14 research outputs found

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Brain networks under attack : robustness properties and the impact of lesions

    Get PDF
    A growing number of studies approach the brain as a complex network, the so-called ‘connectome’. Adopting this framework, we examine what types or extent of damage the brain can withstand—referred to as network ‘robustness’—and conversely, which kind of distortions can be expected after brain lesions. To this end, we review computational lesion studies and empirical studies investigating network alterations in brain tumour, stroke and traumatic brain injury patients. Common to these three types of focal injury is that there is no unequivocal relationship between the anatomical lesion site and its topological characteristics within the brain network. Furthermore, large-scale network effects of these focal lesions are compared to those of a widely studied multifocal neurodegenerative disorder, Alzheimer’s disease, in which central parts of the connectome are preferentially affected. Results indicate that human brain networks are remarkably resilient to different types of lesions, compared to other types of complex networks such as random or scale-free networks. However, lesion effects have been found to depend critically on the topological position of the lesion. In particular, damage to network hub regions—and especially those connecting different subnetworks—was found to cause the largest disturbances in network organization. Regardless of lesion location, evidence from empirical and computational lesion studies shows that lesions cause significant alterations in global network topology. The direction of these changes though remains to be elucidated. Encouragingly, both empirical and modelling studies have indicated that after focal damage, the connectome carries the potential to recover at least to some extent, with normalization of graph metrics being related to improved behavioural and cognitive functioning. To conclude, we highlight possible clinical implications of these findings, point out several methodological limitations that pertain to the study of brain diseases adopting a network approach, and provide suggestions for future research

    The segregated connectome of late-life depression: a combined cortical thickness and structural covariance analysis.

    Get PDF
    Late-life depression (LLD) has been associated with both generalized and focal neuroanatomical changes including gray matter atrophy and white matter abnormalities. However, previous literature has not been consistent and, in particular, its impact on the topology organization of brain networks remains to be established. In this multimodal study, we first examined cortical thickness, and applied graph theory to investigate structural covariance networks in LLD. Thirty-three subjects with LLD and 25 controls underwent T1-weighted, fluid-attenuated inversion recovery and clinical assessments. Freesurfer was used to perform vertex-wise comparisons of cortical thickness, whereas the Graph Analysis Toolbox (GAT) was implemented to construct and analyze the structural covariance networks. LLD showed a trend of lower thickness in the left insular region (p < 0.001 uncorrected). In addition, the structural network of LLD was characterized by greater segregation, particularly showing higher transitivity (i.e., measure of clustering) and modularity (i.e., tendency for a network to be organized into subnetworks). It was also less robust against random failure and targeted attacks. Despite relative cortical preservation, the topology of the LLD network showed significant changes particularly in segregation. These findings demonstrate the potential for graph theoretical approaches to complement conventional structural imaging analyses and provide novel insights into the heterogeneous etiology and pathogenesis of LLD.This work was supported by the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, and the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Newcastle upon Tyne Hospitals NHS Foundation Trust and the Newcastle University. Elijah Mak was in receipt of a Gates Cambridge, PhD studentship.This is the author accepted manuscript. It first appeared from Elsevier at http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.013

    The resilient brain and the guardians of sleep: new perspectives on old assumptions

    Get PDF
    Resilience is the capacity of a system, enterprise or a person to maintain its core purpose and integrity in the face of dramatically changed circumstances. In human physiology, resilience is the capacity of adaptively overcoming stress and adversity while maintaing normal psychological and physical functioning. In this review, we investigate the resilient strategies of sleep. First, we discuss the concept of brain resilience, highlighting the modular structure of small-world networking, neuronal plasticity and critical brain behaviour. Second, we explore the contribution of sleep to brain resilience listing the putative factors that impair sleep quality and predict susceptibility to sleep disorders. The third part details the manifold mechanisms acting as guardians of sleep, i.e., homeostatic, circadian and ultradian processes, sleep microstructure (K-complexes, delta bursts, arousals, cyclic alternating pattern, spindles), gravity, muscle tone and dreams. Mapping and pooling together the guardians of sleep in a dynamic integrated framework might lead towards an objective measure of sleep resilience and identify effective personalized strategies (biological, pharmacological, behavioral) to restore or protect the core properties of healthy sleep

    Functional properties of resting state networks in healthy full-term newborns.

    Get PDF
    Objective, early, and non-invasive assessment of brain function in high-risk newborns is critical to initiate timely interventions and to minimize long-term neurodevelopmental disabilities. A prerequisite to identifying deviations from normal, however, is the availability of baseline measures of brain function derived from healthy, full-term newborns. Recent advances in functional MRI combined with graph theoretic techniques may provide important, currently unavailable, quantitative markers of normal neurodevelopment. In the current study, we describe important properties of resting state networks in 60 healthy, full-term, unsedated newborns. The neonate brain exhibited an efficient and economical small world topology: densely connected nearby regions, sparse, but well integrated, distant connections, a small world index greater than 1, and global/local efficiency greater than network cost. These networks showed a heavy-tailed degree distribution, suggesting the presence of regions that are more richly connected to others (\u27hubs\u27). These hubs, identified using degree and betweenness centrality measures, show a more mature hub organization than previously reported. Targeted attacks on hubs show that neonate networks are more resilient than simulated scale-free networks. Networks fragmented faster and global efficiency decreased faster when betweenness, as opposed to degree, hubs were attacked suggesting a more influential role of betweenness hub in the neonate network

    Impaired Efficiency and Resilience of Structural Network in Spinocerebellar Ataxia Type 3

    Get PDF
    Background: Recent studies have shown that the patients with spinocerebellar ataxia type 3 (SCA3) may not only have disease involvement in the cerebellum and brainstem but also in the cerebral regions. However, the relations between the widespread degenerated brain regions remains incompletely explored.Methods: In the present study, we investigate the topological properties of the brain networks of SCA3 patients (n = 40) constructed based on the correlation of three-dimensional fractal dimension values. Random and targeted attacks were applied to measure the network resilience of normal and SCA3 groups.Results: The SCA3 networks had significantly smaller clustering coefficients (P &lt; 0.05) and global efficiency (P &lt; 0.05) but larger characteristic path length (P &lt; 0.05) than the normal controls networks, implying loss of small-world features. Furthermore, the SCA3 patients were associated with reduced nodal betweenness (P &lt; 0.001) in the left supplementary motor area, bilateral paracentral lobules, and right thalamus, indicating that the motor control circuit might be compromised.Conclusions: The SCA3 networks were more vulnerable to targeted attacks than the normal controls networks because of the effects of pathological topological organization. The SCA3 revealed a more sparsity and disrupted structural network with decreased values in the largest component size, mean degree, mean density, clustering coefficient, and global efficiency and increased value in characteristic path length. The cortico-cerebral circuits in SCA3 were disrupted and segregated into occipital-parietal (visual-spatial cognition) and frontal-pre-frontal (motor control) clusters. The cerebellum of SCA3 were segregated from cerebellum-temporal-frontal circuits and clustered into a frontal-temporal cluster (cognitive control). Therefore, the disrupted structural network presented in this study might reflect the clinical characteristics of SCA3

    Finding influential nodes for integration in brain networks using optimal percolation theory

    Full text link
    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function

    Finding influential nodes for integration in brain networks using optimal percolation theory

    Full text link
    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here we apply optimal percolation theory and pharmacogenetic interventions in-vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.Comment: 20 pages, 6 figures, Supplementary Inf

    The Human Functional Brain Network Demonstrates Structural and Dynamical Resilience to Targeted Attack

    Get PDF
    <div><p>In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.</p> </div

    Brain networks in bipolar disorder II: A resting-state fMRI study

    Get PDF
    Bipolar disorder II (BD-II) is characterized by hypomanic and depressive episodes, accompanied by mild cognitive deficits, which can be postulated to be due to emotional and cognitive dyscontrol, with attention as the binding factor. Structural and functional magnetic resonance imaging (fMRI) have implicated several brain regions across the BD spectrum, including the prefrontal cortex (PFC), cingulate cortex and amygdala. Newer studies also look at whole brain networks using resting-state fMRI (RS-fMRI). A notable RS network is the default-mode network (DMN), typically activated at rest and associated with mind wandering. The aim of the current study was to characterize functional brain networks specifically in BD-II patients (n = 32) by assessing of within and between network connectivity against healthy controls (n = 35) through RS-fMRI (age 18-50). We also assessed the subjects on working memory measures using the RAVLT and BVMT-R. Independent component analysis and dual regression was used for within-network analysis, and FSLNets was used for between-network connectivity and network modeling. Based on earlier findings, we predicted aberrant connectivity within the DMN, increased connectivity within the anterior cingulate cortex, decreased connectivity between the ventrolateral PFC and amygdala, and decreased connectivity between the posterior cingulate cortex and DMN. We also expected visual networks to display increased connectivity to the amygdala. Decreased test performance was observed on the BVMT-R, and decreased delayed recall on the RAVLT. We found no statistically significant changes in connectivity within or between networks, indicating that brain networks in BD-II are not significantly different from healthy individuals. Keywords: rs-fMRI, BD-II, resting-state networks, DMN, PFC, ACC, amygdala, ICA, dual regression, network modeling, within-network connectivity, between-network connectivity, clustering hierarch
    corecore