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 Microfluidics constitutes a widely applicable field of enabling technologies with great potential to 

revolutionize healthcare and biotechnology. The ability to miniaturize and parallelize processes with 

microfluidics is seen as a solution for many problems with diagnostics technologies and accessibility. 

Unfortunately, fabricating microfluidics often require extremely expensive, time consuming, and 

specialized high-precision methods, making both prototyping and commercial-scale mass manufacturing 

difficult to accomplish.  In this work, we evaluate the feasibility of using a unique roll-to-roll (R2R) 

micropatterning manufacturing process coupled with Additive Manufacturing (3D printing) to rapidly 

prototype and produce microfluidic devices at high-volume on film or paper backings for applications in 

biotechnology. The first part of this process involved using Innovation Engineering approaches to navigate 

the customer discovery process to define the market areas in microfluidics that were of most value. Next, 

we identified key feasibility metrics for assessing products made with this process by looking at both 

manufacturability and functionality. Feature dimensions of products fabricated in the R2R process were 

evaluated at each step of production to determine manufacturability. Functionality was then assessed 

using microfluidic mixing patterns to compare the mixing efficiency of our film product to those 

manufactured with a current industry standard method. Ultimately, we found that fabrication of 

microfluidic patterns was feasible in the R2R production method, and that the devices created had 



 
 

functionality comparable to traditional microfluidic devices. This work will serve as a platform for further 

investigations into the high-volume manufacturing and prototyping of microfluidic patterns for 

applications in diagnostics and other areas of biotechnology.  
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction to Microfluidics in Medicine 

 Microfluidic devices are liquid handling systems that manipulate and use small fluid volumes at 

sub-millimeter scale lengths.1 The dominating physics and fluid phenomena of liquids on this small scale 

are significantly different from those on the macro scale. Among the most important differences is the 

lack of turbulence associated with laminar flow streams, where convection is no longer the dominant 

mechanism by which fluids mix, as well as the presence of capillary forces and the increased dominance 

of surface and interfacial tension.2 Microfluidics can be used to carry out functions for various 

applications that are not possible on the macro scale by exploiting these scaling properties.3–5 On the 

microfluidic scale it is possible to miniaturize and automate many processes with lowered reagent 

consumption and material handling. These characteristics give microfluidics the potential for use in 

applications in a wide range of fields, spanning outside of their origin in research labs and into industry. 

This technology was predicted early on to have a major revolutionary impact in science by using these 

properties, and has contributed to major advancements in related fields such as chemical engineering 

and biotechnology.1,6  

 Some of the most lucrative markets for the development of microfluidic technology are those 

that require high-volume but low-cost manufacturing.1 The focus of most research effort in microfluidics 

is in the field of healthcare and diagnostics, where single use platforms of this nature are practical for 

applications which involve contact with and processing of biological samples. Within this field, point-of-

care (POC) diagnostics are those which use rapid and precise miniaturized liquid manipulations, low 

cost, and portability of microfluidics to support decentralized testing of patients and personalized 

medicine.7–9 Microfluidic technologies play a key role in enabling POC diagnostics applications.2,10,11 They 

have been shown to be useful for analytical purposes by effectively controlling flow of sample fluids 
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from reaction and detection zones to result readouts, supporting the main functions necessary for these 

healthcare and diagnostic applications.12–16   

1.1.2. Microfluidics Market  

 The microfluidics market is steadily growing and represents a lucrative opportunity for product 

and technology development. The market value has grown steadily from $1.59 billion USD in 201317 to 

$3.6 billion USD in 201718 and is projected to reach over $10 billion USD in 202219, representing a 

growing opportunity for innovative developments and applications. The global market for POC 

diagnostics is similarly poised for growth, projecting significant increases from $16.5 billion USD in 

201620 to $34.6 billion in 202121. The demand for commercialized microfluidic products in this market is 

driven by the need for sterility and disposability of devices that come directly into contact with 

biological fluids, where the probability of fouling and clogging of channels is high.22,23 Both fields 

together represent an opportunistic landscape ripe for innovative new microfluidic technologies, as 

supported by the rising number of microfluidic-related scientific publications from 1 in 1994 to 1499 in 

2018 (Figure 1). 

 

Figure 1.1. Number of Microfluidics-Related Journal Articles Published Between 1994 to 2018. Annual 
publication figure reproduced from PubMed.  
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1.1.3. Microfluidics Development Challenges 

 The field of microfluidics has mainly been confined within academic research laboratories 

despite its originally-speculated potential for widespread revolutionary use.1,6,13 Many of the 

microfluidic technologies developed for POC applications serve only as a proof-of-concept, and 

translation into marketed products is limited. Microfluidics have not yet reached full maturity in 

commercial applications because they are limited by both technological and production bottlenecks.24 

Technological problems include the inherent low throughput of microfluidic systems and therefore long 

sample analysis time, which may be overcome in some cases by parallelization of devices.25,26  Clogging 

of devices is also a common issue which typically requires iterative changes to designs27,28, but 

prototyping in this way is not easily done due to the expensive and time consuming processes involved 

in fabrication.29  

 Despite being low-cost in terms of materials for production of miniaturized systems, 

conventional manufacturing methods are expensive and laborious. Traditional microfluidic devices are 

fabricated out of glass or silicon using planar fabrication techniques used by the microelectronics 

industry, such as lithography and etching.30 Both methods enable the creation of sub-micron scale 

structures for applications with critical feature sizes and robust material properties.31 These early 

techniques were suitable for applications in research labs, where the higher cost and limited materials 

were feasible for the smaller production volumes required.32  Although devices manufactured with these 

methods are extremely precise, they are also expensive and rigid, and therefore limited in potential 

applications.33 Lithography requires manufacture of a costly master, specialized training, and use of a 

cleanroom. These methods are specifically ill-suited for exploratory work and prototyping, because the 

designs are not easily customizable and cannot be adapted to the many applications that require a low 

cost and flexible substrate for allowing or improving function. Planar fabrication methods also impose 

geometrical limitations in the final design, where feature shapes and heights are limited by each step 



4 
 

size.30,31 Applications within the field of microfluidics vary widely and often require intricate and free-

form shapes. Commercial production of designs require that the technology can produce a dynamic 

range of structural dimensions, as applications within the field of microfluidics vary widely and often 

require intricate free-form shapes.30 The fabrication and usage limitations inherent to these 

conventional lithographic techniques would require management of significant hurdles for any 

commercial use, driving the demand for more feasible, standardized, and mass producible platforms. 

 It is speculated that this drive has been limited over the past three decades by an ineffective 

search for a new “killer application”.34,35 Microfluidics is considered a platform enabling technology 

instead of a product in itself, so development of the technology must be translated to a viable 

application case to realize commercial success.36 Numerous academic publications feature proof-of-

concept designs with novel technical functions, but diffusion into consumer markets is limited by a lack 

of market-need validation, appropriate customer development, and high financial entry barriers. Instead 

of focusing on the search for a revolutionary new application, many stakeholders agree that developers 

should shift this focus from innovative new product demonstrations to marketable mass-producible 

products with well-defined market routes.17 

 Lower-cost manufacturing methods are necessary to achieve clinical impact and diagnostic 

utility in the POC diagnostics applications within the highest value market routes. To perform the 

necessary diagnostic tasks37 it must also be possible to customize and integrate designs, which are 

difficult to do with traditional low-throughput fabrication methods where turnaround time is very slow. 

Soft lithography with polydimethylsiloxane (PDMS) has remained a common method for fabricating 

microfluidics devices, and is considered an industry standard by many despite the need for a cleanroom 

for production. 33,38   

 An increased use of thermoplastic polymers and their manufacturing technologies such as 

injection molding, hot embossing, and casting initiated movements from expensive cleanroom 
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fabrication methods to lower-cost and higher-throughput methods more suitable for the commercial 

scale.39,40 One newer manufacturing method that aims to achieve this more effectively is additive 

manufacturing, or 3D printing, which has previously been explored and characterized as a method of 

fabricating microfluidics.41–45 3D printing can bypass many limitations of methods like soft lithography 

and embossing by lowering machinery and material costs to make the fabrication process easier and 

more adaptive. Compared to soft lithography, in which every change of design requires the fabrication 

of a new master mold, design change in additive manufacturing can be directly transferred from the 

CAD file to the device, enabling the significant advantage of rapid prototyping over other more complex 

methods. However, 3D printing is not translated to a commercial scale for microfluidics because of 

limitations on available resolution of printers, throughput, and compatibility of resins.46 

 One approach to bridging the existing gap for low-cost and high-volume production is with roll-

to-roll (R2R) production methods, such as nanoimprint lithography and roller embossing. R2R methods 

allow large-scale and high-throughput manufacturing solutions,47,48 and have been investigated as 

methods for the creation of functional microfluidic devices.49–51 Although these are promising 

approaches for large-scale manufacturing, the embossing cylinders require an expensive and 

complicated lithographical or chemical etching process and are not suitable for prototyping 

production.48,52 Feature sizes and resolution are also limited by the thin film substrates used.48,53 An ideal 

solution to the overarching problem would allow more rapid and accessible mass-manufacturing of 

microfluidics with enhanced design flexibility and resolution. 

1.2. Sappi 

 Sappi North America, Inc. is a global pulp and paper company that supplies printing, packaging, 

and specialty papers for a wide range of applications. One of these specialty products is a line of casting 

and release papers, which are used to create textures on the surface of synthetic leathers, laminates, 

and films. Release papers are made using a unique, high-throughput, roll-to-roll (R2R)  electron-beam (E-
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beam) coating process that can replicate patterns on paper or film backings with superior fidelity, 

reproducibility, and stability.54 With this technology surfaces can be patterned with feature dimensions 

ranging from macroscale to nanoscale. For producing coated fabrics, the release papers or films are 

coated with polyurethane (PU) or polyvinyl chloride (PVC), a fabric backing is applied, the aesthetics of 

the paper (gloss level and texture) are replicated onto the coated fabric, and the paper is peeled away. 

These coated fabrics then act as textiles for use in products such as handbags, shoes, flooring, and 

furniture.55  

 

 

Figure 1.2. Sappi Release Paper Product Textures and Coated Textile Replication. (A) Apex, a hexagonal 
texture used in release paper products. (B) Demonstration of release paper product, where the paper 
(left) is stripped away from coated textile, resulting in pattern replication on fabric backing. (Images 
from Sappi.com55) 
 

 This project involves collaboration with Sappi for exploring new uses of this E-beam coating 

process. This specialized fabrication process56 allows enhanced design flexibility compared to other roll-

to-roll R2R methods, as well as a novel method of prototype production using 3D printed master 

components. The final patterned products manufactured with this process are thin, flexible, and 

optically transparent when produced with a film backing (see Figure 1.3 for an overview of material 

properties). Although the exact composition of the matrix is proprietary, similar thermoplastic polymers 

such as perfluoroalkoxy polymer (PFA), polydimethylsiloxane epoxy acrylate (PSEA), and Polyurethane 
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(PU) have also been used and have been shown to have an acceptable resistance to corrosive solvents 

such as piranha57, acetone58, and chloroform59, respectively.  

 
Figure 1.3. Features of Microfluidic Patterned Products Manufactured at Sappi. Exploded view 
depiction of microfluidic patterned polymer overlayer with (A) paper backing and (B) film backing. (C) 
Demonstration of flexibility and transparency of film-backed products. 
 
 
1.2.1. Goal of Project 

 The goal of this project is to identify the most commercially viable opportunity for new 

application of Sappi’s R2R micropatterning process. Applications within the field of biotechnology were 

explored and through customer discovery efforts, the field of microfluidics was identified as a key 

opportunity.  Typical microfluidic applications can be generalized into 2 categories: continuous-flow 

microfluidics, where the two major opposing tasks are mixing and separation, or droplet microfluidics, 

where individual droplets of liquids are handled as opposed to continuous streams.60 For microfluidics to 

be successfully employed into miniaturized analysis systems, the ability to rapidly mix two or more 

reagent streams is often a required function.61–65 For this reason, mixing was selected as a functional 

test to assess microfluidic device function; specifically, passive mixing, as it is preferred in most 

applications due to ease of fabrication and design simplicity.66 Within the scope of work, we optimized a 

method that allowed us to couple the benefits of 3D printing with the output of R2R manufacturing for 

rapid iterative design of microfluidics that can be directly translated to mass manufacturing. The use of 

additive manufacturing allows the customization of designs for a variety of target applications and end 

use settings. An overview of this process is illustrated in Figure 1.3.  
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Figure 1.4. Overview of Microfluidic Manufacturing Concept. Patterns are designed in SolidWorks, 3D 
printed, incorporated into the R2R printing process, and replications of the 3D printed master are 
created. 

  



9 
 

CHAPTER 2 

CUSTOMER DISCOVERY AND INNOVATION ENGINEERING 

2.1. Introduction 

 Innovation Engineering (IE) is a framework of thinking created by innovators at the University of 

Maine in collaboration with Eureka! Ranch to systematize the innovation process which is divided into 

components of creation, communication and commercialization. In this project, IE principles were 

explored and applied in an accelerator-style program called MIRTA (Maine Innovation and Research 

Technology Accelerator). MIRTA teaches university-based teams that have the potential to 

commercialize a product or service about the process of business model development, customer 

discovery, market analysis, intellectual property, and commercialization, with the goal to advance 

research innovation towards marketable new products and services.  

 This chapter defines the key principles applied from IE during participation in the MIRTA 

program, and describes how they were applied to understand the Sappi technology core strengths, 

identify potential customer problems, ideate solutions, develop prototype systems to test feasibility to 

meet the demands of the necessary solutions, and rapid prototype solution experiments to reach proof-

of-concept of Sappi’s platform technology and ability to serve key market opportunities.  

2.2. Innovation Engineering 

 The inception of Innovation Engineering was to provide structure to the process of thinking, 

learning and doing, when it comes to new products, services or general innovations. This concept was 

built into systematizing what were termed the three core steps to innovation; creation, communication 

and commercialization. The Innovation Engineering platform provided tools and methodologies for 

ideation, concept generation and testing, and cycles of prototype iteration, discussed in more depth in 

following sections.  IE further evolved at the University of Maine into development of an entire 
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curriculum for undergraduate and graduate students, as well as tools and implementation strategies to 

nurture innovation from startups to larger corporations.  

2.3. Maine Innovation, Research and Technology Accelerator 

 The Maine Innovation, Research and Technology Accelerator (MIRTA) is a program that teaches 

university-based teams that have the potential to commercialize a product or service about business 

model development, market analysis, and intellectual property, all with the goal to advance research 

innovation to marketable new products and services. In this project, MIRTA served as a means of 

executing Innovation Engineering principles and tying market feedback into the engineering processes of 

research and development (R&D) to focus efforts, enhance resource use and maximize the chance for 

success or market adoption. The program helped to define parameters for what was needed to predict 

and communicate success and function. MIRTA also helped to refine skills for listening to the actual 

problems of customers and develop a systematic way to turn the problems into pragmatic solutions 

using Sappi’s technology. Overall, the program framework assisted with the process of innovation and 

development of the market analysis and customer discovery process. 

2.4. Systems Thinking 

 One of the keystones of Innovation Engineering is the adoption of systems-level thinking, which 

is broadly defined as the process of innovating as an intentional and structured system.67 Systems 

thinking was introduced by Russell Ackoff in 1997, and involves the idea that a “a system’s essential 

properties and function derive from the interaction of its parts, not from the action off its parts taken 

separately”68 . The components of a healthy system work cohesively together to accomplish a goal, 

rather than as a series of consecutive tasks loosely directed to accomplish what typically results in being 

a derivative of the intended goal. Application of a systems-level thinking mindset is appropriate for each 

stage of the innovation process; create, communicate and commercialize. Examples of such systems 

include mining for problems, generating new ideas for solutions by using approaches to gather and 
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process stimulus, translating ideas to pragmatic solutions that effectively and efficiently solve the 

problem, and rapidly prototyping these solutions to minimize time and resources, maximize the 

frequency of solution prototypes, and ultimately maximize chances of meaningfully solving the problem. 

An overview of this logical progression is depicted in Figure 2.1. 

 

Figure 2.1. Innovation Engineering Process to Systematically Identify Technology Applications. An 
overview of the process used to identify the most lucrative potential applications of Sappi’s platform 
technology. 
 
 In this flow of logic, the first step is to identify the core strengths with the value proposition, and 

then find where these strengths could be useful by developing a value chain. Potential applications are 

identified next by specifying who the strengths could be useful for within the value chain. The “who” in 

this situation represents different types of customers which make up the market. The market can be 

broken down into segments, where customers within a segment all experience the same problem and 

can benefit from a product that solves that problem. The final step of this process is to identify which 

specific segment in the market stands to benefit the most from the strengths identified in the value 

proposition, and then to develop prototypes to demonstrate the ability to deliver on these strengths.  

2.5. Articulating the Value Chain 

 One of the most important systems to understand when strategizing new product or company 

development is the value chain. The value chain is the process of how a product or service is created, 
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distributed and used, that provides a visualization for the key touch points from players in your value 

chain and jobs to be done by those key players.67 For example, a player in the beginning of the value 

chain is the raw ingredient supplier, and their job is simply to be a trustworthy partner in the supply of 

the ingredients/parts needed to build the product. A high-level chart of Sappi’s value chain is provided in 

Figure 2.2. 

 

Figure 2.2. Value Chain of Sappi’s R2R Manufacturing Industry.  

 Sappi approached the project described in this thesis with a very clear intention of serving solely 

as the large-scale manufacturer of role-to-role pattern. Therefore, the customer is not necessarily the 

end-user, but the company that commercialized a product from the manufactured patterned paper. This 

also meant, in many cases, that the party responsible for selecting what pattern to print could either be 

Sappi or the customer, depending on the uniqueness and specificity of the customer’s needs. 

2.6. Value Propositions 

 

 Regardless of the customer, it is necessary to identify the key value propositions that the role 

Sappi plays in the value chain provided to their customer. Value propositions are the core essence of 

benefits provided to customers through a product (e.g. faster, better or cheaper). In the case of Sappi, 

due to the highly scalable nature of their existing R2R manufacturing process, their value propositions 

are providing large volumes of high-precision patterned papers or films with tunable surface chemistry. 

Commonly, the greater the number of value propositions provided by the technology, the more 

problems the technology is able to solve, resulting in greater commercial potential. 
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2.7. Mind Mapping 

 Identification of value propositions offered by the technology allows for visualization of the wide 

range of potential markets and their individual respective problems that the technology can service. 

With a value proposition as broadly applicable as a high-volume, high-quality and highly consistent 

manufacturing process, the applications become expansive – introducing the potential for oversight or 

lack of proper organization to lead to missed opportunities, or the inability to generate a strategy for 

beachhead market launch and penetration into parallel markets.  An appropriate Innovation Engineering 

concept for such technology application ideation is the mind map, which structures free-association of 

thoughts generated in response to four stimuli relating to the prompt, where the prompt is an open 

ended statement in the style of “I need ideas for _____”. A method of mind mapping employed in this 

work is a derivative of the Mind Mapping process developed by Tony Buzan, which uses a diagram to 

visually display or map information radially using branches.69  

 In the mind map generated for this project, the prompt was “We need ideas for Sappi platform 

applications”, and the categories of diagnostics, mechanical devices, optical and treatment as stimuli. 

This resulted in the generation of a range of possible technology applications, the outcome of which is 

shown in Figure 2.3.  
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Figure 2.3. Mind Map of Sappi Platform Applications. Ideas generated for Sappi platform applications, 
spanning out from initial stimuli of Diagnostics, Mechanical devices, Optical, and treatment. 

 

2.8. Mining 

 Although an array of applications was generated and visualized the mind map exercise, it is of 

critical importance that meaningful ideas are arrived at through more than one medium – a diverse 

spectrum of stimuli is the key ingredient that leads to an abundance of good ideas. To find more stimuli, 

one must go ‘Mining’, or searching for information through various channels. Innovation Engineering 

helps systematize this mining process, categorizing the types of mining (shown below) to help ‘spark 

ideas and fresh thinking’67:  

- Patent: ‘Referencing existing patents and inventions’ 

- Wisdom: ‘Referencing academic research’ 

- Insight: ‘Reference the voice of the customer’ 

- Future: ‘Referencing trends and predictions’ 
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- Market: ‘Referencing information about direct/indirect competitors, and internal/supply chain 

assets’ 

In this work, the core methods of mining that yielded the most significant returns were patent mining, 

future mining and market mining.  

2.8.1. Patent Mining 

 

 Through patent mining, we referenced existing patents and inventions to use as stimulus, which 

involved searching for patents that could be identified using key term relevant to the Sappi platform 

(e.g. precision manufacturing, high-volume manufacturing, roll-to-roll manufacturing, paper-based 

platform, paper-based biotechnology) in the USPTO patent search database. Thousands of patents 

meeting this basic criteria have been applied for and granted, therefore we referenced such patents 

from an array of applications, as well as formed a collection of patents close to our niche. With these, 

we compiled a table illustrating the patent number, what entity it was issued to, an abstract-style 

description of the patent, and claims made relevant to our work. As patenting a design or a process is 

typically a first-line means to establish a competitive differentiator (as a right to block competitors from 

entry into the space), an abundance of patents can be found in virtually every application of technology 

relevant to ours, which provided a salient visualization for the breadth of applications of the Sappi 

platform technology.  

2.8.2. Future Mining 

 

 The process of future mining guided the search for trends and predictions in the industry to not 

understand what is possible and common now, but what is anticipated to occur, become a large driver, 

or even disrupt an entire industry in the future. As Sappi was interested in a broad understanding of 

biotechnology applications of their platform, the search for future trends was broadly spanned to 
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capture trends in biotechnology and medicine, resulting in primary mining sources such of seminars, 

market projections, talks and blogs delivered by industry thought leaders, and literature to be insightful 

mechanisms of stimuli. From these, it was clear that point-of-care diagnostics and personalized medicine 

were two emerging fields where a high precision, low-cost and potentially disposable medical device 

could have significant use-cases.  

2.8.3. Market Mining 

 

 The component of market mining involving looking to market research reports as an indicator of 

future trends also falls in the category of market mining, which broadly looks to direct and indirect 

competitors, and internal and supply chain assets as stimuli. There are several channels by which market 

mining can be an effective practice: searching online for market research reports to understand industry 

category break down and sizing, looking to competitors to understand what they’re doing and how 

they’re differentiating themselves in a competitive landscape, and talking to stakeholders in the industry 

to first-hand understand what the un-met pains or potential gains are.  

 Market mining revealed one of the largest emerging medical device markets within healthcare is 

point-of-care (POC) diagnostics devices, which can be thought of as a ‘total addressable market’, or 

TAM. Identification of this TAM shed light on an array of benchtop to bedside applications for Sappi’s 

technology, which warranted further investigation into the applications within POC diagnostics where 

the Sappi technology may best fit, also known as the serviceable addressable markets (SAMs). A 

comprehensive list of applications identified during these mining efforts is shown in Appendix A. 

2.9. Customer Discovery 

 

 Knowing that the goal was to find the SAMs within the TAM, or the applications in the POC 

market, an effective means to identify such information is to directly ask stakeholders in the industry 
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about how they would perceive a high volume micropatterning technology, what feasible applications 

they could imagine and see a need for in their industry, and what size of an economic opportunity might 

each use-case represent. 

 Customer discovery is the process of generating and testing hypotheses about what the 

customer’s problems are, testing the quality of a solution to address that problem, and iteratively 

honing in on the fundamental components of the problem, while simultaneously iterating the solution 

to best meet the dynamically evolving perception of what the true problem(s) are.67 The ultimate goal is 

to gain clarity of the problem (value propositions desired) and quality of solutions to address the 

problem (value propositions delivered) to eventually arrive at product/market fit, where the nature of 

and quality of value propositions delivered to the customer are so meaningfully unique that they feel 

compelled to renounce the way they currently solve their problem and adopt the new solution. The 

practice of customer discovery was spread mainstream by Steve Blank, a highly successful serial 

entrepreneur that established processes and methods for doing so within his own companies, and 

subsequently brought the process to the public through the form of curriculum development, literature 

and workshops. Customer discovery has become a powerful process for learning, adapting and arriving 

at product/market fit for small to large organizations. For this project, customer discovery was used at 

different stages for ideation, iteration, and honing in on product/market fit.  

 The first iteration of customer discovery was oriented towards the goal of finding SAMs within 

the POC TAM, so interview efforts were directed towards the right audience to yield the type of answers 

and insight sought after. To do so Matt Talbot, a team member, attended BioMedDevice (Boston, MA, 

18th-19th April 2018), which gave way to numerous pivotal conversations with companies in the 

biotechnology materials and plastics industry. During these interviews, open-ended questions (further 

detail in Appendix B) were used to probe for applications of microfabrication and high-volume 

manufacturing to industry stakeholders such as raw ingredient suppliers, manufacturers, distributors, 
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operating companies that use manufactured goods in their products, and end-users of those products. 

The goal was to understand the value chain of major companies in the industry and with this 

information, render an intuitive visualize applications and where the Sappi technology could most 

organically achieve product/market fit, and whether there was an opportunity for substantial financial 

upside in doing so. During this process, we asked open-ended questions in a high-level introductory 

portion of the conversation to understand who the person is, what they think/feel about, and the 

challenges they face. Following these questions were more inquisitive questions that aimed to get down 

to the fundamental truths about the real problems and perceptions of the current solutions. The flow of 

questions was typically as follows: 

• ‘Tell me about how you current do/solve ____’ 

• ‘Why is it important that you do/solve ____?’ 

• ‘What happens if you don’t do/solve ____?’ 

• ‘What do you wish you were able to do/had in the way you do/solve ____, that you aren’t able 

to do currently?’  

• ‘Tell me more about ____’ (specific application or topic)  

• ‘What is it that you love/hate about ____’ 

• ‘What would happen if you weren’t able to ____’ 

• ‘How does it feel when you’re finally able to ____’  

This event provided an abundance of learnings about the different applications and a more educated 

perspective on how to view each individual opportunity. Three opportunities were ultimately identified. 

2.10. Market Identification and Segmentation 

 

 After synthesizing information from each form of mining and applying a more well-rounded 

perspective on the state of the industry from the conference, several factors to vet new opportunities 
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were employed: market size, current breadth of use-cases, and up-and-coming use-cases. With these, 

opportunities were filtered until three key applications were reached. These were:  

1: Microfluidic mixing, which involves mixing of two or more small fluid volumes on the microscopic 

scale, is one of the most commonly published-on concepts in point of care diagnostics 

literature11,65,70–72, as it is a key function for diagnostic applications. From market research, the 

mixing market is maturing but ripe for innovation, and likely represents the largest current ability to 

commercially deploy the Sappi technology on a broad scale. 

2: Droplet generation, an technology which involves the formation and manipulation of discrete 

micro-scale droplets, constitutes a field that seeks to create microfluidic droplets for biological 

screening platforms73, cell based assays74, pharmaceutical applications75, and many others. In 

medicine, microdroplet generation enables high-throughput testing, including an individual’s cells 

for reactivity to a range of drugs for personalized medicine. Microdroplets are also relevant in the 

cosmetics industry, with late stage French startup Capsum collaborating with CHANEL to produce a 

new range of microdroplet rich products made in microfluidics to provide a unique texture, 

preservation method, and aesthetic. Conversations with potential strategic partners at the 

conference revealed that companies in the droplet generation space are actively seeking a 

manufacturing partner that can lower their margin and produce high-precision devices for them in 

their commercial droplet generation applications. Microfluidic droplet generation was also 

identified from conversations with the CEO of Dolomite, a leader in microfluidics that is heavily 

interested in the droplet generation space. 

3: Cell sorting, which is a new up-and-coming diagnostic measure that can be used for early 

detection of a range of diseases. Initial scoping of cell sorting began during the MIRTA program as a 

result of a phone call with Stephen Pelsue of BBI Solutions in Maine, as he expressed their 
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customers in biopharma were increasingly interested in flow cytometry and cell sorting. Cell sorting 

was also one of the most common presented-on topics at the BioMed Device conference and the 

Microfluidics Consortium. This indicates that sorting is a growing sector in the market and one that 

companies will inevitably seek high-precision and high-volume manufacturing partners in the drive 

to create better products at lower costs. 

 Again, these applications can be thought as ‘serviceable obtainable markets’ or SOMs, which are 

specific markets where a clear understanding of value propositions drives a quantifiable size of the 

market. A SOM is a market opportunity that can realistically be obtained in a discrete amount of time. 

SOMs all fall within a series of SAMs, or ‘serviceable addressable markets’, which in this case is generally 

microfluidics. Finally, the series of SAMs fit in the overarching ‘total addressable market’, which engulfs 

all applications in each market, therefore in this case is point of care. This hierarchy is illustrated below 

in Figure 2.4. 

 

Figure 2.4. TAM, SAM, and SOM of Key Sappi Applications. The total addressable market (TAM)76, 
serviceable addressable market (SAM)77, and serviceable obtainable market (SOM) broken down into 3 
key identified applications: microfluidic mixing, droplet generation, and cell sorting. 
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2.11. Concept Prototypes 

 

 An important takeaway from in-person customer discovery efforts was unearthing the common 

use of concept prototypes to communicate value (before deploying the time and resources to develop 

physical prototypes) and garner actionable feedback to drive future cycles of prototype development. 

With the three key applications identified (microfluidic mixing, droplet generation, and cell sorting), the 

next step was to produce such concept prototypes that demonstrated that the Sappi technology had the 

ability to be applied. Initially, the goal was to make early prototypes to begin preliminary testing, which 

involved prototyping by creating a model to minimally demonstrate the concept. For these ‘lean 

demonstrations’, CAD models were generated for each pattern or geometry, resulting in finalized 

designs for all three applications. The generation of these designs is covered in section 3.2.1. 

2.12. SAM Customer Discovery 

 

 After the designing microfluidic mixer, droplet generator and cell sorter concept prototypes, the 

next step was to add a summarized description of key value propositions provided to the concept 

prototype and present them to industry stakeholders to gauge potential interest. For this, attendance to 

biotechnology-focused conferences relevant to our industry (PEGS Protein Engineering Summit, Boston, 

MA, 8th-12th April 2018. 2. NPE Plastics show, Orlando, FL, 7th-11th May 2018. 3. Microfluidics Consortium, 

Boston, MA, 25th-26th June 2018) provided critically valuable learning opportunities. In this phase of 

customer discovery, a recurring focus was homing in on many of the specifics about our technology use-

cases, design constraints, desired/undesired features and some preliminary gauges of adoption readiness 

for numerous types of customers. 

 The first conference was the PEGS Protein Engineering Summit, where the most notable 

interaction was meeting a sales representative from Perkenelmer. One example of a specific need 

required of devices was less than a 10% tolerance in thickness of films. The next event was the NPE Plastics 
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show, which reinforced previously stated findings, as well as found that there is a lack of mass-

manufacturing options for fabrication of microfluidic devices outside of plastic injection molding and 

embossing.  

 The final event was the Microfluidics Consortium, where there were many key companies and 

stakeholders in the field of microfluidics in attendance. It was evident through interactions with 

stakeholders within these companies that those who have microfluidic manufacturing capabilities are 

more actively pursuing life science market opportunities. Representatives from key industry players 

(Micronit, Dolomite, Fluigent, etc) were also in attendance, resulting in the finding that Micronit was 

looking at new, roll-to-roll manufacturing processes. Furthermore, the three key applications that were 

the focus of concept prototype development (microfluidic mixing, droplet generation, and cell sorting) 

were among the most commonly discussed applications by these players. One last key takeaway from 

this event was the lack of standardization, which all in attendance unanimously agreed on. This is a 

problem that our innovation with large scale manufacturing of microfluidics could potentially solve.   

2.13. Lean Learning 

 Through attending the three conferences on microfluidics between the Spring and Summer of 

2018 and having the ability to speak with potential customers/competitors/partners, an abundance of 

use-cases were uncovered, but it took and would continue to take a significant amount of time and 

resources to validate each application. Overall, interviews initially revealed superficial gaps and pain 

points experienced by potential customers, and with careful listening, following threads, and objective 

analysis of what was heard, several underlying core needs from each type of stakeholders could be 

revealed. This shotgun approach of asking stakeholders open ended questions and presenting concept 

prototypes was an effective way to validate what the fundamental problems are, however, validating 
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our ability to deliver on core value propositions (in this case, Sappi’s core technology capabilities) would 

require a different methodology.  

 To determine our ability to deliver on core value propositions, it became necessary to design 

test experiments to demonstrate and de-risk the Sappi platform’s core functionalities. In such 

experiments, positive outcomes would provide validation for not one application of the platform, but all 

of them, thereby working through innovation and de-risking cycles in a leaner fashion. This is a common 

practice in numerous fields- from agile development in software to lean startup methodology in early-

stage startup companies- all of which require clarity for what the core competencies truly are in the 

prospective SAMs.   

 When considering the SAMs of microfluidic mixing, droplet generation and cell sorting, features 

in each category possess distinct characteristics relative to one another, that serve distinct roles; 

however, all of these unique features (e.g. channel size and wall curvature for droplet generation, 

artifact or peg placement to direct cells in cell sorters) are based on the ability of the device to 

manipulate fluid flow, with the overall outcome different, but the core process is the same. Additionally, 

in each of these commercial use-cases, a strong differentiator lies in the unit economics – the ability for 

each device to be high-precision mass manufactured, resulting in a low-cost microfluidic product that 

performs the desired fluid flow manipulation.  

2.14. Pivot to Minimum Viable Product Design  

 

 Having a succinct understanding for what is required of the platform in the SAMs of microfluidic 

mixing, droplet generation, and cell sorting, two core competencies emerged that would be necessary to 

test: the ability for the devices to manipulate fluid flow and the ability to manufacture these devices at a 

high-volume with high-precision. With these two high-level testable metrics in mind, it became 

necessary to select experiments that allow for adequate analysis of these two competencies, in (ideally) 
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the most time and cost-effective manner, to maximize the cycles of learning and testing. This testing 

process termed the generation of a minimum viable product (MVP), or the most basic version of a 

product or component necessary to demonstrate feasibility of, and test fidelity of, the desired feature. 

Considering these variables, we selected microfluidic mixing as the ideal test platform to gauge the 

Sappi platform’s ability to manipulate fluids towards a simple end-goal (mixing) and manufacture these 

fine fluid channel patterns at a high-resolution in large-batch volumes.  

 Microfluidic mixers are a valuable extension of patterned paper microfluidics, and in 

conversations with potential diagnostics strategic partners/customers, we found that they were 

interested in reproducing what mixing patterns they currently used on a most cost-effective, bendable 

and disposable platform to reduce plastics and improve immunoassay testing with a pre-mixing step. In 

microfluidic devices, diffusion is the dominant transport mechanism for mixing.65 Under typical 

conditions, flows in these channels are laminar, and molecular diffusion across the channels is slow 

because the two streams move parallel to the direction of flow. Turbulent mixers achieve mixing based 

on chaotic advection, which stretches and folds the solutions to increase the interfacial area between 

the two fluids.70 The goal of the microfluidic mixer MVP prototype development was to create 

microchannel patterns for mixing streams of steady pressure-driven flows, with low Reynolds numbers. 

The designs were intended to decrease the length necessary for diffusion, using purely the geometry of 

the channels to induce chaotic advection. The development of these microfluidic mixing prototypes is 

described in section 3.2.2. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. Overview 

 Described in this chapter are the materials and methods for developing prototypes, performing 

the MVP testing, and relevant metrics for each feature. The initial step of the experimental processes in 

this work is the digital design of microfluidic mixing patterns and printing of patterns using additive 

manufacturing. These were then incorporated into Sappi’s R2R manufacturing line and used to generate 

prototype film replications of open-face microfluidic patterns. The 3D prints were also used to create 

PDMS soft-lithography molds to serve as an industry standard product for comparison. These patterns 

were encapsulated in a housing device that allows effective sealing of channels and ports for fluid 

introduction and disposal, which was designed to allow swapping of the internal pattern for cycles of 

rapid experimentation. This setup was used to quantitatively assess the mixing of fluids in the channels 

by using a method for measuring mixing efficiency as a metric to compare function of our products to 

those manufactured by current industry standards.  

3.2. Computer Aided Design Development 

 All microfluidic prototype patterns were designed using SolidWorks CAD modelling software 

(SolidWorks 2018–2019). The following sections outline the design process for both concept prototypes 

and MVP prototypes. 

3.2.1. Concept Prototypes CADs 

 This section outlines the creation of the initial concept prototypes for the microfluidic mixers, 

droplet generators, and cell sorter applications as described in section 2.11. These drafts of patterns 

were created to illustrate the basic functionality of each application and served as an initial step towards 

identifying and validating key feasibility metrics.  
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A. Initial Microfluidic Mixer Prototype 

 A search of relevant literature was conducted to find microfluidic mixing patterns with 

dimensions feasible within Sappi’s R2R process. One common method of inducing mixing involves a 

staggered herringbone mixer (SHM), which uses periodically-placed grooves in the bottom of 

microfluidic channels to induce transverse flows.78 The first microfluidic mixing prototype was designed 

with features similar to a SHM used by Williams et. al..79  This CAD file was imported into COMSOL 

Multiphysics software in order to assess mixing performance with dimensions that were adapted for use 

in the R2R process (Figure 3.1.) as an initial study before investigation of other mixing patterns.  

 

Figure 3.1. Initial Microfluidic Staggered Herringbone Mixer Concept Prototype. A common 
microfluidic mixing pattern was drafted in Solidworks and imported into COMSOL for initial investigation 
into mixing efficiency. (A) Top and bottom views of SHB pattern. (B) Relative concentration scale of 
diluted species flows. 
 
B. Initial Microfluidic Droplet Generator Prototype 

 A droplet generator pattern used by Tan et. al. was identified due to the simple geometries and 

mechanism for droplet formation.80 A droplet generator of this kind was drafted in Solidworks with 

modified geometries to allow production in Sappi’s R2R process (Figure 3.2).  
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Figure 3.2. Initial Microfluidic Droplet Generator Concept Prototype. Adapted from Tan et. al.80 (A) 

Critical feature sizes of droplet pattern. (B) Diagram of droplet generation design concept. 

 

C. Initial Microfluidic Cell Sorter Prototype 

 Microfluidic cell sorting methods were explored in literature and a passive sorting mechanism 

called deterministic lateral displacement (DLD) was identified due to the simplicity of design and 

function. DLD achieves sorting by using the physical interactions between fluids/particles and pillars 

(which act as physical barriers) to sort by size as opposed to an active sorting mechanism.81 An initial 

iteration of this design was drafted in Solidworks based off of a pattern found in literature that was 

shown to sort blood cells and platelets by size82 (Figure 3.3).  The concept prototype provided in Figure 

3.3 allowed for clear visualization of the components and size scale dimensions of a DLD sorter.  
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Figure 3.3. Initial Microfluidic Droplet Generator Concept Prototype. Critical feature sizes of a 
microfluidic cell sorter design prototype, using deterministic lateral displacement (DLD) to separate 
blood cells based on size. Adapted from Li et. al.82  
 
3.2.2. Microfluidic Mixer CADs 

 Four passive mixing patterns with various shapes were selected to demonstrate a dynamic range 

of geometric features. The Serpentine pattern in Figure 3.4. (A) was inspired by similar serpentine 

patterns used for mixing studies found in literature.41,83 The Diamond mixer pattern in Figure 3.4. (B) 

was inspired by early experiments conducted to create fluid mixers using transparency sheets and 

double stick take, where the most successful design featured a “diamond” pattern. The Semicircle 

pattern in Figure 3.4. (C) was designed as a 2-dimensional rendition of a 3D “twisted microfluidic mixer” 

used for mixing studies by Sivashankar et. al.84 Lastly, the Spiral mixer was inspired by a mixing pattern 

used by Duryodhan et. al. to investigate mixing characteristics in spiral microchannels.65 The designs 

functioned as the masters used for molding of the final product, so features were created in the 

opposite phase.  All channel designs had a constant height of 400 μm, and width of 400 μm.  

In this work, the serpentine pattern shown in Figure 3.4. (A) was used for the mixing quantification 

studies. 
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Figure 3.4. CAD Files of Microfluidic Mixing Patterns. Microfluidic patterns designed to demonstrate 
dynamic range of geometrical features. (A) Serpentine mixer, (B) Diamond mixer, (C) Semicircle mixer, 
and (C) Spiral mixer. 
 
3.3. 3D Printing Master Molds 

 Following CAD design, patterns were printed with an Objet30 Desktop 3D Printer85 housed in 

the Advanced Manufacturing Center at the University of Maine, using DurusWhite, a polypropylene-like 

material. Within this 3D printing process several iterations of feature dimensions and conditions were 

varied to allow optimization of print quality, including minimizing the thickness of the print, aspect ratio 

resolution, and feature heights. For use in the R2R process it was vital that the thickness of all prints was 

minimized, but the resolution of the printer limited the minimum thickness to approximately 650 μm in 

order to retain structural integrity. Figure 3.5. shows the printed mixing patterns used as master molds 

in the fabrication of both film and PDMS replications.  

 

 

Figure 3.5. 3D Printed Microfluidic Mixing Patterns. (A) Serpentine mixer, (B) Diamond mixer, (C) 
Semicircle mixer, and (C) Spiral mixer. 
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3.4. Silicone Moulding 
 
 Prototype molds were fabricated out of PDMS using soft lithography techniques to allow 

comparison of function between industry standard patterns and R2R-printed film patterns. The 3D 

printed masters were adhered directly to the bottom of a petri dish using epoxy (Elantas Easypoxy® K-

230). The prepolymer of PDMS was mixed with the curing agent (Sylgard 184 Silicone Elastomer Curing 

Agent and Base) in the ratio of 1:10, then mixed at 2000 rpm for 1 minute with a desktop planetary 

mixer (Thinky). The polymer mix was poured into the petri dish and placed in a vacuum for 60 minutes 

to degas. The dish was then placed in an oven at 70 °C for 60 minutes. The dish was removed and the 

PDMS mold was separated from the master 3D print. 

3.5. Sappi Printing 

 The 3D printed patterns were used as masters in the patented electron beam R2R process at the 

Sappi North America, Inc. Technology Center (Westbrook, Maine). This trade secret process involves 

direct attachment of printed components to the cylindrical shim to rapidly prototype product 

manufacturing. A metallic coating on the surface of the 3D prints was necessary to allow effective 

replication of pattern features and release of the cured acrylate material. To accomplish this all 3D 

prints were sputter coated with a 35 nm layer of gold-palladium before incorporation onto the shim. 

The modified shim was then run in the process to produce high volume replicas of patterns in an 

acrylate material over a transparent film web with a width of 28.0 inches (Figure 3.6.). 
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Figure 3.6. Final Film Microfluidic Mixing Patterns. (A) Serpentine mixer, (B) Diamond mixer, (C) 
Semicircle mixer, and (C) Spiral mixer. (E) Full roll of Microfluidic mixing patterns before separating 
individual films. 
 
3.6. Device Assembly 

 The device housing was designed to allow rapid assembly and disassembly of a closed 

microfluidic channel system for both film and PDMS patterns. The device is composed of laser-cut acrylic 

sheets with permanently fastened barbed adapters for tubing at the inlets and outlet. All microfluidic 

pattern substrates were cleaned with isopropanol and air dried prior to assembly to remove residuals 

from manufacturing and handling. Adhesive sheets (Fellowes 3-mil Self-adhesive sheets) were pierced 

with a 5.0 mm mm biopsy punch (World Precision Instruments) at the location of the inlets and outlets 

and placed over the microfluidic pattern substrate. Adhesive tabs (Scotch 12.7mmx12.7mm Mini Tabs) 

were also pierced with the 5.0 mm biopsy punch and placed with holes aligning those on the adhesive 

sheet. This unit is aligned with the inlets of the acrylic sheet, and all layers are held in place and provided 

additional even pressure distribution by 4 sets of magnets (McMaster-Carr Twist-release paired 

magnets) arranged around the 4 corners of the device. An illustration of this assembly is shown in Figure 

3.7. Tubing is attached between the inlet adaptors and two syringe pumps (New Era Pump Systems, 

Inc.), as well as to the outlet adaptor and a beaker to exhaust fluid. For each experiment, the pattern 

with attached laminate sheet and adhesive tabs are swapped out in the acrylic housing. For imaging the 
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entire unit is placed in a 30”x30” light tent (Westcott Digitent), which reduced the reflection of light and 

evenly illuminate the microfluidic setup for imaging. 

 

Figure 3.7. Diagrams of Microfluidic Housing Device. (A) Exploded view of assembly. (B) Top view of 
sealed device with encased microfluidic film. 
 
3.7. Mixing Analysis Experiments 

 The mixing tests were conducted by flowing two solutions into the microfluidic channels with 

the aid of syringe pumps. A 3ml syringe containing deionized water and a second 3ml syringe containing 

a 1% mixture of black ink (Higgins) and water were mounted on syringe pumps (New Era Pump Systems, 

Inc.) to accurately control flow rates. The pumps were programmed to dispense fluids at 0.15 ml/min, 

a rate selected as an average representation of ranges of flow rates observed in relevant mixing 

studies.50,86–88 The system was run for 60 seconds to ensure equilibrium was reached before images for 

each trial were taken. Digital images of the flow were obtained using a digital camera (Canon EOS Rebel 

T5) with a 0.25m Macro Lens mounted on a post and stand.  

3.7.1. Mixing Index Formula 

 Mixing indices are calculated using the intensity values of pixels across a section of a gray-scale 

image where a mixing event has occurred.89 All indices involve some metric of the standard deviation of 

pixel intensities to quantify a profile that is more homogeneous and thoroughly mixed with a low 

standard deviation, to a profile that is less thoroughly mixed with a higher standard deviation.  The 
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absolute mixing index (AMI) is a method of comparing the standard deviation of pixel intensities to the 

mean intensity value for a more direct measure of the extent of mixing.89 The AMI is calculated using 

Formula (1). 

                                                                                                                      (1) 

Where Ii is local pixel intensity, <I> is average of the pixel intensities in the cross section, N represents 
the total number of pixels, and σ represents the standard deviation of the pixel intensities. 
 
3.7.2. Normalization of Pixel Data 

 Although the AMI is a direct measure of the extent of mixing, this method of quantification is 

not sufficient for the comparison of mixing events across different studies. The mixing index values vary 

greatly depending on the lighting conditions or variations in the color of inks used even for mixing 

events that are hydrodynamically identical. This problem can be solved by artificially scaling or 

normalizing each pixel to the same span of intensities as 0 to 255 on a gray-scale image.89 AMI 

calculations done on normalized pixel data result in values that represent the mixing index with 

modified intensities. This method was used to normalize data from mixing experiments in this 

experimental process. 

3.7.3. Image Analysis and Calculations 

 The experimental images were analyzed using ImageJ software. Images were converted to 8-bit, 

and pixel intensity measurements were made at the cross sections of all locations of interest on the 

serpentine channels using the line tool. Intensity values for the pixels along this line were extracted, and 

each set of pixel values were normalized as described in section 3.7.2. These values were then exported 

into Microsoft Excel, where Formula (1) was applied to each set to calculate the absolute mixing  
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intensity for each location of interest along the length of the channel. The absolute mixing indices with  

modified intensities were plotted to compare the mixing efficiency for both PDMS and film micromixer 

experiments. 
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CHAPTER 4 

RESULTS 

4.1. Early Microfluidic Prototypes 

 The patterned surfaces manufactured by Sappi mimic microfluidic channel function when the 

top surface is sealed with an adhesive laminate sheet, where introduction of fluids through sealed inlets 

allows visualization of fluid flows in channels. With an early microfluidic prototype, shown in Figure 4.1, 

a simple system to create microfluidic channels was designed with a pattern designed for aesthetics and 

demonstrates basic microfluidic function. 

 

 

Figure 4.1. Early Microfluidic Function Prototype. A laminate sheet with a 5 mm hole was placed over a 
paper-based pattern product from Sappi, designed purely for aesthetic applications, sealing the gaps 
between raised features as closed channels. An adhesive tab was used to attach an inlet connector and 
tubing over the hole to allow introduction of colored fluids into the channels to visualize fluid flow over 
time. 
 
 The result showed that products manufactured by Sappi could effectively function as 

microfluidic channels with an adapted sealing mechanism as simple as a laminate sheet. This confirmed 

that the acrylate material composing the top of the patterns was suitable for microfluidic function, and 

that feature dimensions were within a range that could be used for microfluidic flows, warranting 

further exploration into microfluidic applications. 

 



36 
 

4.2. Manufacturability 

 The first metric for comparing feasibility of the microfluidic film products and industry standard 

PDMS products was successful replication of patterns from 3D printed masters and high-volume R2R 

production of products. This was assessed by analyzing profilometry data of the 3D printed patterns and 

final film patterns and assessing the discrepancies and how they change over time.  

4.2.1 Replication Fidelity 

 The process of fabricating film microfluidic mixers involves two components of design or feature 

transfer; the first being the transfer between CAD file to 3D print, and the second being the transfer 

between 3D print to the final film product. These components are summarized in Figure 4.2. It is 

important to assess the pattern replication at both components to identify where any sources of 

discrepancies may arise. These components were investigated for different phases of the Serpentine 

mixer pattern. 

 

Figure 4.2. Overview of Manufacturing Process and Components of Feature Transfer. (i) Represents 
the transfer of feature dimensions from CAD file to 3D printed pattern, and (ii) represents the transfer of 
features from 3D print to the final film product. 
 
 Measurements were taken of serpentine channel dimensions at each stage of the 

manufacturing process. The results are shown in table 4.1., where the dimensions of the raised channels 

in the CAD file and 3D print are compared to the dimensions of the recessed channels in the final film 

pattern. 
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Table 4.1. Feature Dimensions of CAD File, 3D Printed, and Final Film Mixers. 

Production Phase Channel Width (μm) Channel Height (μm) 

CAD File 400 400 

3D Print 502.32 390.45 

Film 589.32 248.89 

Overall difference 
between CAD file to film: 

- 189.32 + 151.11 

  

 The results in Table 4.1 show significant discrepancies between all three production phases. The 

features of the CAD file and 3D print are in opposite phase of the final film patterns, so the larger 

measured width of the film channel showed that the resulting film replication is 189.32 μm wider than 

the CAD file. The film channel was also 151.11 μm shallower than the CAD file. This means that the 

manufacturing process resulted in a final replication that was incomplete or flawed due to possible 

errors between the two components of design feature transfer: from CAD file to 3D print or from 3D 

print to final film product.  

4.2.2. High Volume R2R Production 

 Assessment of the quality of the prints over several sequential printing cycles consisted of a 

topographical analysis of 3D printed film samples taken from the beginning, middle, and end of roll 

production. Each consecutive sample created during production is referred to as a pass, where the first 

sample represents pass number 1, the middle sample represents pass number 68, and the last sample 

represents pass number 117 at the end of the roll. Measurements were taken at the two locations 

shown in Figure 4.3, on each mixer sample shown in Figure 4.4.  
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Figure 4.3. Measurement Locations for Feature Replication Analysis in R2R Process. Locations 1 and 2 
mark where profilometry measurements were taken for each of the 3 samples taken from the roll of 
printed mixers to compare dimensions from the first pass, a middle pass, and end pass. 

  

  The two locations in Figure 4.3. were chosen to isolate feature sizes of the microfluidic channel 

in areas of both straight channel geometry (location 1) and curved channel geometry (location 2). 

Measurements of feature dimensions in location 1 are presented in Figure 4.4, and measurements for 

location 2 are presented in Figure 4.5. 

 

 
Figure 4.4. Measurements of Serpentine Channel Width and Height in Location 1. The serpentine 
channel width and height are shown for samples taken from the first, middle and last pass at location 1. 
These values are compared to the height and width dimensions of 400 μm from the CAD file, shown in the 
dashed line. 
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  These results show that compared to the CAD file dimensions, the channel width in location 1 is 

larger for all passes and the height is smaller for all passes. Both the height and width of the channels in 

location 1 decrease from beginning to the end of the roll.   

 
Figure 4.5. Measurements of Serpentine Channel Width and Height in Location 2. The serpentine 
channel width and height are shown for samples taken from the first, middle and last pass at location 2. 
These values are compared to the height and width dimensions of 400 μm from the CAD file, shown in the 
dashed line. 
 
  These results show that like the measurements for location 1, the width is larger than the CAD 

file and the height is smaller for all passes. Unlike the pattern observed in location 1, these feature 

dimensions decrease from the beginning to the middle pass and increase by the last pass. Results from 

both Figure 4.4. and Figure 4.5. show that the dimensions change significantly between the 3 

chronological sample measurements, indicating a degradation in pattern fidelity from the first pass to the 

last. To further investigate this, images from the profilometry scans were analyzed in Figure 4.6. to 

visualize the qualitative print changes in samples from the beginning to end of the roll in both locations. 
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Figure 4.6. Profilometry Scans of Serpentine Channel at Locations 1 and 2. (A) Profilometry scans for the 
serpentine pattern in location 1, showing degradation in print quality from the first to the middle pass. (B) 
Profilometry scans for the serpentine pattern in location 2, showing significant decrease in print quality 
from first to last pass, and the presence of bubbles interfering with channel replication in the middle and 
last pass. 
 
  These results clearly show a degradation in print quality from first to last pass in both locations, 

with a more significant change in quality in the channels of location 2. These scans show the presence of 

bubbles in the curved section, which likely acted as a pocket to trap air during the printing process. These 

bubbles were the cause for the increase of both channel height and width between the middle and last 

pass. This further validates the degradation in print quality throughout production. Film patterns are also 

compared side-by-side for each phase of production in Figure 4.7. to assess the quality of print samples 

qualitatively. 
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Figure 4.7. Film Product Samples Taken from Different Points of Production in R2R Process. Samples 
were taken from the beginning (A, pass number 1), middle (B, pass number 68), and end (C, pass number 
117) of the R2R patterning process and demonstrate changes in print quality as seen in the presence of 
pigmentation in (A) and the lack of pigmentation in (B). 
 

  Although the printing process is able to replicate microfluidic features, these results further 

demonstrate degradation of pattern fidelity throughout the production process. The gold coating used to 

allow release of the cured resin is clearly being stripped away from the 3D printed samples during 

production. Sample (A) shows a darkened pigmentation around the edges of the otherwise clear 

patterned surface. This pigmentation is less visible on sample (B) and is not seen on sample (C) from the 

end of the roll. It is also observed in these results that the border of the prototype patterns changed 

significantly between sample (A) and sample (C). This loss of gold coating results in a decreased ability of 

the acrylic matrix to release from the 3D print after curing, and therefore a loss in replication fidelity. 

4.3. Functionality 

  The second metric for comparing feasibility of the microfluidic film products and industry 

standard PDMS products was assessing the functionality of the microfluidic patterns. This was done by 

conducting mixing experiments in which microfluidic patterns were used to enhance mixing a solution of 

black ink and water as described in section 3.7. In early stage of mixing experiments there were significant 

issues with leaking, both around the inlets and out of the channel boundaries, likely due to unequal 

pressure distribution from a previous housing setup that used screws in the 4 corners of an acrylic sheet to 
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provide the pressure to seal channels. After months of experimental cycles, the housing setup shown in 

Figure 3.7 was derived to counteract the issues with leaking and fluid containment. This was done to use 

the microfluidic patterns that had been previously printed, and the modified setup included adhesive tabs 

that often overlap the channel boundaries. 

4.3.1. Microfluidic Mixing Function 

  Using the experimental setup described in section 3.7, the film or PDMS micromixer patterns 

were enclosed in an acrylic housing for fluid manipulation within the channels. With the final assembly 

protocol using the setup in Figure 3.7, microfluidic flow was successful for both PDMS and film patterns. A 

qualitative side by side comparison of both PDMS and Film setups is shown in Figure 4.8. The results 

qualitatively showed that both channels were successful in achieving microfluidic function and served as 

an initial demonstration that the film products would function comparably to the PDMS molds. 

 
Figure 4.8. Qualitative Microfluidic Mixing Results. Microfluidic patterns demonstrating mixing of water 
and black ink. (A) PDMS serpentine micromixer, (B) Film serpentine micromixer. 
 
4.3.2. Mixing Index Results 

 Figure 4.9 (A) shows locations 1 through 6 where the cross sections of the channels were 

analysed to calculate the mixing efficiency. These locations were used because the channels were not 

blocked by any components of the acrylic housing and adhesive tabs, so mixing could be assessed 

without any interference. In Figure 4.9 (B), the absolute mixing index (AMI) with modified intensities 

was calculated and averaged over 5 trials for both film and PDMS micromixer patterns and plotted as a 

function of location along the path length. The results showed mixing index ranges that remained above 
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0.40 for both the film and PDMS patterns, indicating that the fluids did not reach complete mixing within 

the channel length of the serpentine mixers. Theoretically, the value of AMI varies from 1 (for non-

mixing) to 0 (for complete mixing).90 However, due to background noise in the experimental images the 

range of values is smaller, between 0.57 to 0.41. For both categories of patterns, the mixing index values 

decreased along the length of the channel, indicating an increase in mixing without reaching a fully 

mixed state.  

 

 

Figure 4.9. Mixing Efficiency Quantification of Film and PDMS Micromixers. (A) Geometry of serpentine 
mixer; boxes indicate locations for mixing examination. (B) Plot of absolute mixing index (AMI) vs 
segment location along length of microchannel to quantify function of mixing patterns. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

5.1. Discussion Overview 

 The results displayed in Chapter 4 outline the data collected for analyzing the feasibility of the 

film microfluidic patterns created in the R2R manufacturing process as compared to those made with 

the industry standard methods of soft lithography using PDMS. This comparison was segmented into 

two functions with the first segment being that which explored the manufacturability of film patterns, 

including the ability to replicate the patterns from the 3D printed master, as well as the ability to 

manufacture the patterns in a high volume in the R2R process. The second segment was assessing the 

function of the microfluidic patterns using the mixing as a quantifiable metric.  

5.2. Metric 1: Manufacturability  

 Section 4.2.1 presented data on the feature replication of patterns produced in the R2R process. 

By comparing differences between the features measured at each phase of the manufacturing process it 

can be concluded that there is a source of error during one of the two components of feature transfer 

(from CAD file to 3D print, or 3D print to final film product.)   

 A major source of this observed error is likely resulting specifically from the prototyping process 

rather than the R2R production process itself. This is supported by the fact that Sappi’s release paper 

manufacturing process is known for its ability to precisely replicate features down to the 100 nm scale.56 

This process requires an extremely high tolerance, as the patterned products are designed for aesthetic 

purposes and the human eye is extremely effective at detecting visual defects. This means that surfaces 

manufactured in the same high-volume R2R production process show successful replication of features 

on the sub-micron scale, demonstrating that the process has the capability to precisely replicate 

extremely fine feature sizes. The other source of error is from the transfer of features from CAD file to 

3D print, where the 3D printer used to fabricate the CAD patterns contributed to these discrepancies. It 
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was demonstrated in Appendix C that the 3D printer has varying resolutions for different feature sizes, 

with a higher average percent error found for the width of features in the x- and y-directions than for 

the height of features in the z-direction. This discrepancy is also presented in section 4.2.1., where there 

is significant error between the design feature transfer from CAD file to 3D print. Similarly, it has been 

found in literature that 3D printing has limited applications in microfluidics due to problems with the 

variations in resolution.38,42–44 Despite this flaw, 3D printing represents a suitable option for prototyping 

in microfluidics due to the low cost and accessibility compared to other fabrication methods.91,92  

 Use of a higher-resolution 3D printer would allow for greater control over final product 

dimensions by limiting the discrepancies in the feature transfer from CAD file to 3D print. The errors 

resulting from the 3D printing process could also be minimized without changing printers by using the 

average percent error values for feature height and width in Appendix C as a scaling factor in the design 

of patterns. Offsetting the dimensions in the CAD file to account for these percent errors would likely 

reduce the discrepancies that occur during the 3D printing process. 

 Section 4.1.2 presented data on the high-volume R2R production of microfluidic patterns. 

Figure 4.4 and Figure 4.5 showed changes in channel width and height of samples from the beginning, 

middle and end of production in a location with straight features (location 1) and curved features 

(location 2). For the channels in location 1, both width and height of channels decreased from the 

beginning to end of the roll, indicating a general loss of print fidelity. Channels in location 2 showed a 

decrease in measurements from the beginning to middle of production, but there was an unexpected 

increase in both height and width between the middle to end of production. Qualitative assessment of 

profilometry scans in Figure 4.6 revealed that air bubbles were being trapped in the curved areas of the 

pattern during production. The increased presence of these bubbles in the later passes was the cause 

for the unexpected trend in channel dimensions for location 2. 
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 One likely source for the general degradation of print replication observed in section 4.1.2 is a 

flaw in the patterning method used for this prototyping protocol. The 3D printed masters were sputter-

coated with a 35nm layer of gold-palladium before incorporation into the R2R manufacturing process to 

allow effective release of the resins used for pattern replication. It was observed in Figure 4.7 that the 

film patterns produced in the beginning of the roll had a pigmentation on the surface that was not 

present on the samples from further on in the roll. The pigmentation indicates that some of the gold 

coating was picked up and retained in the resin. With the gradual removal of this protective coating it is 

likely that replication fidelity would decline significantly during production due to a decreased ability for 

the acrylic matrix to release from the 3D printed master pattern after curing. 

 This issue could be overcome by using a different material for the protective sputter coating 

that allows release of the cured resins in production. Some examples of potential coatings are 

polytetrafluoriethylene (PTFE) or fluorinated ethylene propylene (FEP), which are non-stick 

fluoropolymer coatings that are commonly used as release agents in various moulding processes.93 

Another potential solution could be tiling multiples of the sputter coated master prints on one roll to get 

a greater number of replications in fewer passes before the coating is removed. On a 28” roll it would be 

possible to tile approximately 40 of the coated serpentine mixers. Even if the coating is stripped away 

after 2 passes, running a roll with 40 mixers would generate 80 film patterns before degradation occurs. 

Prototyping production in this way is still incredibly valuable as it would allow testing of patterns for 

phenomena like the bubble formation observed in Figure 4.6 before investing the significant resources 

necessary for creating a full-scale patterned roll.  

 Another potential source for the trend observed in replication fidelity is degradation of the 3D 

printed master pattern over time by mechanical deformation or melting, but this can’t be confirmed as 

the masters were not retained after production for inspection. A solution to this problem could be using 

a metal-extruding 3D printer to fabricate the master patterns. Metal masters would be more durable 
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than the flexible polymer masters and would likely limit the degradation in print quality resulting from 

the loss of gold-palladium coating or damage to the master itself. It is also possible that the acrylic 

matrix used in production has built up on the surface of the 3D printed masters and filled in the 

structures, and these modified surfaces are replicated rather than the intended features. These 

hypotheses could be tested by measuring the profilometry of the master pattern both before and after 

use in roll production in future work. This would most effectively allow the quantification of any effects 

of degradation on the master mold to pinpoint the source for replication fidelity changes during 

production.  

5.3. Metric 2: Functionality 

 In section 4.1., an early-stage prototype was presented to demonstrate microfluidic function 

using a pattern designed solely for aesthetic purposes. By using a simple adhesive sheet and adhesive 

tabs for connectors to introduce fluids, it was shown that channels manufactured in the R2R process 

were able to contain and manipulate fluids like those in microfluidic devices. Section 4.3.1 demonstrated 

the qualitative microfluidic mixing function of both film and PDMS patterns. 

 The function of film patterns was further demonstrated in section 4.3.3, where the quantified 

mixing efficiency of both products was calculated to effectively compare function of both the film and 

PDMS patterns. In microfluidic channels with straight planar geometries, mixing occurs purely by 

diffusion.70 In curved channels like those used in the mixing experiment, transverse secondary Dean 

flows arise due to the interaction between centrifugal and inertial forces.94 The curved geometries used 

in the Serpentine mixer enhance these secondary flows, causing the fluid to travel from the outer to the 

inner regions where the radius of curvature is smallest. Since the direction of rotation of the secondary 

flows is not sustained over the length of the mixer it is expected that their strength would not be 

significant enough to perturb the laminar profile, and over a shorter mixing length the primary mixing 

mechanism would still be diffusion.65 For this reason, it was expected that fluids would not reach 
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complete mixing within the channel length of the serpentine mixers. This was confirmed by the mixing 

index results in Figure 4.9 (B), which showed ranges that remained above 0.41 for both the film and 

PDMS patterns.  

 As the mixing index values presented in Figure 4.9 also show significant areas of overlap, it is 

reasonable to conclude that mixing performance in the film-based channels is comparable to that in the 

PDMS channels. Differences in the mixing efficiencies are most likely due to the different material 

properties of the acrylic matrix (composing the top of film patterns) and PDMS. PDMS is hydrophobic in 

its native form95, and it was determined by measuring an average contact angle of 30 μl water droplets 

on the film patterns that the acrylic matrix is slightly hydrophilic (47.0716°). Hydrophobic and 

hydrophilic materials have different surface energies and therefore interact with fluids differently, which 

change the fluid dynamics in microfluidic channels and can result in varying microfluidic 

performances.96,97 The different material properties for the film and PDMS were likely a major 

contributor to the differences in mixing efficiency. Discrepancies in values may also be due to errors in 

the more variable PDMS moulding process, as well as potential debris in microchannels due to a lack of 

cleanroom conditions. There were likely discrepancies also resulting from the slightly varying optical 

transparencies of the pattern. The films have an increase in opacity in the regions surrounding the 

mixing channel, and the PDMS channels were evenly transparent. This may have resulted in variations in 

the adjusted focus length of the camera between mixing trials, and ultimately variations in pixel 

resolution. 

 It was demonstrated that prototyping the high-volume production of microfluidic patterns on 

film was feasible in this unique R2R manufacturing process. Ultimately by achieving success by both 

manufacturability and functionality metrics, it was reasonable to infer that that these conclusions 

translate to the other applications of interest identified in the customer discovery segment of the 

project, including microfluidic droplet generation and cell sorting. Towards the next phases of product 
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development, the droplet pattern has been printed in the same high-throughput R2R process as the 

microfluidic patterns. It was reasonable to assume that a microfluidic cell sorting pattern could also be 

manufactured successfully in this manner.  

5.4. Future Work 

 Having proven feasibility to manufacture film microfluidic patterns in this R2R process, 

additional steps may be taken to further quantify and compare the functionality and manufacturability 

for microfluidic applications. An important modification for future printing of microfluidic patterns 

should include an adjustment to the inlet and outlet locations for all patterns. In the adapted housing 

device proposed in Figure 3.7, it was necessary to include the adhesive tabs to seal the junction between 

the film pattern and the inlets on the acrylic sheet. The location and size of these tabs interfered with 

the intensity measurements in the channels located directly below them, and this limited the number of 

channel cross sections that could be used for calculation of the mixing index. Preventing this overlap 

with channels in the future will allow for a more thorough analysis of the mixing performance. 

 Another important step towards effective comparison between film and PDMS pattern function 

will require a deeper characterization of both materials. Several factors likely contributed to the 

discrepancies in mixing performance between both pattern types including differences in surface 

energies which were primarily shown with the differences in hydrophobic properties. The PDMS that 

was used in this study was chosen due to its availability in the lab, but future work should involve a 

selection of PDMS with surface properties more similar to those of the films in order to isolate the 

surface energy as a control for both mixing studies. This would most effectively allow comparison 

between two different patterns for microfluidic applications. Another important consideration 

specifically for developing microfluidic patterns for applications involving biological fluids should involve 

analysis of the surface properties of the film and the interactions with the fluids of interest. Biological 

fluids can have vastly different properties and the acrylic material used in printing may not be suitable 
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for all applications. The tendencies of the fluid and constituents to adsorb to the film surface should be 

assessed to prevent issues with clogging, fouling, and undesired changes in fluid mechanics. 

Investigation of the ability to tune the surface chemistry of films during production at Sappi may help 

narrow down applications to those that are feasible. 

  For future prototype scale production, it was hypothesized in section 5.2 that applying the 

average percent errors for height and width as a scaling factor in the CAD file may result in a more 

accurate 3D print and final film pattern. These percent error values should be applied to separately scale 

the width and the height of a microfluidic pattern, and a profilometry assessment would reveal if this 

strategy is effective. Based on these results it may be necessary to adjust the scaling factor to achieve 

the most accurate dimension sizes and minimize errors in production overall. 

 Improvements to the high-volume production process that were proposed in section 5.2 should 

also be explored to potentially achieve enhanced manufacturability of film prototypes. Analysis of the 

3D printed masters following production would provide greater insight into the specific sources 

contributing to the errors reported in print fidelity. A method to investigate errors without making 

major changes to the process would involve printing and coating the masters, as described in sections 

3.3 and 3.5, and tiling a greater number of masters onto a single roll for higher volume replication 

production in fewer passes before the gold coating is stripped away. This would enable cost-effective 

analysis of feature printability, including the effects of pattern orientation and presence of errors in 

printing like air bubbles. Future analysis of manufacturability should also involve using more durable 

materials to 3D print masters, such as a metal-extruding printer.  

 A general direction for future work on this project should consist of a similar process of 

characterizing function of the microfluidic droplet generation and cell sorting patterns discussed in 

Chapter 2. A modified channel-sealing and housing mechanism will likely be necessary for both 

applications, where the smaller feature sizes will require modified inlet ports and potentially more 
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permanent sealing to account for the higher pressures of flow in more miniaturized channels. There are 

likely other applications (or TAMs, SAMs, and SOMs as described section 2.10) where the Sappi platform 

technology may be able to provide value. An example of one potential application is microcontact 

printing, where the ability to precisely replicate sub-micron features could be particularly useful. 

Application of the Innovation Engineering principles described in Chapter two would help process 

stimulus for idea generation and vet potential markets to find future commercialization opportunities 

outside of those identified in biotechnology for this project. 

5.5. Conclusion  

 In this work, we evaluated the feasibility of using a unique R2R micropatterning process coupled 

with 3D printing to rapidly prototype and produce microfluidic devices at high-volume on paper or film 

backings for applications in biotechnology. First, Innovation Engineering approaches were used to 

systematize the process of discovering and evaluating applications of the manufacturing process. 

Microfluidic diagnostics were identified as the primary application, where the ability to prototype and 

manufacture high volumes of flexible patterns is extremely valuable in developing cost-effective 

solutions in healthcare. To identify the most lucrative applications within this field we performed 

customer discovery interviews with industry stakeholders, which lead to the identification of three key 

applications. These were microfluidic mixing, microdroplet generation and cell sorting, all of which share 

a core set of technological capabilities for device functionality: the ability to be mass manufactured and 

to effectively manipulate fluids. We then designed low fidelity concept prototypes and minimum viable 

products to validate if microfluidic devices produced in our process could meet these capabilities. This 

was done using microfluidic mixing as the demonstrator, as mixing of solutions is a core component of 

many diagnostic devices. 

 Microfluidic mixing patterns were designed in Solidworks and 3D printed for use as masters in 

the R2R process at the Sappi Technology Center. Prints were coated with a 35 nm layer of gold-
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palladium before incorporation into the printing process in order to allow release of the cured acrylate 

material and effective replication of pattern features. The coated masters were integrated with the 

cylindrical shim and run in the R2R process to produce high volume replications of patterns on rolls of 

film. 

 Metrics were developed to assess the feasibility of the film mixing patterns for 

manufacturability and fluid handling functionality. Manufacturability was assessed by analyzing the 

feature dimensions at different stages in production to verify that patterns could be effectively 

replicated in the R2R process. The manufacturability results indicated that despite some degradation in 

print quality, likely due to loss of the gold-palladium coating, pattern replication was successful in the 

process. The quality of prints could potentially be improved by using a different printing material or 

surface coating with enhanced durability. Functionality was proven using microfluidic mixing 

experiments, where the mixing efficiency of the film device was shown to function comparatively to a 

device created with PDMS using industry-standard fabrication methods. Meeting these key metrics 

validated that the technology could also be applied to patterns used for cell sorting and droplet 

generation as well as other applications within diagnostics. 

 The ability to produce microfluidics in a high-volume but low-cost process is potentially highly 

valuable for realizing success in commercial applications, and this manufacturing method could be the 

key to developing major advances in diagnostic technologies and revolutionizing healthcare. 

Microfluidics is a flourishing field where the ability to miniaturize and parallelize processes is a powerful 

tool for enabling advancements spanning well beyond diagnostics and biotechnology. This work lays the 

foundation to demonstrate the broad applicability of this high throughput micropatterning technology, 

setting the stage for others to rapidly and cost effectively validate and develop novel micropatterned 

products.   
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APPENDIX A: MASTER LIST OF IDEAS GENERATED DURING THE MINING PROCESS 

 

Section 2.8 discussed the concepts applied during the idea generation process of customer discovery. A 

comprehensive list of potential applications of Sappi’s R2R patterning process was assembled by 

searching through mind mapping, relevant patents, academic research, conversations with customers, 

and market information. This master idea list is provided below: 

1. Sappi Neoterix as a colorimetric smartphone-compatible contamination sensor  
2. Template for realistic medical simulation mannikin “skin” patterning  
3. Oil and Gas Testing: Asphaltene measurements in crude oil  
4. Patterned Cell Growth - 3D Culturing in Channels  
5. Filtering Microfluidics  
6. Food Safety - Sticker with responsive hydrogel encapsulating a food dye within channel  
7. Cryptography/Digital Pattern recognition  
8. Adhesive Baking Biomimetic Recognition  
9. Microbiome  
10. Cell Lysis  
11. Reconfigurable Simple Microfluidics  
12. Drug Delivery  
13. Micro-rheometer  
14. Microwell Plate Manufacturing  
15. Biomaterial Pattern Modeling and Transfer  
16. Microtools- casting micro scale tools  
17. Miscellaneous Casting  
18. Controlled Root/Produce Growth: paper channels direct growth for control of produce  
19. Controlled Root/Produce Growth  
20. “Blister” Membrane - Reagent/drug release by breaking seal of film covering pattern  
21. Sample pretreatment for analytical microfluidics  
22. Micro cooling- takes advantage of surface area to volume ratio  
23. Molecular diagnostics  
24. Cell sorting – viable option for future work 
25. Protein Patterning 
26. Microreactor  
27. Micro-Dessicator 
28. Protein Quantification, Bradford Assay  
29. HPLC, MS, GC   
30. Inkjet deposition  
31. Flexible Electronics   
32. Pressure Sensitive Conduction (Actuator Driven)   
33. Matrix of Nanoparticles or Nanowires Incorporated into Paper   
34. Surface Enhanced Raman Substrate   
35. Optics with Silver (Dichroics, Mirrors)  
36. Polymer Microneedles 
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APPENDIX B: OPEN ENDED QUESTIONS USED IN CUSTOMER DISCOVERY 

Chapter 2 reported efforts conducted during the customer discovery and Innovation Engineering phase 

of the project development. A critical component of these efforts involved conversations or interviews 

with companies in various subsets of biotechnology and materials science industries, including industry 

stakeholders such as raw ingredient suppliers, manufacturers, distributors, and end users. Below are 

sample questions that were used to guide discussion in different stages of the conversation: 

Introductory Questions 

Tell me about your role in X organization? 

How long have you been with X organization? 

What gets you most excited about your job and company? 

What are your primary ‘jobs to be done’ in X organization? What is their role in the industry? 

 

Inquisitive Questions toward intended learning outcomes 

What are the primary ‘jobs to be done’ of your products/services? 

What are your products/company are you not able to do currently, that you wish you could? 

How much time do you spend on that problem/opportunity? 

How are you currently solving the problem? 

What do you like about the current solution? What do you dislike? 

 

Probing Questions for deep learning on value propositions and systems 

Why is it important that you solve the problem? If you had a solution, what would this mean to you? 

How would it change the current way you/your company does things? 

What about the problem really keeps you up at night? 

What would happen if you weren’t able to solve the problem, or what are the biggest risks that 

accompany your current solution? 

If you could wave a magic wand and have any imaginable solution, what might this look like? 

If your ideal solution could do only one thing, what might that be? 
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APPENDIX C: ASSESSMENT OF 3D PRINTER RESOLUTION 

Chapter 3.3 described the materials and methods for 3D printing the mixing designs used as masters in 

the R2R printing process. Technical specifications for the printer used (Objet30 Desktop 3D Printer) 

reported a resolution of printers down to 28 μm85, but this resolution can vary depending on a number 

of other printing parameters and conditions. It is critical to assess the printer resolution for fabricating 

features with sizes relevant to the microfluidic mixing patterns. To do so, a test chip was designed with 

tabs of varying height and width dimensions ranging from 200 μm to 1200 μm in Solidworks (Figure 

C.1.). The tab was printed using the Objet30 Desktop 3D printer. Printer resolution was assessed by 

measuring the height and width of each tab with an Alicona InfiniteFocus optical 3D surface 

measurement system and comparing these to the expected feature dimensions from the CAD file. Below 

is an overview of this process. 

 

 

Figure C.1. Test Chip Designed for Assessment of Printer Resolution. The test chip designed with 
varying tab dimensions for comparison to printer dimensions. (A) Overview of chip, showing the design 
scheme for tabs with increasing widths along rows and increasing heights along columns. (B) Side view 
of chip. (C) Close up of isotropic tabs, showing increasing aspect ratios. 
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The tab shown in Figure C.1. was printed with the Objet30 Desktop 3D printer in Durus White. These 

prints were measured with the Alicona InfiniteFocus optical 3D surface measurement system, and tab 

height and width dimensions were analyzed separately to determine z- and x- or y- resolution 

independently in the tables below. 

Table C.1. Tab Height Comparisons Across Rows 1-5. 

Row #: 1 2 3 4 5 

CAD Dimension 
Height (μm): 

50 100 150 200 250 

Average Measured 
Height (μm): 

52.6497 110.4855 169.1701 197.4114 246.682 

Percent Error: 5.2994% 10.4855% 12.7800% 1.2943% 1.3272% 

    Average Height 
% Error: 

6.2373% 

 

In general, the heights presented a larger percent error when the ranges were between 100-150 

microns. The average percent error for the heights of all printed features is 6.2375%. 

Table C.2. Tab Width Comparisons Across Columns a-f. 

Column: a b c d e f 

CAD Dimension 
Width (μm): 

200 400 600 800 1000 1200 

Average Measured 
Width (μm): 

309.9697 380.2963 531.3169 687.0535 846.8313 1055.456 

Percent Error: 54.98487% 4.9259% 11.4471% 14.1183% 15.3169% 12.0454% 

     Average 
Width % 

Error: 

18.8064% 

 

The average percent error for the widths of all features is 18.8064%, with the highest percent error 

found for features with widths of 200 microns. These numbers indicate that the printer has higher 

resolution in the z-direction compared to the resolution in the x- and y-directions.  
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