29 research outputs found

    Comparative Analysis on Traumatic Brain Injury Risk Due to Primary and Secondary Impacts in a Pedestrian Sideswipe Accident

    Get PDF
    A series of pedestrian sideswipe impacts were computationally reconstructed; a fast-walking pedestrian was collided laterally with the side of a moving vehicle at 25 or 40 km/h, which resulted in rotating the pedestrian’s body axially. Potential severity of traumatic brain injury (TBI) was assessed using linear and rotational acceleration pulses applied to the head and by measuring intracranial brain tissue deformation. We found that TBI risk due to secondary head strike with the ground can be much greater than that due to primary head strike with the vehicle. Further, an ‘effective’ head mass, meff, was computed based upon the impulse and vertical velocity change involved in the secondary head strike, which mostly exceeded the mass of the adult head-form impactor (4.5 kg) commonly used for a current regulatory impact test for pedestrian safety assessment. Our results demonstrated that an SUV is more aggressive than a sedan due to the differences in frontal shape. Additionally, it was highlighted that a striking vehicle velocity should be lower than 25 km/h at the moment of impact to exclude the potential risk of sustaining TBI, which would be mitigated by actively controlling meff, because meff is closely associated with a rotational acceleration pulse applied to the head involved in the final event of ground contact

    Life Cycle Assessment of Innovative Asphalt Mixtures Made with Crumb Rubber for Impact-Absorbing Pavements

    Get PDF
    This study applies the life cycle assessment methodology to evaluate the environmental impacts of shock-absorbing pavements fabricated with recycled materials (crumb rubber and a colored pigment called ferrotone), employing the “cradle-to-grave” approach, in which the impacts of all life cycle phases (from materials’ acquisition to the end-of-life of the pavement) are included. The analysis compares the impacts of standard and innovative asphalt materials, considering cold and hot production processes. In addition, three different lifespans are simulated for the pavement structures: the reference service life until the first intervention is considered to be 5 years, and the following scenarios consider that the alternative asphalt materials may last 20% less (4 years) or 20% longer (6 years) than the reference service life. The analysis uses non-renewable cumulative energy demand (nr-CED) and global warming potential (GWP) as main indicators to determine the environmental impacts over a 45-year analysis period. The results show that adopting the “dry process” (consisting of adding the rubber as a partial substitution for aggregates) increases the overall impacts due to the need for higher contents of binder. However, if the alternative pavement structures last 20% longer than the reference, they would generate lower impacts in terms of nr-CED and GWP

    Comparison of head impact measurements via an instrumented mouthguard and an anthropometric testing device

    Get PDF
    The purpose of this study was to determine and compare the efficacy of head impact measurements via an electronic sensor framework, embedded within a mouthguard, against an anthropometric testing device. Development of the former is in response to the growing issue of head impacts and concussion in rugby union. Testing was conducted in a vehicle safety laboratory using a standard impact protocol utilising the headforms of anthropometric testing devices. The headforms were subjected to controlled front and side impacts. For each impact, the linear acceleration and rotational velocity was measured over a 104-ms interval at a frequency of 1 kHz. The magnitude of peak linear acceleration and peak rotational velocity was determined from the measured time-series traces and statistically compared. The peak linear acceleration and rotational velocity had intraclass correlation coefficients of 0.95 and 0.99, respectively. The root-mean-square error between the measurement systems was 4.3 g with a standard deviation of 3.5 g for peak linear acceleration and 0.7 rad/s with a standard deviation of 0.4 rad/s for rotational velocity. Bland and Altman analysis indicated a systematic bias of 2.5 g and − 0.5 rad/s and limits of agreement (1.96 × standard deviation) of ± 13.1 g and ± 1.25 rad/s for the instrumented mouthguard. These results provide the basis on which the instrumented mouthguard can be further developed for deployment and application within professional rugby, with a view to accurately and reliably quantify head collision dynamics

    Numerical Analysis of Bicycle Helmet under Blunt Behavior

    Get PDF
    This study evaluates various safety aspects of standardized impacts that cyclists may suffer while wearing a bicycle helmet, by combining a partially validated finite element model of the cranio-cervical region and a newly developed commercial bicycle helmet model. Under EN 1078 standardized impact conditions, the results of simulated impact tests show that the helmet can absorb 40% to 50% of the total impact energy at impact velocities above 4 m/s. Further, based on a relationship between the head injury criterion and the risk of injury from field data, the results of the simulations suggest that minor injuries may occur at impact velocities of 10 km/h, serious injuries at 15 km/h, and severe injuries at 20 km/h. Fatal injuries will likely occur at impact velocities of 30 km/h and higher.This work has been carried out within the framework of the research project DPI2017-88166- of FEDER program financed by the Ministerio de EconomĂ­a, Industria y Competitividad and the Spanish Ministry of Education, Culture and Sports for the professor’s mobility program JosĂ© Castillejo’s 2018 grant (CAS18/00292)

    Biomechanical head injury criteria

    Get PDF
    U ovome radu opisan je kriterij za kvantitativno određivanje rizika nastanka ozljede glave kod udarca, tzv. kriterij HIC („Head Injury Criterion“) koji se u većini slučajeva u danaơnje vrijeme koristi za postizanje ơto veće sigurnosti svih sudionika u prometu te utječe i na sami dizajn vozila. Objaơnjeni su biomehanički mehanizmi nastanka ozljede mozga kod tupog udarca, primjena, prednosti i nedostaci kriterija HIC te su obrađeni i mogući zamjenski kriteriji.This paper describes the criterion for the quantitative determination of the risk of a head injury on impact, so called HIC („Head Injury Criterion“) which in most cases today is used to maximize the safety of all traffic participants and also affect the design of the vehicle itself. The biomechanical mechanisms of the occurrence of brain injury in blunt impact, applications, advantages and disadvantages of the HIC criteria are explained and possible replacement criteria are discussed

    Belted Safety Jacket: a new concept in Powered Two-Wheeler passive safety

    Get PDF
    Abstract Powered Two Wheelers (PTWs) offer a viable solution to reduce traffic congestion and promote personal mobility. However, vehicle characteristics and conspicuity issues lead to an overrepresentation of PTWs in accident statistics. This work presents an innovative approach for concept design of new passive safety devices and their development. The landscape of possible design solutions was examined with an in-depth analysis of the state of the art and with the use of conceptual design tools. Candidate solutions underwent a feasibility assessment and they were crossed-checked with the rider needs, identified via a specific on-line survey. The concept of a new passive safety device was born: a Belted Safety Jacket (BSJ). An initial assessment of the device effectiveness for the reduction of riders' injuries was performed by comparison of the main biomechanical indexes (HIC, Nijmax, Chest Deflection and Viscous Criterion) in a relevant accident configuration, reproduced in a virtual environment, with and without the device. Later a full factorial Design of Experiment (DOE) was carried out to understand the influence of the device geometrical variables (i.e. possible design parameters) on the biomechanical indexes. The results demonstrated that the integration of BSJ onto the vehicle has the potential to significantly reduce the occurrence of serious injuries during a PTW accident versus a car, since it prevents the contact of the rider with the opponent vehicle. The analysis of the accident kinematic with BSJ suggests that the device will be beneficial also in accidents with other vehicle types

    Free-fall drop test with interchangeable surfaces to recreate concussive ice hockey head impacts

    Get PDF
    Ice hockey has one of the highest concussion rates in sport. During collisions with other players, helmets offer limited protection. Various test protocols exist often requiring various types of laboratory equipment. A simplified test protocol was developed to facilitate testing by more researchers, and modifications to certification standards. Measured kinematics (acceleration vs. time trace shape, peak accelerations, and impact duration) of a Hybrid III headform dropped onto different surfaces were compared to published laboratory representations of concussive impacts. An exemplary comparison of five different helmets, ranging from low (US50)tohighcost(US50) to high cost (US300), covering a range of helmet and liner designs, was also undertaken. Different impact conditions were created by changing the impact surface (Modular Elastomer Programmer pad, or 24 to 96 mm of EVAZOTE-50 foam with a Young's modulus of ~ 1 MPa), surface orientation (0 or 45°), impact site, and helmet make/model. With increasing impact surface compliance, peak accelerations decreased and impact duration increased. Impacts onto a 45° anvil covered with 48 mm of foam produced a similar response to reference concussive collisions in ice hockey. Specifically, these impacts gave similar acceleration vs. time trace shapes, while normalized pairwise differences between reference and measured peak acceleration and impact duration, were less than 10% (difference/maximum value), and mean (± SD) of accelerations and duration fell within the interquartile range of the reference data. These results suggest that by modifying the impact surface, a free-fall drop test can produce a kinematic response in a helmeted headform similar to the method currently used to replicate ice hockey collisions. A wider range of impact scenarios, i.e., fall onto different surfaces, can also be replicated. This test protocol for ice hockey helmets could facilitate simplified testing in certification standards and research

    Optimal Impact Isolation for Injury Prevention Evaluated by the Head Injury Criterion

    Get PDF

    A Review of Validation Methods for the Intracranial Response of FEHM to Blunt Impacts

    Get PDF
    The following is a review of the processes currently employed when validating the intracranial response of Finite Element Head Models (FEHM) against blunt impacts. The authors aim to collate existing validation tools, their applications and findings on their effectiveness to aid researchers in the validation of future FEHM and potential efforts in improving procedures. In this vain, publications providing experimental data on the intracranial pressure, relative brain displacement and brain strain responses to impacts in human subjects are surveyed and key data are summarised. This includes cases that have previously been used in FEHM validation and alternatives with similar potential uses. The processes employed to replicate impact conditions and the resulting head motion are reviewed, as are the analytical techniques used to judge the validity of the models. Finally, publications exploring the validation process and factors affecting it are critically discussed. Reviewing FEHM validation in this way highlights the lack of a single best practice, or an obvious solution to create one using the tools currently available. There is clear scope to improve the validation process of FEHM, and the data available to achieve this. By collecting information from existing publications, it is hoped this review can help guide such developments and provide a point of reference for researchers looking to validate or investigate FEHM in the future, enabling them to make informed choices about the simulation of impacts, how they are generated numerically and the factors considered during output assessment, whilst being aware of potential limitations in the process
    corecore