28 research outputs found

    On stability of the Hamiltonian index under contractions and closures

    Get PDF
    The hamiltonian index of a graph GG is the smallest integer kk such that the kk-th iterated line graph of GG is hamiltonian. We first show that, with one exceptional case, adding an edge to a graph cannot increase its hamiltonian index. We use this result to prove that neither the contraction of an AG(F)A_G(F)-contractible subgraph FF of a graph GG nor the closure operation performed on GG (if GG is claw-free) affects the value of the hamiltonian index of a graph GG

    The Hamiltonian index of a graph and its branch-bonds

    Get PDF
    Let GG be an undirected and loopless finite graph that is not a path. The minimum mm such that the iterated line graph Lm(G)L^m(G) is hamiltonian is called the hamiltonian index of G,G, denoted by h(G).h(G). A reduction method to determine the hamiltonian index of a graph GG with h(G)2h(G)\geq 2 is given here. With it we will establish a sharp lower bound and a sharp upper bound for h(G)h(G), respectively, which improves some known results of P.A. Catlin et al. [J. Graph Theory 14 (1990)] and H.-J. Lai [Discrete Mathematics 69 (1988)]. Examples show that h(G)h(G) may reach all integers between the lower bound and the upper bound. \u

    The Hamiltonian index of graphs

    Get PDF
    The Hamiltonian index of a graph G is defined as h ( G ) = min { m : L m ( G ) is Hamiltonian } . In this paper, using the reduction method of Catlin [P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44], we constructed a graph H ̃ ( m ) ( G ) from G and prove that if h ( G ) ≥ 2 , then h ( G ) = min{ m : H ̃ ( m ) ( G ) has a spanning Eulerian subgraph }

    Author index to volume 122 (1993)

    Get PDF

    On Generalizations of Supereulerian Graphs

    Get PDF
    A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let κ2˘7(G)\kappa\u27(G) and δ(G)\delta(G) be the edge-connectivity and the minimum degree of a graph GG, respectively. For integers s0s \ge 0 and t0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,YE(G)X, Y \subseteq E(G) with Xs|X|\le s and Yt|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. This dissertation is devoted to providing some results on (s,t)(s,t)-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer j(s,t)j(s,t) such that every j(s,t)j(s,t)-edge-connected graph is (s,t)(s,t)-supereulerian as follows: j(s,t) = \left\{ \begin{array}{ll} \max\{4, t + 2\} & \mbox{ if $0 \le s \le 1$, or $(s,t) \in \{(2,0), (2,1), (3,0),(4,0)\}$,} \\ 5 & \mbox{ if $(s,t) \in \{(2,2), (3,1)\}$,} \\ s + t + \frac{1 - (-1)^s}{2} & \mbox{ if $s \ge 2$ and $s+t \ge 5$. } \end{array} \right. As applications, we characterize (s,t)(s,t)-supereulerian graphs when t3t \ge 3 in terms of edge-connectivities, and show that when t3t \ge 3, (s,t)(s,t)-supereulerianicity is polynomially determinable. In Chapter 3, for a subset YE(G)Y \subseteq E(G) with Yκ2˘7(G)1|Y|\le \kappa\u27(G)-1, a necessary and sufficient condition for GYG-Y to be a contractible configuration for supereulerianicity is obtained. We also characterize the (s,t)(s,t)-supereulerianicity of GG when s+tκ2˘7(G)s+t\le \kappa\u27(G). These results are applied to show that if GG is (s,t)(s,t)-supereulerian with κ2˘7(G)=δ(G)3\kappa\u27(G)=\delta(G)\ge 3, then for any permutation α\alpha on the vertex set V(G)V(G), the permutation graph α(G)\alpha(G) is (s,t)(s,t)-supereulerian if and only if s+tκ2˘7(G)s+t\le \kappa\u27(G). For a non-negative integer sV(G)3s\le |V(G)|-3, a graph GG is ss-Hamiltonian if the removal of any ksk\le s vertices results in a Hamiltonian graph. Let is,t(G)i_{s,t}(G) and hs(G)h_s(G) denote the smallest integer ii such that the iterated line graph Li(G)L^{i}(G) is (s,t)(s,t)-supereulerian and ss-Hamiltonian, respectively. In Chapter 4, for a simple graph GG, we establish upper bounds for is,t(G)i_{s,t}(G) and hs(G)h_s(G). Specifically, the upper bound for the ss-Hamiltonian index hs(G)h_s(G) sharpens the result obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785]. Harary and Nash-Williams in 1968 proved that the line graph of a graph GG is Hamiltonian if and only if GG has a dominating closed trail, Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that every graph with two edge-disjoint spanning trees is a contractible configuration for supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of hypergraphs introduced by Frank, Kir\\u27aly and Kriesell in 2003, we generalize the above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and showing that every 2-partition-connected hypergraph is a contractible configuration for supereulerianicity. Applying the adjacency matrix of a hypergraph HH defined by Rodr\\u27iguez in 2002, let λ2(H)\lambda_2(H) be the second largest adjacency eigenvalue of HH. In Chapter 6, we prove that for an integer kk and a rr-uniform hypergraph HH of order nn with r4r\ge 4 even, the minimum degree δk2\delta\ge k\ge 2 and kr+2k\neq r+2, if λ2(H)(r1)δr2(k1)n4(r+1)(nr1)\lambda_2(H)\le (r-1)\delta-\frac{r^2(k-1)n}{4(r+1)(n-r-1)}, then HH is kk-edge-connected. %κ2˘7(H)k\kappa\u27(H)\ge k. Some discussions are displayed in the last chapter. We extend the well-known Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hypergraphs. The (s,t)(s,t)-supereulerianicity of hypergraphs is another interesting topic to be investigated in the future

    On Eulerian subgraphs and hamiltonian line graphs

    Get PDF
    A graph {\color{black}GG} is Hamilton-connected if for any pair of distinct vertices {\color{black}u,vV(G)u, v \in V(G)}, {\color{black}GG} has a spanning (u,v)(u,v)-path; {\color{black}GG} is 1-hamiltonian if for any vertex subset SV(G)S \subseteq {\color{black}V(G)} with S1|S| \le 1, GSG - S has a spanning cycle. Let δ(G)\delta(G), α2˘7(G)\alpha\u27(G) and L(G)L(G) denote the minimum degree, the matching number and the line graph of a graph GG, respectively. The following result is obtained. {\color{black} Let GG be a simple graph} with E(G)3|E(G)| \ge 3. If δ(G)α2˘7(G)\delta(G) \geq \alpha\u27(G), then each of the following holds. \\ (i) L(G)L(G) is Hamilton-connected if and only if κ(L(G))3\kappa(L(G))\ge 3. \\ (ii) L(G)L(G) is 1-hamiltonian if and only if κ(L(G))3\kappa(L(G))\ge 3. %==========sp For a graph GG, an integer s0s \ge 0 and distinct vertices u,vV(G)u, v \in V(G), an (s;u,v)(s; u, v)-path-system of GG is a subgraph HH consisting of ss internally disjoint (u,v)(u,v)-paths. The spanning connectivity κ(G)\kappa^*(G) is the largest integer ss such that for any kk with 0ks0 \le k \le s and for any u,vV(G)u, v \in V(G) with uvu \neq v, GG has a spanning (k;u,v)(k; u,v)-path-system. It is known that κ(G)κ(G)\kappa^*(G) \le \kappa(G), and determining if κ(G)3˘e0\kappa^*(G) \u3e 0 is an NP-complete problem. A graph GG is maximally spanning connected if κ(G)=κ(G)\kappa^*(G) = \kappa(G). Let msc(G)msc(G) and sk(G)s_k(G) be the smallest integers mm and m2˘7m\u27 such that Lm(G)L^m(G) is maximally spanning connected and κ(Lm2˘7(G))k\kappa^*(L^{m\u27}(G)) \ge k, respectively. We show that every locally-connected line graph with connectivity at least 3 is maximally spanning connected, and that the spanning connectivity of a locally-connected line graph can be polynomially determined. As applications, we also determined best possible upper bounds for msc(G)msc(G) and sk(G)s_k(G), and characterized the extremal graphs reaching the upper bounds. %==============st For integers s0s \ge 0 and t0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,YE(G)X, Y \subseteq E(G) with Xs|X|\le s and Yt|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. Pulleyblank in [J. Graph Theory, 3 (1979) 309-310] showed that determining whether a graph is (0,0)(0,0)-supereulerian, even when restricted to planar graphs, is NP-complete. Settling an open problem of Bauer, Catlin in [J. Graph Theory, 12 (1988) 29-45] showed that every simple graph GG on nn vertices with δ(G)n51\delta(G) \ge \frac{n}{5} -1, when nn is sufficiently large, is (0,0)(0,0)-supereulerian or is contractible to K2,3K_{2,3}. We prove the following for any nonnegative integers ss and tt. \\ (i) For any real numbers aa and bb with 03˘ca3˘c10 \u3c a \u3c 1, there exists a family of finitely many graphs \F(a,b;s,t) such that if GG is a simple graph on nn vertices with κ2˘7(G)t+2\kappa\u27(G) \ge t+2 and δ(G)an+b\delta(G) \ge an + b, then either GG is (s,t)(s,t)-supereulerian, or GG is contractible to a member in \F(a,b;s,t). \\ (ii) Let K2\ell K_2 denote the connected loopless graph with two vertices and \ell parallel edges. If GG is a simple graph on nn vertices with κ2˘7(G)t+2\kappa\u27(G) \ge t+2 and δ(G)n21\delta(G) \ge \frac{n}{2}-1, then when nn is sufficiently large, either GG is (s,t)(s,t)-supereulerian, or for some integer jj with t+2js+tt+2 \le j \le s+t, GG is contractible to a jK2j K_2. %==================index For a hamiltonian property \cp, Clark and Wormold introduced the problem of investigating the value \cp(a,b) = \max\{\min\{n: L^n(G) has property \cp\}: κ2˘7(G)a\kappa\u27(G) \ge a and δ(G)b}\delta(G) \ge b\}, and proposed a few problems to determine \cp(a,b) with ba4b \ge a \ge 4 when \cp is being hamiltonian, edge-hamiltonian and hamiltonian-connected. Zhan in 1986 proved that the line graph of a 4-edge-connected graph is Hamilton-connected, which implies a solution to the unsettled cases of above-mentioned problem. We consider an extended version of the problem. Let ess2˘7(G)ess\u27(G) denote the essential edge-connectivity of a graph GG, and define \cp\u27(a,b) = \max\{\min\{n: L^n(G) has property \cp\}: ess2˘7(G)aess\u27(G) \ge a and δ(G)b}\delta(G) \ge b\}. We investigate the values of \cp\u27(a,b) when \cp is one of these hamiltonian properties. In particular, we show that for any values of b1b \ge 1, \cp\u27(4,b) \le 2 and \cp\u27(4,b) = 1 if and only if Thomassen\u27s conjecture that every 4-connected line graph is hamiltonian is valid

    On the s-Hamiltonian index of a graph

    Get PDF
    In modeling communication networks by graphs, the problem of designing s-fault-tolerant networks becomes the search for s-Hamiltonian graphs. This thesis is a study of the s-Hamiltonian index of a graph G.;A path P of G is called an arc in G if all the internal vertices of P are divalent vertices of G. We define l (G) = max{lcub}m : G has an arc of length m that is not both of length 2 and in a K3{rcub}. We show that if a connected graph G is not a path, a cycle or K1,3, then for a given s, we give the best known bound of the s-Hamiltonian index of the graph

    k-ordered hamiltonicity of iterated line graphs

    Get PDF
    AbstractA graph G of order n is k-ordered hamiltonian, 2≤k≤n, if for every sequence v1,v2,…,vk of k distinct vertices of G, there exists a hamiltonian cycle that encounters v1,v2,…,vk in this order. In this paper, we generalize two well-known theorems of Chartrand on hamiltonicity of iterated line graphs to k-ordered hamiltonicity. We prove that if Ln(G) is k-ordered hamiltonian and n is sufficiently large, then Ln+1(G) is (k+1)-ordered hamiltonian. Furthermore, for any connected graph G, which is not a path, cycle, or the claw K1,3, there exists an integer N′ such that LN′+(k−3)(G) is k-ordered hamiltonian for k≥3
    corecore