
Graduate Theses, Dissertations, and Problem Reports 

2005 

On the s-Hamiltonian index of a graph On the s-Hamiltonian index of a graph 

Yehong Shao 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Shao, Yehong, "On the s-Hamiltonian index of a graph" (2005). Graduate Theses, Dissertations, and 
Problem Reports. 1646. 
https://researchrepository.wvu.edu/etd/1646 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1646?utm_source=researchrepository.wvu.edu%2Fetd%2F1646&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


On the s-hamiltonian Index of a Graph

Yehong Shao

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Elaine M. Eschen, Ph.D, Chair

Hong-Jian Lai, Ph.D.

Frances L. VanScoy, Ph.D.

Lane Department of Computer Science and Engineering

Morgantown, West Virginia

2005

Keywords: line graph, hamiltonian index, hamiltonicity,

contraction

Copyright 2005 Yehong Shao



ABSTRACT

On the s-hamiltonian Index of a Graph

Yehong Shao

In modeling communication networks by graphs, the problem of designing s-fault-

tolerant networks becomes the search for s-hamiltonian graphs. This thesis is a study of

the s-hamiltonian index of a graph G.

A path P of G is called an arc in G if all the internal vertices of P are divalent vertices

of G. We define l(G) = max{m : G has an arc of length m that is not both of length 2

and in a K3}. We show that if a connected graph G is not a path, a cycle or K1,3, then

for a given s, we give the best known bound of the s-hamiltonian index of the graph.
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Chapter 1

Introduction

1.1 Background

Multiprocessors are widely used in recent years. Fault-tolerant multiprocessors are par-

ticularly useful in massive parallel systems. How to communicate among the processes

running in parallel on the multiple processors becomes an important problem. The net-

work that connects multiprocessors is called an interconnection network.

To design a reliable interconnection network, one expects that the network is fault-

tolerant. There are two types of failures in a multiprocessor system, processor failure

and link failure. It is important that the computer system still works when one or more

processors fail.

We use a graph as a theoretic model to represent an underlying interconnection net-

work. Terminology and notations not defined here can be found in [1]. Let G = (V, E)

be a graph. The vertex set V (G) represents the set of processors and the edge set E(G)

represents the set of links between processors. A processor failure corresponds to the

deletion of a vertex from a graph.

The topology of a network is the way the nodes and links are connected. Figure 1.1

1
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shows two different topologies.
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Figure 1.1: Example networks

In many network designs, it is desirable to maintain a fixed network topology. Reli-

ability consideration expects that the network possesses the capability that after a small

number of processor failures, the network can reconfigure to keep the same network topol-

ogy.

A graph G is hamiltonian if there exists a cycle containing all the vertices of G.

One of the common network topologies uses a ring connection joining all the processors

(see Figure 1.1(b)), which corresponds to a hamiltonian cycle of the graph G modeling

such a network.

A network is a k-fault-tolerant network for a ring if for any k-processor-failure,

the resulting network contains a ring including all of the non-faulty processors. This

motivates the following definition.

A graph G is called s-hamiltonian, if the removal of any k vertices, 0 ≤ k ≤ s ≤
|V (G)|, results in a hamiltonian graph.
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1.2 Definitions

We consider finite simple connected graphs only. For a graph G and a vertex v ∈ V (G),

define

NG(v) = {u ∈ V (G) : u is adjacent to v in G}

and

EG(v) = {e ∈ E(G) : e is incident with v in G}.

The line graph of a graph G, denoted by L(G) or L1(G), has E(G) as its vertex set,

where two vertices in L(G) are adjacent if and only if the corresponding edges in G have

a common vertex. Notice that the vertex set in a line graph L(G) corresponding to

each EG(v) in G induces a complete graph. Denote each complete graph in L(G) which

corresponds to EG(v) in G by Kv. Then {E(Kv) : v ∈ V (G)} is an edge partition of
L(G) and we say this is a complete partition of L(G). For an integer m ≥ 1, we define
Lm(G) = L(Lm−1(G)) with L0(G) = G.

In 1973, Chartrand [2] introduced the hamiltonian index of a connected graph G that

is not a path to be the minimum number of applications of the line graph operator so

that the resulting graph is hamiltonian. He showed that the hamiltonian index exists as

a finite number. In 1983, Clark and Wormald [3] extended this idea of Chartrand and

introduced the hamiltonian-like indices. Here we define the s-hamiltonian index.

Let s ≥ 0 be an integer. The s-hamiltonian index, hs(G), of a connected graph

G is the least nonnegative integer m such that Lm(G) is s-hamiltonian. Note that when

s = 0, a 0-hamiltonian graph is a hamiltonian graph and h0(G) = h(G) is the Hamilton

index of a graph G.



Chapter 2

s-Hamilton Index

2.1 Introduction

In this chapter we prove our main result, stated in Theorem 2.1.1. This provides the best

known bound for the s-hamiltonian index of a graph.

A nontrivial path P of G is called an arc in G if all the internal vertices of P are diva-

lent vertices ofG. We define l(G) = max{m : G has an arc of length m that is not both of length 2

and in a K3}. Note that l(G) ≥ 1.

Theorem 2.1.1 Let G be a simple connected graph that is not a path, a cycle, or K1,3

with l(G) = l. Then hs(G) ≤ l + s+ 1.

In the case that s = 0 Theorem 2.1.1 yields the theorem below, extends a former

result by Lai.

Theorem 2.1.2 (Lai, [5]) Let G be a simple connected graph that is not a path, a cycle,

or K1,3 with l(G) = l. Then h(G) ≤ l + 1.

4
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2.2 Proof of the Main Theorem

Let O(G) denote the set of all vertices in G with odd degree. A graph G is Eulerian if

both O(G) = ∅ and G is connected. A spanning closed trail of G is called a spanning

Eulerian subgraph of G. A subgraph H of G is dominating if G−V (H) is edgeless. If

a closed trail C of G satisfies E(G−V (C)) = ∅, then C is called a dominating Eulerian

subgraph.

Theorem 2.2.1 reveals the relationship between a dominating Eulerian subgraph in H

and a hamiltonian cycle in L(H).

Theorem 2.2.1 (Harary and Nash-Williams, [4]) Let H be a graph with |E(H)| ≥ 3.
The line graph L(H) of a graph H is hamiltonian if and only if H has a dominating

Eulerian subgraph.

An edge cut X of G is essential if each side of G−X has an edge.

For a graph G and a subset X ⊆ E(G), the contraction G/X is the graph obtained

from G by identifying the two end vertices of each edge in X and then deleting the edges

in X. Note that loops and/or multiple edges may result from a contraction.

Lemma 2.2.2 Let G be a connected graph and H an edge subset of G.

(i) if H is an edge set consisting of loops of G and G/H has a spanning Eulerian

subgraph, then G has a spanning Eulerian subgraph;

(ii) if H is a pair of parallel edges or the edge set of a C3 and G/H has a spanning

Eulerian subgraph, then G has a spanning Eulerian subgraph.

Proof (i) Let T be a spanning Eulerian subgraph of G/H. Then T or T +H is a spanning

Eulerian subgraph of G.

(ii) Let T be a spanning Eulerian subgraph of G/H.
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Case 1 H = {e1, e2} is an edge set of parallel edges of G (see Case 1 in Figure 2.1). Let
v1, v2 be the two endpoints vertices of the edges in H and vH the vertex in G/H onto

which H is contracted. Let T ′ be the graph obtained from T − vH by adding vertices v1

and v2 with NT ′(v1) = NG(v1) ∩ NT (vH) and NT ′(v2) = NG(v2) ∩ NT (vH). Since dT (vH)

is even, dT ′(v1) + dT ′(v2) is even. If dT ′(v1) and dT ′(v2) are both even, then T ′ + {e1, e2}
is a spanning Eulerian subgraph of G; if dT ′(v1) and dT ′(v2) are both odd, then T ′ + e1 is

a spanning Eulerian subgraph of G.

Case 2 H = {e1, e2, e3} is the edge set of a C3 in G. Let v1, v2, v3 be the three endpoints

of the edges in H (see Case 2 in Figure 2.1) and vH the vertex in G/H onto which H is

contracted. Let T ′ be defined as in Case 7. Since dT (vH) is even, dT ′(v1)+dT ′(v2)+dT ′(v3)

is even. If dT ′(v1), dT ′(v2) and dT ′(v3) are all even, then T + H is a spanning Eulerian

subgraph of G; if two of them are odd and we assume without loss of generality that

dT ′(v1) and dT ′(v2) are odd, then T + {e1, e2} is a spanning Eulerian subgraph of G.

t tv1 v2

e1

e2

Case 1

t t

t
�

�
�

�
��

@
@

@
@

@@
v2 v3

v1

e1

e2

e3

Case 2

Figure 2.1: The edge set H of Lemma 2.2.2

Lemma 2.2.3 Let G be a connected graph without essential edges cuts of size 1 and G1

the graph obtained by contracting all the triangles and multiple edges repeatedly from G.

If |V (G1)| ≤ 4, then G has a dominating Eulerian subgraph.

Proof By the assumptions, G1 is simple, connected and has no 3-cycles.
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t tev1 v2

Figure 2.2.1

t t tv2v1 v3

Figure 2.2.2

t t
t

Figure 2.2.3

Figure 2.2: G1

Case 1 |V (G1)| = 1. By Lemma 2.2.2, G has a spanning Eulerian subgraph.

Case 2 |V (G1)| = 2 (See Figure 2.2.1). Since G has no essential edge cuts of size 1, one

of the vertices is a vertex of G. We assume that it is v1. We delete v1 and the resulting

graph is K1. By Lemma 2.2.2, G − v1 has a spanning Eulerian subgraph T , and so T is

a dominating Eulerian subgraph of G.

Case 3 |V (G1)| = 3. G1 could be the graph in Figure 2.2.2 or 2.2.3 since G1 is connected

and simple. Since G1 has no 3-cycles, G1 must be the graph in Figure 2.2.2. Then since

G has no essential edge cuts of size 1, v1, v3 ∈ V (G). And using an argument similar to

that in Case 2, we conclude that G has a dominating Eulerian subgraph.

t tt te

Figure 2.3.1
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Figure 2.3.5

t t
t
t

Figure 2.3.6

Figure 2.3: G1Case 4 |V (G1)| = 4 (see Figure 2.3).
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In Figure 2.3.1, G has an essential cut edge e, a contradiction; In Figure 2.3.3, by

Lemma 2.2.2, G has a spanning Eulerian subgraph. Since G1 has no 3-cycles, G1 cannot

be the graph illustrated in Figure 2.3.2, 2.3.5, 2.3.6. For Figure 2.3.4, we can use an

argument similar to that used in Case 2 and 3 to conclude that G has a dominating

Eulerian subgraph.

A graph G is k-triangular if each edge of G is in at least k triangles and G is

triangular if it is 1-triangular.

Lemma 2.2.4 Let G be a simple connected graph that is not a path, a cycle or K1,3, with

l(G) = l. Then each of the following holds:

(i). For an integer m, l ≥ m ≥ 0,

l(Lm(G)) =

{
l −m : if 0 ≤ m < l

1 : if m ≥ l

(ii). For integer s ≥ 0,

δ(Ll+s(G)) ≥

{
2 : if s = 0 or s = 1

2s−2 + 2 : if s ≥ 2

(iii). Ll(G), Ll+1(G) and Ll+2(G) are triangular and Ll+s(G) is 2s−3-triangular when

s ≥ 3;

(iv). For an integer s ≥ 0, κ(Ll+s(G)) ≥ s+ 1.

Proof. (i). Case 1 l(G) = 1.

By the definition of an arc, l(G) = 1 if and only if one of the following holds

(A) δ(G) ≥ 3;

(B) δ(G) ≤ 2 and every vertex of degree 2 is contained in a triangle.
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If (A) holds, then δ(Lm(G)) ≥ 3 and so l(Lm(G)) = 1 for any m ≥ 0. Hence, we
assume that (B) holds. By way of contradiction we suppose that l(L(G)) ≥ 2. Let
P0 = v0v1 · · · vl be an arc of length of l(L(G)) ≥ 2. So dL(G)(v1) = dL(G)(v2) = · · · =
dL(G)(v1−1) = 2. By the definition of an arc, v0v1v2 is an induced path of length 2 in

L(G), i.e., v0v1, v1v2 ∈ E(L(G)), but v0v2 /∈ E(G). Assume that ev0 , ev1 , ev2 are edges in

G corresponding to v0, v1, v2 in L(G), respectively. So we have a path ev0 , ev1 , ev2 of length

3 in G whose internal vertices are of degree 2. Hence, l(G) ≥ 3, contrary to l(G) = 1.

Case 2 l(G) ≥ 2.

Let P0 = v0v1 · · · vl be an arc of length of l(G) ≥ 2. By the definition of an arc,
dG(vi) = 2 for i = 1, 2, · · · , l− 1. Let u1, u2, · · · , ul be the vertices in L(G) corresponding

to the edges v0v1, v1v2, · · · , vl−1vl in G respectively. Then u1u2 · · ·ul is an arc in L(G)

with length l − 1. So l(L(G)) = l − 1. Inductively, we have l(Lm(G)) = l − m when

0 ≤ m < l.

In particular, l(Lm(G)) = 1 when m ≥ l by Case 1 since l(Ll−1(G)) = 1.

(ii). First we prove that δ(Ll(G)) ≥ 2. We assume by way of contradiction that there
exists a vertex v of degree 1 in Ll(G). So the edges corresponding to v and its only

adjacent vertex induce a path of length 2 with an internal vertex of degree 2 in Ll−1(G),

which is an arc of length 2, contrary to the fact that l(Ll−1(G)) = 1. Hence, δ(Ll(G)) ≥ 2.
For any graph G that is neither a path nor a cycle, the sequence δ(Li(G)), i = i, 2, · · · , is

nondecreasing. So we also have δ(Ll+1(G)) ≥ 2.

Next we prove that δ(Ll+2(G)) ≥ 3.

�
�

�
�

@
@

@
@

tu

Figure 2.4.1: Ll+2(G)
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Figure 2.4.2: Ll+1(G)
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Figure 2.4.6: Ll(G)
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Figure 2.4.7: Ll(G)

Assume that there exists a vertex u in Ll+2(G) of degree 2 (see Figure 2.4.1), then

the corresponding edge eu = xy of u in Ll+1(G) is incident with 2 edges. That means

eu is either a pendent edge (see Figure 2.4.4) or an edge with both ends x, y of degree 2

(see Figure 2.4.2 and 2.4.3). The graph Ll+1(G) in Figure 2.4.4 corresponds to Ll(G) in

Figure 2.4.7, contrary to (i) that l(Ll)(G) = 1. So we can assume that the end vertices

of eu both have degree 2. Then ELl+1(G)(x) = {eu, f} and ELl+1(G)(y) = {eu, g}. And it
is easy to see that {f, eu, g} forms an arc of length 3 if f and g have no common vertices

(see Figure 2.4.3), contrary to the fact that Ll+1(G) has no arcs of length greater than 1

by (i). So {f, eu, g} forms a triangle in Ll+1(G) (see Figure 2.4.2). Assume that ex, ey, ez

are edges in Ll(G) corresponding to the vertices x, y, z in Ll+1(G). The graph induced by

{x, y, z} corresponds to a K1,3 (see Figure 2.4.5) or C3 (see Figure 2.4.6). First consider

the case of Figure 2.4.6. Since G is not a C3 nor a K1,3, Ll(G) can not be a C3. So ez

is adjacent to at least one more edge other than ex, ey, which is contrary to the fact that

ex and ey can only be adjacent to ez. Since l ≥ 1, Ll(G) is a line graph and so it is claw

free, which excludes the graph in Figure 2.4.5.

So we have δ(Ll+2(G)) ≥ 3.

Define a1 = 3, a2 = 4. Since δ(Ll+2(G)) ≥ 3 = a1, every edge in Ll+2(G) is adjacent

to at least 4 = 2(3 − 1) = a2 edges and so δ(Ll+3(G)) ≥ 4 = a2. Inductively, suppose
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that every edge in Ll+s−1(G) is adjacent to at least as−1 = 2as−2 − 2 edges. Then
δ(Ll+s(G)) ≥ 2s−2 + 2, as desired.

(iii). First we prove that Ll(G) is triangular; that is, for any e = xy ∈ E(Ll(G)), e

lies in at least one triangle. If e is a pendent edge in Ll(G) (see Figure 2.5.2), then

δ(Ll(G)) = 1 < 2, contrary to (ii). And since l(Ll(G)) = 1, if one of dLl(G)(x) and

dLl(G)(y) is 2, then e must lie in a triangle. So we can assume that dLl(G)(x) ≥ 3 and
dLl(G)(y) ≥ 3 (see Figure 2.5.1). Since xy ∈ E(Ll(G)), the corresponding edges ex and ey

in Ll−1(G) share a common vertex v in Ll−1(G). So the corresponding Ll−1(G) of Ll(G)

is a graph in Figure 2.5.3 or Figure 2.5.4 by l(Ll−1(G)) = 1. Then e lies in a triangle in

Ll(G).

t
t t t t

t
ex y

a

b

Figure 2.5.1: Ll(G)

t

t t
t
t

x

y
e

f g

Figure 2.5.2: Ll(G)

t

tt tt t t
t

v

v′

ex ey

Figure 2.5.3: Ll−1(G)

t
t tt tt

t
v

ex ey

Figure 2.5.4: Ll−1(G)

Figure 2.5

Let xy ∈ E(Ll+1)). Then ex and ey share a common vertex in Ll(G). Since ex lies in

a triangle, there exists an edge ea that is incident with both ex and ey. Hence, Ll+1(G)

is triangular. Similarly, Ll+2(G) is triangular. And so Ll+1(G) and Ll+2(G) are both

triangular.

If s ≥ 3, by (ii), δ(Ll+s−1(G)) ≥ 2s−3 + 2, so the incident edges of each vertex form a
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complete graph with order at least 2s−3+2 in Ll+s(G). Then each edge of Ll+s(G) lies in

at least 2s−3 triangles, that is, Ll+s(G) is 2s−3-triangular since Ll+s(G) is the edge-disjoint

union of complete graphs.

(iv) Since G is connected, Ll(G) is connected, i.e., κ(Ll(G)) ≥ 1. So we now assume
s ≥ 1.

Notice that, for an integer k ≥ 0, a non-complete line graph L(H) has no vertex cut

of size less than k if and only if H has no essential edge cut of size less than k. Next

we prove that κ(Ll+s(G)) ≥ s + 1 by showing that Ll+s−1(G) has no essential edge cut

of size less than s + 1. Suppose that Ll+s−1(G) has an essential edge cut X of size less

than s+ 1 and Ll+s−1(G)−X has two nontrivial components C1 and C2. Since Ll+k(G)

is connected and triangular, |X| ≥ 2.

Since |X| ≥ 2, Ll(G) has no essential edge cuts of size 1, and so κ(Ll+1(G)) ≥ 2.

If k = 2 and |X| = 2, then there must exist a vertex v in C1 or C2 such that

X ⊆ ELl+1(G)(v). Since X is essential, v is incident with one more edge except X. Then

v is a cut vertex of Ll+1(G), a contradiction. So |X| ≥ 3, that is, κ(Ll+2(G)) ≥ 3.

Next we prove that κ(Ll+s(G)) ≥ s + 1 when s ≥ 3 by induction. Assume that
κ(Ll+s−1(G)) ≥ s and we consider the graph Ll+s−1(G). Since each edge lies in at least

one triangle, at least two edges of X are incident with the same vertex. So we can assume

without loss of generality that X has at most s − 1 vertices in C1 and denote the set of

these vertices by Y . Since |X| ≤ s, at least one vertex y of Y is incident with exactly one

edge of X. Since δ(Ll+s−1(G)) ≥ 2s−3+2 ≥ s when s ≥ 3, dLl+s−1(G)(v) ≤ s−2+1 = s−1,
a contradiction. Hence E(C1 − Y ) 6= ∅. So Y is a (s − 1)-cut of Ll+s−1(G), contrary to

the induction hypothesis.

Therefore Ll+s(G) has no essential edge cuts of size less than s+2 and so κ(Ll+1+s(G)) ≥
s+ 2.

Lemma 2.2.5 Let G be a simple connected graph that is neither a path nor a cycle with

l(G) = l. Then for any S ′ ⊆ E(Ll+s(G)) with |S ′| ≤ s, Ll+s(G) − S ′ has a dominating

Eulerian subgraph.
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Proof By Lemma 2.2.4(iii), Ll+s(G) is (2s−3 ≥ 8 ≥ s+ 1)-triangular when s ≥ 6. In this
case, every edge of Ll+s(G) − S ′ lies in at least one triangle since |S ′| = s. By Lemma

2.2.3, Ll+s(G) − S ′ has a spanning Eulerian trail since we can contract all the triangles

to get a K1. Next we consider the cases when s = 0, 1, 2, 3, 4, 5.

Since Ll+s(G) is an edge-disjoint union of complete graphs, we can assume that

{E1, E2, · · · , En} is a complete edge partition of Ll+s(G) where Ei is a complete graph

for 1 ≤ i ≤ n. Consider Ll+s(G)−S ′ and notice that deleting some edges in Ll+s(G) may

result in some of the edges in Ll+s(G) − S ′ not lying in any triangles. For any complete

Ei with order t, if Ei ∩S ′ = ∅, then Ei is still triangular; if Ei ∩S ′ 6= ∅ and Ei −S ′ is not

triangular, then

|Ei ∩ S ′| ≥ t− 2. (2.1)

Let G1 be the graph obtained by contracting all the triangles and multiple edges

repeatedly from Ll+s(G) − S ′. From the proof of Lemma 2.2.4 (iv), Ll+s(G) has no

essential edge cuts of size less than s+ 2. Hence Ll+s(G)− S ′ has no essential edge cuts

of size less than 2. By Lemma 2.2.3, it suffices to show that |V (G1)| ≤ 4 in each of the
cases below, we shall show that |V (G)| ≤ 4.

Case 1 s = 0. Since Ll(G) is triangular, then G1 = K1.

Case 2 s = 1. Let S ′ = {e} and consider Ll+1(G) − S ′. By (1), the only possibility of

making some Kt − S ′ not triangular is that S ′ ⊆ K3. We can assume that E1 = K3 and

by (1), for any e ∈ E2 ∪ E3 · · · ∪ En, e lies in at least one triangle of Ll+1(G)− S ′. That

means the induced graph of E2 ∪E3 · · · ∪En is triangular. Since κ(Ll+1(G)) ≥ 1+ 1 = 2,
E1 = K3 shares at least two vertices with other Ei’s. Thus G1 has at most 2 vertices left.

Case 3 s = 2. Let S ′ = {e1, e2} and consider Ll+2(G) − S ′. By (1), the possibilities of

making some Kt − S ′ not triangular are listed below (see Table 1).

Table 1
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e1 e2 |V (G1)| ≤ |E(G1)| ≤
Case 2.1 K4 K4 4 2

Case 2.2 K3 K3 3 1

Case 2.3 K3 K ′
3 5 4

In Table 1, Case 2.1 is the case when e1, e2 are contained in the same K4; Case 2.2 is

the case when they are both contained in the same K3; Case 2.3 is the case when one of

them is contained in a K3 and the other is contained in a different K3.

Let X be the union of the complete graphs each of which contains some edges of S ′.

So we have that X = K3 (Case 2.2), X = K4 (Case 2.1) or X = K3∪K ′
3 (Case 2.3) and for

any e ∈ G−X, e lies in at least one triangle of Ll+2(G)−S ′. Since κ(Ll+2(G)) ≥ 2+1 = 3,
X shares at least three vertices with other Ei’s.

If X = K3, then G1 has at most 1 vertex left; if X = K4, then K4 has at most two

vertices left; if X = K3 ∪K ′
3, then G1 has at most 4 vertices left.

Case 4 s = 3. Let S ′ = {e1, e2, e3} and consider Ll+3(G) − S ′. By Lemma 2.2.4(ii),

δ(Ll+2(G)) ≥ 3. So each Ei is an edge-disjoint union of complete graphs with orders at

least 3. By (1), the possibilities of making some Kn −S ′ not triangular are that either S ′

is contained in some K5, or at least 2 edges of S ′ are contained in some K4, or at least 1

edge of S ′ is contained in some K3.

Suppose that at least 2 edges of S ′ are contained in some K4, or at least 1 edge of S ′

is contained in some K3. Then since edges of Ll+3(G) not in these complete graphs are

lying in triangles disjoint from these complete graphs, and since κ(Ll+3(G)) ≥ 3 + 1 = 4,
the contraction of all the triangles of Ll+s(G)− S ′ will result in a graph G1 with at most

4 vertices.

Now suppose that a K5 contains all 3 edges in S ′. Since κ(Ll+3(G)) ≥ 3 + 1 = 4, this
K5 shares at least four vertices with other Ei’s. And so G1 has at most 2 vertices left.

Case 5 s = 4. Let S ′ = {e1, e2, e3, e4} and consider Ll+4(G) − S ′. By Lemma 2.2.4(ii),

δ(Ll+3(G)) ≥ 4. So each Ei is an edge-disjoint union of complete graphs with orders at

least 4. By (1), the possibilities of making some Kn −S ′ not triangular are that either S ′
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is contained in some K6, or at least 3 edges of S ′ are contained in some K5, or at least 2

edges of S ′ are contained in some K4.

Suppose that at least 3 edges of S ′ are contained in some K5, or at least 2 edge of

S ′ is contained in some K4. Then since edges of Ll+4(G) not in these complete graphs

are lying in triangles disjoint from these complete graphs, and since κ(Ll+4(G)) ≥ 5, the
contraction of all the triangles of Ll+s(G) − S ′ will result in a graph G1 with at most 4

vertices.

Now suppose that a K6 contains all 4 edges in S ′. Since κ(Ll+4(G)) ≥ 4 + 1 = 5, this
K6 shares at least five vertices with other Ei’s. And so G1 has at most 2 vertices left.

Case 6 s = 5. Let S ′ = {e1, e2, e3, e4, e5} and consider Ll+5(G)−S ′. By Lemma 2.2.4(ii),

δ(Ll+3(G)) ≥ 6. So each Ei is an edge-disjoint union of complete graphs with orders

at least 6. By (1), the possibilities of making some Kn − S ′ not triangular are that

either S ′ is contained in some K7 or 4 edges of S ′ are contained in some K6. Since

κ(Ll+5(G)) ≥ 5 + 1 = 6, this concerned K7 or K6 shares at least six vertices with other

Ei’s. And so G1 has at most 2 vertices left.

Proof of Theorem 2.1.1 Let S be a vertex set of Ll+1+s(G) with |S| = s. Let S ′ be the

edge set of Ll+s(G) corresponding to S in Ll+1+s(G). By Lemma 2.2.4(iv), κ(Ll+1+s(G)) ≥
s+ 2. Then κ(Ll+1+s(G)− S) ≥ 2 and so Ll+s(G)− S ′ has no essential edge cuts of size

1, or equivalently, all the edge cuts of size 1 of Ll+s(G)−S ′ are pendent edges. And since

κ′(Ll+s(G)) ≥ κ(Ll+s(G)) ≥ s + 1 and |S ′| = s, κ′(Ll+s(G) − S ′) ≥ 1. So Ll+s(G) − S ′

is connected. By Lemma 2.2.5, Ll+s(G)− S ′ has a dominating Eulerian subgraph. Since

deleting an edge in Ll+s(G) will not affect the adjacency relationship between any two

edges in E(Ll+s(G)) − S ′, the adjacency relationship between any two corresponding

vertices in V (Ll+s+1(G)) − S. So the induced graph of V (Ll+s+1(G)) − S in Ll+s+1(G)

is the line graph of the induced graph of E(Ll+s(G))− S ′ in Ll+s(G). Then by Theorem

2.2.1, Ll+1+s(G)− S is hamiltonian . And so Ll+1+s(G) is s-hamiltonian.

From Theorem 2.1.1, we know the s-Hamilton index of a graph G hs(G) is at most

l + s+ 1. It is natural to ask what kind of graphs have hs(G) = l + s+ 1.

Question 1 Characterize the graph G with hs(G) = l + s+ 1.
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Question 2 If hs(G) < l + s + 1, is the graph Lhs+k(G) is also s-hamiltonian for any

integer k ≥ 1?

Question 3 Is this line graph model an optimal model for s-fault-tolerant network?
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