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ABSTRACT
Background. The endoplasmic reticulum plays an important role in many cellular
processes, which includes protein synthesis, folding and post-translational processing
of newly synthesized proteins. It is also the site for quality control of misfolded proteins
and entry point of extracellular proteins to the secretory pathway. Hence at any given
point of time, endoplasmic reticulum contains two different cohorts of proteins, (i)
proteins involved in endoplasmic reticulum-specific function, which reside in the
lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins
and (ii) proteins which are in process of moving to the extracellular space. Thus,
endoplasmic reticulum resident proteins must somehow be distinguished from newly
synthesized secretory proteins, which pass through the endoplasmic reticulum on their
way out of the cell. Approximately only 50%of the proteins used in this study as training
data had endoplasmic reticulum retention signal, which shows that these signals are not
essentially present in all endoplasmic reticulum resident proteins. This also strongly
indicates the role of additional factors in retention of endoplasmic reticulum-specific
proteins inside the endoplasmic reticulum.
Methods. This is a support vector machine based method, where we had used
different forms of protein features as inputs for support vector machine to develop
the prediction models. During training leave-one-out approach of cross-validation
was used. Maximum performance was obtained with a combination of amino acid
compositions of different part of proteins.
Results. In this study, we have reported a novel support vector machine based method
for predicting endoplasmic reticulum resident proteins, named as ERPred. During
training we achieved a maximum accuracy of 81.42% with leave-one-out approach of
cross-validation. When evaluated on independent dataset, ERPred did prediction with
sensitivity of 72.31% and specificity of 83.69%. We have also annotated six different
proteomes to predict the candidate endoplasmic reticulum resident proteins in them.
A webserver, ERPred, was developed to make the method available to the scientific
community, which can be accessed at http://proteininformatics.org/mkumar/erpred/
index.html.
Discussion. We found that out of 124 proteins of the training dataset, only 66 proteins
had endoplasmic reticulum retention signals, which shows that these signals are not
an absolute necessity for endoplasmic reticulum resident proteins to remain inside the
endoplasmic reticulum. This observation also strongly indicates the role of additional
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factors in retention of proteins inside the endoplasmic reticulum. Our proposed
predictor, ERPred, is a signal independent tool. It is tuned for the prediction of
endoplasmic reticulum resident proteins, even if the query protein does not contain
specific ER-retention signal.

Subjects Bioinformatics, Computational Biology
Keywords Pseudo amino acid composition, Amino acid composition, Split amino acid
composition, Compositional difference, Leave-one-out cross-validation

INTRODUCTION
The endoplasmic reticulum (ER) is an important organelle of eukaryotic cells. It participates
in several essential cellular activities, such as quality control of protein production,
recognition of mis-folded proteins, lipid biosynthesis, detoxification, steroids and
xenobiotic compound metabolism, protection against cellular stress, intracellular calcium
homeostasis, and intracellular signalling (Lavoie & Paiement, 2008; Verkhratsky, 2002). ER
malfunction might lead to many diseases like cystic fibrosis, cancer and juvenile pulmonary
emphysema (Robinson-Rechavi et al., 2001) and neurological disorders like ischemia and
epileptic seizures (Paschen & Frandsen, 2001). ER is involved in several co-translational and
post-translational modifications like signal-peptide cleavage, disulphide bond formation,
N-linked glycosylation, and glycosylphosphatidylinositol (GPI)-anchor formation (Barz &
Walter, 1999) and is also essential for post-translational processing of secretory proteins
that makes it one of the important components of eukaryotic secretory protein system
(Barlowe & Miller, 2013). Secretory proteins are synthesized on rough ER and routed
across the ER membrane into lumen through a co-translational process. Inside the ER,
they undergo glycosylation and attain their specific 3D conformation before being further
transported downstream in the secretory system. The whole process is achieved with the
help of highly coordinated action of several proteins which includes molecular chaperones
and different enzymes (Nakatsukasa & Brodsky, 2008). Proteins, which help ER in carrying
out above-mentioned functions, do not get secreted, and they are called as ER resident
proteins (ERRPs). In addition to ERRPs, mis-folded or unfolded proteins are also retained
back in ER and forwarded for proteasome-mediated degradation if the error could not be
rectified (Sitia & Braakman, 2003; Van Anken & Braakman, 2005; Wang & Hebert, 2003).
Therefore, in order to remain localized in ER, the ERRP must be recognized precisely and
discriminated from the misfolded proteins or proteins of secretory pathway.

The function of ER is intricately bound with the Golgi apparatus. For example, similar
to ER, from Golgi apparatus, also the proteins automatically proceed downstream to the
plasma membrane or vacuoles in absence of an active retention process. Also a number of
ERRPs are forced to localize in ER by continuous retrieval from the Golgi complex. Luminal
ER proteins may be retrieved by using retrograde transport with help of C-terminal KDEL
sequence while Type I transmembrane proteins—including ER residents and itinerant
proteins of the ER/Golgi system—contain a C-terminal dilysine motif that signals their
retrieval from post-ER membranes (Gaynor et al., 1994; Jackson, Nilsson & Peterson, 1993;
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Townsley & Pelham, 1994). The dilysine motif known as KKxx and KxKxx motifs, consists
of a pair of lysine residues at the C terminus of the cargo protein (Jackson, Nilsson &
Peterson, 1990; Nilsson, Jackson & Peterson, 1989). Many variants of the dilysine motif have
been reported such as KxHxx retrieval motif in the tail of the spike protein of group
I coronaviruses (Lontok, Corse & Machamer, 2004), and the RKxx motif present in the
Golgi-localized Scyl1 protein (Burman et al., 2008).

In past, a number of studies have focused on identification of proteins located in
different subcellular organelles like nucleus (Brameier, Krings & MacCallum, 2007; Huang
et al., 2007; Kumar & Raghava, 2009), mitochondrion (Guda, Fahy & Subramaniam, 2004;
Kumar, Verma & Raghava, 2006), chloroplast (Emanuelsson, Nielsen & Von Heijne, 1999),
Golgi body (Chou, Yin & Xu, 2010), peroxisome (Emanuelsson et al., 2003; Neuberger et
al., 2003) but ERRPs remain unexplored. Despite the fact that the functionality of Golgi
and ER are intricately intertwined with each other, several Golgi prediction methods have
been developed (Chou, Yin & Xu, 2010; Jiao & Du, 2016). No attempt has been made to
develop species neutral ERRPs predictor. Though in few subcellular localization prediction
methods, ER has been included as a location, but at present, to the best of our knowledge,
a predictor which can specifically predict ERRPs does not exist. Moreover, predictors
like ProLoc-GO (Huang et al., 2008), KnowPredsite (Lin et al., 2009), SLocX (Ryngajllo
et al., 2011), iLoc-Animal (Lin et al., 2013), iLoc-Euk (Chou, Wu & Xiao, 2011), Cello
v-2.5 (Yu et al., 2006), HybridGO-Loc (Wan, Mak & Kung, 2014), mGOASVM (Wan,
Mak & Kung, 2012), Hum-Ploc (Chou & Shen, 2006), Euk-mPloc (Chou & Shen, 2007),
PSLT (Scott, Thomas & Hallett, 2004), Euk-mPloc 2.0 (Chou & Shen, 2010), the method
developed by Cherian & Nair (2010), and Guo et al. (2016) considered ER as one among
many subcellular locations. But these have some shortcomings like (i) among the above
mentioned predictors, none were designed specifically to predict ERRPs; (ii) datasets used
for training for prediction model were very old; (iii) subcellular locations were determined
for a particular organism or groups (plant/animal/viral); (iv) many of them do not provide
webserver/standalone software for scientific purpose and if some of them does so, they are
not in working condition.

We believe that identification of all ERRPs is necessary to explore more about their
functional associations and for better understanding of ER functional machinery. In the
present study, we report a dedicated method, ERPred, to predict ERRPs with 81.42%
accuracy. ERPred is based on the support vector machine (SVM) and the individual amino
acid compositions of 25 N-terminal, 25 C-terminal and remaining amino acids as SVM
input. We have also developed a freely accessible webserver and software that predicts
ERRPs using their amino acid sequence. We hope that the present work will help in better
understanding of cellular secretory pathways as well as other ER-mediated functions.

MATERIALS AND METHODS
Training datasets
Dataset compilation is one of the most important steps during development of a prediction
method. To avoid any ambiguity, the dataset that has to be used for training the predictor
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Table 1 Distribution of ER resident and non-resident proteins in different datasets.

Proteins Training dataset Independent dataset

Endoplasmic Reticulum Resident Proteins 124 65
Non- Endoplasmic Reticulum Resident Proteins 1,200 2,900

should contain experimentally annotated proteins of high quality. We found that there
exists a database of human ER proteins (both known and potential) named as HERA
(Scott et al., 2004). Since HERA is not updated and contains only human proteins hence we
selected SwissProt, the manually curated section of UniProt protein database, to download
the data. To retrieve the ERRPs from SwissProt, we used following criteria (i) proteins
should be of eukaryotic origin and reviewed; (ii) should be present only in ER; (iii) existence
proven by ‘evidence at protein level’; (iv) protein should be full length and not fragmented
(v) should have more than 50 amino acids because smaller proteins are mostly fragments;
and (vi) protein location should be experimentally verified. For negative dataset, we tried
to collect all types of non-ERRPs so that the predictor is trained on a comprehensive dataset
and it can easily differentiate ERRPs from the non-ERRPs. We selected two different types
of proteins as non-ERRPs (1) proteins which are N-glycosylated, since N-glycosylation
occurs in ER (Bieberich, 2014; Roth et al., 2010); (2) non N-glycosylated proteins, since not
all ER proteins are N-glycosylated. Both types of non-ERRPs were downloaded using the
criteria earlier used to download ER proteins.

Proteins downloaded for making dataset may contain similar or homologous sequences
hence if they are used without reducing the redundancy among proteins, the obtained
performance might not be a genuine performance but an over-estimation. Hence most
prediction methods have adopted the strategy of homology-reduced dataset to assess
the performance of a predictor. In this work the redundancy was reduced to 40% using
CD-HIT (Li & Godzik, 2006) and 124 ERRPs were obtained which were used as positive
dataset. 1,200 eukaryotic non-ERRPs were used as the negative dataset (Table 1; Table S1).
The 1,200 non-ER proteins were 10 times the positive dataset, which in our view should
be sufficient for the predictor to model non-ERRPs (Kumar et al., 2015).

Independent datasets
To assess the unbiased performance of a newly developed method, the evaluation must
be carried out on a dataset which was not used during the training. So we created
an independent dataset for this purpose. This dataset also contains both ERRPs and
non-ERRPs. The source of ERRPs was also SwissProt (Release: 2015_06) and contained
proteins, which had existence at ‘evidence at transcript level’, ‘inferred from homology’
and ‘predicted’. Following criteria were used to download the ERRPs: (i) location should
be endoplasmic reticulum; (ii) protein length should be greater than 50 amino acids; (iii)
protein should be non-membranous; (iv) proteins should not be experimentally verified.
After removing sequences, which had a redundancy of more than 40% among independent
or with the training dataset, finally we got 65 proteins (Table 1; Table S2).

The non-ERRPs were also downloaded from SwissProt using following filters: (i) protein
length should be greater than 50 amino acid; (ii) protein should be of eukaryotic origin and
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non-membranous; (iii) protein’s existence should be experimentally verified; (iv) removed
the low quality annotation by excluding sequences annotated as ‘by similarity’, ‘fragment’,
‘uncertain’ sequences from the dataset. The dataset obtained from above described step
was made non-redundant by using CD-HIT program with 40% threshold after which we
got 13,271 sequences. After removing the protein sequences, which were also present as
non-ERRPs in training dataset, we selected only those non-ERRPs, which had ER targeting
consensus sequence [KRHQSA]-[DENQ]-E-L (Raykhel et al., 2007) (searched by using
standalone version of ScanProsite (Gattiker, Gasteiger & Bairoch, 2002)) and got 2,900
non-ERRP sequences (Table 1; Table S3).

Annotation of proteome
In order to show the real life usage and efficiency of our method, we annotated six
proteomes namely Homo sapiens, Mus musculus, Saccharomyces cervisiae, Caenorhabditis
elegans, Drosophila melanogaster and Arabidopsis thaliana. Their complete proteome set
was downloaded from UniProt which had 68554, 45185, 5450, 26109, 22024 and 31527
proteins respectively.

Support vector machine
SVM is a machine-learning algorithm to carry out pattern recognition and regression
analysis on a given dataset (Vapnik, 1995). During training, SVM maps input data to
the higher dimension and generates model, which can be used for prediction of an
unknown example. In this work we used freely downloadable SVM_light package available
at http://svmlight.joachims.org/ to implement SVM. During training, SVM needs only
fixed-length feature along with their class as input. In the present work, fixed-length input
feature of variable length protein sequence was obtained by amino acid composition,
pseudo amino acid composition, dipeptide composition and different combinations of
fragmented amino acid compositions.

Cross-validation and performance evaluation
Cross-validation is a way to estimate the performance of a prediction model during
training. During cross-validation, whole data is divided into two distinct sets; one set
(called as training set) is used to train the model and second set (called as test set) is
used for performance evaluation of model on a dataset that was not used during training.
In prediction methods, three cross-validation approaches are most frequently used:
independent dataset test, subsampling test (N-fold cross-validation) and jack-knife test or
leave-one-out cross-validation (LOOCV). Among the three cross-validation approaches,
LOOCV gives unique result for a given benchmark dataset and hence used in a number
of prediction methods (Kumar et al., 2014b; Kumar et al., 2015; Kumari, Kumar & Kumar,
2014; Lin et al., 2011; Xiao et al., 2013; Xu et al., 2013). In the present study, we have used
LOOCV approach for the evaluation purpose, in which all except one sequence of dataset
is used as training set and remaining one sequence as test set. This process is repeated till
each sequence has been used for testing. At a selected parameter, SVM was trained using
the training set and predictive performance of model was evaluated on corresponding test
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set. The prediction performance of trained model was calculated by averaging over all test
set predictions.

To evaluate the performance of each trained SVM model, we used standard parameters
regularly used in other prediction methods for prediction evaluation namely sensitivity,
specificity, accuracy and Matthews Correlation Coefficient (MCC) (Kumar, Gromiha &
Raghava, 2008; Kumar et al., 2014a; Kumar et al., 2014b; Kumar et al., 2015; Panwar, Arora
& Raghava, 2014) as formulated below:

Sensitivity=
TP

TP+FN
×100 (1)

Specificity=
TN

TN+FP
×100 (2)

Accuracy=
TP+TN

TP+FP+TN+FN
×100 (3)

MCC=
(TP×TN)−(FP×FN)

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(4)

where TP represents true positive (proteins, which are actually ERRPs and were also
predicted as ERRPs), TN represents true negative (proteins, which are actually non-ERRPs
and also predicted as non-ERRPs), FP represents false positive (the number of non-ERRP
predicted as ERRPs), FN represents false negative (number of proteins, which are actually
ERRPs but predicted as non-ERRPs).

Sequence derived features
As SVM needs fix length input to operate, hence we converted variable length protein
sequence into fixed length vector. Amino acid, pseudo amino acid, dipeptide, and split
amino acid compositions were used to encapsulate the protein sequence information into
fixed length vector.

Amino acid composition
The amino acid composition is the fraction of each amino acid within a protein sequence.
It has been used extensively in past for prediction of different protein features (Kumar,
Gromiha & Raghava, 2007; Kumar, Gromiha & Raghava, 2011; Kumar et al., 2014a; Kumar
et al., 2015; Wang, Xiao & Chou, 2011). The fraction of each amino acid was calculated by
using the following formula:

Acomp(i)=
Total number of an amino acid(i)

Total number of amino acid in protein
(
p
)×100 (5)

where Acomp(i) is the percentage of amino acid ‘i’ in a given protein and (i) can be any
amino acid of a particular protein (p).

Pseudo amino acid composition
One of the major drawbacks of the amino acid composition is the loss of information
about amino acid sequence order from the input features. To deal with this problem Chou
proposed a new way of amino acid composition called as pseudo-amino acid composition
(Chou, 2001). Pseudo-amino acid composition of a protein is actually a set of discrete
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numbers, which is derived from its amino acid sequence. It allows representation of both
compositional and positional amino acid pattern in a discrete mode (Limongelli, Marini
& Bellazzi, 2015). It also reflects sequence order information and length of the proteins
(Chou, 2005). Many tools (Du et al., 2012; Han, Yu & Anh, 2014; Kumar et al., 2015; Liu et
al., 2014;Mondal & Pai, 2014) are available to calculate the pseudo-amino acid composition
of protein sequences. Here we used PseAAC-Builder (Du et al., 2012) at default parameters
(weight factor = 0.05 and Lambda parameter = 1).

Dipeptide composition
Dipeptide composition is a modified form of amino acid composition, which has been used
in a number of protein classification methods like nuclear receptor family classification
(Bhasin & Raghava, 2004; Kumar et al., 2014b), membrane protein prediction, ion
channels prediction (Lin & Ding, 2011), protein fold prediction (Shamim, Anwaruddin
& Nagarajaram, 2007), heat shock protein and its class prediction (Kumar, Gromiha
& Raghava, 2011; Kumar, Kumari & Kumar, 2016; Reczko & Bohr, 1994). Dipeptide
composition calculates the number of all possible types of amino acid pairs in a protein
sequence in a sliding window mode with step size 1 and window size 2. Hence, it
incorporates amino acid composition alongwith the local order information also.Dipeptide
composition describes each protein sequence in form of 400-dimension feature vectors,
which can be calculated as

Dipep(n)=
Total number of Dipep(n)

Total number of all possible dipeptide
(
p
)×100 (6)

where Dipep(n) is the percentage of dipeptide ‘n’ in a given protein and (n) can be any
dipeptides out of the all possible 400 dipeptides of a particular protein (p).

Split amino acid composition
Secretory proteins are known to contain signal to guide them outside of the cell. This feature
also distinguishes them from the intracellular proteins (Wrzeszczynski & Rost, 2004). Hence
sequence encapsulation, which can highlight this difference, ought to be more informative.
In view of this, we divided each protein sequence into different non-overlapping fragments,
viz. 2-parts and 3-parts, and calculated amino acid composition of each part separately.
Fragment that contains the signal sequence would have amino acid compositions different
from the remaining fragments, thereby highlighting the presence of signal sequence(s).
Hence split amino acid composition might provide more realistic information than amino
acid and dipeptide compositions of whole protein. This approach has been used earlier to
encode input protein features (Afridi, Khan & Lee, 2012; Kumar & Raghava, 2009; Kumar,
Verma & Raghava, 2006; Verma, Varshney & Raghava, 2010; Hayat, Khan & Yeasin, 2012).
In this work, we used 2-parts and 3-parts-split amino acid compositions as input
features.

In 2-parts-split amino acid (SAAC-2-parts), first we divided each sequence in two
different ways. We named these two split sets as N-terminal SAAC (N-ter-SAAC) and
C-terminal SAAC (C-ter-SAAC) respectively. N-ter-SAAC had protein sequences in two
parts, (i) 25 amino acids of N-terminal and (ii) the remaining residues of the sequence.
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Similarly, C-ter-SAAC included (i) 25 amino acids of C-terminal and (ii) the remaining
sequence amino acids. For both N-ter-SAAC and C-ter-SAAC, we calculated the amino
acid composition of each part separately.

In 3-parts-split amino acid composition (SAAC-3-parts), protein sequence was divided
into three parts: N-terminal, middle part and C-terminal and then amino acid composition
of each partwas calculated separately. Figure 1 depicts a protein sequenceK,which is divided
into three parts; KN, KC and KR where KN is the 25 N-terminal residues, KC represents
the 25 C-terminal residues and KR represents remaining sequence. Calculation of amino
acid composition of each part provided 20 vectors, so the length of final input vector was
60 for each protein. Due to the fractional nature of amino acid composition, it is likely to
highlight the enrichment and depletion of specific amino acids in each segment and reveal
the biasness in distribution of amino acids in a protein.

RESULTS
Enrichment and depletion pattern of amino acids in ERRPs
The amino acid composition of proteins of each subcellular location is specifically adopted
to suit its surrounding environment (Andrade, O’Donoghue & Rost, 1998). In order to
understand this pattern in case of ERRPs, we analysed the enrichment and depletion
pattern of amino acids using Composition Profiler (Vacic et al., 2007). Composition
Profiler detects the enrichment and depletion patterns of individual amino acid as well as
group of amino acids classified on the basis of different physico-chemical and structural
properties by using two groups of protein sequences as query and background sample.
The fractional difference (in terms of enrichment and depletion) between distribution
of a particular amino acid in query (d1) and background dataset (d2) is calculated as
follows:

Compositional difference(D)=
d1−d2

d2
. (7)

In this work, during enrichment and depletion analysis, all ERRPs were merged into a
single group as a query sample while all non-ERRPs were used as background sample. As
per Composition Profiler analysis, at P-value ≤ 0.05, aromatic (phenylalanine, tyrosine,
tryptophan), negatively charged (aspartic acid and glutamic acid), polar (tyrosine) and
hydrophobic (valine, leucine, phenylalanine, tryptophan) residues were enriched while
positively charged (arginine) residues were depleted in ERRPs (Fig. 2). It has been observed
that ER proteins are rich in transmembrane domain (Schuldiner & Weissman, 2013; Scott et
al., 2004). The enrichment of aromatic and hydrophobic residues in ERRPs is in accordance
with this observation.

Composition based SVM modules
Amino acid, pseudo amino acid and dipeptide composition based
SVM modules
First, we used simple amino acid composition as SVM input. Using LOOCV approach
of training, the maximum accuracy we obtained was 73.34% (MCC = 0.29). When
information of amino acids arrangement order was provided in the form of pseudo amino
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Figure 1 Prediction schema of Endoplasmic reticulum resident proteins using split amino acid based
input to SVM.

acid composition based input, prediction accuracy increased to 74.85% (MCC = 0.30).
When dipeptide composition was used as SVM input, we found a lower performance and
the maximum accuracy decreased to 72.28% with MCC value 0.26 (Table 2). These results
show that pseudo-amino acid composition based SVM module is better than the simple
amino acid and dipeptide composition based modules.
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Figure 2 Relative enrichment and depletion profile of amino acids in ERRPs with reference to non-
ERRPs. A negative value indicates the depletion and a positive value indicates the enrichment of amino
acid.

Table 2 Performance of SVM-Models based on different input vectors during leave-one-out cross
validation.

Input vector Sensitivity Specificity Accuracy MCC AUC

AAC 72.58 73.42 73.34 0.29 0.78
Pseudo AAC 70.97 75.25 74.85 0.30 0.77
Dipeptide Composition 69.35 72.58 72.28 0.26 0.76
N-ter-SAAC 75.00 80.00 79.53 0.37 0.83
C-ter-SAAC 72.58 70.92 71.07 0.27 0.77
SAAC-3 parts 79.84 81.58 81.42 0.42 0.85

Notes.
AAC: amino acid composition, Pseudo AAC: pseudo amino acid composition, N-ter-SAAC: 25 N-terminal and remaining se-
quence composition, C-ter-SAAC: 25 C-terminal and remaining sequence composition, and SAAC-3 parts: 25 N-terminal, 25
C-terminal and remaining amino acid composition. MCC and AUC represent Matthews’s correlation coefficient and area un-
der ROC curve, respectively.

Split amino acid composition based SVM modules
In SAAC based SVM modules, we used three input features to train SVM. With N-ter-
SAAC, we found maximum accuracy 79.53% with MCC value 0.37. With C-ter-SAAC the
accuracy reduced to 71.07% and MCC value to 0.27. But with SAAC-3-parts, the accuracy
increased to 81.42% with MCC value 0.42 (Table 2).
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Figure 3 ROC plots of ERRPs prediction using different amino acid features. AAC, PsedoAAC, Dipep-
tide, N-ter-SAAC, C-ter-SAAC and SAAC-3-parts represents amino acid composition, pseudo-amino
acid composition, dipeptide composition, 25 N-terminal and remaining amino acid composition, 25 C-
terminal and remaining amino acid composition and 25 N-terminal, 25 C-terminal and remaining amino
acid composition, respectively.

The performance obtained from different SVMmodels can be explained by the fact that
retention of proteins inside ER is mediated by some signal sequences or related sequences
(Gomord, Wee & Faye, 1999). Hence, an input vector which resolves the signal sequences
efficiently is expected to perform better than others. We feel that Since SAAC-3-parts
divide a protein into three parts hence, it can resolve the signal motif better, therefore,
SAAC-3-parts based SVM model has the maximum accuracy.

Receiver operating characteristics curve and area
under curve analysis
Receiver Operating Characteristics (ROC) curve is a graphical way to illustrate the
performance of a classifier. It is plotted as ‘sensitivity’ vs. ‘1-specificity’ and shows trade-off
between true and false positives (Fawcett, 2006; Hajian-Tilaki, 2013). The area under the
ROC curve is called AUC value (Bradley, 1997) which can be used to quantify the prediction
performance of a classifier. Higher the AUC value better is the prediction. In this study, we
used ROCR package (Sing et al., 2005) for plotting the ROC curve and finding AUC value.
As shown in Fig. 3 and Table 2, the ROC curves and the AUC values also confirms that the
classifier based on SAAC-3 parts is better than classifiers developed using other sequence
encapsulations.
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Table 3 Comparative performance of ERPred vis-à-vis iLoc-Euk, Cello v.2.5 and Euk-mPloc 2.0 on
independent dataset.

Methods Sensitivity (%) Specificity (%)

ERPred 72.31 83.69
Cello 2.5 16.92 99.86
iLoc-Euk 15.38 99.76
Euk-mPLoc 2.0 66.15 99.00

Comparison and evaluation of other prediction approaches
ERRPs follow two basic mechanisms to stay inside the ER: (i) signal dependent and (ii)
signal independent. Signal dependent proteins have ER-retention signals while signal
independent proteins do not have these signals, e.g., some cereal prolamin storage proteins
(Sophie Pagny, Faye & Gomord, 1999). In order to find out the efficiency of signal based
approach, we evaluated ER retention signal based prediction of ERRPs using Prosite
motif database (Hulo et al., 2006). Using standalone version of ScanProsite (Gattiker,
Gasteiger & Bairoch, 2002), out of 124 proteins of training dataset, we were able to find ER
retention signal ([KRHQSA]-[DENQ]-E-L) in only 66 proteins, which shows that signal
sequence is not present in all ERRPs. This shows that signal based approach may not be
appropriate for complete ERRP repertoire prediction of any proteome. Similarly there are
many non-ERRPs, which also have ER-retention signal but they do not reside into the ER.
Efficiency of signal based approach also suggests that presence of ER-retention signal may
not be the only factor responsible to hold a protein inside ER. It also implies that a good
ER predictor should also be able to discriminate and recognize ERRPs that does not have
ER-retention signals and the non-ERRPs that have ER-signals. So, in order to evaluate our
method on the above-mentioned two parameters, we analysed 65 ERRPs of independent
dataset for presence of ER-retention signal by ScanProsite. We found that only 21 proteins
had ER-signal while remaining 44 proteins did not have any ER-signal. Further, when we
predicted whether these 44 ERRPs localizes to ER or not using ERPred, 27 proteins were
predicted as ERRPs and 17 as non-ERRPs. We also benchmarked the ERPred using 2,900
non-ERRPs of independent dataset containing ER-retention signal sequences. ERPred
correctly predicted the non-ERRPs with 83.69% specificity (Table 3). This shows that the
mere presence or absence of ER-retention signal does not necessarily implies ERRP or
non-ERRP respectively.Wrzeszczynski & Rost (2004) also observed that most of the known
ER-retention signals are too specific and/or too inaccurate to be used in alone for automatic
protein annotation. Their observation was also based on experimentally characterized short
sequence motifs and sequence similarity search to experimentally characterized proteins.
They also showed that either >80% pairwise sequence identity or <10−100 E-value can
be used for homology-transfer based annotation and at very low coverage which severely
limit the number of true positives.

To annotate novel proteins, ‘homology based function transfer’ is the most popular
approach. This approach involves BLASTing novel gene/protein against a gene and/or
protein database to find well-annotated homolog(s) and transfer the annotation of top
hit(s) to the query proteins (Brown, Krishnamurthy & Sjolander, 2007; Radivojac et al.,
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2013; Rost et al., 2003). Since similarity search considers whole protein sequence rather
than a short stretch of ER-retention signal, this approach should be more effective than the
signal based approach. In order to assess the efficiency of BLAST to discover new ERRPs,
we evaluated the performance of BLAST search using the proteins of training dataset. In
this process, each protein out of 124 was used as query and remaining 123 proteins as
database. At e-value threshold ≥1e−3, only 56 proteins found ERRP as first BLAST hit.
Remaining 68 proteins did not get any hit. It shows that finding homologous sequence
using BLAST is also not sufficient to search all ERRPs. Our inference regarding usage of
BLAST in prediction of ERRPs is also supported by the observation noted byWrzeszczynski
& Rost (2004) that even very high levels of sequence similarity might not be sufficient to
infer ER localization without error.

Overall, the results show that performance of ERPred does not depend either on
ER retention signal or sequence homology. Therefore, we feel our approach can be an
appropriate alternative to the annotation transfer on the basis of homologous protein
and/or signal sequence based approaches for high throughput proteome annotation.

Evaluation of ERPred on independent dataset
To derive unbiased results we evaluated proposed prediction schema using proteins of
independent dataset. The outcome of prediction was used to assess the sensitivity and
specificity of ERPred. We found ERPred showed sensitivity 72.31% and specificity 83.69%
on independent dataset (Table 3). This shows that our method not only detects ERRPs
with high sensitivity but also recognizes non-ERRPs with high specificity.

Comparison with other methods
To the best of our knowledge, there is no existing method which can specifically predict
ERRPs. Though a few subcellular localization prediction methods considered ER as one of
many locations in the cell these predict ER proteins along with proteins of other subcellular
locations like, ProLoc-GO (Huang et al., 2008), KnowPredsite (Lin et al., 2009), SLocX
(Ryngajllo et al., 2011), iLoc-Animal (Lin et al., 2013), Cello v.2.5 (Yu et al., 2006), Euk-
mPloc (Chou & Shen, 2007), Euk-mPloc 2.0 (Chou & Shen, 2010), HybridGO-Loc (Wan,
Mak & Kung, 2014), mGOASVM (Wan, Mak & Kung, 2012), Hum-Ploc (Chou & Shen,
2006) and iLoc-Euk (Chou, Wu & Xiao, 2011). Unfortunately, ProLoc-GO (Huang et al.,
2008), KnowPredsite (Lin et al., 2009)were not found in aworking state andHybridGO-Loc
and mGOASVM considered only viral and plant proteins. Hum-Ploc is meant only for
human proteins, SLocX (Ryngajllo et al., 2011) predicts only ER proteins of Arabidopsis
thaliana and iLoc-Animal (Lin et al., 2013) predicts only proteins of animal system. Since
ERPred prediction is not organism/taxa specific hence we compared ourmethod with those
methods which are not restricted to a particular organism or plant/animal like Cello v.2.5
(Yu et al., 2006), iLoc-Euk (Chou, Wu & Xiao, 2011) and Euk-mPLoc 2.0 (Chou & Shen,
2010) (an updated version of Euk-mPloc (Chou & Shen, 2007)) using independent dataset.
The sensitivity of ERPred on independent dataset was 72.31% with 83.69% specificity
while for Cello v.2.5 the corresponding values were 16.92% and 99.86% respectively and
for iLoc-Euk the sensitivity and specificity was 15.38% and 99.76% respectively (Table 3).
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Table 4 Proteome level prediction of ERRPs using ERPred and comparison with ER-GolgiDB and Locate databases.

Proteome Number of proteins in
complete proteome

Number of ERRPs
predicted by ERPred

% of ERRPs in
proteome

Number of protein in different database

ER-GolgiDB Locate

H. sapiens 68,554 2,293 3.34 2,543 1,762
M. musculus 45,185 1,781 3.94 2,248 1,588
D. melanogaster 22,024 707 3.21 1,075 –
C. elegans 26,109 1,014 3.88 1,196 –
S. cerevisiae 5,450 148 2.72 407 –
A. thaliana 31,527 1,089 3.45 1,765 –

Hence Euk-mPLoc showed better performance than iLoc-Euk and Cello v 2.5 in terms
of sensitivity, which was 66.15%. As shown in Table 3, among all the predictors, ERPred
performed better in prediction of ERRPs but its performance in terms of specificity or
non-ERRPs was lesser than other predictors. It might be due to the fact that all predictors,
which we have used here for evaluation on the basis of independent dataset, were intended
to predict multiple locations. The result shows that inmajority of cases they were predicting
locations other than ER, due to which their overall efficiency was higher. In other words,
in most cases, they were predicting ERRPs and non-ERRPs as non-ERRPs, which increased
their performance. But, if we carefully analyse the results, it can be observed that their
performance is not equally good for the prediction of ERRPs. This also vindicates our
attempt to develop a dedicated predictor for ERRPs.

We also evaluated the performance of BLAST based annotation using sequences of
training and independent dataset as database and query respectively. We found that
only 40 ERRP sequences of independent dataset were annotated as ERRP. Remaining 25
sequences did not get any hit.

Annotation of proteome
We selected six different proteomes ranging from less complex yeast to the most complex
human for the purpose of annotation. In H. sapiens, out of 68,554 proteins, ERPred
predicted 2,293 proteins as ERRP, which is 3.34% of the proteome. In case ofM. musculus,
ERPred predicted 1,781 ERRPs out of 45,185, which is 3.94% of the proteome. In D.
melanogaster, ERPred predicted 707 proteins as ERRPs out of total of 22,024 proteins,
which is 3.21% of the proteome. In case of C. elegans, ERPred predicted 1,014 proteins as
ERRPs out of 26,109 proteins, which is 3.88% of the proteome and 148 proteins are ERRPs
out of 5,450 proteins, which is 2.72% of the S. cerevisiae proteome. In A. thaliana, ERPred
predicted 1,089 proteins as ERRPs (3.45% of proteome) out of 31,527 proteins (Table 4).

Since there is no method which can predict ERRP at proteome level so we compared
our prediction method with two regularly updated existing databases ER-GolgiDB
(Wrzeszczynski & Rost, 2004), the database which contained all the proteome which we
had annotated and Locate (Sprenger et al., 2008), the database containing only H. sapiens
and M. musculus proteome. ER-GolgiDB contains information about ER and Golgi
localization based on sequence homology to experimentally annotated proteins. Locate
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contains data about subcellular localization of proteins from the RIKEN FANTOM4mouse
and human protein sequence set. The information content of Locate was determined by a
high-throughput, immunofluorescence-based assay and from peer-reviewed publications.

The ERPred estimated the existence of 2,293 ERRPs in human, representing about 3.34%
of human proteome. The estimated number was close to the 2,543 and 1,762 proteins of
ER-GolgiDB and Locate databases respectively. In mouse, ERPred estimated 1,781 proteins
(3.94% of the proteome), which was in line with the estimation of 1,588 by Locate and
slightly lower than ER-GolgiDB databases respectively. Nearly identical fraction of ERRPs
in mouse and human proteomes was expected due to their close evolutionary relationship.
We feel the difference in numbers might be due to the proteome size. We expect the
number will increase, as more and more proteins will be added to the proteome. In case of
C. elegans proteomes, the fractions of ERRPs was almost equal while inD. melanogaster and
A. thaliana the fraction was slightly less. This might be due to the fact that both ER-GolgiDB
and Locate were last updated in 2010 and 2008 respectively.

WEBSERVER AND STANDALONE SOFTWARE
Based on the schema described above, we have established a webserver ERPred, which
is freely available at http://proteininformatics.org/mkumar/erpred/index.html. This
webserver allows users to predict ER resident proteins. User can submit protein sequences
in FASTA format for prediction. Themaximum limit of prediction is 25 sequences at a time.
If a user submits more than 25 sequences, only the first 25 sequences will be processed for
prediction. For batch prediction, we have also made a standalone version of this software,
which is available at download page of the webserver. ERPred also provides option to select
different threshold values, which can be used to select the level of false and true positive
predictions.

DISCUSSION
Even though the importance of endoplasmic reticulum resident proteins has been
established undoubtedly, only a few methods have considered ER as a separate subcellular
locality. In these methods, the accuracy of prediction of ERRPs is very less in comparison of
other locations. The purpose of the present study is therefore to describe a tool, ERPred, for
the prediction of ERRPs. The tool uses only the protein sequence information for prediction.
While developing the method, we tried different forms of sequence compositions; namely
amino acid, dipeptide, and pseudo amino acid compositions. Better performance of a
pseudo-amino acid composition based SVM module than the simple amino acid and
dipeptide composition based modules reveals that pseudo amino acid composition
encapsulates amino acid ordering information better than dipeptide composition. But the
best performance was obtained when amino acid compositions of different part of proteins
were used. The amino acid composition based SVM module gave 73.34% accuracy. The
performance was decreased to ∼1% giving 72.28% accuracy when we used dipeptide
composition as input. Dipeptide composition was used to incorporate composition as well
as local order information. Further, when we used pseudo-amino acid composition, it
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showed a better accuracy of 74.85%. In order to include information of enrichment and
depletion of amino acids in a specific region of ERRPs, we also used SAAC in which a
protein sequence was divided into three different ways (N-ter-SAAC, C-ter-SAAC, and
SAAC-3 parts). N-ter-SAAC contained two sets of amino acid compositions, one from 25
N-terminal residues and other from rest of the residues while C-ter-SAAC also had two sets
of amino acid compositions firstly from 25 C-terminal residues and remaining residues.
SAAC-3 parts had three sets of vectors from 25 N-terminal residues, 25 C-terminal residues
and the remaining sequence residues. SVM modules based on N-ter-SAAC, C-ter-SAAC
and SAAC-3 parts respectively achieved accuracy of 79.53%, 71.07% and 81.42%. This
shows that the SVM module developed from C-ter-SAAC was least efficient whereas
the SAAC-3 parts based module was better for discriminating ERRPs from non-ERRPs.
The performance obtained from different SVM models can be explained by the fact that
retention of proteins inside ER is mediated by some signal sequences or related sequences
(Gomord, Wee & Faye, 1999). Hence an input vector, which resolves the signal sequences
efficiently, is expected to perform better than others.

With use of machine learning techniques, we explored which form of composition
can best help in high-level successful prediction of ERRPs. The results show that split
composition-based features were most predictive. KDEL and its variants is the most
common signal present generally at the C-terminal of ERRPs. The other well-characterized
retention signal is the di-lysine and di-arginine motifs present at C- and N-terminals
respectively. But these signals are neither present in all ERRPs nor sufficient to retain
all to ER (Gao et al., 2014; Ma & Goldberg, 2013). This also suggests that other parts of
proteins also play a very important role in retention of ERRPs in ER (Scott et al., 2004). The
most surprising result we obtained was the performance of dipeptide composition based
SVM models, which has shown least performance among all. Ideally it should have picked
up the signals responsible for retention of ERRPs in ER and should have shown better
performance than at least amino acid and pseudo amino acid compositions based models.
The higher performance of SAAC-3 parts in comparison to the C- and N-ter SAAC can
also be explained in light of this fact that in SAAC-3 parts the presence of signal as well as
other unknown factors present at non-terminal regions can be highlighted better than the
C- and N-ter SAAC.

We also benchmarked the performance of our method vis-à-vis other predictors using
an independent dataset. The results showed that ERPred is better than other tools. We
also observed that the performance obtained was roughly equal to what we have obtained
earlier during the cross-validation.

CONCLUSION
ER is the one of the most important cellular organelles of eukaryotic cells. Knowledge of
complete ER resident protein repertoire will help in better understanding of biological
pathways of ER. In the present study, a sequence-based tool for prediction of ERRPs
has been reported for the first time. We have also developed an open access web-server
and standalone software for batch mode prediction of ERRPs and it can be accessed at
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http://proteininformatics.org/mkumar/erpred/. Independent assessment with non-specific
sub-cellular localization methods showed the higher efficiency and also justified the need
of an ERRP specific prediction method. We expect that this tool will bring new insights
about understanding of the functions of ER.
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