470 research outputs found

    Chimeric tRNAs as tools to induce proteome damage and identify components of stress responses

    Get PDF
    Misfolded proteins are caused by genomic mutations, aberrant splicing events, translation errors or environmental factors. The accumulation of misfolded proteins is a phenomenon connected to several human disorders, and is managed by stress responses specific to the cellular compartments being affected. In wild-type cells these mechanisms of stress response can be experimentally induced by expressing recombinant misfolded proteins or by incubating cells with large concentrations of amino acid analogues. Here, we report a novel approach for the induction of stress responses to protein aggregation. Our method is based on engineered transfer RNAs that can be expressed in cells or tissues, where they actively integrate in the translation machinery causing general proteome substitutions. This strategy allows for the introduction of mutations of increasing severity randomly in the proteome, without exposing cells to unnatural compounds. Here, we show that this approach can be used for the differential activation of the stress response in the Endoplasmic Reticulum (ER). As an example of the applications of this method, we have applied it to the identification of human microRNAs activated or repressed during unfolded protein stress

    Predicting the subcellular localization of viral proteins within a mammalian host cell

    Get PDF
    BACKGROUND: The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. RESULTS: Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. CONCLUSION: Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs

    Molecular characterization of the endoplasmic reticulum: Insights from proteomic studies

    Full text link
    The endoplasmic reticulum (ER) is a multifunctional intracellular organelle responsible for the synthesis, processing and trafficking of a wide variety of proteins essential for cell growth and survival. Therefore, comprehensive characterization of the ER proteome is of great importance to the understanding of its functions and has been actively pursued in the past decade by scientists in the proteomics field. This review summarizes major proteomic studies published in the past decade that focused on the ER proteome. We evaluate the data sets obtained from two different organs, liver and pancreas each of which contains a primary cell type (hepatocyte and acinar cell) with specialized functions. We also discuss how the nature of the proteins uncovered is related to the methods of organelle purification, organelle purity and the techniques used for protein separation prior to MS. In addition, this review also puts emphasis on the biological insights gained from these studies regarding the molecular functions of the ER including protein synthesis and translocation, protein folding and quality control, ER-associated degradation and ER stress, ER export and membrane trafficking, calcium homeostasis and detoxification and drug metabolism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78298/1/4040_ftp.pd

    Structural Dynamics and Catalytic Mechanism of ATP13A2 (PARK9) from Simulations

    Get PDF
    ATP13A2 is a gene encoding a protein of the P5B subfamily of ATPases and is a PARK gene. Molecular defects of the gene are mainly associated with variations of Parkinson’s disease (PD). Despite the established importance of the protein in regulating neuronal integrity, the three-dimensional structure of the protein currently remains unresolved crystallographically. We have modeled the structure and reactivity of the full-length protein in its E1-ATP state. Using molecular dynamics (MD), quantum cluster, and quantum mechanical/molecular mechanical (QM/MM) methods, we aimed at describing the main catalytic reaction, leading to the phosphorylation of Asp513. Our MD simulations suggest that two positively charged Mg2+ cations are present at the active site during the catalytic reaction, stabilizing a specific triphosphate binding mode. Using QM/MM calculations, we subsequently calculated the reaction profiles for the phosphoryl transfer step in the presence of one and two Mg2+ cations. The calculated barrier heights in both cases are found to be ∼12.5 and 7.5 kcal mol–1, respectively. We elucidated details of the catalytically competent ATP conformation and the binding mode of the second Mg2+ cofactor. We also examined the role of the conserved Arg686 and Lys859 catalytic residues. We observed that by significantly lowering the barrier height of the ATP cleavage reaction, Arg686 had major effect on the reaction. The removal of Arg686 increased the barrier height for the ATP cleavage by more than 5.0 kcal mol–1 while the removal of key electrostatic interactions created by Lys859 to the γ-phosphate and Asp513 destabilizes the reactant state. When missense mutations occur in close proximity to an active site residue, they can interfere with the barrier height of the reaction, which can halt the normal enzymatic rate of the protein. We also found large binding pockets in the full-length structure, including a transmembrane domain pocket, which is likely where the ATP13A2 cargo binds

    Refining Protein Subcellular Localization

    Get PDF
    The study of protein subcellular localization is important to elucidate protein function. Even in well-studied organisms such as yeast, experimental methods have not been able to provide a full coverage of localization. The development of bioinformatic predictors of localization can bridge this gap. We have created a Bayesian network predictor called PSLT2 that considers diverse protein characteristics, including the combinatorial presence of InterPro motifs and protein interaction data. We compared the localization predictions of PSLT2 to high-throughput experimental localization datasets. Disagreements between these methods generally involve proteins that transit through or reside in the secretory pathway. We used our multi-compartmental predictions to refine the localization annotations of yeast proteins primarily by distinguishing between soluble lumenal proteins and soluble proteins peripherally associated with organelles. To our knowledge, this is the first tool to provide this functionality. We used these sub-compartmental predictions to characterize cellular processes on an organellar scale. The integration of diverse protein characteristics and protein interaction data in an appropriate setting can lead to high-quality detailed localization annotations for whole proteomes. This type of resource is instrumental in developing models of whole organelles that provide insight into the extent of interaction and communication between organelles and help define organellar functionality

    Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders

    Get PDF
    Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease), ATP7B (Wilson disease), the Na+/K+-ATPases ATP1A2 (familial hemiplegic migraine) and ATP1A3 (rapid-onset dystonia parkinsonism). Finally, we review the recent literature of ATP13A2 and discuss ATP13A2’s putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events

    Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes

    Get PDF
    Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins
    corecore