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ABSTRACT

On Eulerian subgraphs and hamiltonian line graphs

Yikang Xie

A graph G is Hamilton-connected if for any pair of distinct vertices u, v ∈
V (G), G has a spanning (u, v)-path; G is 1-hamiltonian if for any vertex subset

S ⊆ V (G) with |S| ≤ 1, G − S has a spanning cycle. Let δ(G), α′(G) and

L(G) denote the minimum degree, the matching number and the line graph of

a graph G, respectively. The following result is obtained. Let G be a simple

graph with |E(G)| ≥ 3. If δ(G) ≥ α′(G), then each of the following holds.

(i) L(G) is Hamilton-connected if and only if κ(L(G)) ≥ 3.

(ii) L(G) is 1-hamiltonian if and only if κ(L(G)) ≥ 3.

For a graph G, an integer s ≥ 0 and distinct vertices u, v ∈ V (G), an

(s;u, v)-path-system of G is a subgraph H consisting of s internally disjoint

(u, v)-paths. The spanning connectivity κ∗(G) is the largest integer s such that

for any k with 0 ≤ k ≤ s and for any u, v ∈ V (G) with u 6= v, G has a span-

ning (k;u, v)-path-system. It is known that κ∗(G) ≤ κ(G), and determining

if κ∗(G) > 0 is an NP-complete problem. A graph G is maximally spanning

connected if κ∗(G) = κ(G). Let msc(G) and sk(G) be the smallest integers m

and m′ such that Lm(G) is maximally spanning connected and κ∗(Lm
′
(G)) ≥ k,

respectively. We show that every locally-connected line graph with connectivity

at least 3 is maximally spanning connected, and that the spanning connectivity

of a locally-connected line graph can be polynomially determined. As applica-

tions, we also determined best possible upper bounds for msc(G) and sk(G),

and characterized the extremal graphs reaching the upper bounds.

For integers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for any dis-

joint edge sets X,Y ⊆ E(G) with |X| ≤ s and |Y | ≤ t, G has a spanning closed

trail that contains X and avoids Y . Pulleyblank in [J. Graph Theory, 3 (1979)

309-310] showed that determining whether a graph is (0, 0)-supereulerian, even

when restricted to planar graphs, is NP-complete. Settling an open problem

of Bauer, Catlin in [J. Graph Theory, 12 (1988) 29-45] showed that every sim-

ple graph G on n vertices with δ(G) ≥ n
5 − 1, when n is sufficiently large, is

(0, 0)-supereulerian or is contractible to K2,3. We prove the following for any

nonnegative integers s and t.

(i) For any real numbers a and b with 0 < a < 1, there exists a family of finitely

many graphs F(a, b; s, t) such that if G is a simple graph on n vertices with

κ′(G) ≥ t + 2 and δ(G) ≥ an + b, then either G is (s, t)-supereulerian, or G is

contractible to a member in F(a, b; s, t).

(ii) Let `K2 denote the connected loopless graph with two vertices and ` parallel

edges. If G is a simple graph on n vertices with κ′(G) ≥ t+2 and δ(G) ≥ n
2 −1,



then when n is sufficiently large, either G is (s, t)-supereulerian, or for some

integer j with t+ 2 ≤ j ≤ s+ t, G is contractible to a jK2.

For a hamiltonian property P, Clark and Wormold introduced the prob-

lem of investigating the value P(a, b) = max{min{n : Ln(G) has property

P}: κ′(G) ≥ a and δ(G) ≥ b}, and proposed a few problems to determine

P(a, b) with b ≥ a ≥ 4 when P is being hamiltonian, edge-hamiltonian and

hamiltonian-connected. Zhan in 1986 proved that the line graph of a 4-edge-

connected graph is Hamilton-connected, which implies a solution to the un-

settled cases of above-mentioned problem. We consider an extended version

of the problem. Let ess′(G) denote the essential edge-connectivity of a graph

G, and define P ′(a, b) = max{min{n : Ln(G) has property P}: ess′(G) ≥ a

and δ(G) ≥ b}. We investigate the values of P ′(a, b) when P is one of these

hamiltonian properties. In particular, we show that for any values of b ≥ 1,

P ′(4, b) ≤ 2 and P ′(4, b) = 1 if and only if Thomassen’s conjecture that every

4-connected line graph is hamiltonian is valid.
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Chapter 1

Introduction

1.1 Notations and Terminology

This research project focusses on hamiltonian line graph problems and supereu-

lerian problems. All graphs considered in this dissertation are undirected, finite

and loopless. As in [87], for a graph G, let α(G), α′(G), κ(G) and κ′(G) denote

the stability number (also called the independence number), matching number,

connectivity and edge connectivity of G, respectively.

Let G1 and G2 be two graphs. The intersection of G1 and G2, denote by

G1 ∩ G2, has the vertex set V (G1 ∩ G2) and edge set E(G1 ∩ G2) = E(G1) ∩
E(G2); and the union of G1 and G2, denoted by G1 ∪ G2, has the vertex set

V (G1 ∪G2) = V (G1) ∪ V (G2) and the edge set E(G1 ∪G2) = E(G1) ∪E(G2).

If G2
∼= K2 with E(G2) = {e}, then we simply write as G1 ∪ e.

The line graph L(G) of a graph G is a simple graph obtained by taking

E(G) to be the vertex set V (L(G)), and any two vertex of V (L(G)) are adjacent

if and only if they are adjacent in G as edges.

Hassler Whitney (1932) [148] proved that with one exceptional case the

structure of a connected graph G can be recovered completely from its line

graph. Many other properties of line graphs follow by translating the properties

of the underlying graph from vertices into edges, and by Whitney’s theorem the

same translation can also be done in the other direction. Line graphs have been

recognized as a class of graphs with many interesting properties. For example,

line graphs are 1,3-free [148], and the line graphs of bipartite graphs are perfect

[149].

Walk is a sequence of vertices and edges, where the edges connect the

adjacent vertices in the sequence. Tour is a walk with no repeated edges.

Path is a walk with no repeated vertices.

A graph is hamiltonian if it contains a spanning cycle, which is a cycle

that passes through every vertex exactly once. In other words, a Hamiltonian

graph is a graph in which it is possible to traverse every vertex in the graph
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exactly once and return to the starting vertex by following the edges of the

graph.

The hamiltonian cycle is named after the mathematician William Rowan

Hamilton, who studied such cycles in the 19th century. In graph theory, the

problem of determining whether a given graph contains a Hamiltonian cycle is

known as the Hamiltonian cycle problem. This problem is NP-complete[150],

meaning that it is computationally difficult to determine whether a given graph

has a Hamiltonian cycle and it is believed that there is no efficient algorithm

for solving this problem in general. However, there are efficient algorithms for

finding Hamiltonian cycles in certain special classes of graphs.

Thomassen posed one of the leading conjectures on the hamiltonian line

graph problem that every 4-connected line graph is hamiltonian. There are

several known result listed below.

Theorem 1.1.1 Let G be a graph.

(i) (Zhan, Theorem 3 in [84]) If κ(L(G)) ≥ 7, then L(G) is hamiltonian-

connected.

(ii) (Kaiser and Vrána [68]) If κ(L(G)) ≥ 5 and δ(L(G)) ≥ 6, then L(G) is

hamiltonian.

We call a closed trail in a graph an Euler tour if it is traverses every edge

of the graph exactly once. A graph is Eulerian if it admits an euler tour. In

1736, Euler proved a connected graph is Eulerian if and only if every vertex has

even degree. This is known as Euler’s Theorem.

The Chinese postman problem is a closely related problem, which seeks the

shortest closed walk in a connected graph such that each edge traversed at least

once. If the graph is eulerian, then the eulerian closed trail is an optimal solution

to the Chinese postman problem. If not, then the optimization problem is to

the minimum number of edges to be duplicate to result in an Eulerian graph”.

As a dual problem, Boesch, Suffey and Tindel [7] proposed the supereulerian

problem, which seeks to determine whether a graph contains a spanning eulerian

subgraphs. If a graph G contains a spanning Eulerian subgarph, then it is called

supereulerian.

The supereulerian graph problem is also motivated by the study of Hamilto-

nian problems of graphs. A graph G is Hamiltonian if G has a spanning cycle.

For integers a, b > 0, an [a, b]-factor F of G is a spanning subgraph of G such

that for any v ∈ V (F ), a ≤ dF (v) ≤ b. Thus a graph G is Hamiltonian if and

only if G has a connected [2, 2]-factor; and is supereulerian if and only if G

has a connected even [2,∆(G)]-factor. For a non-Hamiltonian graph G, and an

even number k with 2 ≤ k ≤ ∆(G), if G has a connected even [2, k]-factor, then

the smaller k is, the closer G is to being Hamiltonian.

In particular, if G has an Eulerian subgraph H such that E(G−V (H)) = Ø,

we say graph G is dominating by H. Harary and Nash-Williams find the
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connection supereulerian graph and hamiltonian graph with line graph.

Theorem 1.1.2 (Harary and Nash-Williams, [125]) Let G be a connected graph

with at least 3 edges. Then L(G) is hamiltonian if and only if G has an Eulerian

subgraph H such that E(G− V (H)) = Ø.

To achieve Thomassen’s conjecture, by Harary and Nash-Williams Theorem,

we need to study supereulerian graphs.

1.2 Background on Hamilton-Connected Line Graphs

This research is motivated by the following well-known theorem of Chvátal and

Erdős on hamiltonian graphs.

Theorem 1.2.1 (Chvátal and Erdős [92]) Let G be a simple graph with at least

three vertices.

(i) If κ(G) ≥ α(G), then G has a Hamilton cycle.

(ii) If κ(G) ≥ α(G)− 1, then G has a Hamilton path.

(iii) If κ(G) ≥ α(G) + 1, then G is Hamilton-connected.

As shown in the survey of Saito in [112], there have been many extensions

and variations of Theorem 1.2.1.

There are quite a few investigations using similar conditions involving edge

connectivity, stability number or matching number to study supereulerian graphs,

as seen in [93, 103, 104, 114, 117], among others.

Another motivation of this research comes from Thomassen’s conjecture

[143] that every 4-connected line graph is hamiltonian. A number most fasci-

nating conjectures in this area are presented below. By an ingenious argument

of Ryjác̆ek [137], Conjecture 1(i) below is equivalent to a seeming stronger con-

jecture of Conjecture 1(ii). In [138], it is shown that all conjectures stated in

Conjecture 1 below are equivalent to each other.

Conjecture 1 (i) (Thomassen [143]) Every 4-connected line graph is hamilto-

nian.

(ii) (Matthews and Sumner [135]) Every 4-connected claw-free graph is hamil-

tonian.

(iii) (Kužel and Xiong [128]) Every 4-connected line graph is Hamilton-connected.

(iv) (Ryjáček and Vrána [138]) Every 4-connected claw-free graph is Hamilton-

connected.

Many researches have been conducted towards these conjectures, as can be

found in the surveys in [88, 121, 122], among others. The best result by far is

obtained by Kaiser, Ryjáček and Vrána in [97]. Algefari et al. (Corollary 1.1

3



of [85]) proved that every connected simple graph G with |E(G)| ≥ 3 and with

δ(G) ≥ α′(G) has a hamiltonian line graph. For an integer s ≥ 0, a graph G

is s-hamiltonian if for any vertex subset X ⊆ V (G) with |X| ≤ s, G−X has

a Hamilton cycle. The current research is to investigate similar relationship

between the minimum degree and the matching number of a graph that would

warrant Hamilton-connected line graphs and 1-hamiltonian line graphs. As

Hamilton-connected graphs and 1-hamiltonian graphs must be 3-connected, it

is natural to conduct the investigation within 3-connected line graphs.

1.3 Background on spanning connectivity of graphs

In [137], Ryjáček uses an ingenious argument to show that Conjecture 1(i)

below is equivalent to a seeming stronger statement in Conjecture 1(ii). Later,

Ryjáček and Vrána in [138] indicated that all the statements in Conjecture 1

are mutually equivalent.

There has been an effort to associate the study of the hamiltonicity and

the connectivity of a graph. For any integer s > 0 and for u, v ∈ V (G) with

u 6= v, an (s;u, v)-path-system of G is a subgraph H consisting of s internally

disjoint (u, v)-paths, and we say H is a spanning (s;u, v)-path-system if

V (H) = V (G). The spanning connectivity κ∗(G) of a graph G is the largest

integer k such that for any integer s with 0 ≤ s ≤ k and for any u, v ∈ V (G)

with u 6= v, G has a spanning (s;u, v)-path-system. A graph G is spanning

k-connected if for any u, v ∈ V (G) with u 6= v, κ∗(G) ≥ k. By define spanning

connectivity. Thomassen conjecture is equivalent to that every 4 connected line

graph is 2-spanning connected.

Suppose G is a graph. We define the maximal number of disjoint union of

trees contained in G as packing number, denote as τ(G).

Theorem 1.3.1 (Catlin and Lai [90]) Let G be a graph with τ(G) ≥ 2. Then

κ∗(L(G)) ≥ 2 if and only if κ(L(G)) ≥ 3.

Theorem 1.3.2 (Zhan) If κ′(G) ≥ 4, then κ∗(L(G)) ≥ 2.

Theorem 1.3.3 (Huang and Hsu[67]) For any integer k ≥ 2, if κ′(G) ≥ 2k ≥
4, then κ∗(L(G)) ≥ k.

Chen et al in [?] improved Theorem 1.3.3 by using the core G0 of a graph G to

characterize all spanning 3-connected line graph L(G) when τ(G0) ≥ 2.

For an integer m > 0, define L0(G) = G, and the iterated line graph

Lm(G) = L(Lm−1(G)). A path P of G is a divalent path of G if every

internal vertex of P has degree 2 in G. Following [129], we define a proper

divalent path to be one that is not of length 2 and in a K3, and

`(G) = max{m : G has a length m proper divalent path (1.1)
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Define G to be the family of all connected nontrivial graphs that are not isomor-

phic to a path, a cycle or a K1,3. To study iterated line graphs, we only consider

graphs in G. The iterated line graph index problem is also an intensively studied

topic in graph theory. By the definition of line graphs, the iterated line graphs

of a path will eventually becoming a K1; the iterated line graphs of a cycle

remains as unchanged. Therefore, in discussing iterated line graph problems,

it is common to exclude paths, cycles and the graph K1,3, whose line graph is

a 3-cycle. Chartrand and Wall in [11] initiated the study the smallest integer

k ≥ 0, called the hamiltonian index of a graph G, such that the iterated line

graph Lk(G) becomes hamiltonian. we have the following definition.

Definition 1 ([130]) Let P denote a graphical property and G be a connected

graph G ∈ G. Then P(G), the P-index of G, is defined by

P(G) =


min{k : Lk(G) has property P}

if for some integer j > 0, Lj(G) has property P,

∞
otherwise.

Clark and Wormald in [20] studied the existence of the indices for the prop-

erties of being edge-hamiltonian, pancyclic, vertex-pancyclic, edge-pancyclic,

hamiltonian-connected, respectively. Additional studies of these indices can

also be found in [130]. In [139], Ryjáček, Woeginger and Xiong indicated that

determining the value of h(G) is a difficult problem.

For an integer k ≥ 2, and a graph G ∈ G, let sk(G) be the smallest integer

m such that κ∗(Lm(G)) ≥ k. When k is small, upper bounds for sk(G) have

been investigated.

Theorem 1.3.4 Let G ∈ G be a connected graph with maximum degree ∆(G).

(i) (Chen et al. Theorem 22 of [10]) s2(G) ≤ |V (G)| −∆(G) + 1.

(ii) (Xiong et al. Theorem 1.3 of [144]) s3(G) ≤ `(G) + 6.

As every Hamilton-connected graph must also be hamiltonian, we conclude

that a graph G is Hamilton-connected if and only if κ∗(G) > 0. Thus determin-

ing if κ∗(G) > 0 in general is an NP-complete problem. One of the motivation of

this research is to seek nontrivial common families of graphs in which spanning

connectivity can be polynomially determined.

As it is known that the connectivity of a graph can be polynomially deter-

mined, for example, [119, 123]), the problem whether high connectivity could

imply positive spanning connectivity was considered. While the complete bi-

partite graphs indicate that in general, high connectivity of a graph G does not

warrant κ∗(G) > 0, researchers have been investigating graph families in which

high connectivity of a graph G in these family would imply that κ∗(G) > 0.
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Thomassen in [143] first conjectured that every 4-connected line graph is hamil-

tonian. This most fascinating conjecture has attracted many researchers.

Thomassen’s above-mentioned conjecture is shown to be equivalent to each

of the following.

Conjecture 2 Let G be a graph and let Γ be a claw-free graph.

(i) (Thomassen [143] and, Kučzel and Xiong [128]) Every 4-connected line

graph has spanning connectivity at least 2.

(ii) (Matthews and Sumner [135], and Ryjáček and Vrána [138]) Every 4-

connected claw-free graph has spanning connectivity at least 2.

As of today, little is known on maximally spanning connected graph families

other than the complete graphs and a few others. This motivates the current

study. For a vertex v ∈ V (G), define NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The

vertex v is locally connected if the induced subgraph G[NG(v)] is connected. A

graph G is locally connected if very vertex v of G is locally connected. Asra-

tian [1] and Y. Sheng, F. Tian and B. Wei [141] studied connectivity conditions

for a locally connected claw-free graph G to have spanning connectivity at least

2. As line graphs are claw-free, their result is also valid for line graphs. A class

of maximally spanning connected line graphs has also been studied in [127] and

[18].

Theorem 1.3.5 Let G be a connected graph.

(i) (Asratian [1] and Y. Sheng, F. Tian and B. Wei [141]) If G is an locally

connected claw-free graph with κ(G) ≥ 3, then κ∗(G) ≥ 2.

(ii) (Huang and Hsu [127], and Chen et al. [18]) Let k ≥ 3 be an integer. If

a graph G has k-edge-disjoint spanning trees, then L(G) is maximally spanning

connected.

Theorem 3.2.2(i) below, one of our main results, has identified a new family

of graphs whose line graphs are maximally spanning connected, which extends

Theorem 3.2.1(i). As connectivity of a graph can be polynomially determined.

In this research, we consider some indices related to spanning connectivity

of graphs. For an integer k ≥ 2, and a graph G ∈ G, let sk(G) be the smallest

integer m such that κ∗(Lm(G)) ≥ k. When k is small, upper bounds for sk(G)

have been investigated.

1.4 Background on (s, t)-supereulerian graphs

The supereulerian problem is introduced by Boesch, Suffel, and Tindell in [7],

which seeks to characterize graphs with spanning closed trails. Catlin [9] proved

the following theorems and start to use a reduction method to find spanning

Eulerian subgraphs.
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Lei et al. in [74] introduced (s, t)-supereulerian graphs, as a generalization

of supereulerian graphs.

Definition 2 For integers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian

if for any disjoint edge sets X,Y ⊆ E(G) with |X| ≤ s and |Y | ≤ t, G has a

spanning closed trail that contains X and avoids Y .

By Definition 2, it is known that supereulerian graphs are precisely (0, 0)-

supereulerian graphs, and Catlin’s reduction method is still a useful tool as

(s, t)-supereulerian graphs. The notion of (s, t)-supereulerian was formally in-

troduced in [73, 74], as a generalization of supereulerian graphs. For integers

s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for any disjoint edge

sets X,Y ⊆ E(G) with |X| ≤ s and |Y | ≤ t, G has a spanning closed trail

that contains X and avoids Y . Thus supereulerian graphs are precisely (0, 0)-

supereulerian graphs. The (s, t)-supereulerian graph problem aims to determine

graphs that are (s, t)-supereulerian. In particular, it is of interests to extend

former results in (0,0)-supereulerian to (s, t)-supereulerian, for generic values of

s and t. A number of research results on the (s, t)-supereulerian problem and

similar topics have been obtained, as seen in [22, 23, 26, 73, 74, 30, 35], among

others. Settling an open problem of Bauer posed in [2, 3], Catlin [9] proved the

following theorem.

Theorem 1.4.1 (Catlin, Theorem 9 of [9]) Let G be a simple graph on n ver-

tices with κ′(G) ≥ 2. If δ(G) ≥ n
5 − 1, then when n is sufficiently large, G is

(0, 0)-supereulerian, or G can be contracted to a K2,3.

It is natural to consider whether Theorem 3.2.1 can be extended to (s, t)-

supereulerian graphs for all possible values of s and t. By definition, if a graph

G is (s, t)-supereulerian, then κ′(G) ≥ t+ 2.

Theorem 1.4.2 (Lei et al.[73]) Let s ≤ 2 and t ≥ 0 be two integers. G is a

(t+ 2)-edge-connected locally connected graph on n vertices. Then exact one of

the following holds: (i) G is (2, t)-supereulerian. (ii) The reduction of (G−Y )x
is member of {K1,K2,K2, t(t ≥ 1)}

Theorem 1.4.3 ((Lei et al.[74]) Let k ≥ 1 be an integer. If G is a connected,

locally k- edge connected graph, then G is (s, t)-supereulerian for all pairs of

nonnegative integers s and t with s+ t ≤ k − 1.

Theorem 1.4.4 (Lei et al.[74]) Let G be a connected, locally k-edge-connected

graph. Let s and t be nonnegative integers such that s+ k ≤ k. (i) If t < k and

k ≥ 3, then G is (s, t)- supereulerian. (ii) If κ′(G) ≥ k + 2 and k ≥ 3, then G

is (s, t)-supereulerian.
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We define a relation ”∼” on E(G) such that e1 ∼ e2 if e1 = e2, or if e1 and

e2 form a cycle in G. It is routine to check that ∼ is an equivalence relation

and edges in the same equivalence class are parallel edges with the same end

vertices. We use [uv] to denote the set of all edges between u and v in a graph,

and shorten |[uv]| to |uv|. For a graph G, µ(G) = max{|uv| : uv ∈ E(G)} is

the multiplicity of G. Let `K2 denote the connected loopless graph with two

vertices and ` parallel edges. Thus for each edge e ∈ E(G), the edges parallel

to e in G induces a subgraph isomorphic to |e|K2.

1.5 Background on Index Problem

For a hamiltonian property P, Clark and Wormold introduced the problem of

investigating the value P(a, b) = max{min{n : Ln(G) has property P}: κ′(G) ≥
a and δ(G) ≥ b}, and proposed a few problems to determine P(a, b) with

b ≥ a ≥ 4 when P is being hamiltonian, edge-hamiltonian and hamiltonian-

connected. Zhan in 1986 proved that the line graph of a 4-edge-connected

graph is Hamilton-connected, which implies a solution to the unsettled cases

of above-mentioned problem. We consider an extended version of the problem.

Let ess′(G) denote the essential edge-connectivity of a graph G, and define

P ′(a, b) = max{min{n : Ln(G) has property P}: ess′(G) ≥ a and δ(G) ≥ b}.
We investigate the values of P ′(a, b) when P is one of these hamiltonian prop-

erties. In particular, we show that for any values of b ≥ 1, P ′(4, b) ≤ 2 and

P ′(4, b) = 1 if and only if Thomassen’s conjecture that every 4-connected line

graph is hamiltonian is valid.

For discussional convenience, we in this paper denote G to be the family

of all connected nontrivial graphs that are not isomorphic to a path, a cycle

or a K1,3. To study iterated line graphs, we only consider graphs in G. The

iterated line graph index problem is an intensively studied topic in graph theory.

Chartrand and Wall in [11] initiated the study of the smallest integer k ≥ 0,

called the hamiltonian index of a graph G, such that the iterated line graph

Lk(G) becomes hamiltonian. Other hamiltonian like indices were defined and

studied by Clark and Wormald in [20].

Clark and Wormald in [20] initiated the study of the indices for the proper-

ties of being hamiltonian, being edge-hamiltonian and being Hamilton-connected,

together with several other hamiltonian properties. They proved the existences

of the indices of the properties listed above. Additional studies of these indices

can also be found in [130], which showed that the above-mentioned hamiltonian-

like properties are closed under taking iterated line graphs. In [139], Ryjáček,

Woeginger and Xiong indicated that determining the value of the hamiltonian

index is a difficult problem. The index problem for graphical properties has
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been intensively studied, as seen in [11, 19, 10, 20, 120, 129, 130, 132, 56, 57,

140, 139, 144, 146], among others. Define

H = {G ∈ G : G is hamiltonian},
Eh = {G ∈ G : G is edge-hamiltonian},
Hc = {G ∈ G : G is Hamilton-connected}.

For a hamiltonian property P and integers a > 0 and b > 0, Clark and Wormald

in [20] define

P(a, b) =


max{min{n : Ln(G) ∈ P} : G ∈ Gwith κ′(G) ≥ a, δ(G) ≥ b},

if such max exists,

∞
otherwise.

(1.2)

and investigate the values of P(a, b) when P represents the properties of be-

ing hamiltonian, edge-hamiltoning, pancyclic, edge-pancyclic, vertex-pancyclic,

Hamilton-connected and pan-connected, among others. Clark and Wormald in

[20] showed that for all the above mentioned properties P,

P(1, 1) = P(1, 2) = P(2, 2) =∞. (1.3)

Clark and Wormald in [20] also proved that for other cases with b ≥ a ≥ 3,

1 ≤ P(a, b) ≤ 3 except when b ≥ a ≥ 4 and P ∈ {H, Eh,Hc}. The paper

[20] ends with the following question: if P ∈ {H, Eh,Hc}, what is the value of

P(a, b) when b ≥ a ≥ 4?

Zhan in [63] is the first addressing this question. He proved in [63] that the

line graph of every 4-edge-connected graph is in Hc. This result implies that

if b ≥ a ≥ 4, then H(a, b) = Hc(a, b) = 1. For an Hamilton-connected graph

G and an arbitrary edge e = uv ∈ E(G), as G has a spanning (u, v)-path P ,

E(P ) ∪ {e} induces a Hamilton cycle that contains e. Therefore by definition,

we have

Hc ⊆ Eh ⊆ H, We have, for any positive integers a and b,

Hc(a, b) ≥ Eh(a, b) ≥ H(a, b).

Hence Zhan’s result gives rise to a complete answer to the question raised in

[20], as follows.

Theorem 1.5.1 (Zhan [63]) If b ≥ a ≥ 4, then H(a, b) = Hc(a, b) = Eh(a, b) =

1.

We consider an extension of the problem. Let U,W ⊆ V (G) be vertex

subsets. Define

(U,W )G = {uw ∈ E(G) : u ∈ U and w ∈W}.
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When Y = V (G)−X, then we define ∂G(U) = (U, V (G)− U)G.

For a hamiltonian property P and positive integers a, b, define

P ′(a, b) =


max{min{n : Ln(G) ∈ P} : G ∈ G with ess′(G) ≥ a, δ(G) ≥ b},

if such max exists,

∞
otherwise.

(1.4)

By (1.2) and (1.4) and as ess′(G) ≥ κ′(G), it is known that P ′(a, b) ≥ P(a, b)

for any property P. By definition, if a graph G satisfies both δ(G) ≥ k and

ess′(G) ≥ k, then G does not have an edge cut whose size is less than ess′(G),

and so we must have ess′(G) = κ′(G) in this case. Thus

for all b ≥ a ≥ 1, P ′(a, b) = P(a, b). (1.5)

As δ(G) ≥ κ′(G) for any graph G, we observe that when a > b, P(a, b) does not

exist. However, it is meaningful to discuss P ′(a, b) even when a > b. Unlike the

behavior of P(a, b), the study of P ′(a, b) is related to the following fascinating

conjecture of Thomassen 1(i)

In the research of this part, we shall investigate the values of P ′(a, b) when

P ∈ {H, Eh,Hc}. As (1.5) has suggested some relationship between P ′(a, b)
and P(a, b) when b ≥ a ≥ 1, we reformulate the results in [20] together with

Theorem 3.2.3 as follows.

Theorem 1.5.2 (Clark and Wormald [20], Zhan [63]) For P ∈ {H, Eh,Hc},
we have the following.

P (a, b) =



∞ if 1 ≤ a ≤ b ≤ 2,

3 if P ∈ {Eh,Hc} with a = 1 and b = 3,

2 if P = H and both a = 1 and b = 3,

2 if 2 ≤ a ≤ b ≤ 3, or if 1 ≤ a ≤ 3 < 4 ≤ b,
1 if b ≥ a ≥ 4.

(1.6)
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Chapter 2

A Condition on

Hamilton-Connected Line

Graphs

2.1 Main result

The following is our main result.

Theorem 2.1.1 Let G be a simple graph with |E(G)| ≥ 3 and δ(G) ≥ α′(G).

Then each of the following holds.

(i) L(G) is Hamilton-connected if and only if κ(L(G)) ≥ 3.

(ii) L(G) is 1-hamiltonian if and only if κ(L(G)) ≥ 3.

2.2 Preliminaries

A cycle on n vertices is often called an n-cycle. For a subset X ⊆ V (G) or

X ⊆ E(G), G[X] is the subgraph of G induced by X. A path from a vertex u to

a vertex v is referred to as a (u, v)-path. An edge subset X of G is an essential

cut if G−X has at least two nontrivial components or if |X| = |E(G)|−1. For

an integer k ≥ 0, a connected graph G is essentially k-edge-connected if G

does not have an essential edge cut X with |X| < k. For a connected graph G,

let ess′(G) be the largest integer k such that G is essentially k-edge-connected.

By the definition of a line graph, we have the following observation for a graph

G and its line graph L(G):

κ(L(G)) = ess′(G). (2.1)

2.2.1 Maximum matching of a graph

Let M be a matching in G. We use V (M) to denote the set V (G[M ]). A path

P in G is an M-augmenting path if the edges of P are alternately in M and
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in E(G)−M , and if both end vertices of P are not in V (M). We start with a

fundamental theorem of Berge.

Theorem 2.2.1 (Berge [86]) A matching M in G is a maximum matching if

and only if G does not have M -augmenting paths.

Applying Theorem 2.2.1, the following results are proved in [85], which will

be utilized in our arguments in the proof of Theorem 3.2.2.

Lemma 2.2.2 (Lemma 2.1 of [85]) Let k > 0 be an integer and G be a graph

with a matching M such that |M | = k. Suppose that V (G)−V (M) has a subset

X with |X| ≥ 2 such that for any v ∈ X, d(v) ≥ k. If X has at least one vertex

u such that d(u) ≥ k + 1, then M is not a maximum matching of G.

Theorem 2.2.3 (Theorem 2.2 of [85]) Let G be a connected simple graph with

n = |V (G)| ≥ 2 and k = α′(G). If δ(G) ≥ k, then κ′(G) ≥ k.

2.2.2 Collapsible graphs and strongly spanning trailable graphs

We use a definition of collapsible graphs [101] that is equivalent to Catlin’s

original definition in [9]. For a graph G, we use O(G) to denote the set of

all vertices of odd degree in G. A graph G is collapsible if for any subset

R ⊆ V (G) with |R| ≡ 0 (mod 2), G has a spanning connected subgraph H

such that O(H) = R. If G is collapsible, then by definition with R = Ø, G is

supereulerian and so κ′(G) ≥ 2. As examples, Catlin [9] observed that cycles

of length at most 3 are collapsible. In [9], Catlin showed that for any graph

G, every vertex of G lies in a unique maximal collapsible subgraph of G. The

reduction of G, denoted by G′, is obtained from G by contracting all nontrivial

maximal collapsible subgraphs of G. A graph is reduced if it is the reduction

of some graph. As shown in [9], a reduced graph is simple.

Theorem 2.2.4 Let G be a graph.

(i) (Catlin, Theorem 3 of [9]) Suppose that H is a collapsible subgraph of G.

Then G is collapsible if and only if G/H is collapsible.

(ii) (Catlin, Lemma 3 of [9]) If G is collapsible, then any contraction of G is

also collapsible.

(iii) (Catlin, Theorem 5 of [9]) A graph G is reduced if and only if G does not

contain a nontrivial collapsible subgraph.

(iv) If G has a spanning connected subgraph Q, such that for any edge e ∈ E(Q),

G has a collapsible subgraph Je with e ∈ E(Je), then G is collapsible.

Proof. We argue by induction on n = |V (G)| to prove (iv). As (iv) holds for

n = 1, we assume that n ≥ 2. For any e ∈ E(Q), let Je denote a collapsible

subgraph of G with e ∈ E(Je). We fix an edge e0 ∈ E(Q) and let J = Je0
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be a collapsible subgraph of G that contains e0. Define G1 = G/J . As Q is a

spanning subgraph in G, Q1 = Q/(Q ∩ J) is a spanning subgraph of G1. For

any edge e ∈ E(Q1) ⊆ E(Q), there exists a collapsible subgraph Je of G with

e ∈ E(Je). By Theorem 2.2.4(ii), J ′e = Je/(J ∩ Je) is a collapsible subgraph of

G1 with e ∈ E(J ′e). It follows by induction that G1 is collapsible. By Theorem

2.2.4(i), G is collapsible.

For u, v ∈ V (G), a (u, v)-trail is a trail of G from u to v. For e, e′ ∈ E(G),

an (e, e′)-trail is a trail of G having end-edges e and e′. An (e, e′)-trail T is

dominating if each edge of G is incident with at least one internal vertex of

T , and T is spanning if T is a dominating trail with V (T ) = V (G). A graph

G is spanning trailable if for each pair of edges e1 and e2, G has a spanning

(e1, e2)-trail. Suppose that e = u1v1 and e′ = u2v2 are two edges of G. If

e 6= e′, then the graph G(e, e′) is obtained from G by replacing e = u1v1 with

a path u1vev1 and by replacing e′ = u2v2 with a path u2ve′v2, where ve, ve′ are

two new vertices not in V (G). If e = e′, then G(e, e′), also denoted by G(e), is

obtained from G by replacing e = u1v1 with a path u1vev1. For the recovering

operation, we let ce(G(e, e′)) be the graph obtained from G(e, e′) by replacing

the path u1vev1 with the edge e = u1v1. Thus, ce′(ce(G(e, e′))) = G.

By the definition of G(e′, e′′), we have the following observation.

If G(e′, e′′) is collapsible, then G(e′, e′′) has a spanning (ve′ , ve′′)-trail. (2.2)

In fact, if G(e′, e′′) is collapsible, then G(e′, e′′) has a spanning connected sub-

graph J with O(J) = {ve′ , ve′′}. Hence J is a spanning (ve′ , ve′′)-trail.

As defined in [106], a graph G is strongly spanning trailable if for any

e, e′ ∈ E(G), G(e, e′) has a (ve, ve′)-trail T with V (G) = V (T )−{ve, ve′}. Since

e = e′ is possible, strongly spanning trailable graphs are both spanning trailable

and supereulerian.

Theorem 2.2.5 (Luo et al. [107], see also Theorem 4 of [90]) If κ′(G) ≥ 4,

then G is strongly spanning trailable.

Let G be a graph with |V (G)| ≥ 3. For each integer i ≥ 0, define Di(G) =

{v ∈ V (G) : dG(v) = i}. Suppose that ess′(G) ≥ 3. The core of this graph G,

denoted by G0, is obtained from G − D1(G) by contracting exactly one edge

xy or yz for each path xyz in G with dG(y) = 2. By the definition of Di(G),

G−D1(G) is connected if G is connected. As contraction does not decrease the

edge connectivity, G0 is connected if G is connected. Lemma 2.2.6 (iii) below

is proved by using a similar argument in the proof of Theorem 5.2.1.

Lemma 2.2.6 (Shao [140]) Let G be a connected nontrivial graph such that

κ(L(G)) ≥ 3, and let G0 denote the core of G.

(i) G0 is uniquely determined by G with κ′(G0) ≥ 3.
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(ii) (see also Lemma 2.9 of [99]) If G0 is strongly spanning trailable, then L(G)

is Hamilton-connected.

(iii) (see also Proposition 2.2 of [99]) L(G) is Hamilton-connected if and only

if for any pair of edges e′, e′′ ∈ E(G), G has a dominating (e′, e′′)-trail.

2.3 Proof of the main results

Theorem 2.1.1 will be proved in this section. As every Hamilton-connected

graph must be 3-connected, and every 1-hamiltonian graph must be 3-connected,

it suffices to prove that if G is a graph satisfying δ(G) ≥ α′(G) and κ(L(G)) ≥ 3,

then L(G) is Hamilton-connected for Theorem 2.1.1(i) and L(G) is 1-hamiltonian

for Theorem 2.1.1(ii).

2.3.1 Proof of Theorem 2.1.1(i).

As κ(L(G)) ≥ 3, we have ess′(G) ≥ 3, and so by Lemma 2.2.6(i), the core G0 of

G is well-defined with κ′(G0) ≥ 3. We shall prove a slightly stronger Theorem

3.2.6 below, which implies the sufficiency of Theorem 2.1.1(i).

Theorem 2.3.1 Let G be a connected simple graph with |E(G)| ≥ 3 and

ess′(G) ≥ 3, and let G0 denote the core of G.

(i) If δ(G0) ≥ α′(G0), then G0 is strongly spanning trailable.

(ii) Suppose that δ(G) ≥ α′(G). Then L(G) is Hamilton-connected if and only

if κ(L(G)) ≥ 3.

To prove Theorem 3.2.6, we begin with some tools that would be used in

the arguments. For a graph G, let circ(G) denote the length of a longest cycle

of G.

Proposition 2.3.2 Let G be a connected simple graph with |E(G)| ≥ 3 and

δ(G) ≥ α′(G) = k.

(i) If k ≥ 4, then κ′(G) ≥ k ≥ 4 and G is strongly spanning trailable.

(ii) (Lemma 3.1 of [85]) If k = 1, then G ∈ {K3,K1,n−1}.
(iii) If k ≥ 4 or k = 1, then L(G) is Hamilton-connected.

Proof. To prove Proposition 2.3.2(i), we apply Theorem 2.2.3 to conclude

that κ′(G) ≥ k ≥ 4. Hence by Theorem 2.2.5, G is strongly spanning trailable.

It remains to justify Proposition 2.3.2(iii). If k ≥ 4, then as G is strongly

spanning trailable, by Lemma 2.2.6(iii), L(G) is Hamilton-connected. If k = 1,

then L(G) is a complete graph and so it is also Hamilton-connected.

We define P−(10), P (10), P (11),K1,3(1, 1, 1),K2,3, T (1, 2) to be the graphs

as respectively depicted in Figure 1.
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P−(10) P (10) P (11) K1,3(1, 1, 1) K2,3 T (1, 2)

Figure 1. nontrivial reduced graphs in Theorem 2.3.3(ii).

Theorem 2.3.3 Let G be a connected graph with n = |V (G)|, and let G′ denote

the reduction of G.

(i) (Ma et al., Theorem 3.2 of [108], See also Theorem 4.5.4 of [116]) If G = G′,

and G satisfies κ′(G) ≥ 2, circ(G) ≤ 8, |D2(G)| ≤ 2 and ess′(G) ≥ 3, then G

is collapsible.

(ii) (Theorem 1.7 of [102]) If ess′(G) ≥ 3, n ≤ 11, |D1(G)| = 0 and |D2(G)| ≤
2, then G′ ∈ {K1,K2,3,K1,3(1, 1, 1), T (1, 2), P−(10), P (10), P (11)}.

Corollary 2.3.4 Each of the following holds.

(i) Every graph G with κ′(G) ≥ 2, circ(G) ≤ 8, |D2(G)| ≤ 2 and ess′(G) ≥ 3

is collapsible.

(ii) Every graph G with κ′(G) ≥ 3 and circ(G) ≤ 6 is strongly spanning trailable.

(iii) Let G be a graph with ess′(G) ≥ 3 and circ(G) ≤ 6, and let G0 be the core

of G. Then G0 is strongly spanning trailable.

Proof. Let G be a graph with κ′(G) ≥ 2, circ(G) ≤ 8, |D2(G)| ≤ 2 and

ess′(G) ≥ 3, and let G′ be the reduction of G. By the definition of contraction,

we have κ′(G′) ≥ κ′(G) ≥ 2, circ(G′) ≤ circ(G) ≤ 8 and ess′(G′) ≥ ess′(G) ≥
3. Let v ∈ D2(G′) be a vertex. Since ess′(G) ≥ 3, v must be a trivial vertex and

so v ∈ D2(G). This implies that |D2(G′)| ≤ |D2(G)| ≤ 2. It follows by Theorem

2.3.3, G′ is collapsible which implies that G′ = K1 and so G is collapsible. This

proves (i).

To prove (ii), we assume that G with κ′(G) ≥ 3 and circ(G) ≤ 6. Let

e′, e′′ ∈ E(G) be two edges and let H = G(e′, e′′). Then as κ′(G) ≥ 3 and

circ(G) ≤ 6, we conclude that κ′(H) ≥ 2, circ(H) ≤ 8, |D2(H)| ≤ 2 and

ess′(H) ≥ 3. It follows by (i) that H is collapsible. Let ve′ and ve′′ denote

the only vertices in D2(H). As H is collapsible, H has a spanning connected

subgraph T with O(T ) = {ve′ , ve′′}. Thus T is a spanning (ve′ , ve′′)-trail of H,

and so by the randomness of e′, e′′, G is strongly spanning trailable. This proves

(ii).

Now we assume that G is a graph with ess′(G) ≥ 3 and circ(G) ≤ 6. Let G0

denote the core of G. By Lemma 2.2.6(i), κ′(G0) ≥ 3. As G0 is a contraction of

G, we have circ(G0) ≤ circ(G) ≤ 6. By (ii), G0 is strongly spanning trailable.
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2.3.2 Proof of Theorem 3.2.6(i)

We assume that δ(G0) ≥ α′(G0). Let n = |V (G0)| and k = α′(G0). As G is

connected, by the definition of G0, G0 is also connected. Thus if k = 0, then

n = 1, and so by definition, G0 is strongly spanning trailable. Hence we assume

that k > 0. Then |V (G)| ≥ n = |V (G0)| ≥ 2α′(G0) = 2k ≥ 2. Thus G is

a connected nontrivial graph. As ess′(G) ≥ 3, by (2.1) and Lemma 2.2.6(i),

κ′(G0) ≥ 3. Thus |E(G0)| ≥ 3. If k = 1, then applying Proposition 2.3.2(ii)

to G0, G0 is spanned either by a K3 or by a K1,n−1 with κ′(G0) ≥ 3. If G0

is spanned by a K3, then this K3 must have at least two edges each of which

lies in a 2-cycle. For any e′, e′′ ∈ G0, if there exists a 2-cycle C in G0(e′, e′′),

then after contracting this 2-cycle C in G0(e′, e′′), every edge of G0(e′, e′′)/C

lies in a cycle of length at most 3. As C is collapsible, by Theorem 2.2.4(i) that

G0(e′, e′′) is collapsible. If there does not exist a 2-cycle in G0(e′, e′′), every

edge of G0(e′, e′′) lies in a cycle of length at most 3 in G0(e′, e′′). It follows

by Theorem 2.2.4(iv) that G0(e′, e′′) is collapsible. When G0 is spanned by

a K1,n−1, since κ′(G0) ≥ 3, every edge must be in a parallel class of at least

three edges. In this case, every edge of G0(e′, e′′) lies in a cycle of length at

most 3. It follows by Theorem 2.2.4(iv) that G0(e′, e′′) is collapsible. By (2.2),

G0 is strongly spanning trailable. If k ≥ 4, then by Proposition 2.3.2(i), G0

is strongly spanning trailable. Therefore, we assume that k ∈ {2, 3}. Suppose

that k = 2. Then G0 does not have a cycle of length longer than 5, and so by

Corollary 2.3.4(iii), G0 is strongly spanning trailable.

Hence we assume that k = 3, and so circ(G0) ≤ 7. If circ(G0) ≤ 6,

then by Corollary 2.3.4(iii), G0 is strongly spanning trailable, and we are done.

Therefore, we assume that circ(G0) = 7. Let C be a cycle of G0 with |V (C)| =
7. If V (G0) − V (C) 6= Ø, then as G0 is connected, there must be a vertex

v ∈ V (G0) − V (C) such that v is adjacent to a vertex on C, implying that

3 = α′(G0) ≥ 4, a contradiction. Thus V (G0) = V (C) and so |V (G0)| = 7 and

C is a Hamilton cycle of G0.

For any e′, e′′ ∈ E(G0), let H = G0(e′, e′′) and let ve′ , ve′′ denote the new

vertices newly added in the process of subdividing e′ and e′′, respectively. Then

|V (H)| = 9. As κ′(G0) ≥ 3, we have |D1(H)| = 0 and |D2(H)| = 2. Let H ′

be the reduction of H. We claim that H ′ = K1 and so H is collapsible. By

contradiction, we assume that 1 < |V (H ′)| ≤ |V (H)| = 9. By Theorem 2.3.3

(ii), H ′ ∈ {K2,3,K1,3(1, 1, 1), T (1, 2)}. Since κ′(G0) ≥ 3, |D2(H ′)| ≤ |D2(H)| ≤
2. It follows that H ′ /∈ {K2,3,K1,3(1, 1, 1), T (1, 2)}, as any of these graphs have

at least 3 vertices of degree 2. This contradiction implies that H ′ = K1 and so

H is collapsible. By (2.2), G0 is strongly spanning trailable. This completes

the proof of Theorem 3.2.6(i).
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2.3.3 Proof of Theorem 3.2.6(ii)

In this subsection, we assume Theorem 3.2.6(i) to prove Theorem 3.2.6(ii). It

suffices to show that if ess′(G) ≥ 3 and δ(G) ≥ α′(G), then L(G) is Hamilton-

connected. Let G0 denote the core of G, k = α′(G) and n = |V (G0)|.
By Proposition 2.3.2(i), if α′(G) ≥ 4, then G is strongly spanning trailable.

By definition, any spanning (ve′ , ve′′)-trail induces a spanning (e′, e′′)-trail in G.

It follows by Lemma 2.2.6 that L(G) is Hamilton-connected.

Hence we assume that k ≤ 3. As G0 is a contraction of G, we have α′(G0) ≤
α′(G) ≤ 3 ≤ κ′(G0) ≤ δ(G0). By Theorem 3.2.6(i), G0 is strongly spanning

trailable. By Lemma 2.2.6(ii), L(G) is Hamilton-connected. This completes

the proof.

2.3.4 Proof of Theorem 2.1.1(ii)

For a vertex u ∈ V (G), define NG(u) = {v ∈ V (G) : uv ∈ E(G)} to be the

set of neighbors of u in G. The main purpose of this subsection is to prove

Theorem 3.2.2(ii). As remarked at the beginning of this section, it suffices to

assume that G is a graph satisfying δ(G) ≥ α′(G) and κ(L(G)) ≥ 3 to show

that L(G) is 1-hamiltonian. In the proof, we will need the following former

results.

Lemma 2.3.5 Let G be a connected graph, and let K−3,3 denote the graph ob-

tained from K3,3 by deleting an edge. Each of the following holds.

(i) (Catlin et al., Theorem 1.1 of [91]) If κ′(G) ≥ 4, then for any edge subset

X ⊆ E(G) with |X| ≤ 2, G − X has two edge-disjoint spanning trees and is

collapsible.

(ii) (Catlin [89]) K−3,3 is collapsible, and so K3,3 is collapsible.

(iii) (Li et al., Lemma 2.1 of [105]) If |V (G)| ≤ 8 with |D1(G)| = 0 and

|D2(G)| ≤ 2. Then the reduction of G is in {K1,K2,K2,3}.

By the definition of the core, and imitating the arguments in [125, 140] and

in Theorem 2.7 of [100], we have the following observation.

Observation 2.3.6 Let s ≥ 0 be an integer, G be a connected graph with

|E(G)| ≥ s+ 3 and ess′(G) ≥ 3, and G0 be the core of G.

(i) (Theorem 2.7 of [100]) The line graph L(G) is s-hamiltonian if and only if

for any S ⊆ E(G) with |S| ≤ s, G− S has a dominating eulerian subgraph.

(ii) If for any S ⊆ E(G0) with |S| ≤ s, G0 − S is supereulerian, then L(G) is

s-hamiltonian.

Proof. It suffices to justify Observation 2.3.6(ii). By Observation 2.3.6(i), we

need to prove that for any X ⊆ E(G) with |X| ≤ s, G −X has a dominating
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eulerian subgraph. Let G0 denote the core of G. Define

S1 = {e ∈ E(G) : e is incident with a vertex in D1(G)},
S′2 = {e ∈ X : e is incident with a vertex in D2(G)}.

We shall adopt the following convention in our arguments. If e′, e′′ ∈ S′2 are

incident with a vertex v ∈ D2(G), then we may always assume that e′′ is

being contracted in the construction of G0 and e′ remains in E(G0). With this

convention, for any v ∈ D2(G), we may denote EG(v) = {e′v, e′′v}, and define

X2 = {e′′v : v ∈ D2(G)}. Hence by the definition of G0, we may assume that

G0 = G/(S1 ∪X2).

Let S2 = S′2−X2, S3 = X−(S1∪S′2). Then S = S2∪S3 ⊆ E(G0). As S ⊆ X,

we have |S| ≤ |X| ≤ s. By the assumption of Observation 2.3.6(ii), G0 − S has

a spanning eulerian subgraph H ′. Let S′′2 = ∪v∈D2(G),e′v∈E(H′){e′v, e′′v}. Define

H = G[E(H ′)∪S′′2 ]. Since H ′ is an eulerian subgraph of G0, by the definition of

G0, every vertex in H not incident with an edge in X2∩S′′2 has the same (even)

degree as in H ′. As H is obtained from G[E(H ′)] by adding the edges in X2∩S′′2 ,

which amounts to subdividing the edges in (∪v∈D2(G)EG(v)) ∩ E(H ′) to form

H, it follows that H is an eulerian subgraph of G. For any edge e ∈ E(G), if

e ∈ E(G)−(S1∪X2) = E(G0), then since H ′ is a spanning eulerian subgraph of

G0, e is incident with a vertex in V (H). If e ∈ S1, then by ess′(G) ≥ 3, e is also

incident with a vertex of degree at least 4 in G. Hence e is incident with a vertex

in V (H) as well. Finally, we assume that e ∈ X2. As X2 = {e′′v : v ∈ D2(G)},
there exists a vertex v ∈ D2(G) with e = e′′v . Let u,w be the neighbors of v

in G, and so uvw is a path of length 2 in G. As ess′(G) ≥ 3, it follows that

dG(u) ≥ 3 and dG(w) ≥ 3. By the definition that G0 = G/(S1 ∪X2) and since

H ′ spans G0, we have u,w ∈ V (G0) = V (H ′). As H = G[E(H ′) ∪ S′′2 ], this

implies that u,w ∈ V (H), and so e must be incident with a vertex in V (H). It

follows by definition that H is a dominating eulerian subgraph of G −X, and

so by Observation 2.3.6(i), L(G)−X is hamiltonian. This proves Observation

2.3.6(ii).

To prove Theorem 2.1.1(ii), we let k = α′(G) and G0 denote the core of G.

Then we will justify the following claim.

Claim 1 If k = 1 or k ≥ 4, then L(G) is 1-hamiltonian.

Suppose first that k = 1. By Proposition 2.3.2(ii), G ∈ {K3,K1,n−1}. As

κ(L(G)) ≥ 3, G ∈ {K1,n−1} where n ≥ 5. By the definition of a line graph,

L(G) = Kn−1 is 1-hamiltonian. Next we assume that k = α′(G) ≥ 4. By Theo-

rem 2.2.3, κ′(G) ≥ 4. By Lemma 2.3.5(i), for any e ∈ E(G), G−e is collapsible,

and so is supereulerian. Thus by Observation 2.3.6, L(G) is 1-hamiltonian. This

proves Claim 1.

18



By Claim 1, it remains to discuss the cases when k ∈ {2, 3}. Suppose that

k = 2. Let M be a maximum matching of G0 and X be the set of vertices in

G0 not incident with any edges in M . As δ(G0) ≥ κ′(G0) ≥ 3, it follows by

Lemma 2.2.2 that |X| ≤ 1 and so |V (G0)| ≤ 5. Thus for any edge e ∈ E(G0),

we have |V (G0 − e)| ≤ |V (G0)| ≤ 5. As κ′(G0) ≥ 3, we have |D1(G0 − e)| = 0

and |D2(G0 − e)| ≤ 2. By Lemma 2.3.5(iii), the reduction of G0 − e is in

{K1,K2,K2,3}. Again by κ′(G0) ≥ 3, κ′(G0 − e) ≥ 2 and G0 − e has at most

two edge cuts of size 2. Thus the reduction of G0 − e is 2-edge-connected and

has at most two edge cuts of size 2. Then the reduction of G0 − e is K1 and so

G0 − e is collapsible. By Observation 2.3.6, L(G) is 1-hamiltonian.

Hence we assume that k = 3. We shall show that

for any e ∈ E(G0), G0 − e is collapsible. (2.3)

We prove (2.3) by contradiction, and assume that for some e0 = z1z2 ∈ E(G0),

G0−e0 is not collapsible. Let G′0 denote the reduction of G0−e0. Since G0−e0

is not collapsible, |V (G′0)| ≥ 2.

Let w1, w2 be the vertices in V (G′0), each of whose preimages in G0 − e0

contains an end vertex of e0. We claim that w1 6= w2. By contradiction, we

assume that w1 = w2. As G′0 is the reduction of G0−e0, there exists a collapsible

subgraph H in G0 − e0 with V (e0) ⊆ V (H), and so (G0 − e0)/H = G0/H.

Since G0/H is a contraction of G0, we have κ′(G0/H) ≥ κ′(G0) ≥ 3 and

α′(G0/H) ≤ α′(G) = k ≤ 3. It follows that κ′(G0/H) ≥ 3 and circ(G0/H) ≤ 7.

By Corollary 2.3.4(i), G0/H is collapsible which implies that (G0 − e0)/H is

collapsible. Thus by Theorem 2.2.4(i), G0 − e0 is collapsible, which is contrary

to the assumption that G0 − e0 is not collapsible. This proves w1 6= w2.

Define G+
0 to be the graph obtained from G′0 by adding a new edge linking

w1 and w2. Thus G+
0 is a contraction of G0, and G′0 = G+

0 − e0. As G0 is a

contraction of G and G′0 is a contraction of G0 − e0, it follows that α′(G′0) ≤
α′(G0) ≤ α′(G) = k ≤ 3. Since κ′(G0) ≥ 3 and G+

0 is a contraction of G0, we

have κ′(G+
0 ) ≥ 3. As G′0 = G+

0 −e0, we conclude that κ′(G′0) ≥ 2, |D2(G′0)| ≤ 2

and ess′(G′0) ≥ 3. Thus by Corollary 2.3.4(i), G′0 is collapsible. As G′0 is the

reduction of G0 − e0, we have G′0 = K1 and so G0 − e0 is collapsible. This

leads to a contradiction to the assumption that G0 − e0 is not collapsible, and

completes the proof of Theorem 3.2.2(ii).
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Chapter 3

Polynomially determining

spanning connectivity of

locally connected line graphs

3.1 Main result

Theorem 3.1.1 Each of the following holds.

(i) Every 3-connected, locally connected line graph L(G) is maximally spanning

connected.

(ii) The spanning connectivity of a locally connected line graph can be polyno-

mially determined.

Theorem 3.1.2 Let G ∈ G be a connected graph with maximum degree ∆(G).

(i) (Chen et al. Theorem 22 of [10]) s2(G) ≤ |V (G)| −∆(G) + 1.

(ii) (Xiong et al. Theorem 1.3 of [144]) s3(G) ≤ `(G) + 6.

The results in Theorem 3.2.3 also motivate our current study. A divalent

path P of G is a bridge divalent path if every edge of P is a cut edge of G;

and is a divalent (s, t)-path if the two end vertices of P are of degree s and

t, respectively. The next main result studies best possible bounds for sk(G).

When k = 2, Theorem 3.1.3(iv) improves Theorem 3.2.3(i) and when k = 3,

Theorem 3.1.3(iii) sharpens Theorem 3.2.3(ii).

Theorem 3.1.3 Let G ∈ G be a graph and let k ≥ 3 be an integer.

(i) s2(G) ≤ `(G) + 2.

(ii) sk(G) ≤ `(G) + k− 1. Furthermore, sk(G) = `(G) + k− 1 only if for some

integer t ≥ 3, G has a bridge divalent (3, t)-path of length `(G).

(iii) s3(G) = `(G) + 2 if and only if for some integer t ≥ 3, G has a bridge

divalent (3, t)-path of length `(G).

(iv) sk(G) ≤ |V (G)| −∆(G) + k − 2.
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For a graph G ∈ G, define msc(G) to be the smallest integer m such that

Lm(G) is maximally spanning connected. A best possible upper bound for

msc(G) is also obtained.

Theorem 3.1.4 Let G ∈ G be a graph.

(i) msc(G) ≤ `(G) + 2, and for any integer m ≥ `(G) + 2, κ(Lm(G)) =

κ∗(Lm(G)). Moreover, msc(G) = `(G) + 2 if and only if for some integer

t ≥ 3, G has a bridge divalent (3, t)-path of length `(G).

(ii) msc(G) ≤ |V (G)| −∆(G) + 2, and for any integer m ≥ |V (G)| −∆(G) + 2,

κ(Lm(G)) = κ∗(Lm(G)).

The tools to assist our arguments to prove the main results are summarized

and developed in the next section. In Section 3, we will prove the main results.

Related open problems will be discussed in the last section.

3.2 Mechanisms

By the well-known Menger’s Theorems (Theorems 9.1 and 9.7 of [87]), we define

a graph G to be k-connected (or k-edge-connected, respectively) if for any pair

of distinct vertices u and v, G contains a (k;u, v)-path-system (or a (k;u, v)-

trail-system, respectively). Therefore, the connectivity κ(G) of a graph G (or

the edge-connectivity κ′(G) of G, respectively) equals the maximum number

k such that for every pair of distinct vertices u and v, G has a (k;u, v)-path-

system (or a (k;u, v)-trail-system, respectively). In [126], an (s;u, v)-path-

system and a spanning (s;u, v)-path-system are also called a k-container and

a k∗-container, respectively. The spanning connectivity κ∗(G) of a graph

G is the largest integer s such that for any integer k with 0 ≤ k ≤ s and

for any u, v ∈ V (G) with u 6= v, G has a spanning (k;u, v)-path-system. A

graph G is s-spanning connected if κ∗(G) ≥ s. There have been quite a

few studies on spanning connectivity and an edge counterpart of it, as seen

in [18, 131, 133, 134, 142, 144, 145], among others. As shown in [126], many

former studies on spanning conductivities have been focused on results involving

degree conditions to assure a simple graph to have spanning connectivity at least

a given integer s; as well as investigations of spanning connectivity of certain

family of graphs such as Harary graphs, hypercubes and hypercube-like graphs.

By definition, a graph G is hamiltonian if and only if for any distinct ver-

tices u, v ∈ V (G), G has a spanning (2;u, v)-path-system. Thus as remarked

in [126], spanning connectivity of graphs can be viewed as a hybrid concept

of Hamiltonicity and connectivity. Following [87], a graph G is Hamilton-

connected if for any u, v ∈ V (G) with u 6= v, G has a spanning (u, v)-path P .

Thus κ∗(G) ≥ 1 implies that G is Hamilton-connected. It is well known that

every Hamilton-connected graph with at leats 4 vertices must be 3-connected.
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Hence the following fact (3.1) is observed.

If G is a graph with |V (G)| ≥ 4 and κ∗(G) > 0, then κ(G) ≥ 3. (3.1)

As every Hamilton-connected graph must also be hamiltonian, we conclude that

a graph G is Hamilton-connected if and only if κ∗(G) > 0. Thus determining

if κ∗(G) > 0 in general is an NP-complete problem. One of the motivation of

this research is to seek nontrivial common families of graphs in which spanning

connectivity can be polynomially determined.

As it is known that the connectivity of a graph can be polynomially deter-

mined, (see, for example, [119, 123]), the problem whether high connectivity

could imply positive spanning connectivity was considered. While the com-

plete bipartite graphs indicate that in general, high connectivity of a graph G

does not warrant κ∗(G) > 0, researchers have been investigating graph fami-

lies in which high connectivity of a graph G in these family would imply that

κ∗(G) > 0. Thomassen in [143] first conjectured that every 4-connected line

graph is hamiltonian. This most fascinating conjecture has attracted many

researchers.

Let L(G) denote the line graph of a graph G, which is a simple graph

with vertex set E(G), and with edge set E(L(G)) = {e′e′′ : e′, e′′ ∈ E(G) and

e′, e′′ are adjacent in G}. A graph that does not have an induced subgraph

isomorphic to K1,3 is a claw-free graph. Beineke [4] and Robertson (Page 74

of [125]) showed that line graphs are claw-free graphs. By several ingenious

closure concepts developed by Ryjáček [137] and by Ryjáček and Vrána [138],

Thomassen’s above-mentioned conjecture is shown to be equivalent to each of

the following.

Conjecture 3 Let G be a graph and let Γ be a claw-free graph.

(i) (Thomassen [143] and, Kučzel and Xiong [128]) Every 4-connected line

graph has spanning connectivity at least 2.

(ii) (Matthews and Sumner [135], and Ryjáček and Vrána [138]) Every 4-

connected claw-free graph has spanning connectivity at least 2.

There have been intensive studies towards Conjecture 3, as shown in the

surveys [118, 121, 122]. By Menger’s Theorem ([136], see also Theorem 9.1

of [87]), for any graph G, we always have κ(G) ≥ κ∗(G). Thus graphs G with

κ(G) = κ∗(G) are of particular interests. In view of (3.1), we define a connected

graph G to be maximally spanning connected if both κ(G) ≥ 3 and κ(G) =

κ∗(G). A similar concept of super spanning connected graph is formerly defined

in [126], which implies that K2 is super spanning connected. By the definition

in this paper, K2 is not maximally spanning connected. As examples, complete

graphs of order at least 4 are maximally spanning connected, but complete

bipartite graphs of any orders are not maximally spanning connected.
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As of today, little is known on maximally spanning connected graph families

other than the complete graphs and a few others. This motivates the current

study. For a vertex v ∈ V (G), define NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The

vertex v is locally connected if the induced subgraph G[NG(v)] is connected. A

graph G is locally connected if very vertex v of G is locally connected. Asra-

tian [1] and Y. Sheng, F. Tian and B. Wei [141] studied connectivity conditions

for a locally connected claw-free graph G to have spanning connectivity at least

2. As line graphs are claw-free, their result is also valid for line graphs. A class

of maximally spanning connected line graphs has also been studied in [127] and

[18].

Theorem 3.2.1 Let G be a connected graph.

(i) (Asratian [1] and Y. Sheng, F. Tian and B. Wei [141]) If G is an locally

connected claw-free graph with κ(G) ≥ 3, then κ∗(G) ≥ 2.

(ii) (Huang and Hsu [127], and Chen et al. [18]) Let k ≥ 3 be an integer. If

a graph G has k-edge-disjoint spanning trees, then L(G) is maximally spanning

connected.

Theorem 3.2.2(i) below, one of our main results, has identified a new family

of graphs whose line graphs are maximally spanning connected, which extends

Theorem 3.2.1(i). As connectivity of a graph can be polynomially determined,

Theorem 3.2.2(ii) follows from Theorem 3.2.2(i).

Theorem 3.2.2 Each of the following holds.

(i) Every 3-connected, locally connected line graph L(G) is maximally spanning

connected.

(ii) The spanning connectivity of a locally connected line graph can be polyno-

mially determined.

For an integer m > 0, define L0(G) = G, and the iterated line graph Lm(G) =

L(Lm−1(G)). A path P of G is a divalent path of G if every internal vertex

of P has degree 2 in G. Following [129, 132, 144, 146], define a divalent path

that is not of length 2 and in a K3 as proper divalent path,

`(G) = max{m : G has a length m proper divalent path}. (3.2)

For discussional convenience, we in this paper denote G to be the family of all

connected nontrivial graphs that are not isomorphic to a path, a cycle or a

K1,3. To study iterated line graphs, we only consider graphs in G. The iterated

line graph index problem is also an intensively studied topic in graph theory.

Chartrand and Wall in [11] initiated the study the smallest integer k ≥ 0, called

the hamiltonian index of a graph G, such that the iterated line graph Lk(G)

becomes hamiltonian. Other hamiltonian like indices were defined and studied

by Clark and Wormald in [20]. More generally, we have the following definition.
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Definition 3 ([130]) Let P denote a graphical property and G be a connected

graph G ∈ G. Then P(G), the P-index of G, is defined by

P(G) =


min{k : Lk(G) has property P}

if for some integer j > 0, Lj(G) has property P,

∞
otherwise.

Clark and Wormald in [20] studied the existence of the indices for the prop-

erties of being edge-hamiltonian, pancyclic, vertex-pancyclic, edge-pancyclic,

hamiltonian-connected, respectively. Additional studies of these indices can

also be found in [130]. In [139], Ryjáček, Woeginger and Xiong indicated that

determining the value of h(G) is a difficult problem. The index problem for

graphical properties has been intensively studied, as seen in [11, 19, 10, 20, 120,

129, 130, 132, 140, 139, 144, 146], among others.

In this research, we consider some indices related to spanning connectivity

of graphs. For an integer k ≥ 2, and a graph G ∈ G, let sk(G) be the smallest

integer m such that κ∗(Lm(G)) ≥ k. When k is small, upper bounds for sk(G)

have been investigated.

Theorem 3.2.3 Let G ∈ G be a connected graph with maximum degree ∆(G).

(i) (Chen et al. Theorem 22 of [10]) s2(G) ≤ |V (G)| −∆(G) + 1.

(ii) (Xiong et al. Theorem 1.3 of [144]) s3(G) ≤ `(G) + 6.

The results in Theorem 3.2.3 also motivate our current study. A divalent

path P of G is a bridge divalent path if every edge of P is a cut edge of G;

and is a divalent (s, t)-path if the two end vertices of P are of degree s and

t, respectively. The next main result studies best possible bounds for sk(G).

When k = 2, Theorem 3.2.4(iv) improves Theorem 3.2.3(i) and when k = 3,

Theorem 3.2.4(iii) sharpens Theorem 3.2.3(ii).

Theorem 3.2.4 Let G ∈ G be a graph and let k ≥ 3 be an integer.

(i) s2(G) ≤ `(G) + 2.

(ii) sk(G) ≤ `(G) + k− 1. Furthermore, sk(G) = `(G) + k− 1 only if for some

integer t ≥ 3, G has a bridge divalent (3, t)-path of length `(G).

(iii) s3(G) = `(G) + 2 if and only if for some integer t ≥ 3, G has a bridge

divalent (3, t)-path of length `(G).

(iv) sk(G) ≤ |V (G)| −∆(G) + k − 2.

For a graph G ∈ G, define msc(G) to be the smallest integer m such that

Lm(G) is maximally spanning connected. A best possible upper bound for

msc(G) is also obtained.

24



Theorem 3.2.5 Let G ∈ G be a graph.

(i) msc(G) ≤ `(G) + 2, and for any integer m ≥ `(G) + 2, κ(Lm(G)) =

κ∗(Lm(G)). Moreover, msc(G) = `(G) + 2 if and only if for some integer

t ≥ 3, G has a bridge divalent (3, t)-path of length `(G).

(ii) msc(G) ≤ |V (G)| −∆(G) + 2, and for any integer m ≥ |V (G)| −∆(G) + 2,

κ(Lm(G)) = κ∗(Lm(G)).

The tools to assist our arguments to prove the main results are summarized

and developed in the next section. In Section 3, we will prove the main results.

Related open problems will be discussed in the last section.

To facilitate our proofs of the main results, a number of tools will be dis-

played and developed in this section. Given a graph G and an integer i ≥ 0,

let Di(G) be the set of all vertices of degree i in G and O(G) = ∪j≥0D2j+1(G)

be the set of all odd degree vertices in G. By an n-cycle we mean a cycle C

with |V (C)| = n; and C is a short cycle if 2 ≤ |E(C)| ≤ 3. Extending the

definition in [5], a graph G is triangular if every edge e ∈ E(G) lies in a short

cycle Ce of G.

By definition, a spanning (2, u, v)-path system is a Hamilton cycle and a

(2;u, v)-trail system is a spanning eulerian subgraph in a graph G.

Chen et al in [18] extended Theorem [25] by displaying a relationship be-

tween spanning connectivity in L(G) and certain type of dominating trail sys-

tems in G. This will be a key tool in our arguments. As in [87], a trail in a

graph G can be expressed as a sequence

T = v0, e1, v1, e2, · · · , ek, vk (3.3)

such that for each i with 1 ≤ i ≤ k, the edge ei is incident with the two vertices

vi−1 and vi, and such that if 1 ≤ i < j ≤ k, then ei 6= ek. A trial T (with

the notation in (3.3)) is open (or closed, respectively) if v0 6= vk (or v0 = vk,

respectively). We define the internal vertices of the trail in (3.3) to be the

set {v1, v2, · · · , vk−1}, if T is open, and to be V (T ) if T is closed. As in an open

trail, vertices may occur more than once, it is also possible for the end vertices

v0 or vk in (3.3) to be internal. A trail T of G is dominating if every edge of

G is incident with an internal vertex of T , and is spanning if it is dominating

with V (T ) = V (G).

Let e′, e′′ ∈ E(G) be two edges of G. A trail T of G is an (e′, e′′)-trail of G

if the two end edges of T are e′ and e′′, respectively. As an example, the trail

in (3.3) is an (e1, ek)-trail. Two (e′, e′′)-trails T1 and T2 are internally edge-

disjoint if E(T1)∩E(T2) = {e′, e′′}. For a given integer s ≥ 0, an (s; e′, e′′)-trail

system in G is a subgraph J consisting of s internally edge-disjoint (e′, e′′)-trails

(T1, T2, · · · , Ts). A vertex v is an internal vertex of J if for some i with

1 ≤ i ≤ s, v is an internal vertex of Ti. For an (s; e′, e′′)-trail system J , define

∂G(J) = {e ∈ E(G)− E(J) : e is incident with an internal vertex of J}.
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An (s; e′, e′′)-trail system J is dominating if E(G) − E(J) = ∂G(J), and is

spanning if it is dominating with V (G) = V (J).

Theorem 3.2.6 (Chen et al., Theorem 2.1 of [18]) Let G a graph with |E(G)| ≥
3 and let s ≥ 3 be an integer. Then κ∗(L(G)) ≥ s if and only if for any edge

e′, e′′ ∈ E(G), and for each integer k with 1 ≤ k ≤ s, G has a dominating

(k; e′, e′′)-trail-system.

Recall that `(G) is defined in (3.2), the connectivity of iterated line graphs

have been investigated. The following former results will be useful in our argu-

ments.

Theorem 3.2.7 Let k > 0 be an integer and a graph G ∈ G be a graph.

(i) (Zhang et al, Lemma 3.2 [146]) If G ∈ G, then L`(G)(G) is triangular.

(ii) (Zhang et al, Proposition 2.3 [147]) If G a connected triangular simple

graph, then L(G) is triangular. If, in addition, G is k-connected, then L(G) is

(k + 1)-connected.

(iii) For any integer m ≥ `(G) + k − 1, κ(Lm(G)) ≥ m− `(G) + 1 ≥ k.

Proof. It suffices to justify (iii). Let ` = `(G). By Theorem 3.2.7 (i), L`(G)

is 1-connected and triangular. By repeated application of Theorem 3.2.7 (ii),

κ(Lm(G)) ≥ m− `(G) + 1 ≥ k.

In the following of this section, we always assume that G ∈ G is a con-

nected graph. We shall show certain relationship between the subgraphs of a

graph G and the subgraphs of its line graph L(G). Let H(G) denote the col-

lection of all edge-induced subgraphs of G and let L(G) denote the collection

of all induced subgraphs of L(G). Thus for any subgraph H ∈ H(G), we have

L(H) = L(G[E(H)]) ∈ L(G). If J ∈ L(G) then V (J) ⊆ E(G) and so the

edge-induced subgraph G[V (J)] ∈ H(G) satisfying L(G[V (J)]) = J . Thus we

may view L : H(G) → L(G) as a bijective mapping and let L−1 denote the

inverse mapping of L. By the definition of iterated line graphs, if s ≥ 1 is an

integer, then we denote Ls to be the mapping that maps subgraphs in H(G)

into subgraphs in Ls(G), and we use L−s to denote the pull back mapping that

sends induced subgraphs in Ls(G) to back to subgraphs in H(G). For nota-

tional convenience, If j and k are nonnegative integers, then we also use Lj

to denote the corresponding mapping from H(Lk(G)) to L(Lk+j(G)), and and

L−j its corresponding pull back mapping. Using the notation thus defined, we

summarize some observations from the definition of line graphs in the following

proposition.

Proposition 3.2.8 Let G ∈ G be a connected graph and let L : H(G)→ L(G)

denote the bijection mapping defined above. For each edge e ∈ E(G), define
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v(e) = L(e). Each of the following holds.

(i) For each edge e ∈ E(G), the vertex ve is a cut vertex of L(G) if and only if

{e} is an essential edge-cut of G.

(ii) Let e1, e2 ∈ E(G). Then if ve1ve2 is an edge in E(L(G)) not lying in a

complete graph of order at least 3 in L(G), then G[{e1, e2}] is a divalent path

of G.

(iii) Let P be a divalent path in G with |E(P )| = h > 0. For any integer k with

0 ≤ k < h, Lk(P ) is a divalent path in Lk(G) with |E(Lk(P ))| = h − k, and

Lh(P ) is a vertex of Lh(G). Furthermore, if P is a bridge divalent path of G,

then Lk(P ) is also a bridge divalent path in Lk(G), and Lh(P ) is a cut vertex

of Lh(G).

(iv) Let s and t be integers with s ≥ t ≥ 2. If v is a cut vertex of Ls(G), then

L−t(v) is a bridge divalent path of length t in Ls−t(G) in which every edge is an

essential cut edge; Likewise, if e is an edge which is not in a complete subgraph

of order at least 3 in Ls(G), then L−t(e) is a divalent path of length t + 1 in

Ls−t(G).

(v) Let e′, e′′ ∈ E(G) be distinct edges and let s ≥ 1 be an integer. If L(G) has

an (s; , e′, e′′)-path-system, then G has an (s; e′, e′′)-trail-system.

Proof. Proposition 3.2.8(i), (ii) and (iii) follow from the definitions of line

graphs, of divalent paths and of bridge divalent paths. To prove (iv), let v ∈
V (Ls(G)) be a vertex. Then there must be an edge e ∈ E(Ls−1(G)) such that

v = ve := L(e), or e = L−1(v). Since G ∈ G, it follows by the definition of line

graphs that Ls−1(G) ∈ G, and so Ls(G)−v has at least two components, which

implies that e is a bridge divalent path of length 1 in Ls−1(G) and {e} is an

essential edge-cut of Ls−1(G); and L−2(v) is a bridge divalent path of length 2

in Ls−2(G) in which every edge is an essential cut edge of Ls−2(G). Inductively,

for t ≥ 2, L−t(v) is a bridge divalent path of length t in Ls−t(G) in which every

edge is an essential cut edge of Ls−t(G). The proof for the edge part is similar

and so it is omitted.

We are to prove (v). Let H be an (s; , e′, e′′)-path-system consisting of s

internally disjoint (e′, e′′)-paths P1, P2, ..., Ps. Choose such an (s; e′, e′′)-path-

system H. For each i with 1 ≤ i ≤ s, as V (Pi) ⊆ E(G), G[V (Pi)]) is an

edge-induced connected subgraph in G containing both edges e′ and e′′, and so

G[V (Pi)]) contains an (e′, e′′)-trail Ti. Since P1, P2, ..., Ps are internally disjoint

in L(G), we conclude that P1, P2, ..., Ps are internally edge-disjoint in G, and

so G has an (s; e′, e′′)-trail-system.

3.3 Proofs of the main results

The symmetric difference of two sets X and Y , is

X4Y = X ∪ Y − (X ∩ Y ).
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Let G be a connected graph and k > 0 be an integer. An edge-cut X of G is an

essential k-edge-cut of G if |X| = k and each side of G−X has an edge. The

essential edge-connectivity of a connected graph G, denoted by ess′(G), is

the smallest integer k such that G has an essential k-edge-cut, if G has at least

one essential edge cut; or ess′(G) = |E(G)| − 1, if G does not have an essential

edge cut. We say that G is essentially k-edge-connected if ess′(G) ≥ k. By the

definition of a line graph, we observe that

κ(L(G)) ≥ k if and only if ess′(G) ≥ k. (3.4)

3.3.1 Maximally spanning connectedness in locally connected

line graphs

We start with some preliminary results to understand the impact of local con-

nectedness of L(G) on the graph G. For a vertex v ∈ V (G), define EG(v) =

{e ∈ E(G) : e is incident with v in G}.

Lemma 3.3.1 Let G be a connected graph with |E(G)| ≥ 3. The following are

equivalent.

(i) L(G) is locally connected.

(ii) Every edge e = uv ∈ E(G) with min{dG(u), dG(v)} ≥ 2 lies in a short cycle

Ce of G.

Proof. Assume (i). Let e = uv ∈ E(G) be an edge with min{dG(u), dG(v)} ≥
2, which is not lying in a cycle of length 2. By the definition of a line graph,

NL(G)(e) = (EG(u)∪EG(v))−{e}. Since min{dG(u), dG(v)} ≥ 2, each of EG(u)

and EG(v) is not empty. Since L(G)[NL(G)(e)] is connected, there must be an

edge eu ∈ EG(u) and ev ∈ EG(v) such that euev ∈ E(L(G)). It follows that

eu and ev would share a common vertex in G, and so Ce = G[{e, eu, ev}] is a

3-cycle in G that contains e. Thus (ii) must hold.

Conversely, we assume that (ii) holds. Let e ∈ V (L(G)) be given. We

shall show that e is a locally connected vertex in L(G). By symmetry, we

assume that e = uv ∈ E(G) with |NG(u)| ≥ |NG(v)|. If |NG(v)| = 1, then

NL(G)(e) = EG(u) − {e}, and so L(G)[NL(G)(e)] is a complete graph. Assume

that |NG(v)| ≥ 2. By definition, NL(G)(e) = EG(u) ∪ E(G(v) − {e}, and

so NL(G)(e) is spanned by two complete subgraphs L(G)[EG(u) − {e}] and

L(G)[EG(v)− {e}]. By (ii), e lies in a short cycle Ce of G. If E(Ce) = {e, e1},
then e1 ∈ (EG(u) ∩ E(G(v)) − {e}, and so L(G)[NL(G)(e)] is connected. Now

assume that E(Ce − e) = {e1, e2}. We may assume that e1 ∈ EG(u) and

e2 ∈ EG(v). Since Ce is a 3-cycle, e1 and e2 are incident with a common vertex

in G, and so in L(G), e1e2 ∈ E(L(G)). This implies that in any case, (i) must

hold.
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In view of Lemma 3.3.1, we define a graph G to be almost triangular if

every edge e = uv ∈ E(G) with min{dG(u), dG(v)} ≥ 2 lies in a short cycle in

G. A subgraph H is near spanning in G if V (G)−D1(G) = V (H). The next

lemma is useful.

Lemma 3.3.2 Let s ≥ 1 be an integer and G be a connected almost triangular

graph with ess′(G) ≥ 3. For any e′, e′′ ∈ E(G), if G has an (s; , e′, e′′)-trail

system, then G has a near spanning and dominating (s; e′, e′′)-trail system.

Proof. Suppose that G has an (s; , e′, e′′)-trail system. Choose an (s; , e′, e′′)-

trail system J of G such that

|V (J)|+ |E(J)| is maximized, among all (s; , e′, e′′)-trail systems of G,

(3.5)

and subject to (3.5),

|∂G(J)| is as large as possible. (3.6)

Let J = (T1, T2, ..., Ts), where each Ti is an (e′, e′′)-trail, 1 ≤ i ≤ s.

Claim 2 V (J) = V (G)−D1(G).

By contradiction, and as G is connected, we assume that there must be a

vertex v ∈ V (G)− (V (J)∪D1(G)) such that for some wv ∈ V (J), vwv ∈ E(G).

Assume further that there exists a vertex v ∈ V (G)−V (J) such that for some i

with 1 ≤ i ≤ s, wv is an internal vertex Ti. As v /∈ D1(G) and wv is an internal

vertex of J , we have min{dG(v), dG(wv)} ≥ 2. Since G is almost triangular,

there must be a short cycle Cvw with vwv ∈ E(Cvw). Since v /∈ V (J), both

edges incident with v in Cvw are not in J . If |E(Cvw)| = 2, then Ti can be

extended to G[E(Ti) ∪ E(Cvw)], which is also an (e′, e′′)-trail, internally edge-

disjoint from the other (e′, e′′)-trail in J , contrary to (3.5). Hence we assume

that |E(Cvw)| = 3.

Let ev denote the edge in Cvw that is not incident with v. We assume that

if ev ∈ E(J), (including the case when ev ∈ {e′, e′′}), then ev ∈ E(Ti). Define

T ′i =

{
G[E(Ti)4E(Cvw)] if ev /∈ {e′, e′′}
G[E(Ti) ∪ E(Cvw)] if ev ∈ {e′, e′′}

.

Then T ′i is also an (e′, e′′)-trail. As v /∈ V (J), T ′i is also internally edge-disjoint

from Tj , where 1 ≤ j ≤ s and j 6= i. It follows that J ′ = (T1, ..., Ti−1, T
′
i , Ti+1,

..., Ts) is an (s; e′, e′′)-trail system with |V (J)| + |E(J)| < |V (J ′)| + |E(J ′)|,
contrary (3.5). Hence we assume that no vertex in V (G) − (D1(G) ∪ V (J)) is

incident with an internal vertex of any Ti. This implies that any path connecting

a vertex in V (J) and a vertex in V (G)−V (J) must use at least one of the edges
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{e′, e′′}. This implies that {e′, e′′} is an essential edge cut of G, contrary to the

assumption that ess′(G) ≥ 3. This justifies Claim 2.

By Claim 1, J is near spanning. If J is also dominating, then done. Hence

we assume that

there exists an edge e0 ∈ E(G)− E(J) not incident with any internal vertex of J .

(3.7)

Suppose that e0 = u0v0 is incident with v0 ∈ D1(G). By ess′(G) ≥ 3, dG(u0) ≥
4. By (3.7), u0 cannot be an internal vertex of J . Hence we may assume that

e′ = u′v′ with u0 = u′ not being an internal vertex of J . This implies that v′

must be an internal vertex of J . It follows that we have min{dG(u0), dG(v′)} ≥
2. Since G is almost triangular, G has a short cycle C0 containing e′ = u0v. If

E(C0)−EG(u0) has an edge in E(J), then we may assume that this edge is in

T1. Define T ′′1 = G[(E(T1)4E(C0)) ∪ {e′}]. Thus J ′′ = (T ′′1 , T2, ..., Ts) is also

an (s; e′, e′′)-trail system of G with |V (J)| + |E(J)| ≤ |V (J ′′)| + |E(J ′′)| and

∂G(J) ∪ {e0} ⊆ ∂G(J ′′), contrary to (3.6).

Hence e0 is not incident with a vertex of degree 1 in G. By (3.7), we may

assume that e′ = u′v′, e′′ = u′′v′′, e0 = u′u′′ and for any i with 1 ≤ i ≤ s, Ti is

an (u′, u′′)-trial with the first edge being e′ and the last edge being e′′. Since G

is triangular, e′ = u′v′ lies in a short cycle Ce′ of G. Let e′1 denote the edge in

Ce′ − {e′} that is incident with u′. If e′1 ∈ E(J), then u′ is an internal vertex

of J , contrary to (3.7). Hence e′1 /∈ E(J). By definition, |E(Ce′)| ∈ {2, 3}.
When E(Ce′) = {e′, e′1, e′2}, we assume by symmetry that, if e′2 ∈ E(J), then

e′2 ∈ E(T1). With this assumption, define T ′′′1 = G[(E(T1)4E(Ce′)) ∪ {e′}].
Thus J ′′′ = (T ′′′1 , T2, ..., Ts) is also an (s; e′, e′′)-trail system of G with |V (J)|+
|E(J)| ≤ |V (J ′′′)| + |E(J ′′′)| and ∂G(J) ∪ {e0} ⊆ ∂G(J ′′), contrary to (3.6).

Thus every possibility of the assumption (3.7) always leads to a contradiction,

and so J must be dominating. This completes the proof of the lemma.

Lemma 3.3.3 Let k ≥ 1 be an integer and G be a graph.

(i) Let e′, e′′ ∈ E(G). If L(G) has a (k; e′, e′′)-trial system, then G has a

(k; e′, e′′)-trail system.

(ii) Suppose that G is a connected almost triangular graph with ess′(G) ≥ 3.

Then L(G) is maximally spanning connected.

Proof. For any e′, e′′ ∈ E(G), assume that L(G) has a (k; e′, e′′)-trial system

H consisting of internally edge-disjoint (e′, e′′)-trails P1, P2, ..., Pk with |E(H)|
minimized. Then by the minimality of |E(H)|, each Pi in H must be a path.

By Proposition 3.2.8(v), G has an (k; e′, e′′)-trail system. This proves (i).

Let κ(L(G)) = k. As ess′(G) ≥ 3, by (3.4), k ≥ 3. Thus for every integer s

with 1 ≤ s ≤ k, G is s-connected. By Menger theorem, for any e′, e′′ ∈ E(G),
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L(G) has an (s; e′, e′′)-path system. By Lemma 3.3.3(i), G has an (s; e′, e′′)-trail

system.

Fix an integer s with 1 ≤ s ≤ k, and let e′, e′′ be arbitrarily chosen edges

in G. Since G is a connected almost triangular graph with ess′(G) ≥ 3, and

since G has an (s; e′, e′′)-trail system, it follows by Lemma 3.3.2 that G must

also have a dominating (s; e′, e′′)-trail system. By Theorem 3.2.6, L(G) has a

spanning (s; e′, e′′)-path system. As e′, e′′ are arbitrarily chosen, it follows from

the definition of spanning connectivity that k = κ(L(G)) ≥ κ∗(L(G)) ≥ k,

completing the proof for (ii).

Proof of Theorem 3.2.2(i). Since L(G) is locally connected, by Lemma

3.3.1, G is almost triangular. Since κ(L(G)) ≥ 3, it follows from (3.4) that G

must be essentially 3-edge-connected. By Lemma 3.3.3(ii), L(G) is maximally

connected. This proves Theorem 3.2.2(i).

3.3.2 The spanning connected indices of a graphs

The main purpose of this subsection is to prove Theorems 3.2.4 and 3.2.5.

Before proving these theorems, we present the following examples, which are

useful to illustrate the process determining the graphs in Theorems 3.2.4(i) and

3.2.5(i) that reach the upper bounds. (See Figure 1 for an illustration of the

iterated line graphs of a bridge divalent (3, t)-path with ` = 2 in Example 3.3.4.)

G L(G) L2(G)

L3(G)

Figure 1.

Example 3.3.4 Let d′, d′′ and ` be positive integers with d′′ 6= 2, d′ ≥ 3 and

` ≥ 2; and G ∈ G be a graph with `(G) = ` that contains a bridge divalent

(d′, d′′)-path P = v0e1v1 · · · v`−1e`v` with dG(v0) = d′ and dG(v` = d′′. If d′ = 3,

then let e′1, e
′
2, e1 ∈ E(G) be the three edges incident with v0 in G. It is routine

to apply Proposition 3.2.8 to verify the following.

(i) For any j with 0 ≤ j ≤ `− 1, Lj(G) has a bridge divalent (d′, d′′)-path.

(ii) If d′ = 3 and d′′ ≥ 3, then L`(G) has a cut vertex which is incident with an

essential edge cut of size 2.

(iii) If d′ = 3 and d′′ ≥ 3, then L`+1(G) is triangular and has a vertex 2-cut.
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(iv) If d′ = 3 and d′′ ≥ 3, then msc(G) ≥ `+ 2.

(v) If G does not have a bridge divalent (3, t)-path for some integer t ≥ 3, then

L`(G) is essentially 3-edge-connected.

Proof. By the definition of line graphs, an edge e incident with a vertex of

degree d lies in a maximal clique of order d in the line graph. Hence the edge

incident with the vertex of degree s in a bridge divalent (s, t)-path of length at

least 2 becomes a vertex in a bridge divalent path of degree s. By Proposition

3.2.8(iii), Lj(G) has a bridge divalent (d′, d′′)-path. This justifies (i).

Assume that d′ = 3 and d′′ ≥ 3. By (i), L`−1(G) has a bridge divalent

(3, d′′)-path of length 1, which is a cut edge f0 = w1w2 in L`−1(G). Assume

that the edges incident with w1 in L`−1(G) are f0, f1, f2. Since d′′ ≥ 3, f0 is an

essential cut edge. By Proposition 3.2.8(ii), in L`(G), f0 is a cut vertex, and so

{f0f1, f0f2} is an essential edge cut in L`(G). This proves (ii).

As (iii) implies that L`+1(G) is not 3-connected, (iv) follows from (iii), and

so it suffices to justify (iii). By Theorem 3.2.7(i) and (ii), L`+1(G) is triangular.

By (ii), the essential edge cut of size 2 in L`(G) becomes a vertex 2-cut in

L`+1(G). Hence (iii) must hold.

Now assume that G does not have a bridge divalent (3, t)-path for some

integer t ≥ 3. Let X be an essential edge cut of L`(G). By Theorem 3.2.7(i),

L`(G) is triangular, and so |X| ≥ 2. By contradiction, we assume that X =

{f1, f2} is an edge cut of L`(G). As L`(G) is triangular, f1, f2 must be incident

with a common vertex w0 in L`(G). Since {f1, f2} is an essential edge cut of

L`(G), w0 must be a cut vertex of L`(G). By Proposition 3.2.8, for some integer

t ≥ 3, L−`(w0) is a bridge divalent (3, t)-path of length ` in G, contrary to the

assumption of (v).

Lemma 3.3.5 Let G ∈ G with ` = `(G). Then

L`(G)+1(G) is triangular and κ′(L`(G)+1(G)) ≥ κ(L`(G)+2(G)) ≥ 3. (3.8)

Proof. By Theorem 3.2.7 (i), L`(G)(G) is triangular. By definition, a connected

triangular graph must also be 2-edge-connected. It follows by Theorem 3.2.7

(ii) that L`(G)+1(G) is triangular and κ′(L`(G)+1(G)) ≥ κ(L`(G)+1(G)) ≥ 3.

For graphs that does not have bridge divalent (3, t)-path of length `, a

slightly stronger assertion can be stated.

Lemma 3.3.6 Let G ∈ G be a connected graph and let ` = `(G) ≥ 2. Suppose

that for any integer t ≥ 3, G does not have a bridge divalent (3, t)-path of length

`. Each of the following holds.

(i) L`(G) is triangular with ess′(L`(G)) ≥ 3.

(ii) For any integer j ≥ 1, L`+j(G) is triangular with

κ∗(L`+j(G)) = κ(L`+j(G)) ≥ j + 2.
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Proof. (i) follows from Theorem 3.2.7(i) and Example 3.3.4(v). By Lemma

3.3.6(i), (3.4), and by Lemma 3.3.3(ii). Lemma 3.3.6(ii) holds when j = 1.

Inductively, assume that (ii) holds for smaller values of j and j ≥ 2. Then

by induction, L`+j−1(G) is triangular with κ∗(L`+j−1(G)) = κ(L`+j−1(G)) ≥
(j−1)+2. By Theorem 3.2.7(ii) and Lemma 3.3.3(ii), we conclude that L`+j(G)

is triangular with κ∗(L`+j(G)) = κ(L`+j(G)) ≥ j + 2, and so (ii) follows by

induction. This proves the lemma.

Lemma 3.3.7 Let G ∈ G with ` = `(G) ≥ 2. Each of the following holds.

(i) ` ≤ |V (G)| −∆.

(ii) If G has a bridge divalent path P of length `, then ` = |V (G)| −∆ only if

G has a unique bridge divalent (∆, 1)-path of length `.

(iii) If for some integers d′, d′′ ≥ 3, G has a bridge divalent (d′, d′′)-path P of

length `, then `(G) ≤ |V (G)| −∆− 2.

Proof. Let G ∈ G be a graph with ∆ = ∆(G) and ` = `(G). Since G ∈ G,

we have ∆ > 2. Pick a vertex w0 ∈ V (G) with dG(w0) = ∆ with NG(w0) =

{u1, u2, ..., u∆}. Let P be a longest divalent path in G. Thus |E(P )| = `(G).

Since P is a divalent path, |E(P )∩{u1w0, u2w0, ..., u∆w0}| ≤ 2. Hence at least

∆ − 1 vertices in NG(w0) ∪ {w0} cannot be the internal vertices of P , which

implies that ` = |E(P )| ≤ |V (G)| − (∆ − 1) + 1 = |V (G)| − ∆. This justifies

Lemma 3.3.7(i).

To prove (ii) and (iii), we assume that

P = v0v1...v`−1v` (3.9)

is a bridge divalent path of length ` in G. By symmetry, we assume that

d′ = dG(v0) ≥ dG(v`) = d′′. (We allow that in the proof for (ii), d′′ = 1.) By

definition of `(G), v0, v` /∈ D2(G). Assume that dG(v0) < ∆ and w0 is a vertex in

V (G) with dG(w0) = ∆. Then since P is a divalent path, we observe that w0 /∈
V (P ), and so NG(w0) ∩ V (P ) = Ø. Hence V (P ) ⊆ V (G) − (NG(w0) ∪ {w0}).
It follows that

` = |E(P )| ≤ |V (G)− (NG(w0) ∪ {w0})| − 1 (3.10)

= |V (G)| − (∆ + 1)− 1 = |V (G)| −∆− 2.

To complete the proof for (ii), we assume that ` = |V (G)| −∆. By (3.10)

we may assume that dG(v0) = ∆. If dG(v`) 6= 1, then dG(v`) ≥ 3. Since P is

a bridge divalent path and ` ≥ 2, |NG(v0) ∩ NG(v`)| ≤ 1. Hence the vertices

in (NG(v0) ∪NG(v`))− (NG(v0) ∩NG(v`)) cannot be internal vertices of P . It

follows that

` = |E(P )| ≤ |V (G)| − |(NG(v0) ∪NG(v`))− (NG(v0) ∩NG(v`))| − 1(3.11)

≤ |V (G)| − (∆ + 3− 1)− 1 = |V (G)| −∆− 3, (3.12)
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a contradiction. This forces that dG(v`) = 1, and so P must be a divalent

(∆, 1)-path.

To show that uniqueness in (ii), we assume that G has two bridge divalent

(∆, 1)-paths P and P ′, each of length `. As shown above, |V (P ) ∩ V (P ′)| ≤ 1

and there is at most one vertex of degree ∆ in V (P ) ∩ V (P ′). Thus there are

at most two internal vertices of P and P ′ incident with a vertex of a vertex

of degree ∆ in G, and so there are at least ∆ − 1 vertices in NG(w0) ∪ {w0}
that cannot be internal vertices of P or P ′. It follows that the total number of

internal vertices of P and P ′ is at most |V (G)| − (∆− 1)− 2 = |V (G)| −∆− 1.

This implies that 2` = |E(P )|+|E(P ′)| ≤ |V (G)|−∆−1+2. As ` = |V (G)|−∆,

this forces that |V (G)| = ∆ + 1, implying that G is spanned by a K1,|V (G)|−1,

contrary to the assumption that ` ≥ 2. Thus (ii) must hold.

To prove (iii), we assume that the path P in (3.9) is a bridge divalent (d′, d′′)-

path P of length ` with d ≥ 3. By contradiction assume that `(G) > |V (G)| −
∆− 2. By (3.10), we must have dG(v0) = ∆, and so V (G) = NG(v0) ∪ V (P ) ∪
NG(v`). It follows by d′′ ≥ 3 that ` = |E(P )| = |V (G)−(NG(v0)∪NG(v`))|+1 =

|V (G)| −∆− 2, contrary to the assumption that `(G) > |V (G)| −∆− 2.

We are now ready to complete the proofs of the main results. For some

technical reason, we first prove Theorem 3.2.5.

Proof of Theorem 3.2.5. By (3.8) and by Lemmas 3.3.3 and 3.3.2, we must

have κ(L`(G)+2(G)) = κ∗((L`(G)+2(G))). Thus L`(G)+2(G) is triangular and

maximally spanning connected. For any integer m > `(G) + 2, assuming that

Lm−1(G) is 3-connected, triangular and maximally spanning connected. By

Theorem 3.2.7(ii), Lm(G) is also 3-connected and triangular; and by Lemma

3.3.2, Lm(G) is maximally spanning connected. It follows by induction that for

any m ≥ `(G) + 2, Lm(G) is also maximally spanning connected.

By Example 3.3.4 (iv), if for some integer t ≥ 3, G has a bridge divalent

(3, t)-path, then msc(G) ≥ `(G)+2. This, together with the conclusions above,

forces that msc(G) = `(G) + 2. Conversely, we assume that G ∈ G satisfies

msc(G) = `(G)+2. If G does not have a bridge divalent (3, t)-path for some in-

teger t ≥ 3, then by Example 3.3.4(v) and Theorem 3.2.7(i), L`(G) is essentially

3-edge-connected and triangular. Hence by Lemma 3.3.2, L`+1(G) is maximally

spanning connected, contrary to the assumption of msc(G) = `(G) + 2. This

completes the proof of Theorem 3.2.5(i).

If `(G) = 1, then |V (G)| − ∆(G) + 2 ≥ 3. By Theorem 3.2.5(i), for any

m ≥ 3, Lm(G) is maximally spanning connected. Assume that `(G) ≥ 2. By

Lemma 3.3.7(i), `(G) ≤ |V (G|−∆(G)+1, and so by Theorem 3.2.5(i), we have

msc(G) ≤ `(G) + 2 ≤ |V (G)| −∆ + 3. (3.13)

If G ∈ G satisfying msc(G) = |V (G)| − ∆ + 3, then by (3.13), we must have

msc(G) = `(G) + 2. It follows by Theorem 3.2.5(i) that G must have bridge
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divalent path of length `. By Lemma 3.3.7(ii), G has a unique bridge divalent

(∆, 1)-path of length `. By Theorem 3.2.7(i), L`(G) is triangular. By Example

3.3.4(v), L`(G) is essentially 3-edge-connected. It follows from Lemma 3.3.2 and

Theorem 3.2.6 that L`+1(G) is maximally spanning connected. This contradicts

to the assumption of msc(G) = |V (G)|−∆+3. Hence, for any G ∈ G, we must

have msc(G) ≤ |V (G)|−∆+2. By (3.8), Lemmas 3.3.3 and 3.3.2, it is routine to

show that for any m ≥ |V (G)|−∆+2, Lm(G) is maximally spanning connected.

This completes the proof of Theorem 3.2.5.

Proof of Theorem 3.2.4. Let ` = `(G). Assume first that k ∈ {2, 3}. By

Theorem 3.2.5(i), L`+2(G) is maximally spanning connected. By Lemma 3.3.5,

κ∗(L`+2(G)) ≥ 3. Thus s2(G) ≤ s3(G) ≤ `+ 2. This proves Theorem 3.2.4(i).

Let k ≥ 3 be an integer and let m(k) = ` + k − 1 ≥ ` + 2. By Theo-

rem 3.2.5(i), Lm(k)(G) is maximally spanning connected. This, together with

Theorem 3.2.7(iii), implies κ∗(Lm(k)(G)) = κ(Lm(k)(G)) ≥ k. This shows that

sk(G) ≤ m(k) = `+ k− 1. Suppose that for any integer t ≥ 3, G does not have

a bridge divalent (3, t)-path of length `. By Lemma 3.3.6(ii) with j = k − 2,

we conclude that if for any integer t ≥ 3, G does not have a bridge divalent

(3, t)-path of length `, then sk(G) ≤ ` + k − 2. This completes the proof of

Theorem 3.2.4(ii).

To prove (iii), by Theorem 3.2.4(ii) with k = 3, we assume that for some

integer t ≥ 3, G has a bridge divalent (3, t)-path. By Example 3.3.4(iii),

κ(L`+1(G)) < 3, and so s3(G) ≥ `(G) + 2. This implies that in this case,

we must have s3(G) = `(G)+2. This completes the proof of Theorem 3.2.4(iii).

Let k ≥ 3 be an integer. If G has a bridge divalent (3, t)-path P of length

` for some integer t ≥ 3, then by Lemma 3.3.7(iii), `(G) ≤ |V (G)| −∆− 2. By

Theorem 3.2.4(ii), sk(G) ≤ |V (G)| − ∆ + k − 3. Theorem 3.2.4(iv) follows in

this case.

Suppose that for any integer t ≥ 3, G does not have a bridge divalent (3, t)-

path. If every bridge divalent (d′, d′′)-path P of length ` satisfies min{d′, d′′} =

1, then as the degree 1 vertex cannot be an internal vertex of P , there are

at least ∆ + 2 vertices in G that are not internal vertices of P . It follows

that ` ≤ |V (G)| −∆ − 1. If every divalent (d′, d′′)-path P of length ` satisfies

min{d′, d′′} ≥ 4, then either P is a bridge divalent path, whence ` = |E(P )| ≤
|V (G)| −∆

Also by Lemma 3.3.6(ii) with j = k−2, we conclude that sk(G) ≤ `+k−2 ≤
|V (G)| −∆− 1 + k − 2 = |V (G)| −∆ + k − 3. Thus Theorem 3.2.4(iv) follows

in this case also.

Hence we assume that G has a bridge divalent path of length `, and every

bridge divalent path P of length ` is a (d′, d′′)-path with min{d′, d′′} ≥ 4. By

Example 3.3.4(iv) and Theorem 3.2.7(i), L`(G) is triangular with ess′(G) ≥ 3.
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3.4 Concluding remarks

The research has found a new family of maximally spanning connected line

graphs and the tools developed in this research have also improved some of the

former results. The existence of other natural and commonly studied graph

families that are also maximally spanning connected would be of interests. Mo-

tivated by Conjecture 3, we present the following problems for future researches.

Open Problem 1 Let G be a connected graph and s ≥ 2 be an integer.

(i) Determine the existence of, and if exists, the smallest value of an integer

f(s), such that every f(s)-connected line graph is s-spanning connected.

(i) Determine the existence of, and if exists, the smallest value of an integer

h(s), such that every h(s)-connected claw-free graph is s-spanning connected.

As every line graph is a claw-free graph, we have h(s) ≥ f(s) if they exist. As

stated in Conjecture 3, Thomassen [143] and, Kučzel and Xiong [128] conjecture

that f(2) = 4, and Matthews and Sumner [135], and Ryjáček and Vrána [138]

conjectured that h(2) = 4 also. Furthermore, Ryjáček and Vrána [138] proved

that f(2) = 4 is equivalent to h(2) = 4. We conjecture that these values f(s)

and h(s) exist for all s ≥ 2, and Theorem 3.2.2 supports the conjecture that

f(s) exists.
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Chapter 4

On (s, t)-supereulerian graphs

with linear degree bounds

4.1 Main result

Theorem 4.1.1 For any nonnegative integers s and t, and any real numbers a

and b with 0 < a < 1, there exists a family of finitely many graphs F(a, b; s, t)

such that if G is a simple graph on n vertices with κ′(G) ≥ t + 2 and δ(G) ≥
an+ b, then one of the following must hold.

(i) G is (s, t)-supereulerian.

(ii) G is contractible to a member in F(a, b; s, t).

Let n, s, t and m be positive integers with n = 2m ≥ s+ t. Define G to be

the graph from a disjoint union of two graphs G1 and G2, with G1
∼= G2

∼= Km,

and by adding a set W of s+ t− 1 new edges linking vertices in G1 to vertices

in G2. Then δ(G) = n
2 − 1. Choose a subset X ⊂ W satisfying 1 < |X| ≤ s,

|W −X| ≤ t and |X| ≡ 1 (mod 2). As |X| ≡ 1 (mod 2), G− (W −X) cannot

have a spanning closed trail containing X. This example indicates that the

bound in the next result is best possible in some sense.

Theorem 4.1.2 Let s and t be two nonnegative integers. If G is a simple graph

on n vertices with κ′(G) ≥ t+ 2 and δ(G) ≥ n
2 − 1, then when n is sufficiently

large, one of the following must hold.

(i) G is (s, t)-supereulerian.

(ii) For some integer j with t+ 2 ≤ j ≤ s+ t, G is contractible to a jK2.

In the next section, we summarize former results and develop needed tools

in our arguments to prove the main results. The main results will be validated

in the last section.
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4.2 Mechanisms

For a graph G, let τ(G) be the maximum number of edge-disjoint spanning trees

in G, and F (G) be the minimum number of additional edges that must be added

to G to result in a graph with two edge-disjoint spanning tree. Thus τ(G) ≥ 2

if and only if F (G) = 0. Theorem 4.2.1 below presents useful properties related

to collapsible graphs.

Theorem 4.2.1 Let G be a graph and let H be a collapsible subgraph of G. Let

vH denote the vertex onto which H is contracted in G/H. Each of the following

holds.

(i) (Catlin, Theorem 3 of [9]) G is collapsible (or supereulerian, respectively) if

and only if G/H is collapsible (or supereulerian, respectively). In particular, G

is collapsible if and only if the reduction of G is K1.

(ii) (Catlin, Theorem 5 of [9]) A graph is reduced if and only if it does not have

a nontrivial collapsible subgraph.

(iii) (Catlin [9]) Cycles of length at most 3 are collapsible.

(iv) (Catlin [9]) The contraction of a collapsible graph is collapsible.

(v) Let X ⊆ E(G) be an edge subset of G. If G−X is collapsible, then G has

a spanning eulerian subgraph H with X ⊆ E(H).

Proof. It remains to prove (v). Let R = O(G[X]). Then R ⊆ V (G), and

|R| ≡ 0 (mod 2). Since G−X is collapsible, G−X has a spanning connected

subgraph HR with O(HR) = R. It follows that H = G[E(HR∪X)] is a spanning

eulerian subgraph of G with X ⊆ E(H). Theorem 4.2.2(iii) below can be

obtained by applying Theorem 1.4 of [17] to maximal 2-connected subgraph of

G.

Theorem 4.2.2 Let G be a connected graph. Each of the following holds.

(i) (Catlin, Theorem 7 of [9]) If F (G) ≤ 1, then G is collapsible if and only if

κ′(G) ≥ 2. In particular, every graph G with τ(G) ≥ 2 is collapsible.

(ii) (Catlin et al, Theorem 1.3 of [17]) If F (G) ≤ 2, then either G is collapsible

or its reduction is a member in {K2,K2,t : t ≥ 1}.
(iii) (Catlin et al, Theorem 1.4 of [17]) If F (G) ≤ 2 and κ′(G) ≥ 3, then G is

collapsible.

(iv) (Catlin et al, Lemma 2.3 of [17]) If G is a reduced graph with |V (G)| ≥ 2,

then F (G) = 2|V (G)| − |E(G)| − 2.

As F (G) = 0 amounts to τ(G) ≥ 2, utilizing the spanning tree packing

theorem of Nash-Williams [32] and Tutte [36], the following is obtained.

Theorem 4.2.3 (Catlin et al, Theorems 1.1 and 1.3 of [91]). Let G be a graph,

ε ∈ {0, 1} and ` ≥ 1 be integers. The following are equivalent:
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(i) G is (2`+ ε)-edge-connected;

(ii) For any X ⊆ E(G) with |X| ≤ `+ ε, τ(G−X) ≥ `.

Theorem 4.2.3 has a seemingly more general corollary, as stated below.

Corollary 4.2.4 (Xiong et al. [34]) Let G be a connected graph, and ε, k, ` be

integers with ε ∈ {0, 1}, ` ≥ 2 and 2 ≤ k ≤ `. The following are equivalent.

(i) κ′(G) > 2`+ ε.

(ii) For any X ⊆ E(G) with |X| ≤ 2`− k + ε, τ(G−X) ≥ k.

An elementary subdivision of an e = uv ∈ E(G) is the operation to form

a new graph G(e) from G−e by adding a path uvev with ve being a new vertex

in G(e). If X ⊆ E(G) is an edge subset, then G(X) denotes the resulting graph

formed by elementarily subdividing each edge in X. Observation 5.3.1 below

follows immediately from the definition.

Observation 4.2.5 For an edge subset X ⊆ E(G), let VX = {ve : e ∈ X},
EX = {uve, vev : e = uv ∈ X} and E′X = {vev : e = uv ∈ X}. Each of the

following holds.

(i) VX = V (J)− V (G) and EX = E(G(X))− E(G).

(ii) There exists a bijection between X and {veu : e ∈ X} and so G(X)/E′X
∼=

G.

(iii) For any 2-edge-connected subgraph H ′ of G(X), and for any e = uv ∈ X,

if ve ∈ V (H ′), then both veu, vev ∈ E(H ′); and if {uve, vve} ∩E(H ′) 6= Ø, then

{uve, vve} ⊂ E(H ′). Thus in view of Observation 5.3.1(ii), H = H ′/(E′X ∩
E(H ′)) is a subgraph of G, called the restoration of H ′ in G.

(iv) G has a spanning eulerian subgraph H with X ⊆ E(H) and Y ∩E(H) = Ø

if and only if (G− Y )(X) is supereulerian.

Chen, Chen and Luo (Theorem 4.1 of [23]) prove that if κ′(G) ≥ 4, t ≤ κ′(G)
2

and s+ t+1 ≤ κ′(G), then G is (s, t)-supereulerian. Proposition 4.2.6(ii) below

extends this result when κ′(G) ≥ 5.

Proposition 4.2.6 Let s, t be nonnegative integers and let G be a graph. Each

of the following holds.

(i) If G is a (s, t)-supereulerian graph, then any contraction of G is also (s, t)-

supereulerian graph.

(ii) Suppose that H is a graph with κ′(H) ≥ max{s + t + 1, t + 2, 5}. Then H

is a (s, t)-supereulerian graph.

(iii) If H = `K2 with ` ≥ max{s+ t+ 1, t+ 2, 4}, then G is (s, t)-supereulerian

if and only if G/H is (s, t)-supereulerian.

Proof. Suppose that G is (s, t)-supereulerian and e0 ∈ E(G). Let Γ = G/e0.

To prove (i), it suffices to show that Γ is also (s, t)-supereulerian. Let X,Y ⊆
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E(Γ) be arbitrary edge subsets withX∩Y = Ø, |X| ≤ s and |Y | ≤ t. As E(Γ) ⊆
E(G), and since G is (s, t)-supereulerian, it follows from Observation 5.3.1(iv)

that (G−Y )(X) has a spanning eulerian subgraph J . As e0 ∈ E(G− (X ∪Y )),

let J + e0 denote the subgraph of (G − Y )(X) induced by E(J) ∪ {e0}. Since

J is eulerian, it follows that J ′ = (J + e0)/e0 is also a connected graph without

a vertex of odd degree, and so J ′ is a spanning eulerian subgraph of Γ. Hence

(i) holds.

Assume that κ′(H) ≥ max{s + t + 1, t + 2, 5}. Let X,Y be disjoint edge

subsets of H with |X| ≤ s and |Y | ≤ t. By adding edges to X if needed,

we assume that |X| = s. If s + t ≤ κ′(H) − 2, then by Corollary 4.2.4 (with

k = 2), H − (X ∪ Y ) has two edge-disjoint spanning trees, and so by Theorem

4.2.1(i), H − (X ∪ Y ) is collapsible. It follows from Theorem 4.2.1(iii) that

H − Y has a spanning eulerian subgraph containing X. Hence we assume that

s+ t = κ′(H)− 1, and so s = κ′(H)− t− 1 ≥ 1. Let W ⊆ X ∪ Y with |W | = 2

and |W ∩X| > 0 such that if s ≥ 2, then W ⊆ X; and let Z = (X ∪ Y )−W .

Hence |Z| ≤ s+ t−2, and so κ′(H−Z) ≥ 3. By Corollary 4.2.4, τ(H−Z) ≥ 2.

It follows that F ((H − Z)(W )) ≤ 2. As κ′(H − Z) ≥ 3, then only edge cuts

of size 2 in (H − Z)(W ) are those of the form ∂(H−Z)(W )(ve) for some e ∈ W .

By Theorem 4.2.2(ii), either (H − Z)(W ) is collapsible or the reduction of

(H − Z)(W ) is a K2,|W | = K2,2. As the latter case contradicts to the fact

that κ′(H − Z) ≥ 3, we conclude that (H − Z)(W ) is collapsible. By Theorem

4.2.1(v), (H − Y )(W ) has a spanning eulerian subgraph that contains X −W ,

and so H − Y has a spanning eulerian subgraph that contains X. This proves

(ii).

By (i), to prove (iii), it remains to show that G/H is (s, t)-supereulerian.

Let G′ = G/H and let vH denote the vertex in G′ onto which H is contracted.

By (ii), we may assume that H is not a spanning subgraph of G, and so G′ is

nontrivial. Let X,Y be disjoint edge subsets of G with |X| ≤ s and |Y | ≤ t.

Define X ′ = X−E(H), X ′′ = X∩E(H), Y ′ = Y −E(H), and Y ′′ = Y ∩E(H).

Then |X ′| ≤ s and |Y ′| ≤ t. Since G′ is a nontrivial (s, t)-supereulerian graph, it

follows by Observation 5.3.1(iv) that (G′−Y ′)(X ′) contains a spanning eulerian

subgraph L′.

We need to extend L′ to a spanning eulerian subgraph of (G− Y )(X). Let

G′′ = (G−Y )(X) and H ′′ = (H −Y ′′)(X ′′). Then as E(L′)∩Y ′′ = Ø, by their

definitions, both E(L′) ⊆ E((G′ − Y ′)(X ′)) ⊆ E(G′′) and H ′′ is a subgraph of

G′′. It follows that

(G′ − Y ′)(X ′) = (G/H − Y ′)(X ′) = (G− Y ′)(X ′)/H
= (G− Y )(X)/[(H − Y ′′)(X ′′)] = G′′/H ′′.

Since H = `K2 with ` ≥ max{s + t + 1, t + 2, 4}, and since |X ′′| ≤ s and

|Y ′′| ≤ t, H ′′ is a graph in which every edge lies in a cycle of length at most 3,
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and so by Theorem 4.2.1(i) and (iii), H ′′ is collapsible. Let R = O(G′′[E(L′)]).

Then |R| ≡ 0 (mod 2). As L′ is an eulerian subgraph of (G′ − Y ′)(X ′) =

(G − Y )(X)/H = G′′/H ′′, we have R ⊆ V (H ′′). Since H ′′ is collapsible,

H ′′ has a spanning connected subgraph L′′ with O(L′′) = R. It follows that

G′′[E(L′) ∪ E(L′′)] is a spanning eulerian subgraph of G′′ = (G − Y )(X). By

definition, G is (s, t)-supereulerian.

For given non negative integers s and t, let Ls,t denote the family of all (s, t)-

supereulerian graphs. By definition, K1 ∈ Ls,t. A graph H is a contractible

configuration of Ls,t (or (s, t)-contractible, in short), if for any graph G

containing H as a subgraph, the following always holds:

G ∈ Ls,t if and only if G/H ∈ Ls,t.

Proposition 4.2.6 indicates that Ls,t is closed under taking contraction, and, if

` ≥ max{s+ t+ 1, t+ 2, 4}, then `K2 is a contractible configuration of Ls,t. A

a graph Γ is (s, t)-reduced if Γ does not contain any nontrivial subgraph that

is a contractible configuration of Ls,t. For a graph G, the (s, t)-reduction of

G, is the graph Γ formed from G by contracting all maximal (s, t)-contractible

subgraphs of G. By definition, if Γ is the (s, t)-reduction of G, then

G ∈ Ls,t if and only if Γ ∈ Ls,t. (4.1)

For a graph G, the (collapsible) reduction of G and the (s, t)-reduction of

G may not be the same. To describe the relationship between the two, we need

a few more terms.

Definition 4 Let s and t be nonnegative integers, G be a graph, X and Y be

disjoint edge subsets of G with |X| ≤ s and |Y | ≤ t, and let J = (G − Y )(X)

and J ′ be the reduction of J . For any vertex z ∈ V (J ′), let H ′z denote the

preimages of z in J , and let Hz be the restorations of H ′z in G− Y . Define

M = G[
⋃

z∈V (J ′)

E(Hz)],

M ′ = J [
⋃

z∈V (J ′)

E(H ′z)],

X ′ = X ∩ E(M ′) and J ′′ = (G− Y )(X ′)/M ′.

Define Y ′ = {uv ∈ Y : there exists a graph L ∈ {Hz : z ∈ V (J ′)} such that

u, v ∈ V (L)}, and Y ′′ = Y − Y ′.

The following lemma describes a relationship between the (collapsible) re-

duction of G and the (s, t)-reduction of G, and will be needed in our arguments.

Lemma 4.2.7 We adopt the notation in Definition 4 and let X ′′ = X − X ′.
Each of the following holds.
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(i) X ′′ ⊆ E(J ′′) and J ′′ = (G− Y )(X ′)/M ′ = (G− Y ′′)(X ′)/M ′.
(ii) J ′ = J ′′(X ′′) = ((G− Y ′′)/M)(X ′′).

(iii) If J is not supereulerian, then G can be contracted to an (s, t)-reduced and

non (s, t)-supereulerian graph with order at most |V (J ′)|.

Proof. Let G, J and J ′ be graphs defined as in Definition 4, for given edge

subsets X,Y ⊆ E(G) with X ∩ Y = Ø, |X| ≤ s and |Y | ≤ t.
Since J ′ is the reduction of J = (G − Y )(X), for any vertex z ∈ V (J ′), let

H ′z denote the preimage of z in J , and let Hz be the restoration of H ′z in G−Y .

Thus V (G) = V (G− Y ) = ∪z∈V (J ′)V (Hz).

By Definition 4, J ′′ = (G − Y )(X ′)/M ′ = (G − Y ′′)(X ′)/M ′. As X ′ =

X ∩ E(M ′), we have X ′′ ⊆ E(J ′′), and so (i) follows.

Fix an arbitrary vertex z ∈ V (J ′). Since H ′z is collapsible, κ′(Hz) ≥ 2,

and so for any vertex v ∈ V (Hz) ∩ VX , both edges incident with v in J must

also be in E(H ′z). It follows from Theorem 4.2.1(iv) that Hz is a collapsi-

ble subgraph of G. By definition, J ′ = J/M ′. Then by their definitions, the

edges in Y ′ will become loops and be deleted in the process of contracting

M ′. It follows that J ′ = J/M ′ = [(G − Y )(X)]/M ′ = [(G − Y ′′)(X)]/M ′ =

[(G − Y ′′)(X ′)]/M ′(X ′′) = J ′′(X ′′). By Definition 4, J ′′ = (G − Y )(X ′)/M ′ =

(G− Y ′′)/M , and so J ′ = J ′′(X ′′) = ((G− Y ′′)/M)(X ′′). This justifies (ii).

Since J is not supereulerian, it follows by Theorem 4.2.1(i) that J ′ is not

supereulerian. By Lemma 4.2.7(i) and (ii), the graph

[(G/M)− Y ′′](X ′′) = ((G− Y ′′)/M)(X ′′)

= [(G− Y ′′)(X ′)]/M ′(X ′′) = J ′′(X ′′) = J ′

is not supereulerian. Since |X ′′| ≤ |X| ≤ s and |Y ′′| ≤ |Y | ≤ t, G/M is

not (s, t)-supereulerian. Let Γ be the (s, t)-reduction of G/M . It follows by

(4.1) that Γ is not (s, t)-supereulerian. By the equality we showed above, the

restoration of J ′ is G/M − Y ′′ and so |V (Γ)| ≤ |V (G/M − Y ′′)| = |V (G/M)| ≤
|V (J ′)|. This completes the proof of the lemma.

In [34], an edge-connectivity necessary condition for (s, t)-supereulerian

graph has been found.

Proposition 4.2.8 (Xiong et al. [34]) Let s, t be nonnegative integers. Define

j0(s, t) =

{
s+ t+ 1−(−1)s

2 if s ≥ 1 and s+ t ≥ 3,

t+ 2 otherwise.
(4.2)

If a graph G is (s, t)-supereulerian, then κ′(G) ≥ j0(s, t).

The next lemma is also useful.

Lemma 4.2.9 (Liu et al. Lemma 3.1 of [31]) Let G be a simple graph with

δ = δ(G), and X ⊆ V (G) be a subset. If |∂G(X)| < δ, then |X| ≥ δ + 1.
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4.3 Proof of Theorem 4.1.1

Let a, b, s, t be given as in the statement of Theorem 4.1.1, ` = max{s + t +

1, t+ 2, 5}, and

c = max

{
10a

1 + a
+ 1, 4

}
. (4.3)

Define N = N(a, b, s, t) by

N = max

{
1

a
+ s+ 3,

4− b
a

,
|b+ 1| − a(b+ 1)

a2
,
c+ t− b+ 1

a
,
(1 + a)(c+ 1)− 10a

a(c− 3)

}
,

(4.4)

and define F = F(a, b; s, t) to be the family of all (s, t)-reduced non (s, t)-

supereulerian graphs of order at most N . By Proposition 4.2.6(iii), every graph

G in F has multiplicity at most ` − 1. Thus F is a family of finitely many

graphs. In particular, by Proposition 4.2.8,

{jK2 : 1 ≤ j ≤ j0 − 1} ⊂ F . (4.5)

To prove Theorem 4.1.1, we argue by contradiction, and assume that there

exists a counterexample graph G such that n = |V (G)| is smallest in those

counterexample to the theorem for which we have the following observations,

stated as Claim 3 below.

Claim 3 The graph G satisfies the hypotheses of Theorem 4.1.1, as well as

each of the following.

(i) Among all counterexamples to Theorem 4.1.1, n = |V (G)| is smallest.

(ii) G cannot be contracted to a member in F , and so n ≥ N + 1.

(iii) There exist disjoint edge subsets X,Y ⊆ E(G) with |X| = s and |Y | = t

such that G−Y does not have a spanning closed trail that contains all edges in

X.

Let X and Y be the edge subsets assured by Claim 3(iii), and define J =

(G − Y )(X). We adopt the notation in Observation 5.3.1 for the definition of

VX and EX . As κ′(G) ≥ t+ 2 and by Observation 5.3.1(iv),

κ′(J) ≥ 2 and J is not supereulerian. (4.6)

Let J ′ denote the reduction of J , and define h = |D2(J ′)| and h1 = |D2(J ′)∩VX |.
We have the following claim.

Claim 4 F (J ′) ≥ 3.

Suppose that F (J ′) ≤ 2. By Theorem 4.2.2(ii), either J ′ is supereulerian,

whence by Theorem 4.2.1(i), J is supereulerian; or J ′ = K2,h with h ≡ 1 (mod

2) and h ≥ 3. By (4.6), we must have J ′ = K2,h. Let Dh(J ′) = {u1, u2}, and
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let H ′1, H
′
2 be the preimages of u1 and u2 in J , respectively; and let H1 and

H2 be the restorations of H ′1 and H ′2 in G − Y , respectively. Thus V (G) =

V (G− Y ) = V (H1) ∪ V (H2).

If h = h1, then h ≤ |X| ≤ s ≤ max{s+t, 1}, and so by (4.5), G/(H1∪H2) =

hK2 is a member in F , contrary to Claim 3(ii). Thus we must have h > h1.

Then for each vertex z ∈ D2(J ′) − VX , let H ′z denote the preimage of z in J ,

and Hz be the restoration of H ′z in G − Y . Since H ′z is collapsible, we have

κ′(Hz) ≥ 2. Pick a vertex v ∈ V (Hz). As z ∈ D2(J ′)−VX and by n > N ≥ 4−b
a ,

we have |V (Hz)| ≥ |NG[v]|− 2 ≥ an+ b− 1 ≥ 3, It follows that there must be a

vertex v′ ∈ V (Hz) such that NG[z′] ⊆ V (Hz). Thus for each z ∈ D2(J ′)− VX ,

|V (Hz)| ≥ an+ b+ 1. This implies, by n > N ≥ |b+1|−a(b+1)
a2

in (4.4), that

h− h1 ≤
n

an+ b+ 1
=
an+ b+ 1− b− 1

a(an+ b+ 1)
=

1

a
− b+ 1

a(an+ b+ 1)
<

1

a
+ 1.

It follows by h1 ≤ s and (4.4) that |V (J ′)| = 2 + h = 2 + h1 + (h − h1) <
1
a + s + 3 ≤ N . By Lemma 4.2.7 and by (4.6), G can be contracted to an

(s, t)-reduced graph with at most N vertices, which is in F , contrary to Claim

3(ii). This proves the Claim 4.

For each integer i, let di = |Di(J
′)|. By Claim 4, F (J ′) ≥ 3 and so by

Theorem 4.2.2(iv), we have 4|V (J ′)|−2|E(J ′)| ≥ 10. As |V (J ′)| =
∑

ı≥2 di and

2|E(J ′)| ≥
∑

i≥2 idi, we have

2d2 + d3 ≥ 10 +
∑
i≥5

(i− 4)di. (4.7)

For each vertex v ∈ V (J ′)−VX , let H ′v be the maximal collapsible subgraph in

J which is the contraction preimage of v, and let Hv be the restoration of H ′v.

Thus Hv is a subgraph of G.

Claim 5 Let n′ = |V (J ′)|, and define Zc = {v ∈ V (J ′) : dJ ′(v) ≤ c}. Each of

the following holds.

(i) For any z ∈ Zc, |V (Hz)| ≥ an+ b+ 1.

(ii) |Zc| ≤ 1
a + 1.

(iii) n′ ≤ N .

Fix a vertex z ∈ Zc. Then by (4.4), for any v ∈ V (Hz), as n > N ≥
c+t−b+1

a , we have |∂G(V (Hz))| ≤ c+ t < an+ b. It follows by Lemma 4.2.9 that

|V (Hz)| ≥ an+ b+ 1. Thus (i) holds. By (i), we have

n = |V (G)| ≥
∑
z∈Zc

|V (Hz)| ≥ |Zc|(an+ b+ 1), and so |Zc| ≤
n

an+ b+ 1
.

By (4.4), n ≥ N ≥ |b+1|−a(b+1)
a2

, implying that |Zc| ≤ 1
a + 1, and so (ii) follows

as well.
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To prove (iii), we observe that for any vertex v ∈ V (J ′)−Zc, dJ ′(v) ≥ c+1,

and so by F (J ′) ≥ 3,

(c+ 1)|V (J ′)− Zc| ≤
∑

v∈V (J ′)

dJ ′(v) = 2|E(J ′)| ≤ 4n′ − 10.

It follows that |V (J ′)− Zc| ≤ 4n′−10
c+1 , and so by Claim 5(ii),

1

a
+1 ≥ |Zc| = n′−|V (J ′)−Zc| ≥ n′−

4n′ − 10

c+ 1
= n′

(
1− 4

c+ 1

)
+

10

c+ 1
. (4.8)

By algebraic manipulations and by (4.8), (4.3) and (4.4), we have

n′ ≤ (1 + a)(c+ 1)− 10a

a(c− 3)
≤ N.

Thus (iii) holds, and so the claim is justified.

By Claim 5(iii), and by Lemma 4.2.7, G can be contracted to a member in

F , contrary to Claim 3(ii). This completes the proof of Theorem 3.2.2.

4.4 Proof of Theorem 4.1.2

Let G be a graph satisfying the hypothesis of Theorem 4.1.2, and set

N = max{2t+ 9, 2(2s+ t+ 2)}. (4.9)

We shall assume that n ≥ N and that Theorem 4.1.2(i) fails to show that The-

orem 4.1.2(ii) must hold. As Theorem 4.1.2(i) fails, by Observation 5.3.1(iv),

there exist edge disjoint subsets X,Y ⊆ E(G) such that |X| ≤ s, |Y | ≤ t and

(G− Y )(X) is not supereulerian. (4.10)

Let J = (G − Y )(X) and J ′ be the reduction of J . Since κ′(G) ≥ t + 2, we

have κ′(J ′) ≥ 2. If F (J ′) ≤ 1, then by Theorem 4.2.2(i), J ′ is collapsible, and

so by Theorem 4.2.1(i), J is supereulerian, contrary to (4.10). Hence we must

have F (J ′) ≥ 2. For each integer i, we again let di = |Di(J
′)|. By Theorem

4.2.2(iv), 2|V (J ′)| − |E(J ′)| − 2 = F (J ′) ≥ 2, and so 4
∑

i≥2 di ≥ 8 +
∑

i≥2 idi.

It follows that

2d2 + d3 ≥ 8 +
∑
i≥5

(i− 4)di. (4.11)

We will validate the following claim.

Claim 6 Each of the following holds.

(i) ∆(J ′) ≤ 2s.

(ii) Every vertex in (
⋃2s
i=3Di(J

′)) ∪ (D2(J ′)− VX) is nontrivial.

(iii) Let m be the number of nontrivial vertices in J ′. Then m ≤ 2.

(iv) Let h = |D2(J ′)|. Then h ≡ 1 (mod 2), h ≥ 3, J ′ ∼= K2,h and D2(J ′) ⊆ VX .
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By contradiction, we assume that ∆(J ′) ≥ 2s+1. Then for some j ≥ 2s+1,

dj > 1, and so by (4.11), 2(d2+d3) ≥ 8+(2s+1−4) = 2s+5. As both sides of the

inequality are integers, we have d2 +d3 ≥ s+3. Since |VX ∩D2(J ′)| ≤ |VX | = s,

there must be at least three vertices z1, z2, z3 ∈ D2(J ′) ∪ D3(J ′) − VX . For

each i ∈ {1, 2, 3}, let H ′zi denote the contraction preimage of zi in J , and let

Hzi denote the restoration of H ′zi in G− Y . By (4.9), n ≥ N ≥ 2t+ 9, and so

δ(G) ≥ n
2 − 1 > 3 + t ≥ |∂G(Hzi)|. By Lemma 4.2.9, |V (Hzi)| ≥ n

2 . It follows

that n = |V (G)| ≥
∑3

i=1 |V (Hzi)| ≥ 3n
2 , contrary to the fact n > 0. This proves

(i).

Let z ∈ (
⋃2s
i=3Di(J

′)) ∪ (D2(J ′) − VX), H ′z be the contraction preimage of

z in J , and Hz denote the restoration of H ′z in G − Y . By (4.9), n ≥ N ≥
2(2s+ t+ 2) ≥ 4, and so δ(G) ≥ n

2 − 1 > 2s+ t ≥ |∂G(Hz)|. By Lemma 4.2.9,

|V (Hz)| ≥ n
2 ≥ 2, and so (ii) follows.

By contradiction, we assume that J ′ has at least three nontrivial vertices,

say w1, w2, w3. For each i ∈ {1, 2, 3}, let H ′wi
denote the contraction preimage of

wi in J , and let Hwi denote the restoration of H ′wi
in G−Y . By (4.9), n ≥ N ≥

2(2s+ t+ 2), and so by Claim 6(i) that δ(G) ≥ n
2 − 1 > 2s+ t ≥ |∂G(Hwi)|. By

Lemma 4.2.9, |V (Hwi)| ≥ n
2 . It follows that n = |V (G)| ≥

∑3
i=1 |V (Hwi)| ≥ 3n

2 ,

contrary to the fact n > 0. This proves (iii).

By Claim 6(i), dj = 0 for any j ≥ 2s + 1, and so by Claim 6(ii), |V (J ′)| −
|D2(J ′) ∩ VX | =

∑
i≥2 di − |D2(J ′) ∩ VX | ≤ 2. Thus |V (J ′)| ≤ |D2(J ′)|+ 2. By

Claim 6(iii), m ≤ 2. Let u1, ..., um denote the nontrivial vertices of J ′. If at

least one of the wi’s is of even degree in J ′, then since the number of odd degree

vertices of a graph must be even, it follows by m ≤ 2 that J ′ is an eulerian

graph, and so supereulerian. By Theorem 4.2.1(i), J is supereulerian, contrary

to (4.10). Hence we must have m = 2 and both u1 and u2 are of odd degree

in J ′. Since J ′ is reduced, J ′ contains no cycles of length at most 3, and so we

must have NJ ′(u1) = NJ ′(u2) = D2(J ′). By (4.10), J ′ cannot be eulerian, and

so h ≡ 1 (mod 2). Since κ′(J ′) ≥ 2, we must have h ≥ 3. Finally, since both u1

and u2 are not in D2(J ′), it follows by Claim 6(ii) and (iii) that D2(J ′) ⊆ VX .

This proves (iv), as well as Claim 6.

By Claim 4(iv), J ′ ∼= K2,h for some odd integer h ≥ 3. We continue using

u1, u2 to denote the two vertices of degree h in J ′, and define H ′ui to be the

preimage of ui in J , and Hui the restoration of H ′ui in G− Y . By Claim 4(iv),

D2(J ′) ⊆ VX . Let X ′′ = {e ∈ X : ve ∈ D2(J ′)}. Since J ′ ∼= K2,h, we have

V (G) = V (Hu1) ∪ V (Hu2) and X ′′ ⊆ EG[V (Hu1), V (Hu2)] ⊆ X ′′ ∪ Y . Let

j = |EG[V (Hu1), V (Hu2)]|. Then by κ′(G) ≥ t + 2, we have t + 2 ≤ j ≤
|X ′′| + |Y | ≤ s + t and G/(Hu1 ∪ Hu2) = jK2. Thus Theorem 4.1.2(ii) must

hold. This completes the proof of Theorem 4.1.2.
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Chapter 5

On the Extended

Clark-Wormold

Hamiltonian-Like Index

Problem

5.1 Main result

Theorem 5.1.1 If P ∈ {H, Eh,Hc}, then each of the following holds.

(i) If b ≥ a ≥ 1, then P ′(a, b) = P(a, b).

(ii) For a = 2, P ′(2, 1) =∞.

(iii) For a = 3, P ′(3, 1) = P ′(3, 2) = 3.

(iv) If a ≥ 4 and b ≥ 1, then P ′(4, b) ≤ 2. Furthermore, P ′(4, b) = 1 if and

only if Conjecture 1 is valid.

(v) If a ≥ 6 and b ≥ 1, or if a = 5 and b ≥ 4, then P ′(a, b) = 1.

In the next section, we summarize and develop former results and needed

tools in our arguments to prove the main results. The main results will be

validated in the last section.

5.2 Preliminaries

Given a trail T = v0e1v1...en−1vn−1envn in a graph G, we often refer this

trail as a (v0, vn)-trail to emphasize the end vertices, or as an (e1, en)-trail to

emphasize the end edges. The vertices v1, v2, ..., vn−1 are the internal vertices

of T . As a vertex may occur more than once in a trail, when either v0 or vn
occurs in the trail as a vi with 0 < i < n, it is also an internal vertex by

definition. A trail T of G is internally dominating if every edge of G is

incident with an internal vertex of T , is spanning if T is internally dominating
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with V (T ) = V (G). A graph G is spanning trailable if for any pair of edges

e′, e′′ ∈ E(G), G has a spanning (e′, e′′)-trail. If H is an eulerian subgraph

(a closed trail) of G, then every vertex of H is an internal vertex. Thus H

is dominating if E(G − V (H)) = Ø. Harary and Nash-Williams discovered

a close relationship between dominating eulerian subgraphs and hamiltonian

line graphs. The essential edge connectivity of G, denoted ess′(G), is the

smallest size of an essential edge cut of G. A graph G is essentially k-edge-

connected if G is connected and ess′(G) ≥ k. By definition, it is observed in

[140] that the following holds for a connected graph G with |E(G)| ≥ 3.

κ(L(G)) = ess′(G). (5.1)

Theorem 5.2.1 (Harary and Nash-Williams, [39]) Let G be a connected graph

with at least three edges. The line graph L(G) is hamiltonian if and only if G

has a dominating eulerian subgraph.

Following the same idea of Theorem 5.2.1, the following have been observed.

Proposition 5.2.2 Let G be a connected graph with at least three edges.

(i) The line graph L(G) has a Hamilton path if and only if G has an internally

dominating trail.

(ii) (Shao [140], see also Theorem 1.5 of [105]) The line graph L(G) is Hamilton-

connected if and only if for any edges e, e′ ∈ E(G), G has an internally dominat-

ing (e, e′)-trail. In particular, if G is spanning trailable, then L(G) is Hamilton-

connected.

Let G be a graph, and define τ(G) to be the maximum number of edge-

disjoint spanning trees in G. For each integer i ≥ 0, define

Di(G) = {v ∈ V (G) : dG(v) = i}.

Thus O(G) := ∪s≥0D2s+1(G) is the set of all odd degree vertices of G. A

graph G is eulerian if G is connected with O(G) = Ø; and is supereulerian

if it contains a spanning eulerian subgraph. For a subset Y ⊆ E(G), the

contraction G/Y is the graph obtained from G by identifying the two ends of

each edge in Y and then by deleting the resulting loops. If H is a subgraph of

G, we often use G/H for G/E(H). For a vertex v ∈ V (G/X), we define PIG(v)

to be the contraction preimage of v in G.

A graph G is called collapsible if for any R ⊆ V (G) with |R| is even, G

has a spanning subgraph SR with O(SR) = R. The following theorem shows

the property of collapsible graphs.

Theorem 5.2.3 Let k ≥ 1 be an integer and G be a graph. Each of the follow-

ing holds.
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(i) (Catlin [9]) (Corollary 1 of [9]) If G has a spanning tree of which every edge

lies in a cycle of length 3 in G, then G is collapsible. In particular, cycles of

length at most 3 are collapsible.

(ii) (Gusfield [38] and Kundu [45]) If κ′(G) ≥ 2k, then τ(G) ≥ k.

Lemma 5.2.4 (Li et al., Proposition 2.3 of [51]) Let k ≥ 1 be an integer, and

let T k = {G : τ(G) ≥ k}. Then T k satisfies each of the following.

(C1) K1 ∈ T k.

(C2) If G ∈ T k and e ∈ E(G), then G/e ∈ T k.

(C3) Let H be a subgraph of G. If H,G/H ∈ T k, then G ∈ T k.

Definition 5 Let e = uv be an edge of G. Define G(e) to be the graph obtained

from G by replacing e = uv with a path uvev, where ve is a new vertex not in

V (G). We say that G(e) is formed by performing an elementary subdivision

on e ∈ E(G). For an edge subset X ⊆ E(G), we use G(X) to denote the the

graph formed by performing an elementary subdivision on each edge in X. When

X = {e1, e2}, we also use G(e1, e2) for G(X).

As defined in [53, 104], a graph G is strongly spanning trailable if for any

e, e′ ∈ E(G), G(e, e′) has a (ve, ve′)-trail T with V (G) = V (T ) − {ve, ve′}. By

definition, every strongly spanning trailable graph is spanning trailable. As

observed in [54] (also in Chapter 1 of [61]), there exist graphs that are spanning

trailable but not strongly spanning trailable.

Lemma 5.2.5 Let G be a connected graph. Then each of the following holds.

(i) (Lei et al., Theorem 2.2(iv) of [104]) Suppose that τ(G) ≥ 2. For any

e′, e′′ ∈ E(G), G(e′, e′′) has a spanning (ve′ , ve′′)-trail if and only if {e′, e′′} is

not an edge-cut of G. Moreover, if {e′, e′′} is an edge-cut of G and G1, G2 are

the two components of G − {e′, e′′}, then for any i ∈ {1, 2}, G has an (e′, e′′)-

trail containing all vertices in V (Gi).

(ii) (Proposition 1.1 of [105]) If G(e′, e′′) has a spanning (ve′ , ve′′)-trail, then G

has a spanning (e′, e′′)-trail.

(iii) If τ(G) ≥ 2 and ess′(G) ≥ 3, then L(G) is Hamilton-connected.

Proof. It remains to prove (iii). Suppose that τ(G) ≥ 2 and ess′(G) ≥ 3. By

Proposition 5.2.2(ii), we shall show that G is spanning trailable. Let e′, e′′ ∈
E(G). If {e′, e′′} is not an edge-cut of G, then Lemma 5.2.5(i) and (ii) imply

that G has a spanning (e′, e′′)-trail. If {e′, e′′} is an edge-cut of G, then as

ess′(G) ≥ 3, there exists a vertex v of degree 2 in G incident with both e′ and

e′′, and so by Lemma 5.2.5(i), G has a spanning spanning (e′, e′′)-trail.
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5.3 Proof of Theorem 5.1.1

Theorem 5.1.1 will be justified in this section. The arguments will utilize the

symmetric difference of two sets X and Y , which is defined as

X4Y = X ∪ Y − (X ∩ Y ).

We have the following observations.

Observation 5.3.1 Let G be a graph and let u, v ∈ V (G) be two distinct ver-

tices.

(i) If {u, v} is a vertex cut of G, then G does not have a spanning (u, v)-path.

(ii) If e = uv ∈ E(G) and {u, v} is a vertex cut of G, then G does not have a

Hamilton cycle containing e.

(iii) If G is Hamilton-connected, then κ(G) ≥ 3.

Shao [59] proves some useful properties for essential edge-connectivity of

line graphs.

Theorem 5.3.2 (Shao, Theorem 1.3 of [59]) Let G ∈ G be a connected graph

with |E(G)| ≥ 4. If D2(G) = Ø, then ess′(L(G)) ≥ 2ess′(G)− 2.

Lemma 5.3.3 Let G be a connected graph with |E(G)| ≥ 4, ess′(G) ≥ 1 and

δ(G) ≥ 3. Then ess′(L(G)) ≥ min{ess′(G) + 1, 4}.

Proof. By Theorem 5.3.2, if ess′(G) ≥ 3, then ess′(L(G)) ≥ 2ess′(G) − 2 ≥
min{ess′(G) + 1, 4}. Hence we assume that ess′(G) ∈ {1, 2}. Since δ(G) ≥ 3,

we have δ(L(G)) ≥ 4. As |V (L(G))| = |E(G)| ≥ 4, we have |E(L(G))| ≥ 8.

Hence we may assume that L(G) has two connected nontrivial components L1

and L2, with V (L(G)) = V (L1) ∪ V (L2) and V (L1) ∩ V (L2) = Ø, such that

F = (V (L1), V (L2))L(G) is a minimum essential edge-cut of L(G).

Let c = |F | and denote F = {f1, f2, ..., fc}. Then 1 ≤ c ≤ 2. For each

i ∈ {1, 2, ..., c}, denote fi = eie
′
i for edges ei, e

′
i ∈ E(G), with ei ∈ V (L1) and

e′i ∈ V (L2). Thus we may assume that there exist distinct vertices ui, vi, wi ∈
V (G) such that ei = uivi and e′i = viwi. Since δ(G) ≥ 3, there must be an edge

e′′i = zivi ∈ E(G)−{ei, e′i}. As F is an essential edge cut of L(G), it follows by

definition that {e1, e2, ..., ec} is an essential edge cut of G. Thus ess′(G) ≤ c.
Suppose that c = 1. Then e1 is an essential cut edge of G. As e1, e

′
1, e
′′
1 ∈

E(G), we by symmetry may assume that e′′i ∈ V (L2), and so e1e
′
1, e1e

′′
1 ∈

(V (L1), V (L2))L(G) = F . It follows that ess′(L(G)) = c ≥ 2.

Suppose now that c = ess′(G) = 2. Then we may assume that e1 6= e2

and {e1, e2} is an essential edge cut of G. With the notation above, we have

e1, e
′
1, e
′′
1, e2, e

′
2, e
′′
2 ∈ E(G) = V (L(G)) with e1, e2, e

′
1, e
′′
1 being mutually distinct

edges in G. If e′1 6= e′2, then F contains three distinct edges e1e
′
1, e1e

′′
1, e2e

′
2,
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and so we have 2 = |F | ≥ |{e1e
′
1, e1e

′′
1, e2e

′
2}| = 3, a contradiction. Assume

that e′1 = e′2. If e′′2 ∈ V (L1), then 2 = |F | ≥ |{e1e
′
1, e1e

′′
1, e1e

′
2}| = 3, and if

e′′2 ∈ V (L2), then 2 = |F | ≥ |{e1e
′
1, e1e2, e2e

′′
2}| = 3. A contradiction occurs in

any case. Hence we must have c ≥ 3. This proves the lemma.

As P ′(a, b) ≥ P(a, b), it follows from (1.3) that

P ′(1, 1) = P ′(1, 2) = P ′(2, 2) =∞. (5.2)

The following lemma shows an upper bound of P ′(a, b) when a ≥ 3.

Lemma 5.3.4 Let G ∈ G be a connected graph with |E(G)| ≥ 4 and ess′(G) ≥
3. Then L3(G) is Hamilton-connected. Thus for any a ≥ 3 and b ≥ 1,

H′c(a, b) ≤ 3.

Proof. As G ∈ G and by the definition of iterated line graphs, we have

|E(Li(G))| ≥ 4 for i ≥ 1. As ess′(G) ≥ 3, we have ess′(L(G)) ≥ κ′(L(G)) ≥
κ(L(G)) ≥ 3. Thus by Theorem 5.3.2 and δ(L(G)) ≥ κ(L(G)) ≥ 3, we have

κ′(L2(G)) = ess′(L2(G)) ≥ 4, and so by Theorem 5.2.3(ii), τ(L2(G)) ≥ 2. It

follows from Lemma 5.2.5(iii) that L3(G) is Hamilton-connected.

5.3.1 Justification of Theorem 5.1.1(i), (ii) and (iii)

It is straightforward that Theorem 5.1.1(i) is a consequence of (1.5). It suffices

to prove Theorem 5.1.1 (ii) and (iii).

Proposition 5.3.5 For any integer k > 0, there exists an infinite family G1(k)

of connected graphs such that every G ∈ G1(k) satisfies ess′(G) = 2, δ(G) = 1

and Lk(G) is not hamiltonian. Thus H′(2, 1) cannot be bounded above by a

finite number.

Proof. Let s1, s2 be nonnegative integers, w1, w2 be two distinct vertices, and

for i ∈ {1, 2}, Xi = {xi1, xi2, ..., xisi} be a set of vertices, and for j ∈ {1, 2, 3},
Pj = vj1...v

j
k+1 be a path of length k, such that the sets {w1, w2}, X1, X2 and

V (P1), V (P2) and V (P3) are mutually disjoint. Define G = G(k, s1, s2) to be

the graph with

V (G) = {w1, w2} ∪X1 ∪X2 ∪ V (P1) ∪ V (P2) ∪ V (P3),

E(G) = E(P1) ∪ E(P2) ∪ E(P3) ∪ {w1v
j
1 : 1 ≤ j ≤ 3} ∪ {w2v

j
k+1 : 1 ≤ j ≤ 3}

∪{w1x
1
s : 1 ≤ s ≤ s1} ∪ {w2x

2
s : 1 ≤ s ≤ s2}.

Hence G− (X1 ∪X2) can be viewed as a subdivision of K2,3. By the definition

of iterated line graphs, we observe that Lk−1(G) can be contracted to a K2,3 in

which every vertex in D2,K2,3 has a nontrivial contraction preimage. It follows

by Theorem 5.2.1 that Lk(G) is not hamiltonian.
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By Proposition 5.3.5, we conclude that for any P ∈ {H, Eh,Hc}, P ′(2, 1) =

∞. This proves Theorem 5.1.1 (ii).

To prove Theorem 5.1.1 (iii), we start with a proposition showing the lower

bounds.

Proposition 5.3.6 For any integer k > 0, each of the following holds.

(i) There exists an infinite family of connected graphs F5 such that for any

G ∈ F5, ess′(G) = 3, δ(G) = 1 and L2(G) is not hamiltonian. Thus H′c(3, 1) ≥
E ′h(3, 1) ≥ H′(3, 1) ≥ 3.

(ii) There exists an infinite family of connected graphs F6 such that for any

G ∈ F6, ess′(G) = 3, δ(G) = 2 and L2(G) is not hamiltonian. Thus H′c(3, 2) ≥
E ′h(3, 2) ≥ H′(3, 2) ≥ 3.

Proof. Let P (10) denote the Petersen graph with E = E(P (10)) and V (P (10))

= {vi : 1 ≤ i ≤ 10}. As in Definition 5, P (10)(E) is the graph formed from

P (10) by performing an elementary subdivision on each edge in E.

(i) For each i with 1 ≤ i ≤ 10, let Ji ∼= K1,di be a star with di ≥ 2

and with wi being the only vertex of degree di in Ji. Obtain a graph G =

P (10)(di : 1 ≤ i ≤ 10) from P (10)(E) by identifying vi with wi, for each i with

1 ≤ i ≤ 10. Define F5 to be the graph family such that G ∈ F5 if and only if

G = P (10)(di : 1 ≤ i ≤ 10) for some integers di ≥ 2. Thus for each G ∈ F5,

ess′(G) = 3 and δ(G) = 1. As L(G) is contractible to the Petersen graph

with every vertex in the contraction having a nontrivial contraction preimage,

it follows by Theorem 5.2.1 that L2(G) is not hamiltonian. This, together with

(1.5), implies that H′c(3, 1) ≥ E ′h(3, 1) ≥ H′(3, 1) ≥ 3.

(ii) For each i with 1 ≤ i ≤ 10, let Ji ∼= K2,di be a star with di ≥ 3

and with wi being one of the two vertex of degree di in Ji. Obtain a graph

G = P (10)′(di : 1 ≤ i ≤ 10) from P (10)(E) by identifying vi with wi, for each i

with 1 ≤ i ≤ 10. Define F6 to be the graph family such that G ∈ F6 if and only

if G = P (10)′(di : 1 ≤ i ≤ 10) for some integers di ≥ 3. Thus for each G ∈ F6,

ess′(G) = 3 and δ(G) = 2. As L(G) is contractible to the Petersen graph

with every vertex in the contraction having a nontrivial contraction preimage,

it follows by Theorem 5.2.1 that L2(G) is not hamiltonian. This, together with

(1.5), implies that H′c(3, 2) ≥ E ′h(3, 2) ≥ H′(3, 2) ≥ 3.

By Lemma 5.3.4, for any positive integer b, we have H′(3, b) ≤ H′c(3, b) ≤
3. By Proposition 5.3.6(ii) and (iii), we conclude that H′c(3, 1) = E ′h(3, 1) =

H′(3, 1) = 3 and H′c(3, 2) = E ′h(3, 2) = H(′3, 2) = 3. This completes the proof

for Theorem 5.1.1(ii).

5.3.2 Justification of Theorem 5.1.1(iv)

While Conjecture 1 remains open, there have been many researches done to-

wards the conjecture. The following theorem summarizes some efforts on the
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hamiltonian properties of 4-connected iterated line graphs.

Theorem 5.3.7 Let G be a connected graph. Each of the following holds.

(i) (Corollary 3.9 of [13]) If L2(G) is 4-connected, then L2(G) is hamiltonian.

(ii) (Kriesell, [43]) If L2(G) is 4-connected, then L2(G) is Hamilton-connected.

(iii) (Theorem 1.3 of [99]) Let G be a connected graph with |E(G)| ≥ 4 and

ess′(G) ≥ 3. If every 3-edge-cut of G has at least one edge lying in a short

cycle of G, then L(G) is Hamilton-connected.

In fact, Kriesell in [43] proved that every 4-connected line graph of a graph

without an induced K1,3 is Hamilton-connected, which apparently implies The-

orem 5.1.1-1(i). As shown in Corollary 1.5 of [99], Theorem 5.1.1(iii) is an

extension of the above mentioned results in [13] and [43]. By Theorem 5.1.1

and (1.5), we observe that

for any integer b ≥ 1, H′(4, b) ≤ E ′h(4, b) ≤ H′c(4, b) ≤ 2. (5.3)

By (2.3.5) and (5.3), we are led to the conclusion that H′(4, b) = 1 if and

only if Conjecture 1 holds. To complete the justification of Theorem 5.1.1(v),

we need the following result of Kučzel and Xiong in [44].

Theorem 5.3.8 (Kučel and Xiong [44]) The following are equivalent.

(i) Every 4-connected line graph is hamiltonian.

(ii) Every 4-connected line graph is Hamilton-connected.

By (5.3), H′(4, b) ≤ H′c(4, b) ≤ 2. This, together with Theorem 5.3.8, has

led us to the following observation.

Observation 5.3.9 The following statements are equivalent.

(i) For any positive integer b, H′(4, b) = 1.

(ii) Every 4-connected line graph is hamiltonian.

(iii) Every 4-connected line graph is Hamilton-connected.

(iv) For any positive integer b, H′c(4, b) = 1.

In fact, assume that Observation 5.3.9(i) holds, and so for any positive integer

b, H′(4, b) = 1. Then the definition of H′(4, b) implies that every connected, es-

sentially 4-edge-connected graph has a hamiltonian line graph. By (5.1), this is

equivalent to Observation 5.3.9(ii). Next we assume that Observation 5.3.9(ii)

is valid. Then by Theorem 5.3.8, Observation 5.3.9(iii) follows. By the defi-

nition of H′c(4, b), we conclude that Observation 5.3.9(iii) implies Observation

5.3.9(iv). Finally, by (5.3), we observe that Observation 5.3.9(iv) implies Ob-

servation 5.3.9(i). This completes the justification of Observation 5.3.9. By

(5.3), (1.5) and Observation 5.3.9, Theorem 5.1.1(iv) is now validated.
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5.3.3 Justification of Theorem 5.1.1(v)

The first result towards Conjecture 1 was done by Zhan in [64]. In 2012, Kaiser

and Vrána made a breakthrough after Zhan’s first result. Later in 2014, Kaiser,

Ryjáček and Vrána gave a further improvement, as presented below.

Theorem 5.3.10 A graph G is 1-Hamilton-connected if for any vertex subset

S ⊆ V (G) with |S| ≤ 1, G− S is Hamilton-connected.

(i) (Zhan, Theorem 3 in [64]) If κ(L(G)) ≥ 7, then L(G) is Hamilton-connected.

(ii) (Kaiser and Vrána [42]) Every 5-connected claw-free graph with minimum

degree at least 6 is hamiltonian.

(iii) (Kaiser, Ryjáček and Vrána [97]) Every 5-connected claw-free graph with

minimum degree at least 6 is 1-Hamilton-connected.

Theorem 5.3.10 has an immediate corollary, which implies Theorem 3.2.2(v).

Corollary 5.3.11 Each of the following holds.

(i) For any a ≥ 6 and b ≥ 1, H′c(a, b) = 1.

(ii) For any a ≥ 5 and b ≥ 4, H′c(a, b) = 1.

5.3.4 Remark

The cases we cannot determine the values of P ′(a, b) are those when a = 4

and 1 ≤ b ≤ 5, or a = 5 and 1 ≤ b ≤ 3. Using the same arguments as in

Subsection 5.3.2, it is clear that if Conjecture 1 holds, then P ′(a, b) = 1 for all

these above-mentioned unsettled values of a and b.
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Teubner, Leipzig, 1968.

[5] H.J. Broersma and H.J. Veldman, 3-connected line graphs of triangular

graphs are panconnected and 1-hamiltonian, J. Graph Theory, 11 (1987),

399-407.

[6] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, 2008.

[7] Boesch, F.T., Suffel, C. and Tindell, R. (1977), The spanning subgraphs

of eulerian graphs. J. Graph Theory, 1: 79-84.

[8] J.A. Bondy, U.S.R. Murty, Graph theory, Springer, New York, 2008.

[9] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J.

Graph Theory, 12 (1988) 29-44.

[10] Chen, Ye, et al. ”On spanning disjoint paths in line graphs.” Graphs and

Combinatorics 29.6 (2013): 1721-1731.

[11] G. Chartrand, C.E. Wall, On the hamiltonian index of a graph, Studia Sci.

Math. Hungarica, 8 (1973) 43-48.

[12] Z.-H. Chen, Y. Hong, J.-L. Lin, Z.-S. Tao, The Hamiltonian Index of

Graphs, Discrete Math., 309 (2009) 288-292.

[13] Z. -H. Chen, H. Y. Lai, H.-J. Lai, G. Weng, Jackson’s conjecture on eulerian

subgraphs, Combinatorics, Graph Theory, Algorithms and Applications,

(eds. by Y. Alavi et al), 53-58, World Scientific, River Edge, NJ (1994).

55



[14] L.K. Clark, N.C. Wormald, Hamiltonian like indices of graphs, Ars Com-

binatoria, 15 (1983) 131-148.

[15] P.A. Catlin, Supereulerian graphs: a survey, J. Graph Theory, 16 (1992)

177-196.

[16] P. A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint

spanning trees. Discrete Math., 309 (2009), 1033-1040.

[17] P.A. Catlin, Z. Han and H.-J. Lai, Graphs without spanning closed trails,

Discrete Math. 160 (1996), 81-91.

[18] Y. Chen, Z.-H. Chen, H.-J. Lai, P. Li and E. Wei, On Spanning Disjoint

Paths in Line Graphs, Graphs and Combinatorics, 29 (2013) 1721-1731.

[19] Z.-H. Chen, Y. Hong, J.-L. Lin and Z.-S. Tao, The Hamiltonian Index of

Graphs, Discrete Math., 309 (2009), 288-292.

[20] L. K. Clark and N. C. Wormald, Hamiltonian like indices of graphs, Ars

Combinatoria, 15 (1983), 131-148.

[21] Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and

related topics-a survey, Combinatorics and graph theory’95, Vol. 1 (Hefei),

World Sci. Publishing, River Edge, NJ, (1995) 53-69.

[22] Z. H. Chen, W.-Q. Luo and W.-G. Chen, Spanning trails containing given

edges, Discrete Math., 306 (2006), 87-98.

[23] W.-G. Chen, Z. H. Chen and W.-Q. Luo, Edge connectivities for spanning

trails with prescribed edges, Ars Combinatoria 115(2014), 175-186.

[24] R. Gu, H.-J. Lai, Y. Liang, Z. Miao, and M. Zhang, Collapsible subgraphs

of a 4-edge-connected graph, Discrete Applied Math., 260 (2019) 272-277.

[25] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltoninan graphs

and line graphs, Canad. Math. Bull., 8 (1965) 701-709.

[26] H.-J. Lai, Eulerian subgraph containing given edges, Discrete Math, 230

(2001), 61-69.

[27] H.-J. Lai, Y. Shao, H. Yan, An Update on Supereulerian Graphs, WSEAS

Transactions on Mathematics, 12 (2013) 926-940.

[28] L. Lei, X. M. Li and B. Wang, On (s, t)-Supereulerian locally connected

graphs, ICCS 2007, Proceedings, Lecture Notes in Computer Sciences 4489,

2007, pp. 384–388.

56



[29] L. Lei, X. Li, B. Wang and H.-J. Lai, On (s, t)-supereulerian graphs in

locally highly connected graphs, Discrete Mathematics, 310 (2010) 929-

934.

[30] L. Lei, X. Li, S. Song and Y. Xie, On (s, t)-supereulerian generalized

prisms, submitted.

[31] Q. Liu, Y. Hong, X. Gu and H.-J. Lai, Note on edge-disjoint spanning trees

and eigenvalues, Linear Algebra and Its Applications, 458 (2014), 128-13.

[32] C. St. J. A. Nash-williams, Edge-disjoint spanning trees of finite graphs,

J. London Math. Soc., 36 (1961), 445-450.

[33] W.R. Pulleyblank, A note on graphs spanned by Eulerian graphs, J. Graph

Theory, 3 (1979) 309-310.

[34] Wei Xiong, S. Song and H.-J. Lai, Polynomially determine if a graph is

(s, 3)-supereulerian, submitted.

[35] J. Xu, Z.-H. Chen, H.-J. Lai and M. Zhang, Spanning trails in essentially

4-edge-connected graphs, Discrete Applied Math., 162 (2014) 306-313.

[36] W. T. Tutte, On the problem of decomposing a graph into n factors, J.

London Math. Soc., 36 (1961), 221-230.

[37] R. Gould, On line graphs and the hamiltonian index, Discrete Math., 34

(1981) 111-117.

[38] D. Gusfield, Connectivity and edge-disjoint spanning trees.

[39] F. Harary, C.St.J.A. Nash-Williams, On Eulerian and hamiltonian graphs

and line graphs, Canad Math Bull., 8 (1965) 701-709.

[40] F. Jaeger, A note on subeulerian graphs, J. Graph Theory, 3 (1979) 91-93.
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[92] V. Chvátal and P. Erdös, A note on Hamiltonian circuits, Discrete Math.,

2, (1972) 111-113.

60



[93] L. Han, H.-J. Lai, L. Xiong and H. Yan, The Chvátal-Erdös condition
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