDI design because it had been 

validated for the injector we had, and it could be easily modified to include 

distinct swirler separate from the venturi, and an axial adjustable fuel injector.  
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Figure 3-3: NASA-Woodward Swirl-Venturi Lean Direction Injection concept [22]. 

Since the NASA-Woodward mixer geometry was optimal for the liquid 

injector supplied to our group, we based the design of our first mixer off this 

geometry. Some modifications were made to make the swirler separate from the 

venturi (Figure 3-4), but for the most part it’s identical. For the initial testing to be 

done, containment of liquid fuels was a concern, so a gas injector was designed. 

The geometry of the mixer was kept constant, except the diameter of the fuel 

injector was changed to nominal size of .25”, for manufacturability. 

 

Figure 3-4: Liquid mixer vs. gaseous mixer dimensions. Diameter of gaseous 
injector reduced to nominal size for manufacturability. 
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One of the main areas of development for the GTC classes was advanced 

swirler design. The instructors wanted the students to be able to create many 

swirler prototypes, so the design goal for the baseline swirler was to make it 

inexpensive and quick to manufacture. Various research groups have 

successfully tested 3D rapid-prototype swirlers in atmospheric combustors, so 

this was selected as the manufacturing method of the baseline swirler. The 

plastic used by the 3D printer has a melting temperature around 200° F, and 

survives the combustion environment because the radiant heat from the flame is 

blocked by the venturi, and the conductive heat transfer through the venturi is 

offset by the cooling of the combustion air. In testing, for conditions where the 

flame is detached in the confinement, the swirler doesn’t exceed its material limit 

temperature of 150° F. The failure mode of the swirlers has been heat induced 

hardening, leading to cracking at the band that engages the venturi. Typical life is 

a few hours of test time which is more than adequate for these parts that cost a 

few dollars each. 

An additional benefit of the 3D printing is the additive nature of the 

process allows designs that are not possible by traditional removal-only 

processing. The students in the classes realized this possibility and took full 

advantage of it. An example is presented in Figure 3-5, where a fin was added to 

the swirler blade, for the purpose of creating turbulence to aid mixing.  
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Figure 3-5: GTCI designed swirler with fin added to aid in mixing. This feature 
would not have been practical with traditional machining, but with 3D printing, it 

was no more difficult than a normal swirler.  

Since students unfamiliar with the burner would be doing the testing, the 

swirler needed to be easy to install. The swirler is inside the burner housing and 

cannot be seen, so a mounting system not requiring tools or fasteners was 

needed. The solution, shown in Figure 3-6, was for the swirler to slip over a 

shoulder on the venturi. When pushed over the shoulder, the swirler goes over a 

wire ring installed on the venturi compressing it until the ring reaches a groove in 

the swirler, where it can expand. This engagement of the ring into the groove 

provides an axial force keeping the swirler from disengaging. When designing the 

swirler-venturi interface, it wasn’t known if the friction at the interface would be 

greater than the torque applied from swirling the air. To mitigate this, anti-rotation 

tabs were added to the swirler that engage pockets in the venturi.  After testing, it 

was determined the friction at the interface is enough and the tabs are not 

needed.  
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Figure 3-6: Interface between swirler and venturi. The wire ring installed on the 
venturi expands into a groove of the swirler providing an axial force to keep the 
swirler on the venturi. The anti-rotation tab engages a pocket on the venturi to 

keep the swirler form rotating. 

To access the swirler to change it, the burner housing separates in two 

pieces, and the half containing the fuel injector is pulled away from the burner 

(Figure 3-7). Once the swirler is installed, the fuel injector is guided into the 

swirler until the burner housing halves engage. The clamp plate, which holds the 

burner housing in place, is then secured with over-center latches. With this 

method, the swirler can be changed in less than a minute.  

Venturi 

Swirler 
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Figure 3-7: Split burner housing to allow installation of swirler. Once installed, the 
fuel injector is guided into the swirler until the burner housing halves engage. The 
clamp plate, which holds the burner housing in place, is then secured with over-

center latches. 

The axial location of the fuel injector was made adjustable by mounting 

the injector in two bushings (Figure 3-8). These bushings are a precision fit and 

polished to reduce friction and leakage. An internal compression spring pushing 

against an external micrometer locates the injector axially. The spring keeps the 

system always against one side of the micrometer backlash, improving 

repeatability of the position. The spring seat on the injector is a collar held by the 

clamping force of a tightened screw. This system allows for +/- .125” of travel 

from the nominal injector location, which is adjustable by where the collar is 

tightened on the injector. 
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Figure 3-8: Bushing that fuel injector slides in. The top bushing is an aluminum 
insert into the sintered disc (orange). The bottom bushing is a precision bored 

hole polished to reduce friction and wear. 

To automate the injector movement for control purposes, the micrometer 

was replaced by a Firgelli L12-50-100-12-I Servo actuator (Figure 3-9 and Figure 

3-10). This actuator can travel up 0.5 inches per second, has a maximum force of 

10 lbf, and has an accuracy of 0.004 inches. It also has position feedback 

processed by an onboard microcontroller, so the only inputs are +12 V power 

and an analog reference signal. For $30 each, this is a great solution for the 

injector actuator. 
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Figure 3-9: Firgelli L12-50-100-I linear actuator used for fuel injector movement. 

 

Figure 3-10: Firgelli linear actuator mounted to burner housing by bracket (red), 
and micrometer clamp (blue). 

The base plate for the LDI combustor was reused from the Tube 

combustor mentioned previously, and had a coflow incorporated into the burner 

plate (Figure 3-11). This seemed potentially useful for future LDI testing, so the 

base plate was kept and a new manifold was designed for it. The air enters the 

manifold on the sides and axially flows through the dome plate to enter the 

combustion chamber. The dome plate is made of a stainless sintered metal that 

is fairly restrictive. This restriction creates a pressure gradient across the dome, 
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which results in a more uniform flow into the combustion chamber. The sintered 

metal also provides a flashback prevention method, in case premixes are used in 

the futuref. 

 

Figure 3-11: LDI Coflow manifold. Manifold air flows through sintered metal dome 
(blue) into combustion chamber.  

After the single element configuration testing had been completed, the 

testing would move on to a multi-element LDI. To save cost and time, the single 

element LDI burner housing was designed narrow enough to allow four of them 

in the 4” x 4” dome (Figure 3-12 and Figure 3-13). This allows all of the original 

LDI features to be kept and used with the multi-element configuration.  
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Figure 3-12: Top view of 4 element LDI. This configuration reuses the single 
element LDI housing 4 times, eliminating costs and design time. It would also 

allow the original features of the LDI to be kept: variable injector position, 
independent fuel and oxidizer flows, and independent swirler choice. 

 

Figure 3-13: Bottom view of 4 element LDI. A new clamp plate and base plate 
would be needed in addition to three additional burner setups: venturi, fuel 

injector, swirler, burner housing. 
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3.2.4 Purdue Class Contributions 

The senior design students of ME 463 showed that Graduate students 

aren’t the only ones that can produce good combustion hardware. The projects 

for this class included stereo imaging devices, confinement chambers, mass flow 

meters, actuators for the variable injector position, and a variable acoustic 

impedance area for the exit of the confinement. Two that have already been 

tested with the LDI and show great potential are a 2” quartz confinement, and the 

variable impedance exit area. The details as provided by ME 463 will be 

discussed below.  

 The 2” quartz confinement group was given the challenge to research 

existing confinement designs, improve upon them, and reduce cost. The idea 

they came up with and built (Figure 3-14), has four panes of glass held together 

by corner pieces of metal angle. There is a ceramic gasket between the metal 

and glass to reduce vibrations. The design has no machined parts, just beveled 

glass and 1/2” metal angle, which were both bought to length.  
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Figure 3-14: ME 463 2” confinement tube being tested with a 45° swirler.  

 The second device developed by 463 is the variable impedance exit area. 

The idea behind this device is that an acoustic instability can be tuned out by 

changing the boundary conditions at the exit of the combustor confinement. 

Practically, this was done by moving two plates relative to each other to vary the 

square orifice opening (Figure 3-15).  
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Figure 3-15: Variable impedance exit area developed by 463. The two plates 
form an exit opening that is varied by moving the plates relative to each other. 

The two plates were moved by a common screw joining them. The screw 

had a right-hand and left-hand thread, so that the plates moved at equal rates but 

opposite directions (Figure 3-16). This kept the exit opening centered in the 

confinement. The screw was turned by DC motor being counted by an encoder. 

An electronics box with manual controls was made to operate this device. 

 

Figure 3-16: Concept of varying exit area by moving 2 plates in equal by opposite 
directions.  

3.3 LDI Test Results 

From the class experiments of GTCI and GTCII, and the research students’ 

experiments, much has been learned about combustion testing and development. 

In the sections below, some of these initial results are discussed. 
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3.3.1 GTCI Swirler Development 

The first course to use the LDI combustor was GTCI for the fall of 2013. 

Their main objective for the semester project was to design, make, and test their 

own swirlers. Testing was kept to unconfined flames for simplicity, and the fuel 

was methane. Over 30 unique swirlers were made by the class participants, all of 

which still exist, either in storage in the lab, or by a copy of the CAD model. A 

phenomenon not realized until the end of the semester was the difference adding 

a confinement makes to flame stability. While testing unconfined, the only flames 

that had lean blow offs (LBO) near an equivalence ratio of 1 were with high vane 

angle swirlers with vane angles greater than 60 degrees. Lower angle swirlers 

such as 45 degrees, had LBOs closer to equivalence ratios of 3 or higher. At the 

end of the semester, when a 4”x4” confinement was added, we observed that 

high angle swirlers could now operate closer to an LBO equivalence ratio of 0.6, 

while low angle swirlers had LBOs around 1.5 on average. Even though the 

unconfined testing data and images were not of much relevance to combustion 

development, the time spent testing was good practice at running experiments, 

and capturing images.  

3.3.2 GTCII Injector Position Study 

GTC II had fewer students, but more focused and in-depth projects. Rohit 

Kumar and Nitish Kumar, both graduate students in the School of Mechanical 

Engineering, did CFD non-reacting simulations of the confined single element 

LDI. Their work looked at three different injector positions, with 45o and 60o 

single zone swirlers. Relevant to this project, they found that the movement of 
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the injector had little impact on mixing improvement or flow field shape. The 

experimental work that looked at their same conditions found similar results. 

Figure 3-17 shows the operability curve for a 60o single element swirler, in a 2” 

confinement. The results show almost no change in LBO or RBO values due to 

moving the injector. Similar results were found with the 45o swirler.  

 

Figure 3-17: LBO and RBO for a 60o single element swirler, with multiple injector 
positions. Testing showed not significant change in these characteristics with 

injector movement.  

These results are not unexpected. Originally, the mixer geometry was 

based around the liquid injector, and moving the injector axially would have 

moved where the fuel was introduced. As mentioned previously, for safety 

concerns the fuel type was switched to gaseous methane, but the mixer 

geometry was not changed. Varying the injector location with the gaseous fuel 

has very little impact, because of how easily the gaseous fuel mixes. Another 
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concept discussed earlier was the pintle injector, which works by varying the 

effective area of the mixer [18]. Figure 3-18 shows the measured effective area 

of the mixer for three different injector positions, for no swirler, a 45o, and a 60o 

swirler. The results show the 60o effective area is least affected by the injector 

change. Overall, the effective area of both of the swirlers doesn’t vary enough to 

significantly impact the flow field, and will be a design change for the future.  

 

Figure 3-18: Effective area of mixer vs. injector position for no swirler, 45o, and 
60o. 60o effective area is least effected by injector change. Effective area ratio of 

largest over smallest is 1.18 for 45o, 1.05 for 60o. 

3.3.3 Chemiluminescence Imaging 

An idea for characterizing the effect that the injector had on the flame was 

to perform chemiluminescence imaging of the flame, as equivalence ratios and 

injector position varied. Not only was this an interesting idea for studying the 

flame, but it provided an opportunity to develop our knowledge of 

chemiluminescence imaging. At the start of this work, although images could be 

collected and saved, no image processing had been developed. Over the course 
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of this work, our image processing toolbox was developed and many problems 

were solved. Some of challenges come from imaging OH, where the CCD 

camera only has a quantum efficiency of 8%, making signals very weak. The 

following work will discuss issues associated with generating time-averaged 

images, and challenges of imaging in the UV.  

The experimental setup for this imaging was the LDI combustor with the 2” 

quartz confinement. Only enough time was available to image one swirler, so the 

60° swirler was selected because it had a more defined flame structure than the 

45°, and exhibited acoustic instabilities, which the group was very interested in 

studying. The pressure drop was held constant at 2% because this gave a strong, 

well-defined flame without burning through too much fuel. The equivalence ratios 

used were .55, 0.6, 0.7, 0.8, and 0.9. The fuel injector was put at 0.2” upstream, 

the throat position, and 0.1” downstream.  

One issue with imaging the flame comes from a flaw in the geometry of 

the LDI shown in Figure 3-19. The dome lies in a pocket at ½” below the base 

plate. This limits the vertical view of any attached flames, like the 60° swirler 

flame tested here. Also, the width of the corner pieces of the quartz confinement 

limits the field of view as well; see Figure 3-14. Both of these issues will be 

addressed for future work.  
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Figure 3-19: View of flame by camera is blocked by walls of confinement, and 
because the dome lies in a recession that is a ½” below the base plate. 

The left hand image of Figure 3-20 shows a time-averaged image of the 

mean OH intensity. The OH is a very weak signal because of the low quantum 

efficiency of the camera at 310 nm. Typically, the camera is set with a high 

sensitivity to increase signal strength (Table 1), but this adds noise and 

introduces new problems. One of those is a background “ghost” image, as it’s 

sometime referred to in photography. This “ghosting” is from trapped electrons in 

the wells of the image sensor. With visual flame imaging, this would not be seen 

because the voltage added by these is low, but the OH signals are on the same 

voltage level so it becomes noticeable.  

The background ghost image is fairly constant. If the lens cap is put on the 

camera to provide total darkness, the ghost image is clearly present for at least 

an hour after the last exposure. Since it was constant, it was found that it could 
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be subtracted from the time-average images. This was done by taking several 

images with the lens cap on, and calculating a mean image of the background. 

This was then subtracted from the time-averaged images. The right hand image 

of Figure 3-20 shows the image after the background is removed. The vertical 

fading in the boarder is gone and more contrast can be seen in the flame region.  

Table 1: Camera settings during testing. 
Camera Parameter/Filter Type Visible CH OH 

Exposure Time (ms) 7 28 28 

Master Gain 2048 

Master Offset 1050 

Video Output (bits) 12 

LUT Mode Linear 

Camera body distance to flame 50.5” 

Camera centerline height above dome 3.5” 

 

 

Figure 3-20: Initial image (left); image after background noise removal (right). 
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Once the ghosting was removed from the time-averaged images, it was 

possible to calculate the probability density functions (pdfs) of the flame at the 

various conditions. Figure 3-21 shows the mean, root mean square (RMS), and 

standard deviation calculated for a particular setting of the injector location and 

equivalence ratio. When comparing the mean and the RMS, it was noticed that 

the two were very similar despite expecting more variation due to the turbulent 

flame. This is due to the relative size of the mean compared to the amplitude of 

pixel fluctuation. In terms of signal power, the ratio of power from the mean 

component to the fluctuating is typically 30 to 1, thus making the RMS ineffective 

at showing pixel fluctuation. For this reason, standard deviation will be used, as 

opposed to RMS, to characterize pixel fluctuation. 

 

Figure 3-21: Three images showing the mean, RMS, and standard deviation. 
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The standard deviation being more sensitive to fluctuation also makes it 

more sensitive to noise on the image if the amplitudes are similar. This produces 

a “grainy” look, as seen in the left image of Figure 3-22. To reduce this, a digital 

spatial filter tool in MATLAB, “imfilter”, was applied to the standard deviation 

images. The kernel used was a correlation type with equal weights. No padding 

for the boundaries was used since the region of interest, the flame, was not near 

them. Future work will have to be done to validate that no information of interest 

is lost.  

 

Figure 3-22: Image before and after spatial filtering. 

 After the imaging toolbox was developed to create time-averaged images 

from the instantaneous photos, as well as improve noise issues, false color pdfs 

were created to begin to characterize the flame. Figure 3-23 through Figure 3-26 

show the mean and standard deviation of CH and OH intensity. The panels are 

arranged with increasing equivalence ratio in the x-direction and injection position 

changing in the y-direction. 
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Figure 3-23: Panel showing mean CH images. Flame profile progression with 
equivalence ratio is as expected. 
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Figure 3-24: Panel showing standard deviation of CH images. The light colored 
area immediately above the flame is believed to be an artifact of the background 

noise removal process. 
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Figure 3-25: Panel showing mean of OH images. Concentrations were expected 
to be outside of the areas that CH occupied; however, we see that both CH and 

OH lie in the same region. 
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Figure 3-26: Panel showing standard deviation of OH images. The light colored 
area immediately above the flame is believed to be an artifact of the background 

noise removal process. 

The OH and CH images did not show the results expected. With OH being a 

product on the lean side of the flame, and CH being a product on the rich side, it 

was expected the OH and CH concentrations would be located in different 

regions. This distinction is not present in the images. This is believed to be 

partially due to the limited optical visibility issue discussed above. The images 

are of the tail and plume of the flame where OH concentrations will be weaker, 
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and mixing of the products has occurred. The background noise removal will 

have to be corrected in another manner, as it’s believed there are artifacts from it 

mentioned in Figure 3-24 and Figure 3-26.  

During testing, it took approximately 90 seconds to acquire 100 images. This 

is a significant amount of time, so the images were checked for consistency from 

start to end. Figure 3-29 shows the statistics for a particular pixel from the flame 

area over the 100 samples taken. The three panels show pixel intensity, mean 

pixel value, and standard deviation of pixel value. A window of 20 samples was 

used to calculate the mean and standard deviation. 

Figure 3-27 and Figure 3-28 show the mean and standard deviation CH 

image panels where each image is the time average of 20 images from the same 

combustor setting. The panels are binned by 1-20, then 21-40, up to 100. Visual 

observation shows little variation in either the mean or standard deviation, 

indicating the flame is consistent over the 90 seconds it took to acquire the 

images.  

 

Figure 3-27: CH image mean variation over 100 samples; binned by 20 images. 



52 
 

  

 

Figure 3-28: CH image STD variation over 100 samples; binned by 20 images. 

Taking 90 seconds per combustor configuration to acquire 100 images is 

too long. Reducing this time would help minimize the change in the time-

dependent conditions of the combustor giving better diagnostics. Combine this 

time with having to do it at every test point of interest and doing a full mapping of 

a combustor becomes impractical for the operator’s time, fuel cost, and time on 

hardware. Although the capture rate for the images can and will be improved in 

the future, reducing the number of images needed is one of the easier solutions 

to reduce the total time of the experiment. Figure 3-30 shows the convergence of 

the mean and standard deviation with sample size and indicates a much smaller 

sample size could be used. This convergence is somewhat based on the 

exposure time of the camera and turbulence of the flame. A longer exposure 

would lead to less variation in the pixel intensity due to the integration effect of 

exposure time. A more turbulent flame would need more samples to converge. A 

method to choose sample size for future test would be to take a large sample 

size at the exposure setting of interest of the flame at a test point of interest and 

look at the convergence rate to select the sample size for the rest of the test. 
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Figure 3-29: Variation of statistics as over samples taken. 

 

Figure 3-30: Convergence of statistics with number of samples taken. 



54 
 

  

3.3.4 Combustion Instabilities 

A key element that future combustion control must deal with is combustion 

instabilities. While instabilities are a problem for the combustor designer, in our 

case, it was a positive result to find that our setup could produce them, since they 

will be necessary to test future control methods.  

The instability was found to be dependent on the vane angle, only 

occurring with a 60° swirler, and not the 45° swirler used previously in the 

chemiluminescence imaging. The instability was also found to be strongest when 

the injector was at 0.2” upstream. Injector positions at the throat and 0.075” 

downstream were also tested. The throat exhibited some instability signature 

while the downstream case had none detectable.  

The instability was strongly dependent on equivalence ratio, and occurred 

in a range of 0.6 to 1.1. Figure 3-31 shows a test where equivalence ratio was 

swept as the pressure was measured. Of interest was the instability frequency, 

so the data from the equivalence ratio sweep was selected at a few points for a 

Fast Fourier Transform (FFT) to be performed.  
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Figure 3-31: Measured instability as equivalence ratio was swept. Instability was 
found to exist in between .6 to 1.1 with maximum strength at .9. Red lines 

indicate center point of window for FFT.  

 

Figure 3-32: Instability spectra at three different equivalence ratios. The primary 
modes as seen in this figure are at 255 and 510 Hz. The data also indicates the 

instabilities decrease in amplitude as equivalence ratio increases. 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
14.5

14.6

14.7

14.8

14.9

15

15.1

Time (s)

P
3
 P

re
s
s
u
re

 S
ig

n
a
l 
(p

s
ia

)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

E
q
u
iv

a
le

n
c
e
 R

a
ti
o

0 100 200 300 400 500 600 700 800 900
-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

 

 

X: 254.2

Y: -29.02

Spectrum of P3 Pressure Transducer

Frequency (Hz)

P
re

s
s
u
re

 M
a
g
n
it
u
d
e
 (

d
B

)

X: 510.5

Y: -45.58

Phi = .75

Phi = .89

Phi = .97



56 
 

  

 

Figure 3-33: Phase plane of time lagged pressure measurement. 

The frequency spectrum is shown in Figure 3-32. The main amplitudes are 

approximately 255 and 510 Hz. As shown in the figure, the peak frequencies 

decrease as equivalence ratio increases. The reason for this is unknown at this 

time.  

The second test was performed in order to see the ability of the ME 463 

Variable Impedance Orifice to dampen the instability. To do this, the device was 

set at a measured opening, the flame was lit, and the pressure was recorded. 

During all these tests, the pressure drop and equivalence ratio were constant at 2% 

and .9 respectively.  

Figure 3-34 shows the pressure trace from the 2nd test condition which 

had an orifice area of 1.83 in2. The first obvious feature of the series is its growth 
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with time. This growth was heard and very noticeable. To try and minimize the 

error due to the transient nature of the instability, the FFT’s for the four time 

series were calculated as close to the end of the series as possible. Figure 3-35 

shows the frequency spectra for the four exit areas tested. The responses show 

the instability decreases as the exit area is closed. 

 

Figure 3-34: The pressure trace from the second test condition.
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Figure 3-35: Frequency responses for the four exit areas tested.
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3.4 Conclusions and Future Work 

A LDI single element combustor has been designed, built, and tested. 

Initial results regarding operability range, flame shape, and acoustical 

characteristics are promising for future controls and combustion development. 

From inviting classes to interact with the research group and participate in 

combustor development, new hardware was made, and analyses were done that 

helped everyone involved gain a better understanding of the field. The classes 

also served as good practice for the research students in running experiments 

and using the equipment such as the CCD camera. 

The near future work will see better instrumentation of the combustor to 

build a combustor database. Now that the CCD camera basics have been 

learned, some methods available in publication can researched for application to 

the experiment. There is also a lot of hardware available now, such as the 

injector actuator or variable impedance area, which await integration and testing 

to see what impact these devices combined into one system could have.  
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CHAPTER 4.  OPTICAL TRANSLATION TABLE 

4.1 Introduction 

One of the diagnostic tools available in the lab is the picosecond laser 

system that can be set up for two different diagnostic mehthods: Laser-induced 

Fluorescence Triple-integration Method (LIFTIME) or Picosecond Time-resolved 

Laser-induced Fluorescence (PITLIF) [23], [24]. These are quantitative methods 

for the spatial and time resolved measurements, at the flame front, of species 

such as OH and NO. With this system, a method was needed to move the 

combustor relative to the optics. The optics could be moved, but the picosecond 

system is one of several diagnostics tools planned, so moving the combustor, or 

target, requires less independent stages. With this philosophy, at least a three 

axis stage was needed to move the combustor. In addition to having multiple 

diagnostic methods planned, the lab also planned to do rapid testing of multiple 

burners with quick turnaround time between them. A set of three translation 

stages per burner was impractical and costly, and there would not be enough 

time to switch burners on one set of stages; therefore the best option was to 

make a three axis table that could hold multiple burners.  

Figure 4-1 shows the custom translation table. The table consists of four 

main sections: ground rails, main frame, Z table, and Y table (Figure 4-2). The 
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main frame slides along the linear rails that form the ground rails. The Z table is 

supported from lead screws inside the main frame and traverses in the vertical 

direction. The Y table slides along linear rails mounted to the Z table. The table 

was constructed as a space frame to give as much access to the burners as 

possible. With this concept, there is plenty of room to get the plumbing and 

instrumentation lines to the burner.  

 

Figure 4-1: Translation table and axis definition. 
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Figure 4-2: Translation table main sections. 
 

Since this table was a custom design and would be a key component in 

our diagnostic system, careful consideration was given to the requirements of the 

device. To be determined prior to the start of the design, these requirements 

were needed to define travel range and speed, weight capability, and outer 

dimensions.  

The travel range is dictated by the flame dimensions to be scanned by the 

picosecond system. Flames from full scale combustors don’t typically exceed 6” 

in maximum width, so this became the minimum range needed in the X and Y 

axes. The range for the Z axis is determined by the length of the flame, which is 

typically less than 12”, so the initial design had these travel targets in mind. Once 
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some initial concepts were formed and vetted, the current layout with the burners 

along the X axis was chosen. With this arrangement, the X range was extended 

to not only scan a flame, but travel between the farthest mounted burners. Using 

dimensions from common burners, this distance was set at 24”. Initial pricing for 

the components revealed it wouldn’t add much cost to the assembly to make the 

Z axis have the maximum travels of the components available for purchase, 36”. 

This additional travel would allow taller burners to be used; the table would have 

to be lowered to keep the flame at the laser centerline. The final requirements for 

travel were: X axis – 30”, Y axis – 8”, and Z axis – 36”.  

 The picosecond system scans point by point with a typical distance of 1 

mm between points. This became the maximum resolution requirement of the 

table. The overall time required to scan a flame is based largely on the travel 

time between points. A target of 1 mm per second was proposed as the minimum 

speed required, but a general goal to maximize speed between points was kept 

during the design process. 

The weight capacity requirement of the table was based on the weight of 

some high pressure burners which can be up to 300 lbs each. With this in mind, 

and a minimum safety factor of two desired, the minimum weight requirement 

was 600 lbs, and components were sized for this or greater.  

  The lab space where the translation table sits is limited by the distance 

between the optics tables, and the width of the collection optics table. In between 

the optics table, an aisle was needed to access the hardware on the table. The 

table could also not be wider than the collection optics table, so as not to extend 
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into the aisles. In order to achieve the required travel in the Y direction without 

adding width to the frame, it was necessary for the Y table to travel to the edge of 

the frame. This change added complexity to the table and component designs 

but was determined necessary.  

4.2 Mechanical Design 

 The design for each of the three axes has the common components of a 

linear stage: rails to constrain five of six degrees of freedom, a lead screw on the 

moving degree, and a servo motor to power the lead screw. With the X axis, the 

stationary component is the ground rail while the moving part is the rest of the 

table. The main frame is mounted to open linear bearings that slide on linear rails 

mounted to the ground rails (Figure 4-3). Open bearings were selected over 

closed bearings for the fully supported nature of the open bearing. A lead screw 

constrains the ground rail to the main frame, and is turned by a geared DC motor. 

An acme screw thread was selected over a ball screw thread for its high friction 

angle making it non-backdriveable, and relative low cost. Position measurement 

is achieved by an optical linear encoder with a resolution of 500 lines per inch 

(US Digital EM1-500-I). All encoders used are this resolution and also have an 

index mark and the center of travel serving as a reference to start counting from.  
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Figure 4-3: Assembled table ground rails. 

 The Y axis design is similar to X axis, except the Y table could not be 

driven from the center for practical reasons, so it’s driven from the sides with two 

lead screws. This was required to avoid the binding that driving from the side with 

one lead screw would cause. The motor couples to the back of one lead screw, 

then a timing belt (WM Berg Min-E-Pitch) connects that screw to another screw. 

Static belt tensioners were made and applied to all belts to ensure adequate belt 

wrap, and reduce backlash from belt flex. The Y axis system is shown in Figure 

4-4. 
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Figure 4-4: Y Axis drive system and linear rails. 

 The Z-axis is a different configuration than the X or Y. With this axis, the 

main constraints are rollers that ride in the grooves of the 80/20 on one face, and 

ball rollers that roll against the 80/20 surface on the other. These constrain the 

table in the X-Y direction and also the twist motion about the vertical axis. The 4 

vertical lead screws constrain the table in twist about the X and Y axis, and the 

translation in the vertical direction. An Acme lead screw was used here over a 

ball screw explicitly for the non-backdriveability of the Acme profile. This keeps 

the Z table from backdriving down the lead screws due to its weight (Figure 4-5). 
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Figure 4-5: Assembled table showing suspended Z Axis. 

 In this design, the lead screw is stationary while the lead nut spins about 

the screw. Both options, spinning the lead screw or spinning the nut, were 

considered. Spinning the nut required less hardware and was a more compact 

design. Spinning the nuts in the four corners is done with a large DC brush motor 

powering one nut, which is then coupled to the others by timing belts (Figure 4-6). 

Figure 4-7 shows a cross section of a corner bearing block. The lead nut is 

threaded into a spindle. The spindle has the timing gear attached to it, and 

rotates in two bearings. The lower bearing is a tapered roller bearing that 

transmits the vertical load of the table to the lead screw. The upper spindle 

bearing is a radial bearing that supports moment created by the belt tension. 



68 
 

  

 

Figure 4-6: Z Table belt path (bottom view). 

 

Figure 4-7: Z Table bearing block showing spindle (red), bearings (orange), 
Acme nut (green), WM Berg sprockets (purple), and bearing block (gray).  

 Belt stretching was a concern for the Z axis with the combination of high 

loads needed to lift the table, and the long belt length from the motor to the last 

driven corner. Since on all axes the table positions are measured with only one 

encoder, any backlash or misalignment due to belt stretch would go unmeasured 

and add error in position certainty. If the backlash is great enough, it could cause 
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binding as well. A solution was found in the WM Berg product line of Min-E-Pitch 

cables. The cables, which is a deceiving name because they act the same as a 

timing belt running over a toothed sprocket, are constructed from two stainless 

cables that are 1/32” in diameter, joined by polyurethane rungs. The stainless 

cables give the belts a higher stiffness and strength than a typical timing belt 

made with rubber and high-tensile fibers. The higher strength allows for a smaller 

belt cross section, good for compact cases. Belt wraps of almost 180 degrees 

are on every sprocket so tooth load is minimized. Static belt tensioners were also 

designed and added to reduce the slack in the belt and ensure adequate tooth 

wrap.  

 

Figure 4-8: Cross section of idler pulley design showing pulley (green), bearing 
(orange), and spacer (blue).  
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 The encoders used need to be precisely aligned to avoid wearing the ink 

on the encoder strip, and to maximize the reading ability. The first step of the 

alignment process is to get the strip aligned to the linear rail axis. All pieces were 

precision machined, so variation was typically less than 0.020”. Shim stock 

pieces (Figure 4-9) were made for the strip mounts and encoder mount. The 

shims were first installed to get the strip parallel, and then shims were installed 

behind the encoder mount to set the nominal 0.02” clearance to one side of the 

reader head.  To adjust for the variation in the other direction, the mounts were 

made with play when installed in the 80/20 so they could be loosened and 

adjusted.  

 

Figure 4-9: Encoder alignment with shim stock: X encoder mount (purple), 
encoder strip mount (orange), encoder (brown), shims (green), and encoder strip 

(blue). 
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4.3 Electrical Design 

The electrical system for the translation table has four tasks: read the 

linear encoders, output a Pulse Width Modulation (PWM) signal to each motor, 

read inputs from the user control box, and calculate the control signal to move 

the table point to point.  

The motor for each axis is a 24 V DC brush motor driven by a PWM H-

bridge motor driver. The X and Y motors are geared DC brush motors (Pittman 

GM8224S010), necessary to get the torque and speed required at the lead 

screws. The Z axis has a 2.7:1 gear reduction through the motor pinion and main 

sprockets, so a direct drive motor was used (Pittman 14203S009).  

 To assist in selecting the motors, power supply, and gear ratios, a 

simulation of each axis was done using SIMULINK. The simulations followed a 

standard dc brush motor model that included the rotor resistance, inductance, 

inertia, damping, Motor Torque constant, and Back EMF constant. The apparent 

inertia at the motor shaft was calculated, taking into account table mass, inertia 

of rotating components, gear ratios, and estimated lead screw friction. The 

simulation for each axis focused on a step response and maximum speed. As 

mentioned earlier, the scan time for a flame will mostly be dependent on the 

travel time between points, so this was minimized.  A trade study was done 

simulating different combinations of motor parameters and gear ratios to find an 

optimal combination. Figure 4-10 shows the measured step response to a 1 mm 

step, the smallest the table would be commanded. The response speed is 

acceptable, reaching the final value in 0.6 seconds. The oscillations about the 
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steady state points are believed to be from the cyclic friction of the lead screw. 

The accuracy of the system is acceptable (+/- .003”), but could be improved by 

aligning the lead screw better to reduce binding and friction. Figure 4-11 shows 

the maximum speed of the table. The response of the motors’ maximum speed is 

quick, traveling 1” in under 0.5 seconds with an average speed of 2.3” in/s. Test 

data for Y and Z axes wasn’t available due to some repairs. However, one can 

assume the Y axis will perform as well or better since it has as much power, less 

weight, and less friction. Observations of the Z axis during initial testing put the 

average speed at 2 in/s.  

 

Figure 4-10: 1 mm (.040 inch) step response test. Oscillations are due to 
undersampling the position measurement. 
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Figure 4-11: X Axis motor maximum speed – 2.3 in/s. 

 The concern for having an axis overshoot its position from a software 

glitch or bad user input was mitigated by installing limit switches and emergency 

stop buttons. These are wired into a standard start-stop circuit configuration 

using a relay. In this configuration, the user presses the Start button to close the 

relay (Figure 4-12). The coil is then self-energizing and will stay closed when the 

Start button is released. If a limit switch is contacted, it opens and the power to 

the relay coil is temporarily opened. Once open, even for a few milliseconds, the 

relay contacts open, breaking power to the motors and to the coil. The power 

then stays off until the limit switches are closed, and the Start button is closed 

again. The e-stop buttons are in series with the limit switches and function in a 

similar manner.  
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Figure 4-12: Relay start-stop circuit. 

Motor command signals to the motor drivers come from the PXI-1033 

chassis that runs a VI for the table control. The motor drivers (Pololu 1213, 755) 

are essentially H-bridges used to amplify the PWM input signal, with the voltage 

to the motor being proportional to the PWM duty cycle. Motion direction is 

controlled by the set polarity to the DIR pin on the driver.  

As described earlier, position measurement is done with optical linear 

encoders. Each encoder is a quadrature design and has two outputs that must 

be read to get position and direction. Interrupts must be used to read the encoder 

output to ensure no counts are missed, but the PXI-1033 chassis didn’t have 

enough for the three of the table. A solution was developed by Nathan Toner, 

another student in the lab, using an Arduino DUE acting to count the pulses and 

then report the position via a data bus to the PXI-1033. The DUE was an 

excellent board for its many interrupt channels and processing speed, but uses 

3.3 volt digital logic versus the more common 5 volt. This proved to be a 

challenge as both the optical encoders, and PXI-1033 chassis could only operate 

at 5 volts. To overcome this, Nathan developed a circuit board that incorporated 

logic level converters on all lines needed, converting between 3.3 and 5 volts. 
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Table position can either be directly set through the VI, or adjusted by a 

manual control box (Figure 4-13). This control box contains a two direction switch 

for each axis, the relay start button, and a speed selection switch. The direction 

switch for each axis is a three position switch used to specify the direction to 

move. The speed selection switch is either for low speed or high speed, and the 

speed for each is programmed in software. Low speed is used for fine 

adjustments in position when near the burner, whereas high speed is to move 

between burners.  

 

Figure 4-13: Manual user control box. 

The same VI that operates the flow metering equipment was modified to 

operate the translation table (Figure 4-14). The table portion of this VI 

communicates with the DUE to get the updated table position, outputs PWM 

motor control signals to the drivers, reads the direction switches from the user 

control box. This VI outputs control signals and updates position at 20 Hz. This is 

currently limited by the data bus rate and will be updated in the future. The 



76 
 

  

control structure currently being used is a PID. Although the system could 

eventually benefit from a more advanced controller, the current limitation as seen 

by the oscillations in the step response is the update rate of the position (Figure 

4-10).  

 

Figure 4-14: Translation table panel of Main VI. 

An electronics box was built to house the Arduino, motor drivers, relay, 

and input/output plugs (Figure 4-15). This box was mounted on the table to 

reduce the number of wires that had to flex due to the movement of the table 

relative to the PXI-1033, which was stationary on the ground. A cooling fan was 

added to the electronics box for the motor drivers. This is a 24 V fan that runs off 

the 24 V power supply to the motors. The 24 V power supply is capable of 16 A 

continuous output and is mounted next to the PXI, off the table. 
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Figure 4-15: Translation table electronics box. 

4.4 Conclusions and Future Work 

A three axis translation table has been developed to support future 

combustor development and diagnostic efforts. Initial performance 

measurements indicate the table speed and precision surpass the original 

requirements, and will enable fast scanning of flames compared to other 

translation options. In addition to good performance, the size of the table relative 

to its travel was minimized through compact design, leaving extra space around 

the table to access the burners, and allowing more burners to be mounted on the 

table. 

The horizontal plane stiffness of the table was a concern from the 

beginning, due to the open box structure of the frame. It is planned that after a 

few months of using the table to get familiar with it, shear stiffening panels can be 
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designed to stiffen the structure but not limit access to the burners. A trial has 

already been done where a shear panel was clamped on to the frame work, and 

deflection at the top of the table was decreased by an order of magnitude.  

In addition to stiffening the structure, a redesign of the table is planned 

that will eliminate the framework above the Z table. This will give unobstructed 

access to the combustor for both maintenance and optical work. This again was 

a change that could only happen after the table was built, and used for a while, in 

order to visualize possible solutions. 

The table position control portion of the VI will be updated to allow path 

generation of a point vector file supplied from another measurement device. This 

will enable automatic scanning of a flame to significantly increase our data 

collection and accuracy. 
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CHAPTER 5.  CONCLUSION 

This chapter reviews the main accomplishments of this research. In addition 

to this review, ideas of things to be studied in the future will also be discussed.  

5.1 Lab Infrastructure 

The lab facilities and infrastructure have successfully been developed 

which will support future combustor development and diagnostic efforts of our 

research group. The completed development included lab layout and 

organization, facilities, measurement and instrumentation, automation of the 

majority of the processes associated with testing, and an imaging tool for 

diagnostics.  

5.2 LDI Combustor Design 

A LDI single element combustor has been designed, built, and tested. 

Initial results include operability range, flame shape, and acoustical 

characteristics. These results are promising for future controls and combustion 

development that our lab group hopes to achieve. From inviting classes to 

interact with the research group and participate in combustor development, new 

hardware was made, and analyses were done that helped everyone involved 

gain a better understanding of the field. The classes also gave the research 
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students good practice in running experiments and using the lab equipment, such 

as the CCD camera. 

5.3 Optical Translation Table 

A three axis translation table has been developed to support future 

combustor development and diagnostic efforts. Initial performance 

measurements indicate the table speed and precision surpass the original 

requirements, and will enable fast scanning of flames compared to other 

translation options. In addition to achieving our desired performance, the size of 

the table relative to its travel was minimized through compact design, leaving 

extra space around the table to access the burners, and allowing more burners to 

be mounted onto the table. 

5.4 Future Work  

With the equipment now available to the lab, more in-depth combustion 

research can begin. One of the first projects will be the application of the 

LIFTIME to the LDI to assist in combustor design. With the experience gained on 

the CCD camera, there exists the potential to use the image processing 

capabilities of the LabVIEW software to perform real-time flame geometry 

analysis.  

Although the initial requirements of our translation table were achieved, a 

redesign is planned that will eliminate the framework above the Z table. This will 

give unobstructed access to the combustor for both maintenance and optical 

work. This was a change that could only happen after the table was built, and 

used for a while, in order to visualize possible solutions. 
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It is believed that with some minor revisions to our chemiluminescence 

method, it will be a very useful tool for our lab. Its first application could be to 

assist in developing an effective variable position injector for the LDI. While 

waiting to design this new injector, the variable impedance exit area designed by 

the ME 463 can be used as an alternative control input to our system. This will 

give us the ability to begin exploring the field of control of combustion instabilities. 

Since beginning the development of our lab, we have seen the lab research 

group triple in size. The work of this thesis did not directly result in any novel 

combustion development; however, due to this work a fully-functional combustion 

lab is now available for all of the current and future students to use. In addition to 

providing resources for the students of our research group, this lab will continue 

to support Senior Design students as well as those in graduate level combustion 

courses.  
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Appendix A. LDI Combustor Design Drawings 

In the pages that follow are the drawings for the single element LDI combustor.
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Appendix B. LabVIEW Wiring Diagrams 

In the pages that follow are the wiring diagrams from the LabVIEW program used 

to automate the components of the lab.
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