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ABSTRACT

On Generalizations of Supereulerian Graphs

Sulin Song

A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979

showed that determining whether a graph is supereulerian, even when restricted to

planar graphs, is NP-complete. Let κ′(G) and δ(G) be the edge-connectivity and the

minimum degree of a graph G, respectively. For integers s ≥ 0 and t ≥ 0, a graph

G is (s, t)-supereulerian if for any disjoint edge sets X,Y ⊆ E(G) with |X| ≤ s

and |Y | ≤ t, G has a spanning closed trail that contains X and avoids Y . This

dissertation is devoted to providing some results on (s, t)-supereulerian graphs and

supereulerian hypergraphs.

In Chapter 2, we determine the value of the smallest integer j(s, t) such that

every j(s, t)-edge-connected graph is (s, t)-supereulerian as follows:

j(s, t) =


max{4, t+ 2} if 0 ≤ s ≤ 1, or (s, t) ∈ {(2, 0), (2, 1), (3, 0), (4, 0)},
5 if (s, t) ∈ {(2, 2), (3, 1)},
s+ t+ 1−(−1)s

2 if s ≥ 2 and s+ t ≥ 5.

As applications, we characterize (s, t)-supereulerian graphs when t ≥ 3 in terms of

edge-connectivities, and show that when t ≥ 3, (s, t)-supereulerianicity is polynomi-

ally determinable.

In Chapter 3, for a subset Y ⊆ E(G) with |Y | ≤ κ′(G) − 1, a necessary and

sufficient condition for G−Y to be a contractible configuration for supereulerianicity

is obtained. We also characterize the (s, t)-supereulerianicity ofG when s+t ≤ κ′(G).

These results are applied to show that if G is (s, t)-supereulerian with κ′(G) =

δ(G) ≥ 3, then for any permutation α on the vertex set V (G), the permutation

graph α(G) is (s, t)-supereulerian if and only if s+ t ≤ κ′(G).

For a non-negative integer s ≤ |V (G)| − 3, a graph G is s-Hamiltonian if the

removal of any k ≤ s vertices results in a Hamiltonian graph. Let is,t(G) and

hs(G) denote the smallest integer i such that the iterated line graph Li(G) is (s, t)-

supereulerian and s-Hamiltonian, respectively. In Chapter 4, for a simple graph

G, we establish upper bounds for is,t(G) and hs(G). Specifically, the upper bound

for the s-Hamiltonian index hs(G) sharpens the result obtained by Zhang et al. in

[Discrete Math., 308 (2008) 4779-4785].



Harary and Nash-Williams in 1968 proved that the line graph of a graph G is

Hamiltonian if and only if G has a dominating closed trail, Jaeger in 1979 showed

that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that

every graph with two edge-disjoint spanning trees is a contractible configuration for

supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of

hypergraphs introduced by Frank, Király and Kriesell in 2003, we generalize the

above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to

hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and

showing that every 2-partition-connected hypergraph is a contractible configuration

for supereulerianicity.

Applying the adjacency matrix of a hypergraph H defined by Rodŕıguez in 2002,

let λ2(H) be the second largest adjacency eigenvalue of H. In Chapter 6, we prove

that for an integer k and a r-uniform hypergraph H of order n with r ≥ 4 even, the

minimum degree δ ≥ k ≥ 2 and k 6= r+ 2, if λ2(H) ≤ (r− 1)δ − r2(k−1)n
4(r+1)(n−r−1) , then

H is k-edge-connected.

Some discussions are displayed in the last chapter. We extend the well-known

Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hyper-

graphs. The (s, t)-supereulerianicity of hypergraphs is another interesting topic to

be investigated in the future.
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Chapter 1

Introduction

1.1 Notation and Terminology

Throughout the dissertation, for two integers n1, n2 with n1 < n2 and a positive

integer n, we denote [n1, n2] = {n1, n1 + 1, . . . , n2}, denote Zn to be the additive

group of integers modulo n, and use Sn to denote the permutation group of degree

n.

Finite loopless graphs and hypergraphs permitting parallel edges are considered

with undefined terms being referenced to [9] for graphs and [5] for hypergraphs. As

in [9], the connectivity, the edge-connectivity and the minimum degree of a graph

G are denoted by κ(G), κ′(G) and δ(G), respectively. Following [9], a set of vertices

no two of which are adjacent is referred as a stable set. A graph G is nontrivial if

it contains at least one edge. For a subset X ⊆ V (G) or E(G), let G[X] denote the

subgraph induced by X. For notational convenience, if X ⊆ E(G), then we often

use X to denote both the edge subset of E(G) and the induced subgraph G[X].

When X ⊆ V (G), we denote G −X = G[V (G) −X]; when X ⊆ E(G), we denote

G−X to be a graph with the vertex set V (G) and the edge set E(G)−X. When

X = {x}, we write G− x for G− {x} shortly.

For a vertex v ∈ V (G), we denote NG(v) to be the set of all neighbors of vertex

v in a graph G, that is, NG(v) = {u ∈ V (G) : uv ∈ E(G)}. Denote NG[v] =

NG(v) ∪ {v}. For two subsets S, T ⊂ V (G), let EG[S, T ] = {uv ∈ E(G) : u ∈
S, v ∈ T}. Denote ∂G(S) = EG[S, V (G)− S] and denote dG(S) = |∂G(S)| to be the

degree of S. If S = {v}, then we write ∂G(v) and dG(v) instead of ∂G({v}) and

dG({v}), respectively. For two subgraphs J1 and J2 of G, we write EG[J1, J2] for
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EG[V (J1), V (J2)] shortly. The subscript may be omitted if it is understood from

the context. For an integer i ≥ 0, let Di(G) be the set of all vertices of degree i in

G, and let O(G) be the set of all odd degree vertices in G.

Let G1 and G2 be two graphs. The intersection of G1 and G2, denoted by G1∩
G2, has the vertex set V (G1∩G2) = V (G1)∩V (G2) and the edge set E(G1∩G2) =

E(G1) ∩ E(G2); and the union of G1 and G2, denoted by G1 ∪G2, has the vertex

set V (G1 ∪G2) = V (G1) ∪ V (G2) and the edge set E(G1 ∪G2) = E(G1) ∪ E(G2).

If G2
∼= K2 with E(G2) = {e}, then we write G1 ∪ e for G1 ∪G2.

The line graph of a graph G, denoted by L(G), is a simple graph with E(G) be-

ing its vertex set, where two vertices in L(G) are adjacent whenever the correspond-

ing edges in G are adjacent. For an edge e = uv ∈ E(G), we set ∂G(e) = ∂G({u, v})
and dG(e) = |∂G(e)|. By definitions, dG(e) = dL(G)(e), which means that it is

permissible to omit subscripts when G or L(G) is understood from context.

Let J be a graph. A graph G is J-free if G does not have an induced subgraph

isomorphic to J . We say a K1,3-free graph is claw-free. Beineke (Theorem 2 of [4])

and Robertson (Page 74 of [40]) showed that line graphs are claw-free graphs.

1.2 The Supereulerian Problem

In 1736, Euler solved the well known Königsberg Bridge Problem, which represented

the beginning of graph theory. A graph G is now called eulerian if G is connected

and O(G) = ∅ in Euler’s honor. It means that every eulerian graph G has a closed

trail (a closed walk with no repeated edges) containing all edges of G. Euler showed

that a necessary condition for the existence of a closed eulerian trail is that each

vertex in the graph has even degree as a solution to the famous Königsberg Bridge

Problem. The first complete proof of this claim was published in 1873 by Carl

Hierholzer (Chapter 1 of [7]), as known Euler’s Theorem.

Theorem 1.2.1 (The Euler’s Theorem). A connected graph is eulerian if and only

if every vertex has even degree.

Fleury’s algorithm [30] showed that finding a closed eulerian trail is a P problem,

that is, it is solvable in polynomial time.

A similar question is called the Chinese Postman Problem (CPP) that is to find

a shortest closed walk in a connected graph such that each edge is traversed at

least once. For the practical situation, the problems like delivery of mails, trash

2



pick-up, and snow removal can be modeled by the CPP. The problem was originally

studied by the Chinese mathematician Meigu Guan in 1960 [50]. The name of the

CPP was coined in his honor. The CPP can be solved in polynomial time on both

undirected and directed graphs (Section 12.2 of [48]). However, the CPP on mixed

multigraphs that may have both edges and arcs is NP-hard [71]. Gutin et al. [38]

proved that the CPP on edge-colored graphs is polynomial-time solvable. Later on,

Sheng et al. [84] provided a polynomial-time algorithm for the CPP on weighted

2-arc-colored digraphs.

If the graph is eulerian, then the eulerian closed trail is an optimal solution of the

CPP. Otherwise, the optimization problem is to find the smallest number of edges in

the graph to be duplicated so that the resulting multigraph is eulerian. Motivated

by this, Boesch, Suffel, and Tindell [8] in 1977 defined a subeulerian graph to be a

spanning subgraph of a simple eulerian graph, and presented a characterization of

all subeulerian graphs. In the same paper, they raised the supereulerian problem,

which seeks to characterize graphs with spanning eulerian subgraphs. They also

remarked in [8] that this problem would be very difficult.

A graph is called supereulerian if it has a spanning eulerian subgraph. Pulley-

blank [74] later in 1979 proved that determining whether a graph is supereulerian,

even within planar graphs, is NP-complete. Since then, there have been intensive

studies on supereulerian graphs, as seen in Catlin’s survey [14] and its updates

in [24,56].

1.2.1 Catlin’s Reduction Method

Catlin [13] first proved that every collapsible graph is a contractible configuration

for supereulerianicity. A graph G is collapsible if for every subset R ⊆ V (G) with

|R| ≡ 0 (mod 2), G has a subgraph ΓR such that O(ΓR) = R and G − E(ΓR) is

connected. By definition, all complete graphs Kn except K2 are collapsible. As

shown in Proposition 1 of [56], a graph G is collapsible if and only if for every subset

R ⊆ V (G) with |R| ≡ 0 (mod 2), G has a spanning connected subgraph LR with

O(LR) = R. By taking R = ∅, we have every collapsible graph is supereulerian.

Collapsible graphs have been considered to be a very useful tool to study eu-

lerian subgraphs via the graph contraction. For an edge subset X ⊆ E(G), the

contraction G/X is a new graph obtained from G by identifying the two ends of

each edge in X and deleting the resulting loops. If J is a subgraph of G, then we

write G/J for G/E(J). If J is a connected subgraph of G, then we denote vJ to be

3



the new vertex distinct from V (G)− V (J) in G/J onto which J is contracted, and

call V (J) the preimage of vJ , denoted by pre(vJ). For the sake of simplicity, we

view V (G/J) ⊆ V (G) and E(G/J) ⊆ E(G).

Let J1, J2, . . . , Jc be all maximal collapsible subgraphs of G. The reduction of

G, denoted by G′, is the graph G/(J1 ∪ J2 ∪ · · · ∪ Jc). A graph G is reduced if

G′ = G. The following theorem summarizes some useful properties of collapsible

graphs for our arguments.

Theorem 1.2.2. Let G be a graph and J be a subgraph of G. Each of the following

holds.

(i) (Catlin, Lemma 3 of [13]) If G is collapsible (resp. supereulerian), then G/J

is collapsible (resp. supereulerian).

(ii) (Catlin, Theorem 3 of [13]) Suppose that J is collapsible. Then, G is collapsible

(resp. supereulerian) if and only if G/J is collapsible (resp. supereulerian).

In particular, G is collapsible if and only if the reduction G′ is K1.

(iii) (Catlin, Theorem 5 of [13]) G is reduced if and only if G has no nontrivial

collapsible subgraphs.

(iv) (Catlin et al., Theorem 3 of [15]) If each edge of a connected graph G is in a

cycle of length 2 or 3, then G is collapsible.

(v) (Catlin, Theorem 7 of [12]) If G is a connected and reduced graph with |V (G)| ≥
3, then F (G) = 2|V (G)| − |E(G)| − 2.

The spanning tree packing number of G, denoted by τ(G), is the maximum

number of edge-disjoint spanning trees of G. Let F (G) be the minimum number

of extra edges that must be added to G so that the resulting graph has two edge-

disjoint spanning trees. Hence, for a graph G, τ(G) ≥ 2 if and only if F (G) = 0.

Theorem 1.2.3(i) was first obtained by Jaeger [44], and extended by Catlin in [13].

Theorem 1.2.3. Let G be a connected graph. Each of the following holds.

(i) (Jaeger [44]; Catlin, Theorem 2 of [13]) If κ′(G) ≥ 4, then F (G) = 0, and so

G is collapsible.

(ii) (Catlin, Theorem 7 of [13]) If F (G) ≤ 1, then G′ ∈ {K1,K2}.
(iii) (Catlin et al., Theorem 1.3 of [16]) If F (G) ≤ 2, then G′ ∈ {K1,K2,K2,t : t ≥

1}.

Example 1.2.1. Let K−3,3 be a graph obtained from the complete bipartite graph K3,3

by deleting one edge. As F (K−3,3) = 2, by Theorem 1.2.3(iii), K−3,3 is collapsible.
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1.2.2 (s, t)-Supereulerian Graphs

Lei et al. in [59, 60] generalized the concept of supereulerian graphs to (s, t)-

supereulerian graphs. Let s and t be two non-negative integers. A graph G is

(s, t)-supereulerian if for any disjoint sets X,Y ⊂ E(G) with |X| ≤ s and |Y | ≤ t,
G − Y contains a spanning eulerian subgraph that contains all edges in X. By

definitions, a graph G is (0, 0)-supereulerian if and only if G is supereulerian.

A very useful tool to study (s, t)-supereulerian graphs is the elementary subdivi-

sion. An elementary subdivision of a graph G at an edge e = uv is an operation to

obtain a new graph G(e) from G−e by adding a new vertex v(e) and two new edges

uv(e) and v(e)v. For a subset X ⊆ E(G), we define G(X) to be the graph obtained

from G by elementarily subdividing every edge of X. Denote V(X) = {v(e) : e ∈ X}
to be the set of all new vertices obtained by elementarily subdividing every edge in

X. If X = {e1, e2, . . . , es}, then we write G(e1, e2, . . . , es) for G({e1, e2, . . . , es}). By

definitions, for a subset X ⊆ E(G),

G has a spanning closed trail containing X if and only if G(X) is supereulerian.

(1.1)

As numerous good sufficient conditions to be supereulerian graphs have been in-

vestigated, sufficient conditions of (s, t)-supereulerianicity have aroused the interest

of some researchers. A graph G is locally k-edge-connected if for every v ∈ V (G),

the induced subgraph G[NG(v)] is k-edge-connected. A locally connected graph

is a locally 1-edge-connected graph. Since every edge of a locally connected graph

lies in a cycle of length at most 3, every connected and locally connected graph is

collapsible by Theorem 1.2.2(iv), and supereulerian as well. Thus, Catlin in [13]

indicated the following theorem.

Theorem 1.2.4 (Catlin [13]). If G is connected and locally connected, then G is

supereulerian.

Since every supereulerian graph must be 2-edge-connected, it follows that every

(s, t)-supereulerian graph must be (t + 2)-edge-connected. Lei et al. [59] extended

Theorem 1.2.4 to (s, t)-supereulerian graphs when s ≤ 2 and the edge-connectivity

is sufficiently high.

Theorem 1.2.5 (Lei et al., Theorem 10 of [59]). Let s ≤ 2 and t be non-negative

integers. Suppose that G is a (t + 2)-edge-connected and locally connected graph.

Exactly one of the following holds.

(i) G is (s, t)-supereulerian.
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(ii) For any disjoint sets X,Y ⊂ E(G) with |X| ≤ s and |Y | ≤ t, the reduction of

(G− Y )(X) is a member of {K1,K2,K2,p : p ≥ 1}.

Lei et al. in [60] further improved the results above when locally edge-connectivity

is sufficiently high.

Theorem 1.2.6 (Lei et al., Theorem 3 & 4 of [60]). Let k ≥ 1 be an integer and

let G be a connected and locally k-edge-connected graph. Then, for any non-negative

integers s and t, each of the following holds.

(i) If s+ t ≤ k − 1, then G is (s, t)-supereulerian.

(ii) If s + t ≤ k, then G is (s, t)-supereulerian if and only if for any Y ⊂ E(G)

with |Y | ≤ t, G − Y is not contractible to K2 or to K2,p, where p is an odd

integer.

1.2.3 Hamiltonian Line Graph Problem

Recall that a graph L is called a line graph if L ∼= L(G) for some graph G. The

concept of line graphs was implicitly introduced by Whitney [88] in 1932. As Prisner

described in [73], the line graph provides another way of looking at the graphs. It

is a worthwhile concept to study. Over the years, the study of line graphs has been

a classical topic of research in graph theory, including characterizations of graphs

whose line graphs have some specified property.

A graph is Hamiltonian if it has a spanning cycle. It has been known that to

determine whether a graph is Hamiltonian is NP-complete (Theorem 3.4 of [32]).

If a graph G is Hamiltonian, then κ(G) ≥ 2. However, the complete graph Kn,n+1

suggests that high connectivity does not warrant hamiltonicity. Thus the question

whether there exist some commonly interesting graph families in which high con-

nectivity implies hamiltonicity will be of interest.

Most of the questions and results in this section are inspired by the following

conjecture of Thomassen, which is a special case of the conjecture posed by Matthews

and Sumner.

Conjecture 1.2.1 (Thomassen, Conjecture 2 of [86]). Every 4-connected line graph

is Hamiltonian.

Conjecture 1.2.2 (Matthews and Sumner, Conjecture 2 of [67]). Every 4-connected

claw-free graph is Hamiltonian.
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In 1997, Z. Ryjáček proved in [79] that Conjecture 1.2.1 and Conjecture 1.2.2

are equivalent. Thus, the Hamiltonian claw-free graph problem can be converted

into the Hamiltonian line graph problem.

A subgraph J of G is dominating if G − V (J) is edgeless. Harary and Nash-

Williams [41] discovered a nice relationship between dominating eulerian subgraphs

in a graph G and Hamilton cycles in the line graph L(G).

Theorem 1.2.7 (Harary and Nash-Williams, Proposition 8 of [41]). Let G be a

graph with at least three edges. Then L(G) is Hamiltonian if and only if G has a

dominating eulerian subgraph.

Theorem 1.2.7 indicates that the line graph of every supereulerian graph is

Hamiltonian. Thus, the study of supereulerianicity is an approach to investigate

the Hamiltonian line graph problem.
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Chapter 2

On (s, 3)-Supereulerian Graphs

2.1 Background

Throughout this chapter, we let s and t be two non-negative integers. The (s, t)-

supereulerian problem, determining whether a given graph is (s, t)-supereulerian for

given values of s and t, is an attempt to generalize the supereulerian problem.

A number of research results on the (s, t)-supereulerian problem and similar

topics have been obtained, as seen in [22,26,53,58–60,92], among others. Pulleyblank

[74] proved that determining whether a graph is (0, 0)-supereulerian, even when

restricted to planar graphs, is NP-complete. Thus, the complexity of determining if

a graph G is (s, t)-supereulerian for other values of s and t becomes of interests. This

motivates the current research. A main result of this chapter is a polynomial-time

verifiable characterization of (s, t)-supereulerian graphs when t ≥ 3.

Studies involving generic (s, 0)-supereulerian graphs were considered much ear-

lier. A best possible edge-connectivity sufficient condition for (s, 0)-supereulerian

graphs was considered by Lai (Theorem 3.3 of [53]). Let f(s) be the minimum value

of k such that every k-edge-connected graph G is (s, 0)-supereulerian. As the Pe-

tersen graph is 3-edge-connected but not supereulerian, and every 4-edge-connected

graph is supereulerian (Theorem 1.2.3(i)), it shows that f(0) = 4. In [53], Lai

determined f(s) for all values of s as follows.

Theorem 2.1.1 (Lai, Theorem 3.3 of [53]).

f(s) =


4 if 0 ≤ s ≤ 2;

s+ 1 if s ≥ 3 and s ≡ 1 (mod 2);

s if s ≥ 4 and s ≡ 0 (mod 2).

(2.1)
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This was later extended by Chen, Chen and Luo in [22] for (s, t)-supereulerian

graphs when the parameters s and t are in certain ranges.

Theorem 2.1.2 (Chen et al., Theorem 4.1 of [22]). Let r ≥ 3 be an integer and G

be a graph. If two disjoint subsets X,Y ⊂ E(G) satisfying

|Y | ≤
⌊
r + 1

2

⌋
and |X|+ |Y | ≤ r, (2.2)

then, G− Y has an eulerian subgraph containing X if and only if κ′(G) ≥ r + 1.

2.2 Main Results

It is naturally coming up as a problem whether all the sufficient conditions posed

in Theorem 2.1.2 are necessary. Motivated by these prior results, in the current

research we aim to find, for given non-negative integers s, t, let j(s, t) denote the

smallest integer such that every graph G with κ′(G) ≥ j(s, t) is (s, t)-supereulerian.

One of our goals is to determine the value of j(s, t). The original statement of

Theorem 2.2.1 in [90] missed the case of (s, t) = (4, 0), so we corrected it as follows.

Theorem 2.2.1.

j(s, t) =


max{4, t+ 2}, if 0 ≤ s ≤ 1, or (s, t) ∈ {(2, 0), (2, 1), (3, 0), (4, 0)};
5, if (s, t) ∈ {(2, 2), (3, 1)};
s+ t+ 1−(−1)s

2 , if s ≥ 2 and s+ t ≥ 5.

(2.3)

While Theorem 2.2.1 presents an extremal edge-connectivity sufficient condition

for (s, t)-supereulerian graphs, it is natural to investigate when this sufficient condi-

tion is also necessary. As an application of Theorem 2.2.1, we obtain a characteri-

zation of (s, t)-supereulerian graphs when t ≥ 3, and its corollary on the complexity

of the (s, t)-supereulerian problem.

Theorem 2.2.2. Let s, t be integers with s ≥ 0 and t ≥ 3.

(i) Then a graph G is (s, t)-supereulerian if and only if κ′(G) ≥ j(s, t).
(ii) (s, t)-supereulerianicity is polynomially determinable.

2.3 Mechanisms

Utilizing the well-known spanning tree packing theorem of Nash-Williams [69] and

Tutte [87], Catlin et al. obtained the following result.
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Theorem 2.3.1 (Catlin et al., Theorem 1.1 of [17]). Let G be a graph, ε ∈ {0, 1}
and let k ≥ 1 be an integer. The following are equivalent.

(i) κ′(G) ≥ 2k + ε.

(ii) For any X ⊆ E(G) with |X| ≤ k + ε, τ(G−X) ≥ k.

Theorem 2.3.1 has a seemingly more general corollary, as stated below.

Corollary 2.3.2. Let G be a graph, and ε, k, ` be integers with ε ∈ {0, 1} and

2 ≤ k ≤ `. The following are equivalent.

(i) κ′(G) > 2`+ ε.

(ii) For any X ⊆ E(G) with |X| ≤ 2`− k + ε, τ(G−X) ≥ k.

Proof. To show (i) implies (ii), we pick a subset X ⊆ E(G) with |X| ≤ 2` − k +

ε. Choose X1 ⊆ X with |X1| = min{` + ε, |X|}. By (i) and by Theorem 2.3.1,

τ(G −X1) ≥ `. Let X2 = X −X1. Then |X2| ≤ |X| − |X1| ≤ ` − k. Thus among

the ` edge-disjoint spanning trees of G−X1, at least k of those spanning trees are

edge-disjoint from X2, and so τ(G−X) ≥ k. Conversely, we observe that Corollary

2.3.2(ii) implies Theorem 2.3.1(ii). Hence by Theorem 2.3.1, κ′(G) ≥ 2`+ ε.

Applying Corollary 2.3.2, we have the following two corollaries.

Corollary 2.3.3. Let G be a graph with κ′(G) ≥ 4 and let ε ∈ {0, 1}. If an edge

subset X ⊆ E(G) satisfies |X| ≤ κ′(G)− ε, then F (G−X) ≤ 2− ε.

Proof. Let X1 ⊆ X with |X1| = min{|X|, 2 − ε}. Then |X −X1| ≤ κ′(G) − 2. As

κ′(G) ≥ 4, by Theorem 2.3.2, τ(G − (X − X1)) ≥ 2. It implies that F (G − X) ≤
|X1| ≤ 2− ε.

Corollary 2.3.4. Let H1, H2 be two subgraphs of a graph G with |EG[H1, H2]| =

κ′(G) ≥ 4. Then, τ(H1) ≥ 2 and τ(H2) ≥ 2. Consequently, H1 and H2 are both

collapsible.

Proof. Let Z ⊂ EG[H1, H2] with |Z| = 2 and Z ′ = EG[H1, H2] − Z. Then |Z ′| =

κ′(G) − 2. By Theorem 2.3.2, τ(G − Z ′) ≥ 2. Since Z is the minimum edge cut of

G− Z ′ and |Z| = 2, it indicates that τ(Hi) ≥ 2 for each i = 1, 2. Then, each Hi is

collapsible by Theorem 1.2.3(i).

One more application of Corollary 2.3.2 is to extend Theorem 1.5 of [36] to the

form expressed in Theorem 2.3.5 below.
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Theorem 2.3.5 (Gu et al., Theorem 1.5 of [36]). Let G be a graph and let X ⊂ E(G)

be an edge subset with κ′(G) ≥ 4 and |X| < κ′(G). Then G−X is collapsible if and

only if κ′(G−X) ≥ 2.

Proof. As collapsible graphs must be 2-edge-connected, it suffices to assume that

κ′(G − X) ≥ 2 and to show that G − X is collapsible. Let X1 ⊆ X such that

|X1| ≤ κ′(G)− 2 and |X −X1| ≤ 1. By Corollary 2.3.2 with k = 2, τ(G−X1) ≥ 2.

As |X−X1| ≤ 1, we have F (G−X) ≤ 1. By Theorem 1.2.3(ii) and as κ′(G−X) ≥ 2,

G−X is collapsible.

Recall that, by definitions, for a subset X ⊆ E(G),

G has a spanning closed trail containing X if and only if G(X) is supereulerian.

(1.1)

Corollary 2.3.6. Let G be a graph with κ′(G) ≥ 4, and let X,Y ⊆ E(G) be disjoint

edge subsets with |Y | ≤ 1.

(i) If |X| = 2, then G− Y has a spanning closed trail that contains X.

(ii) If |X| = 3, then G has a spanning closed trail that contains X.

(iii) If |X| = 3 and κ′(G) ≥ 5, then G−Y has a spanning closed trail that contains

X.

Proof. As κ′(G) ≥ 4 and |Y | ≤ 1, by Theorem 2.3.1, τ(G − Y ) ≥ 2. Assume that

|X| = 2. Then, F ((G − Y )(X)) ≤ 2. As κ′(G − Y ) ≥ 3, κ′((G − Y )(X)) ≥ 2,

which implies (G−Y )(X) is collapsible by Theorem 1.2.3(iii). Thus, (G−Y )(X) is

supereulerian. This proves (i) by (1.1).

Now assume that |X| = 3. If κ′(G − X) ≥ 2, then by Theorem 2.3.5, G − X
is collapsible. Let R = O(G[X]). Then R ⊆ V (G − X) and |R| ≡ 0 (mod 2). As

G−X is collapsible, G−X has a spanning connected subgraph L with O(L) = R.

It follows that L ∪X is a spanning eulerian subgraph of G that contains all edges

in X. Hence we may assume that κ′(G−X) = 1, and so G has an edge cut W with

|W | = 4 and X ⊂ W . Let W = {e1, e2, e3, e4} with X = W − {e4}. By Theorem

2.3.1, τ(G−{e3, e4}) ≥ 2, and so F ((G−{e3, e4})(e1, e2)) ≤ 2. By definition and as

F ((G − {e3, e4})(e1, e2)) ≤ 2, it follows that F (G(W )) ≤ 2. As κ′(G(W )) ≥ 2 and

by Theorem 1.2.3(iii), either G(W ) is collapsible, or the reduction of G(W ) is a K2,`

for some ` ≥ 2. As κ′(G) ≥ 4, all edge cuts of size 2 in G(W ) are ∂G(W )(v(ei)) with

1 ≤ i ≤ 4. Thus again by κ′(G) ≥ 4, if the reduction of G(W ) is a K2,`, then ` = 4.
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Hence in any case, the reduction of G(W ) is always supereulerian. This proves (ii)

by (1.1).

To prove (iii), we assume that κ′(G) ≥ 5, and let X = {e1, e2, e3}. As κ′(G) ≥ 5,

we have κ′(G−Y ) ≥ 4, and by Corollary 2.3.6(ii), G−Y has a spanning closed trail

that contains X.

2.4 Proofs of the Main Results

To obtain a necessary condition of the (s, t)-supereulerianicity, let us start with the

following example.

Example 2.4.1. Let G1, G2 be disjoint graphs satisfying κ′(G1) ≥ 3 and κ′(G2) ≥ 3,

and let v1 ∈ D3(G1) with NG1(v1) = {x1, x2, x3} and v2 ∈ D3(G2) with NG2(v2) =

{y1, y2, y3}. Define a new graph G1 ◦G2 from the disjoint union (G1−v1)∪(G2−v2)

by adding three new edges x1y1, x2y2, x3y3 (see Figure 2.1). We have the following

observations.

(i) κ′(G1 ◦G2) ≥ 3;

(ii) If G1 is not supereulerian, (for example, G1 can be chosen to be the Petersen

graph), then G1 ◦G2 is not supereulerian;

(iii) j(s, t) ≥ 4.

The conclusion on the edge-connectivity of G1 ◦ G2 follows from the fact that

any minimum edge cut of G1 ◦ G2 corresponds to an edge cut of G1 or G2, and

so κ′(G1 ◦ G2) ≥ 3. Hence Example 2.4.1(i) can be observed. Recall Theorem

1.2.2(i), Catlin in [13] observed that any contraction of a supereulerian graph is

supereulerian (for example, Lemma 3 of [13] with S = O(G)). As (G1◦G2)/G2 = G1

is not supereulerian, it follows that G1 ◦ G2 is not supereulerian. So, Example

2.4.1(ii) holds and suggests that there exist infinitely many 3-edge-connected non-

supereulerian graphs, and so for any values of s and t, we must have Example

2.4.1(iii), j(s, t) ≥ 4.

If a graph G is eulerian, then G is (s, 0)-supereulerian where s ≤ |E(G)|. It was

mistakingly omitted the condition that G is non-eulerian or t ≥ 1 in the original

statement of Proposition 2.4.1 (Proposition 1.1 of [90]). So we corrected it as follows.

Proposition 2.4.1. Let G be an (s, t)-supereulerian graph. If G is non-eulerian or
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y1

y2

y3
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x1

x2

x3

y1

y2

y3

G1 ◦G2

Figure 2.1: Illustration of Example 2.4.1

t ≥ 1, then

κ′(G) ≥


max {4, t+ 2} , if s = 0;

max

{
4, s+ t+

1− (−1)s

2

}
, if s ≥ 1.

Proof. By Example 2.4.1(iii), it suffices to show that κ′(G) ≥ t + 2 if s = 0, and

κ′(G) ≥ s+ t+ 1−(−1)s

2 if s ≥ 1.

Let G be a (s, t)-supereulerian graph and W ⊆ E(G) be a minimum edge cut of

G. Take a subset Y ⊆ W with |Y | = min{t, |W |}. Since G is (s, t)-supereulerian,

G− Y contains a spanning eulerian subgraph, and so κ′(G− Y ) ≥ 2. Since W is an

edge cut of G, W −Y is also an edge cut of G−Y . Hence |W −Y | ≥ κ′(G−Y ) ≥ 2,

and so |Y | = t. Thus κ′(G) = |W | = |Y |+ |W − Y | ≥ t+ 2.

Assume further that s ≥ 1. Then s+ 1−(−1)s

2 ≥ 2, and so s+ t+ 1−(−1)s

2 ≥ t+ 2.

To complete this argument, it suffices to show that |W | ≥ s+ t+ 1−(−1)s

2 . Suppose

that |W | < s+ t+ 1−(−1)s

2 . As s ≥ 1, there exists a subset X ⊆W satisfying

1 ≤ |X| ≤ s, |W −X| ≤ t, and |X| ≡ 1 (mod 2).

Set Y = W − X. Since G is (s, t)-supereulerian, G − Y has a spanning eulerian
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subgraph J with X ⊆ E(J). Since W is an edge cut of G and X = W − Y ,

X is an edge cut of G − Y . Since X ⊆ E(J) and J is spanning subgraph of

G − Y , X is also an edge cut of J . As J is eulerian, every edge cut of J must

have even size, contrary to the fact that |X| is odd. This contradiction shows that

κ′(G) = |W | ≥ s+ t+ 1−(−1)s

2 .

We first show that Theorem 2.2.2 follows from Theorem 2.2.1.

Proof of Theorem 2.2.2. Suppose that t ≥ 3. Theorem 2.2.2(i) indicates that

determining if a graph G is (s, t)-supereulerian amounts to determining the edge-

connectivity of G. It is well-known (for example, Section 7.3 of [9]) that the edge-

connectivity can be determined by using an integral maximum flow algorithm, which

is known to be a polynomial algorithm. Hence Theorem 2.2.2(ii) follows from The-

orem 2.2.2(i).

We assume the validity of Theorems 2.2.1 to prove Theorems 2.2.2(i). By the

definition of j(s, t), every graph G with κ′(G) ≥ j(s, t) is (s, t)-supereulerian. Con-

versely, we assume that G is (s, t)-supereulerian. Then, κ′(G) ≥ t + 2 > 4. If

0 ≤ s ≤ 1, then by Theorem 2.2.1, κ′(G) ≥ max{4, t + 2} = j(s, t). Assume that

s ≥ 2. Since t ≥ 3, we have s + t ≥ 5, and so by Proposition 2.4.1 and Theorem

2.2.1, we have

κ′(G) ≥ s+ t+
1− (−1)s

2
= j(s, t).

This proves Theorems 2.2.2(i).

Therefore, to prove Theorems 2.2.1 and 2.2.2, it suffices to justify Theorem 2.2.1.

Before that, let us show one more example first.

Example 2.4.2. Let n ≥ 3 be an integer and {Ji : i ∈ Zn} be a collection of

mutually disjoint 4-edge-connected graphs. We obtain a graph C(J0, . . . , Jn−1) from

the disjoint union of J0, J1, . . . , Jn−1 by adding these new edges E′ = {xixi+1, yiyi+1 :

xi, yi ∈ V (Ji), xi+1, yi+1 ∈ V (Ji+1) and i ∈ Zn} (see Figure 2.2). We have the

following observations.

(i) κ′(C(J0, . . . , Jn−1)) = 4;

(ii) C(J0, . . . , Jn−1) is not (2, 2)-supereulerian;

(iii) j(2, 2) ≥ 5.

Example 2.4.2(i) follows from the fact that each Ji is 4-edge-connected, and

the construction of C(J0, . . . , Jn−1). Let G = C(J0, . . . , Jn−1) and choose X =
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x0

y0

x1

y1

x2

y2
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xn−1

J0

J1

J2

Jn−1

Figure 2.2: A graph C(J0, . . . , Jn−1)

{x0x1, y0y1} and Y = {x1x2, y2y3}, where the subscripts are taken in Zn. Then in

G−Y , each of X ∪{y1y2} and X ∪{x2x3} is an edge cut of G−Y . If G − Y has a

spanning closed trail Γ that contains X, then as E(Γ) intersecting any edge cut of

G−Y must be an even size set, we conclude that {y1y2, x2x3}∩E(Γ) = ∅, and so Γ

cannot be spanning and connected, a contradiction. This justifies Example 2.4.2(ii),

which, by the definition of j(s, t), implies Example 2.4.2(iii).

Given an edge subset X of a graph G. Recall that V(X) = {v(e) : e ∈ X} is the

set of all new vertices obtained by elementarily subdividing every edge in X.

Lemma 2.4.1. Let G be a graph and let X,Y ⊆ E(G) be two disjoint subsets with

1 ≤ |X| ≤ 2 and 4 ≤ |X ∪ Y | ≤ κ′(G) satisfying

(i) G− (X ∪ Y ) is connected,

(ii) G− Y is collapsible, and

(iii) the reduction of (G− Y )(X) is a K2,p (p ≥ 2).

Then, κ′(G) = |X ∪ Y | = 4 and |X| + 1 ≤ p ≤ 4. Moreover, (G − Y )(X) has no

nontrivial collapsible subgraph that contains v(e) for each e ∈ X.

Proof. Assume that X = {e1} or {e1, e2}. Let w1, w2 be the two vertices of degree

p, and let v1, v2, . . . , vp be the vertices of degree two in the reduction of (G−Y )(X).

Let X ′ = {e ∈ X : (G − Y )(X) has no nontrivial collapsible subgraph that
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contains v(e)}. We claim that X = X ′. If not, for each ei ∈ X − X ′, let Li

be the maximal nontrivial collapsible subgraph of (G − Y )(X) that contains v(ei).

Note that when |X − X ′| = 2, L1 and L2 may be the same. Let Ni be the graph

obtained from Li by contracting one incident edge of each ei ∈ V (Li), that is,

Ni = (G − Y )[V (Li) − V(X)] for each i. As G − Y is collapsible, we have (G −
Y )(X)/(

⋃
i Li) = (G − Y )/(

⋃
iNi) is collapsible by Theorem 1.2.2(i). As Li is

collapsible, then, applying Theorem 1.2.2(ii), (G− Y )(X) is collapsible, contrary to

the condition (iii). Thus, (G − Y )(X) has no nontrivial collapsible subgraph that

contains v(e) for each e ∈ X.

Then, we may assume that for each 1 ≤ i ≤ |X|, vi = v(ei). Since G − (X ∪
Y ) is connected, we have p > |X| and denote Ji to be the induced subgraph of

G − Y induced by the preimage of vi for each i > |X|. Let Hi be the induced

subgraph of G − Y induced by the preimage of wi for each i ∈ {1, 2}, and let

J = {H1, H2, J|X|+1, . . . , Jp} (see Figure 2.3). Since

2(p− |X|) + 2p+ 2|Y | ≥
∑
J∈J

|∂G(J)|

≥ (2 + p− |X|)κ′(G) ≥ (2 + p− |X|)|X ∪ Y |,
(2.4)

we have |X ∪ Y | ≤ 4. As |X ∪ Y | ≥ 4, the equalities hold in (2.4). It shows that for

each J ∈ J ,

|∂G(J)| = κ′(G) = |X ∪ Y | = 4. (2.5)

When |X| = 1, by (2.5), each ∂G(Ji) contains at least two edges in Y . It follows

that p ≤ 4. Thus, 2 ≤ p ≤ 4. When |X| = 2, by (2.5), each ∂G(Ji) contains all edges

in Y , which implies that p ≤ 4. Thus, 3 ≤ p ≤ 4.

H2

H1

v1 v|X|
J|X|+1 Jp

(G− Y )(X)

Figure 2.3: Illustration of the proof of Lemma 2.4.1

Proof of Theorem 2.2.1. Let m be the right hand side of (2.3). Note that every

eulerian graph with ` edges is (`, 0)-supereulerian. This indicates that to show
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j(s, t) ≥ m, it suffices to prove that κ′(G0) ≥ m where G0 is (s, t)-supereulerian and

G0 is non-eulerian when t = 0.

We shall determine the value of j(s, t) according to the different ranges from

which of s and t take their values.

Case 1. Either 0 ≤ s ≤ 1 or (s, t) ∈ {(2, 0), (2, 1), (3, 0)}.

By Proposition 2.4.1, κ′(G0) ≥ max{4, t+2} = m. Hence, j(s, t) ≥ max{4, t+2}.

Suppose that (s, t) ∈ {(2, 0), (2, 1), (3, 0)}. By Corollary 2.3.6(i) and (ii), we

always have j(s, t) ≤ 4. Hence in this case, j(s, t) = 4 = max{4, t+ 2}.

Now assume that 0 ≤ s ≤ 1. To establish j(s, t) ≤ m = max{4, t + 2}, we shall

assume that G is a graph with κ′(G) ≥ m and show that G is (s, t)-supereulerian.

Let Y ⊆ E(G) be an arbitrarily edge subset with |Y | ≤ t and let X ⊆ E(G − Y )

with |X| = s. If t ≤ 1, then m = 4, and so by Corollary 2.3.6(i), G is (s, t)-

supereulerian. Hence we assume that m = t + 2 ≥ 4. As |Y | ≤ t = m − 2, it

follows by Corollary 2.3.2 with k = 2 that τ(G − Y ) ≥ 2, and so as |X| ≤ 1, we

conclude that both F ((G − Y )(X)) ≤ 1 and κ′(G − Y )(X)) ≥ 2. By Theorem

1.2.3(ii) that (G − Y )(X) is collapsible, and so supereulerian. Hence G − Y has a

spanning closed trail containing all edges in X. Therefore in this case, we always

have j(s, t) = m = max{4, t+ 2}.

Case 2. (s, t) = (4, 0).

By Example 2.4.1(iii), j(4, 0) ≥ 4. To show j(4, 0) = 4, by Case 1, it suffices to

show that for a graph G and an edge subset X ⊆ E(G) with κ′(G) ≥ |X| = 4, G

has a spanning eulerian subgraph that contains all edges in X. Pick two distinct

edges e1, e2 from X and let X ′ = X − {e1, e2}. By Theorem 2.3.1, τ(G −X ′) ≥ 2.

Then, by Theorem 1.2.3(i), G−X ′ is collapsible. It shows that κ′(G−X ′) ≥ 2. As

τ(G − X ′) ≥ 2, F ((G − X ′)(e1, e2)) ≤ 2. This follows by Theorem 1.2.3(iii) that

(G−X ′)(e1, e2) is collapsible or the reduction of (G−X ′)(e1, e2) is a K2,p (p ≥ 2).

If (G−X ′)(e1, e2) is collapsible, then (G−X ′)(e1, e2) has a spanning connected

subgraph L with O(L) = O(X ′). This indicates that L ∪X ′ is a spanning eulerian

subgraph of G(e1, e2). It implies that G has a spanning eulerian subgraph that

contains all edges in X.

Now, we consider that the reduction of (G−X ′)(e1, e2) is a K2,p (p ≥ 2). If G−X
is disconnected, then κ′(G) = |X| = 4. By Corollary 2.3.4, the two components of

G−X are collapsible. Then the reduction of G(X) is a K2,4 that is eulerian, which
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implies that G has a spanning closed trail containing all edges in X by Theorem

1.2.2(ii). If G − X is connected, then, as G − X ′ is collapsible, by Lemma 2.4.1,

κ′(G) = |X| = 4 and 3 ≤ p ≤ 4. When p = 3, the reduction of G(X) is a K1; when

p = 4, the reduction of G(X) is eulerian. Thus, either p = 3 or p = 4, G has a

spanning closed trail containing X.

Case 3. (s, t) ∈ {(2, 2), (3, 1)}.

By Example 2.4.2(iii), j(2, 2) ≥ 5; by Proposition 2.4.1, j(3, 1) ≥ 5. It remains

to show that j(2, 2) ≤ 5 and j(3, 1) ≤ 5. Let G be a graph with κ′(G) ≥ 5. We shall

show that G is (s, t)-supereulerian. Let X,Y be two disjoint edge subsets of G with

|X| ≤ s and |Y | ≤ t.

If s = 3 and t = 1, then by Corollary 2.3.6(iii), G−Y has a spanning closed trail

containing all edges in X, and so j(3, 1) ≤ 5.

Hence we may assume that s = t = 2. Denote X = {e1, e2}. By (1.1), we shall

show that (G−Y )(X) has a spanning eulerian subgraph. By Corollary 2.3.2, τ(G−
Y ) ≥ 2. As |X| = 2, we have F ((G−Y )(X)) ≤ 2. Since κ′(G−Y ) ≥ 3, every 2-edge-

cut of (G − Y )(X) must be either ∂(G−Y )(X)(v(e1)) or ∂(G−Y )(X)(v(e2)). It follows

by Theorem 1.2.3(iii) that either (G−Y )(X) is collapsible, or the reduction of (G−
Y )(X) is a K2,2. In either case, by Theorem 1.2.2(i), (G− Y )(X) is supereulerian.

Hence, we have j(2, 2) ≤ 5. This completes the proof for this case.

Case 4. s ≥ 2 and s+ t ≥ 5.

In this case, m = s+ t+ 1−(−1)s

2 ≥ 5. By Proposition 2.4.1, κ′(G0) ≥ m and then

j(s, t) ≥ m. To complete the proof, we only need to show j(s, t) ≤ m. We argue by

contradiction and assume that there exists a graph G with κ′(G) ≥ m that is not

(s, t)-supereulerian. By the definition of (s, t)-supereulerian graphs, there exist edge

subsets X,Y ⊆ E(G) with X ∩ Y = ∅, |X| = s, and |Y | = t such that

G− Y does not have a spanning eulerian subgraph containing all edges in X.

(2.6)

Let X = {e1, e2, . . . , es}, X ′ = X − {e1, e2}, and let

J = (G− (X ′ ∪ Y ))(e1, e2).

As κ′(G) ≥ m ≥ 5, by Corollary 2.3.2 with k = 2, τ(G − (X ′ ∪ Y )) ≥ 2. Then

both F (J) ≤ 2 and κ′(J) ≥ 2 hold. Let J ′ denote the reduction of J . By Theorem

1.2.3(iii), either J is collapsible, or J ′ is a K2,p (p ≥ 2).
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Assume first that J is collapsible. By definitions, J is a subgraph of (G−Y )(X),

and (G − Y )(X)/J is a graph consisting of vertices v(e3), v(e4), . . . , v(es), and vJ ,

the contraction image of J . Every edge in (G− Y )(X)/J lies in a cycle of length 2.

By Theorem 1.2.2(iv), (G−Y )(X)/J is collapsible. As J is collapsible, by Theorem

1.2.2(ii), (G − Y )(X) is also collapsible, and so supereulerian. Thus G − Y has a

spanning closed trail that contains every edge in X, contrary to (2.6).

Hence we assume that J ′ is isomorphic to a K2,p (p ≥ 2). Note that 5 ≤
|X ∪ Y | = s + t ≤ m ≤ κ′(G), τ(G − (X ′ ∪ Y )) ≥ 2 means that G − (X ′ ∪ Y ) is

collapsible, and J ′ ∼= K2,p (p ≥ 2). If G − (X ∪ Y ) is connected, then by Lemma

2.4.1, κ′(G) = |X∪Y | = 4, which is a contradiction with the assumption of this case

that |X ∪ Y | = s + t ≥ 5. Thus, G − (X ∪ Y ) is disconnected. Let W1 and W2 be

the preimages of two vertices of degree p in J ′. Since G− (X ∪ Y ) is disconnected,

it follows that p = 2, D2(J ′) = {v(e1), v(e2)} and EG[W1,W2] ⊆ X ∪ Y . Then,

s+ t = |X ∪ Y | ≥ |EG[W1,W2]| ≥ κ′(G) = m = s+ t+
1− (−1)s

2
≥ s+ t.

It shows that |X| = s ≡ 0 (mod 2) and X ∪ Y = EG[W1,W2] is a minimum edge

cut of G. Then, ((G − Y )(X))/(G[W1] ∪ G[W2]) ∼= K2,s is eulerian. Since Wi is

the preimage of a vertex in the reduction J ′, by definitions, G[Wi] is a maximal

collapsible subgraph of G for each i = 1, 2. Applying Theorem 1.2.2(ii), we conclude

that (G − Y )(X) is supereulerian. This implies that G − Y has a spanning closed

trail that contains X, contrary to (2.6). This proves that in Case 4, we must have

j(s, t) ≤ m. This completes the proof of the theorem.

Pulleyblank proved that determining (0, 0)-supereulerianicity is NP-complete. In

this chapter, we have shown that, for any integers s and t with s ≥ 0 and t ≥ 3, it is

polynomial to decide if a graph G is (s, t)-supereulerian. Therefore, it is of interests

to understand the computational complexity for (s, t)-supereulerianicity for other

values of s and t. These are to be investigated.
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Chapter 3

On (s, t)-Supereulerian Graphs

and Permutation Graphs

3.1 Background

Let G be a graph with vertices v1, v2, . . . , vn, and let Gx and Gy be two copies

of G, with vertex sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, respectively, such that

vi 7−→ xi and vi 7−→ yi are graph isomorphisms between G and Gx, G and Gy,

respectively. For each permutation α in Sn, we follow [20, 75] to define the α-

permutation graph over G to be the graph α(G) that consists of two vertex

disjoint copies Gx and Gy of G, along with the edges xiyα(i) for each 1 ≤ i ≤ n. For

example, the best known permutation graph is the Petersen graph.

In recent years, with the introduction of computer network wiring problems,

studies on permutation graphs derived from practical problems have attracted the

attention of many graph theory researchers. Prior results on the connectivity, edge-

connectivity and minimum degree of permutation graphs can be found in [1,2,6,19,

20,52,63,72], and among others.

Theorem 3.1.1 (Piazza and Ringeisen, Theorem 4.2 of [72]). Let G be a connected

graph of order n with κ(G) = δ(G). Then, κ(α(G)) = κ′(α(G)) = δ(α(G)) =

δ(G) + 1 for each α ∈ Sn.

Observation 3.1.1. Let G be a graph of order n with κ′(G) ≥ 2. Then, for each

α ∈ Sn, κ′(G) = δ(G) if and only if κ′(α(G)) = κ′(G) + 1.

Proof. Suppose that κ′(G) = δ(G). By the definition of α(G), κ′(α(G)) ≥ κ′(G)+1.

20



Since κ′(α(G)) ≤ δ(α(G)) = δ(G) + 1 = κ′(G) + 1, we have the equality holds and

then we are done.

Conversely, suppose that κ′(α(G)) = κ′(G) + 1. Let W be a minimum edge

cut of α(G) and let H1, H2 be the two components of α(G) −W . We may assume

that |V (H1)| ≤ |V (H2)|. Let G1 and G2 be the two copies of G in α(G), and let

Ui = V (Gi)∩V (H1) and Vi = V (Gi)∩V (H2) for each i = 1, 2. Since G is connected,

Eα(G)[Ui, Vi] 6= ∅ for some i = 1, 2. We may assume that Eα(G)[U1, V1] 6= ∅. Since

Eα(G)[U1, V1] is also an edge cut of G1, κ′(G) ≤ |Eα(G)[U1, V1]| < |Eα(G)[H1, H2]| =
κ′(α(G)) = κ′(G)+1. It indicates that |Eα(G)[U1, V1]| = κ′(G) and |V (H1)| = |U1| =
1 as κ′(G) ≥ 2. Then, δ(G) ≤ |∂G1(U1)| = κ′(G) and so δ(G) = κ′(G).

3.2 Main Results

Throughout this chapter, we let s and t be two non-negative integers. We are to

investigate the structural properties of a non-(s, t)-supereulerian graph may have,

and to apply our finding to study the (s, t)-supereulerinicity of permutation graphs.

Our main results in this chapter are as follows.

Theorem 3.2.1. Let G be a graph with κ′(G) ≥ 4 and let Y ⊆ E(G). Each of the

following holds.

(i) When |Y | < κ′(G), G− Y is collapsible if and only if Y is not in a minimum

edge cut of G with |Y | = κ′(G)− 1.

(ii) If |Y | ≤ κ′(G) and G− Y is connected, then either G− Y is supereulerian, or

the reduction of G− Y is a K2 or a K2,p, where p is an odd integer.

Let 2K1 be the edgeless graph on two vertices. We observe that Theorem 3.2.1(i)

and (ii) are generalizations of Theorem 1.5 and Theorem 1.6 of [36], respectively.

Corollary 3.2.2 (Gu et al., Theorem 1.5 of [36]). Let G be a graph with κ′(G) ≥ 4

and let Y ⊂ E(G) be an edge subset with |Y | ≤ 3. Then G− Y is collapsible if and

only if Y is not contained in a 4-edge-cut of G when |Y | = 3.

It was mistakingly omitted “when |Y | = 3” in the original statement of Corollary

3.2.2 (Theorem 1.5 of [36]) and in the end of argument. In fact, if G = K5 and Y

consists of two adjacent edges in K5, then G−Y is collapsible, which indicates that

Corollary 3.2.2 is valid only for the case when |Y | = 3.
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Corollary 3.2.3 (Gu et al., Theorem 1.6 of [36]). Let G be a graph with κ′(G) ≥ 4

and let Y ⊂ E(G) be an edge subset with |Y | ≤ 4. Then G− Y is collapsible if and

only if G− Y is not contractible to any member in {2K1,K2,K2,2,K2,3,K2,4}.

Theorem 3.2.4. Let G be graph with κ′(G) ≥ 4. Each of the following holds.

(i) If s+ t ≤ κ′(G)− 2, then G is (s, t)-supereulerian.

(ii) Suppose s + t ≤ κ′(G) − 1 and X,Y ⊂ E(G) are two disjoint subsets with

|X| ≤ s and |Y | ≤ t. Then, G−Y has a spanning eulerian subgraph containing

all edges in X if and only if Y is not in any minimum edge cut of G with

|Y | = κ′(G)− 1.

(iii) Suppose s + t ≤ κ′(G). Then, G is not (s, t)-supereulerian if and only if for

some disjoint edge subsets X,Y ⊂ E(G) with |X| ≤ s and |Y | ≤ t, one of the

following holds.

(a) Y is in a (|Y |+ 1)-edge-cut of G.

(b) The reduction of G− (X ∪ Y ) is a 2K1 when |X| = s is odd.

(c) The reduction of G − Y is a member in {2K1,K2,K2,p : p is odd} when

|Y | = κ′(G).

(d) The reduction of (G − Y )(X) is a K2,3 when |X ∪ Y | = 4 = κ′(G) with

1 ≤ |X| ≤ 2.

Theorem 3.2.5. Let G be an (s, t)-supereulerian graph of order n with κ′(G) ≥ 3.

If s + t ≤ κ′(G) + 1, and κ′(G) 6= δ(G) when the equality holds, then α(G) is

(s, t)-supereulerian for each α ∈ Sn.

Theorem 3.2.6. Let G be an (s, t)-supereulerian graph of order n with κ′(G) =

δ(G) ≥ 3 and let α ∈ Sn. Then, α(G) is (s, t)-supereulerian if and only if s + t ≤
κ′(G).

3.3 Proofs of the Main Results

3.3.1 Proofs of Theorems 3.2.1 and 3.2.4

Proof of Theorem 3.2.1. Suppose that G is a graph with κ′(G) ≥ 4 and Y ⊆
E(G).

(i). (Necessity) Suppose that |Y | < κ′(G) and G − Y is collapsible. This implies

that κ′(G − Y ) ≥ 2. Then Y is not lying in any minimum edge cut of G when

|Y | = κ′(G)− 1.
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(Sufficiency) Conversely, suppose that |Y | < κ′(G) and Y is not in any minimum

edge cut of G with |Y | = κ′(G) − 1. If |Y | ≤ κ′(G) − 2, then, by Corollary 2.3.2,

τ(G − Y ) ≥ 2. It implies that G − Y is collapsible by Theorem 1.2.3(i). Now we

consider that |Y | = κ′(G) − 1. Since there is no edge cut of G of size κ′(G) that

contains Y . Then κ′(G − Y ) ≥ 2. As κ′(G) ≥ 4 and |Y | = κ′(G) − 1, by Corollary

2.3.3, F (G− Y ) ≤ 1. As κ′(G− Y ) ≥ 2, by Theorem 1.2.3 (ii), G− Y is collapsible.

(ii). Suppose that G − Y is connected and |Y | ≤ κ′(G). By Corollary 2.3.3,

F (G− Y ) ≤ 2. By Theorem 1.2.3(iii), either G− Y is collapsible and then G− Y is

supereulerian; or the reduction of G− Y is a K2 or a K2,p, for some integer p ≥ 1.

If p is even, then as K2,p is eulerian, it follows by Theorem 1.2.2(ii) that G − Y is

supereulerian. Hence if G − Y is not supereulerian, then p is odd. This completes

the proof of Theorem 3.2.1.

To prove Theorem 3.2.4, we need two additional lemmas, as shown below.

Lemma 3.3.1. Let X and Y be disjoint edge subsets of G. If G − (X ∪ Y ) is

collapsible, then G− Y has a spanning eulerian subgraph containing all edges in X.

Proof. Let R = O(X). By the definition of collapsible graphs, G − (X ∪ Y ) has

a spanning connected subgraph LR with O(LR) = R. Define L = LR ∪ X. Then

O(L) = ∅ and V (L) = V (LR) = V (G). Hence L is a spanning eulerian subgraph of

G with X ⊆ E(L), and so the lemma is proved.

Lemma 3.3.2. Let G be a graph with κ′(G) ≥ 4. For every two disjoint edge subsets

X,Y ⊂ E(G) with |X| ≤ s and |Y | ≤ t, each of the following holds.

(i) If s+ t ≤ κ′(G)− 2, then G− (X ∪ Y ) is collapsible.

(ii) If s+ t ≤ κ′(G)− 1, then either G− (X ∪Y ) is collapsible, or the reduction of

G− (X ∪ Y ) is a K2.

Proof. Assume that the edge subsets X and Y are given as stated in the hypotheses

of the lemma.

(i). Since |X ∪ Y | ≤ s + t ≤ κ′(G) − 2, it follows by Corollary 2.3.2, that τ(G −
(X ∪ Y )) ≥ 2, and so by Theorem 1.2.3(i), G− (X ∪ Y ) is collapsible.

(ii). By Lemma 3.3.2(i), it suffices to assume that |X∪Y | = κ′(G)−1. By Corollary

2.3.3, F (G− (X ∪ Y )) ≤ 1. By Theorem 1.2.3(ii), either G− (X ∪ Y ) is collapsible,

or the reduction of G− (X ∪ Y ) is a K2. This proves (ii).
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Proof of Theorem 3.2.4. By Lemma 3.3.1 and Lemma 3.3.2(i), Theorem 3.2.4(i)

holds. Let k = κ′(G).

(ii). (Necessity) Suppose that G− Y has a spanning eulerian subgraph containing

all edges in X. If Y is in a k-edge-cut of G with |Y | = k − 1, then κ′(G − Y ) = 1,

which contradicts with our assumption that G−Y has a spanning eulerian subgraph.

Thus, Y is not in any k-edge-cut of G with |Y | = k − 1.

(Sufficiency) Suppose that Y is not in any k-edge-cut of G when |Y | = k − 1.

If s + t ≤ k − 2, then by Theorem 3.2.4(i), we are done. Now, we consider that

|X|+ |Y | = s+ t = k− 1. It follows by Lemma 3.3.2(ii), G− (X ∪ Y ) is collapsible,

or the reduction of G−(X∪Y ) is a K2. If G−(X∪Y ) is collapsible, then, by Lemma

3.3.1, G − Y has a spanning eulerian subgraph containing X. Thus, we only need

to consider Theorem 3.2.4 of the reduction of G − (X ∪ Y ) being a K2. Let w1w2

be the only edge in the reduction of G − (X ∪ Y ), and let H1, H2 be the induced

subgraphs of G− Y induced by the preimages of w1, w2, respectively. As κ′(G) ≥ k
and |X|+ |Y | = s+ t = k−1, (X ∪Y ) ⊂ EG[H1, H2]. If t = k−1, then X = ∅. This

contradicts with our assumption that Y is not in a k-edge-cut of G with |Y | = k−1.

Thus, t ≤ k − 2 and X 6= ∅. Let X = {e1, e2, . . . , es} and L = (G − Y )(X). Since

every edge in L/(H1 ∪H2) = {w1w2} ∪ (
⋃

1≤i≤s{w1v(ei), w2v(ei)}) lies in a cycle of

length 3, where v(ei) is the new vertex obtained by elementarily subdividing edge

ei ∈ X, by Theorem 1.2.2(iv), L/(H1 ∪H2) is collapsible, and so L is collapsible as

well by Theorem 1.2.2(ii). Then L is supereulerian, which indicates that G− Y has

a spanning eulerian subgraph containing all edges in X.

(iii). (Sufficiency) Suppose that for some disjoint edge subsets X,Y ⊂ E(G) with

|X| ≤ s and |Y | ≤ t, one of Theorem 3.2.4(iii)(a)-(d) holds. Then, G− Y does not

have a spanning eulerian subgraph containing all edges in X. This shows that G is

not (s, t)-supereulerian.

(Necessity) Suppose that G is not (s, t)-supereulerian. Then, there exist two

disjoint edge subsets X,Y ⊂ E(G) with |X| ≤ s and |Y | ≤ t such that

G− Y does not have a spanning eulerian subgraph containing all edges in X.

(3.1)

We aim to show that one of Theorem 3.2.4(iii)(a)-(d) holds. If s + t < k, then by

Theorem 3.2.4(ii) and (3.1), Y is in a minimum edge cut of G with |Y | = k − 1,

which is Theorem 3.2.4(iii)(a). Now we consider that |X ∪ Y | = s + t = k. Let

X = {e1, e2, . . . , es} and distinguish among the following two cases.

Case 1. G− (X ∪ Y ) is disconnected.
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Let H1 and H2 be the two components of G−(X∪Y ) and so EG[H1, H2] = X∪Y .

By Corollary 2.3.4, each Hi is collapsible. Then, the reduction of G − (X ∪ Y ) is

a 2K1. Let w1, w2 be the two vertices of the reduction of G − (X ∪ Y ). If X 6= ∅
and |X| is even, then

⋃
1≤i≤s{w1v(ei), w2v(ei)} is eulerian. It follows by Theorem

1.2.2(ii) that (G−Y )(X) is supereulerian, which implies that G−Y has a spanning

eulerian subgraph containing all edges in X, a contradiction with (3.1). Thus, if

G − (X ∪ Y ) is disconnected, then the reduction of G − (X ∪ Y ) is a 2K1 when

|Y | = k or |X| is odd, that is, Theorem 3.2.4(iii)(b) or (c).

Case 2. G− (X ∪ Y ) is connected.

As |X ∪ Y | = κ′(G) ≥ 4, by Corollary 2.3.3, F (G− (X ∪ Y )) ≤ 2. By Theorem

1.2.3(iii), Lemma 3.3.1, and (3.1), the reduction of G − (X ∪ Y ) is a member of

{K2,K2,p : p ≥ 1}.

Subcase 2.1. The reduction of G− (X ∪ Y ) is a K2.

Let w1w2 be the only edge of the reduction of G − (X ∪ Y ). Denote Hi be the

induced subgraph of G− Y induced by the preimage of wi for each i = 1, 2.

We claim that X ∩EG[H1, H2] = ∅. If not, let X ∩EG[H1, H2] = {e1, e2, . . . , es′}
where s− 1 ≤ s′ ≤ s. Since every edge in L = {w1w2}∪ (

⋃
1≤i≤s′{w1v(ei), w2v(ei)})

lies in a cycle of length 3, by Theorem 1.2.2(iv), L is collapsible. Since s + t =

κ′(G) ≤ |EG[H1, H2]| ≤ 1 + |X ∪ Y | = 1 + s + t, either |EG[H1, H2]| = κ′(G) + 1,

or |EG[H1, H2]| = κ′(G) and |(X ∪ Y ) ∩ E(Hi)| = 1 for exactly one i ∈ {1, 2}, say

{e} = (X ∪ Y ) ∩ E(H1). If |EG[H1, H2]| = κ′(G) + 1, or |EG[H1, H2]| = κ′(G)

and e ∈ Y , then (G − Y )(X)/(H1 ∪ H2) = L is collapsible, by Theorem 1.2.2(ii),

(G − Y )(X) is collapsible, a contradiction with (3.1). If |EG[H1, H2]| = κ′(G) and

e ∈ X, then by Corollary 2.3.4, τ(Hi) ≥ 2 for each i = 1, 2, and so F (H1(e)) ≤ 1 and

κ′(H1(e)) ≥ 2, which implies that H1(e) is collapsible by Theorem 1.2.3(ii). Since

(G − Y )(X)/(H1(e) ∪H2) = L is collapsible, by Theorem 1.2.2(ii), (G − Y )(X) is

collapsible, a contradiction with (3.1).

Then, X ∩ EG[H1, H2] = ∅. It shows that if the reduction of G − (X ∪ Y ) is a

K2, then it will be either Theorem 3.2.4(iii)(a) or (c).

Subcase 2.2. The reduction of G− (X ∪ Y ) is a K2,p (p ≥ 1).

Subcase 2.2.1. |Y | = k.

Then X = ∅. If p is even, then (G− (X ∪Y ))′ = (G−Y )′ ∼= K2,p is eulerian. By

Theorem 1.2.2(ii) that G− Y is supereulerian, contrary to (3.1). Thus in this case,
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p must be an odd integer, that is, Theorem 3.2.4(iii)(c).

Subcase 2.2.2. |Y | = k − 1.

Then X = {e1}. By Corollary 2.3.3, F (G − Y ) ≤ 1. It follows by Theorem

1.2.3(ii) that either G − Y is collapsible, or (G − Y )′ ∼= K2. If (G − Y )′ ∼= K2,

then, since (G− (X ∪ Y ))′ = (G− ({e1} ∪ Y ))′ ∼= K2,p (p ≥ 1), we have p = 1 and

κ′(G) ≤ 2, which contradicts with the assumption of κ′(G) ≥ 4.

Now, we assume that G − Y is collapsible. As F (G − Y ) ≤ 1, we have F ((G −
Y )(e1)) ≤ 2. Let G1 = (G − Y )(e1). Since κ′(G − Y ) ≥ 2, κ′(G1) ≥ 2. Then, by

Theorem 1.2.3(iii), G′1 ∈ {K1,K2,q : q ≥ 2}. If G′1
∼= K1, then we get a contradiction

with (3.1). Thus, G′1
∼= K2,q (q ≥ 2). By Lemma 2.4.1 that |Y | = 3, κ′(G) = 4

and 2 ≤ q ≤ 4. If q = 2 or 4, then G′1 is eulerian and so by Theorem 1.2.2(ii)

that G1 = G(e1)−Y is supereulerian, which means that G−Y contains a spanning

eulerian subgraph containing X = {e1}, contrary to (3.1). Then, q = 3, and the

reduction G′1 = ((G− Y )(X))′ ∼= K2,3, which is Theorem 3.2.4(iii)(d).

Subcase 2.2.3. |Y | ≤ k − 2.

In this case, let X1 = {e1, e2} and X2 = X−X1. As |X2∪Y | = k−2, by Corollary

2.3.2, τ(G− (X2 ∪ Y )) ≥ 2. Then, by Theorem 1.2.3(i), G− (X2 ∪ Y ) is collapsible,

and so κ′(G − (X2 ∪ Y )) ≥ 2. Let G2 = (G − (X2 ∪ Y ))(e1, e2). It follows that

κ′(G2) ≥ 2 and F (G2) ≤ 2. Then, by Theorem 1.2.3(iii), G′2 ∈ {K1,K2,q : q ≥ 2}.

If G′2
∼= K1, which means that G2 = G(e1, e2)− (X2 ∪ Y ) is collapsible, then by

Lemma 3.3.1, G(e1, e2)− Y contains all edges in X2. It follows that G− Y contains

all edges in X, which contradicts with (3.1).

If G′2
∼= K2,q (q ≥ 2), then let w1, w2 be the two vertices of degree q, and

v1, v2, . . . , vq be vertices of degree two in G′2. Let Hi be the induced subgraph of G

induced by the preimage of wi for each i = 1, 2, and Ji be the induced subgraph of

G induced by the preimage of vi for each i ∈ [1, q]. By Lemma 2.4.1, |X2 ∪ Y | = 2,

κ′(G) = 4 and 3 ≤ q ≤ 4. We may assume that v1 = v(e1) and v2 = v(e2).

Subcase 2.2.3.1. q = 3.

In this case, there is exactly one edge in X2∪Y crossing Hi and J3 in G for each

i. If |X2| = 0, it is Theorem 3.2.4(iii)(d). If |X2| = 1, then we may assume that e3 ∈
EG[J3, H1]. Let L1 be the reduction ofG(X)−Y . Then L1 = G′2∪{v3v(e3), w1v(e3)}.
As L1−w2v3 is eulerian, L1 is supereulerian, which implies that G−Y has a spanning

eulerian subgraph containing X = {e1, e2, e3}, contrary to (3.1). If |X2| = 2, then
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Y = ∅ andG(X) is collapsible, which means thatG has a spanning eulerian subgraph

containing all edges in X, contrary to (3.1).

Subcase 2.2.3.2. q = 4.

In this case, G′2 is eulerian and EG[J3, J4] = X2 ∪ Y . When |X2| = 0, G′2 =

(G(X)−Y )′ being eulerian implies that G(X)−Y is supereulerian, which contradicts

with (3.1).

When |X2| = 1, X2 = {e3}. As G2 = (G− Y )(e1, e2, e3)− v(e3), let L2 = G′2 ∪
{v3v(e3), v4v(e3)} (See Figure 3.1 for an illustration). Note that L2[w1, w2, v(e2), v3,

v4, v(e3)] ∼= K−3,3 is collapsible by Example 1.2.1. As L2/L2[w1, w2, v(e2), v3, v4, v(e3)]

is a cycle of length 2 that is collapsible, by Theorem 1.2.2(ii), L2 is collapsible. This

implies that G(X)− Y is supereulerian, which contradicts with (3.1).

When |X2| = 2, X2 = {e3, e4}. Let L3 = G′2∪{v(e3)v3, v(e3)v4, v(e4)v3, v(e4)v4}.
Since L3 is eulerian, G(X)− Y is supereulerian, which contradicts with (3.1).

This completes the proof of (iii).

w2

w1

v(e1) v(e2) v3 v4

v(e3)

Figure 3.1: Illustration of the proof of Subcase 2.2.3.2 in Theorem 3.2.4

3.3.2 Schetch of a Different Proof of Theorem 2.2.1

In the subsection, we shall provide a schetch of proof of Theorem 2.2.1 applying

Theorem 3.2.4.

Schetch of proof of Theorem 2.2.1. Let m be the right hand side of (2.3). Let

G be a graph with κ′(G) ≥ m. If (s, t) = (4, 0), or 2 ≤ s ≡ 0 (mod 2) and s+ t ≥ 5,

then s + t = m, and so G is (s, t)-supereulerian by Theorem 3.2.4(iii). Otherwise,

s + t ≤ m − 1 ≤ κ′(G) − 1. If s ≥ 1, then t ≤ κ′(G) − 2, which indicates that G is

(s, t)-supereulerian by Theorem 3.2.4(ii); if s = 0, then s+ t < max{4, t+ 2} − 1 =
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m−1 ≤ κ′(G)−1, which indicates that G is (s, t)-supereulerian by Theorem 3.2.4(i).

Thus, by the definition of j(s, t), j(s, t) ≤ m.

Note that every eulerian graph with s edges is (s, 0)-supereulerian. It indicates

that to show that j(s, t) ≥ m, it suffices to prove that κ′(G1) ≥ m where G1 is

(s, t)-supereulerian and G1 is non-eulerian when t = 0. Then, by Example 2.4.2(iii)

and Proposition 2.4.1, we have κ′(G1) ≥ m.

3.3.3 Proofs of Theorems 3.2.5 and 3.2.6

In this subsection, we shall verify Theorems 3.2.5 and 3.2.6 and some corresponding

corollaries. Let us start with a necessary condition of (s, t)-supereulerian graphs.

Proposition 3.3.1. If G is an (s, t)-supereulerian graph, then t ≤ κ′(G)− 2 and

s ≤


|E(G)|, if G is eulerian and t = 0;

2

⌊
κ′(G)− t

2

⌋
, otherwise.

Proof. Let k = κ′(G) and let W be an edge cut of G with |W | = k. Pick an

edge subset Y ⊆ W with |Y | ≤ t. Since G is (s, t)-supereulerian, G − Y has a

spanning closed trail Γ. Since W is en edge cut of G, |E(Γ) ∩ W | ≥ 2 and so

|Y | ≤ |W − E(Γ)| ≤ k − 2. By arbitrary of Y with |Y | ≤ t, we have t ≤ k − 2.

If G is eulerian, then G has a spanning closed trail containing all edges in E(G).

This means that G is (|E(G)|, 0)-supereulerian. Now we assume that G is not

eulerian or t ≥ 1.

We claim that s + t ≤ k, and when s + t = k, s ≡ 0 (mod 2). If not, then we

pick an edge subset X ′ ⊆ W satisfying that |X ′| ≤ s, |X ′| ≡ 1 (mod 2) and |X ′| is

maximized. Let Y ′ = W −X ′. Then |Y ′| ≤ 1 ≤ t. Since G is (s, t)-supereulerian,

G − Y ′ has a spanning closed trail Γ′ containing all edges in X ′. Since W is an

edge cut of G, X ′ = E(Γ′) ∩W 6= ∅ and |X ′| = |E(Γ′) ∩W | ≡ 0 (mod 2), which

contradicts with that |X ′| ≡ 1 (mod 2).

Thus, s + t ≤ k, and when s + t = k, s ≡ 0 (mod 2). This follows that

s ≤ 2
⌊
k−t

2

⌋
.

By Proposition 3.3.1, we have the following corollary.

Corollary 3.3.3. Let G be a graph with κ′(G) < s + t ≤ |E(G)|. Then, G is

(s, t)-supereulerian if and only if G is eulerian and t = 0.
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Proof. Suppose that G is eulerian and t = 0. Then for any non-negative integer

s ≤ |E(G)|, G is (s, 0)-supereulerian.

Conversely, suppose that G is (s, t)-supereulerian, and G is not eulerian or t >

0. By Proposition 3.3.1, s ≤ 2
⌊
κ′(G)−t

2

⌋
and t ≤ κ′(G) − 2. This follows that

s + t ≤ κ′(G), which contradicts with the assumption of κ′(G) < s + t. Thus, if G

is (s, t)-supereulerian, G is eulerian and t = 0.

Proof of Theorem 3.2.5. Suppose that G is (s, t)-supereulerian with κ′(G) ≥ 3.

Let X,Y ⊂ E(α(G)) be two disjoint edge subsets with |X| ≤ s and |Y | ≤ t.

If s+ t ≤ κ′(G), then, as κ′(α(G)) ≥ κ′(G) + 1 ≥ 4, and so s+ t ≤ κ′(α(G))− 1.

Since G is (s, t)-supereulerian, by Proposition 3.3.1, |Y | ≤ t ≤ κ′(G)−2 ≤ κ′(α(G))−
3. Thus, by Theorem 3.2.4(ii), α(G)−Y has a spanning eulerian subgraph containing

all edges in X, which implies that α(G) is (s, t)-supereulerian.

If s + t = κ′(G) + 1 and κ′(G) 6= δ(G), then, as G is (s, t)-supereulerian, by

Corollary 3.3.3, G is eulerian and t = 0. It shows that s = κ′(G)+1. As 3 ≤ κ′(G) 6=
δ(G), by Observation 3.1.1, κ′(α(G)) ≥ κ′(G) + 2 ≥ 5. Since s ≤ κ′(α(G))− 1 and

t = 0, by Theorem 3.2.4(ii), α(G)− Y has a spanning eulerian subgraph containing

all edges in X, which implies that α(G) is (s, t)-supereulerian.

By Corollary 3.3.3 and Theorem 3.2.5, we have the following corollary directly.

Corollary 3.3.4. Let G be an (s, t)-supereulerian graph of order n with κ′(G) ≥ 3.

If G is not eulerian or t ≥ 1, then α(G) is (s, t)-supereulerian for each α ∈ Sn.

Proof of Theorem 3.2.6. Suppose that G is an (s, t)-supereulerian graph with

κ′(G) = δ(G) ≥ 3. By Theorem 3.2.5, it suffices to show the necessity of Theorem

3.2.6. Suppose that α(G) is (s, t)-supereulerian. We argue by contradiction and

assume that s + t > κ′(G). Since G is (s, t)-supereulerian, by Corollary 3.3.3, G

is eulerian and t = 0. This indicates that α(G) is not eulerian by the definition of

α(G). Since α(G) is (s, t)-supereulerian and t = 0, by Proposition 3.3.1, κ′(G) < s ≤
2
⌊
κ′(α(G))

2

⌋
. As G is eulerian, κ′(G) is even. It follows that κ′(α(G)) ≥ κ′(G) + 2,

which contradicts the assumption of κ′(G) = δ(G) by Observation 3.1.1.
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3.4 Remarks

Let K be a family of graphs such that G ∈ K if and only if G is a wheel, or an

n-cube Qn (n ≥ 3), or a complete graph Kn (n ≥ 4), or a complete bipartite graph

Km,n (min{m,n} ≥ 3). Thus, by Theorem 3.2.6, if G ∈ K is (s, t)-supereulerian

where n = |V (G)|, then, α(G) is (s, t)-supereulerian for each α ∈ Sn if and only if

s+ t ≤ κ′(G).

Let G be a graph with n vertices and let A = (α0, α1, α2, . . .) be a permutation

sequence where αi ∈ S2in. We define G0(A) = G, and the ith iterated permu-

tation graph of G with respect to the sequence A is defined recursively as

Gi(A) = αi−1(Gi−1(A)), for each positive integer i. If we do not emphasize the

sequence A, we use Gi for Gi(A). We can extend the concept of hypercubes by

using iterated permutation graphs. When G0(A) = K1 and every αi is the identity

permutation, Gn(A) is the hypercube Qn+1. By the definition of iterated permuta-

tion graphs, as well as Theorem 3.1.1 and Observation 5.1.2, we obtain the following

observation.

Observation 3.4.1. Let G be a connected graph. For each integer m ≥ 0, each of

the following holds.

(i) if κ′(G) = δ(G), then κ′(Gm) = δ(Gm) = δ(G) +m;

(ii) if κ(G) = δ(G), then κ(Gm) = κ′(Gm) = δ(Gm) = δ(G) +m.

Given two non-negative integers s, t, a permutation sequence A, and a graph

G. By Theorem 3.2.4(i), when κ′(Gm) ≥ s + t + 2, Gm is (s, t)-supereulerian. It

follows by Theorem 3.2.5, Gm+1 is also (s, t)-supereulerian. Therefore, there must

exist a smallest integer m such that Gm is (s, t)-supereulerian. In Table 1, we list

the edge-connectivity κ′(Gm), which are constructed by some special graphs.

In general, for given integers s and t, it is an interesting question that how to

find the smallest m such that Gm is (s, t)-supereulerian for a connected graph G.

Let f(G) denote a graphical function and define f(G) to be the maximum value of

f(H) taken over all subgraphs H of G. As indicated in [43], for certain network

reliability measures f , networks G with f(G) = f(G) are important for network

survivability (i.e., the ability to maintain the rest of network components connected

when one or a few network components fail), and so the study of f(G) is of interest.

The following theorem gives some new and feasible ideas to find the smallest m.

Theorem 3.4.1 (Lai [52]). Let G be a connected graph with n vertices. Then each

of the following holds.
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Table 3.1: Edge-connectivity of α(G) and Gm of some special graphs.

G κ(α(G)) = κ′(α(G)) κ′(Gm)

Nontrivial tree 2 m+ 1

n-cycle Cn 3 m+ 2

wheel Wn 4 m+ 3

hypercube Qn n+ 1 n+m

complete graph Kn n n+m− 1

complete bipartite graph Kn1,n2 min{n1, n2}+ 1 min{n1, n2}+m

(i) (Corollary 2.2) κ′(α(G) = δ(α(G)), if and only if 2κ′(G) ≥ δ(G) + 1 for any

α ∈ Sn.

(ii) (Corollary 2.3) If κ′(G) = δ(G), then for any α ∈ Sn, κ′(α(G)) = δ(α(G)).

(iii) (Theorem 2.5) If κ′(G) = κ′(G) and δ(G) = δ(G), then for any α ∈ Sn, we

have both κ′(α(G)) = κ′(α(G)) and δ(α(G)) = δ(α(G)).

One can start with any graph G that satisfies Theorem 3.4.1, then construct

large survivable networks by repeatedly taking permutation graphs as Gm. Then

for any given non-negative integer s and t, we can apply the Lemma 3.3.2 and Theo-

rem 3.4.1 to Gm to find the smallest values of m such that Gm is (s, t)-supereulerian.
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Chapter 4

Index Problems of Line Graphs

4.1 Background

Throughout this chapter, we use lg x as an alternative notation for log2 x, the

logarithm function with base 2. For a positive integer i, we define L0(G) = G,

and the ith iterated line graph of G, denoted Li(G), is defined recursively as

Li(G) = L(Li−1(G)).

Let J1 and J2 be two graphs obtained from K1,3 via identifying two and three

vertices of degree one, respectively. Let K+
1,3 = {J1, J2,K1,3}. Note that the line

graph of a cycle remains unchanged. For this reason, we define G to be a family of

connected graphs such that G ∈ G if and only if G is not isomorphic to a path, or a

cycle, or any member in K+
1,3.

Chartrand in [18] introduced and studied the Hamiltonian index of a graph, and

initiated the study of indices of graphical properties. More generally, Lai and Shao

in [54] brought in the following definition.

Definition 4.1.1 (Lai and Shao, Definition 5.8 of [54]). For a property P, the

P-index of G ∈ G is defined by

P(G) =

{
min{i : Li(G) has property P}, if one such integer i exists;

∞, otherwise.

A graphical property P is line graph stable if L(G) has P whenever G has P.

Chartrand [18] showed that for every graph G ∈ G, the Hamiltonian index exists

as a finite number, and the characterization of Hamiltonian line graphs (Theorem
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1.2.7) by Harary and Nash-Williams implies that being Hamiltonian is line graph

stable. Ryjáček et al. [80] indicated that determining the value of the Hamiltonian

index is NP-complete. Clark and Wormald [29] showed that for all graphs in G,

other Hamiltonian-like indices also exist as finite numbers; and in [54], it is shown

that these Hamiltonian-like properties are also line graph stable. Many studies on

upper bounds of the Hamiltonian-like indices can be found in [15, 21, 23, 25, 33, 39,

51,81,89,94,95], among others.

For a non-negative integer s ≤ |V (G)|−3, a graph is called s-Hamiltonian if the

removal of any k ≤ s vertices results in a Hamiltonian graph. Denote h(G), hs(G)

and s(G) to be the Hamiltonian index, s-Hamiltonian index and supereule-

rian index of G ∈ G, respectively. By their definitions, h(G) = h0(G).

Let P = v0e1v1e2 · · · vs−1esvs be a path of a graph G where each ei ∈ E(G)

and each vi ∈ V (G). Then P is called a (v0, vs)-path or an (e1, es)-path of G. A

path P of G is divalent if every internal vertex of P has degree two in G. For two

non-negative integers p and q, a divalent path P of G is a divalent (p, q)-path if the

two end vertices of P have degrees p and q, respectively. A non-closed divalent path

P is considered proper if P is not both of length two and in a K3. As in [51, 94],

for a graph G ∈ G, define

`(G) = max{m : G has a length m proper divalent path}. (4.1)

Theorem 4.1.1. Let G ∈ G be a simple graph. Each of the following holds.

(i) (Lai, Corollary 6 of [51]) s(G) ≤ `(G).

(ii) (Lai, Corollary 6 of [51]) h(G) ≤ s(G) + 1 ≤ `(G) + 1.

(iii) (Zhang et al., Theorem 1.1 of [94]) hs(G) ≤ `(G) + s+ 1.

4.2 Main Results

To improve and extend the results above, we investigate (s, t)-supereulerian in-

dex, denoted by is,t(G). Thus, i0,0(G) = s(G). By the characterization of Hamilto-

nian line graphs (Theorem 1.2.7), the line graph of every (0, s)-supereulerian graph

is s-Hamiltonian, and then we obtain the following observation.

Observation 4.2.1. Let G ∈ G. Then hs(G) ≤ i0,s + 1. In particular, h(G) ≤
s(G) + 1.

To present the main results, an additional notation would be needed. Since

G ∈ G, it is observed that (for example, Theorem 18 of [25]) there exists an integer
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i > 0 such that δ(Li(G)) ≥ 3. Define

d̃(G) = min{i : δ(Li(G)) ≥ 3}. (4.2)

By the formula to compute d̃(G) to be presented in Section 4.3.2, our main results

can now be stated as follows.

Theorem 4.2.1. Let G ∈ G be a simple graph with δ = δ(G) and d̃ = d̃(G). Then,

given two non-negative integers s and t,

is,t(G) ≤



`(G), if δ ≤ 2 and s = t = 0;

d̃+ 1 + dlg(s+ t+ 1)e, if δ ≤ 2 and s+ t ≥ 1;

1 +

⌈
lg
s+ t+ 1

δ − 2

⌉
, if 3 ≤ δ ≤ s+ t+ 2;

1, otherwise.

(4.3)

Using Observation 4.2.1, Theorem 4.2.1 implies Corollary 4.2.2 below.

Corollary 4.2.2. Let G ∈ G be a simple graph with δ = δ(G) and d̃ = d̃(G). Then,

given a non-negative integer s ≤ |V (G)| − 3,

hs(G) ≤



`(G) + 1, if δ ≤ 2 and s = 0;

d̃+ 2 + dlg(s+ 1)e, if δ ≤ 2 and s ≥ 1;

2 +

⌈
lg
s+ 1

δ − 2

⌉
, if 3 ≤ δ ≤ s+ 2;

2, otherwise.

(4.4)

Given a simple graph G ∈ G with ` = `(G) and d̃ = d̃(G). By the formula to

compute d̃ in Section 4.3.2, we have d̃ ≤ `+2. When s ≥ 6, as dlg(s+1)e+2 ≤ s−1,

we have d̃+ 2 + dlg(s+ 1)e ≤ `+ 1 + s. Moreover, since dlg(s+ 1)e = o(s) as s→∞,

it follows that d̃ + 2 + dlg(s + 1)e = o(` + s + 1) as s → ∞. Similarly, when s ≥ 1

and n ≥ 1, we have
⌈
lg s+1

n

⌉
≤ s and

⌈
lg s+1

n

⌉
= o(s) as s → ∞. It means that

2 +
⌈
lg s+1

n

⌉
≤ s+ 2 and 2 +

⌈
lg s+1

n

⌉
= o(s+ 2) as s→∞. Hence, when s ≥ 6, the

upper bounds above sharpen the result of Theorem 4.1.1(iii).

4.3 Mechanisms

4.3.1 Iterated Line Graphs

For a subset X ⊆ E(G), let L0(X) = X and Li(X) = Li(G)[Li−1(X)] for each

integer i ≥ 1. Moreover, for a subset Y ⊆ E(Li(G)), there exists a unique Z ⊆
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E(Li−j(G)) for each j ∈ [0, i] such that Lj(Z) = Y , denoted Z = L−j(Y ). Thus, for

two integers i, j and an edge subset X ⊆ E(G), Li(Lj(X)) = Li+j(X).

Lemma 4.3.1. Given an integer i ≥ 0 and a graph G. If P is a divalent (p, q)-path

in Li(G) of length r that is not in a K3, then for each j ∈ [0, i], L−j(P ) is a divalent

(p, q)-path in Li−j(G) of length r + j.

Proof. Assume that j0 is the smallest number such that L−j0(P ) is not a divalent

(p, q)-path of length r + j0 where 0 < j0 ≤ i. Let Q = L−j0+1(P ). Thus, Q is a

divalent (p, q)-path in Li−(j0−1)(G) of length r + j0 − 1. First, we claim that Q is

not in a K3. If Q is in a K3, then P = Lj0−1(Q) is in a K3 since the line graph of a

K3 is still a K3, which contradicts the assumption that P is not in a K3.

Now, set J = Li−j0(G), and then L(J) = Li−(j0−1)(G). Let Q be a (u, v)-path,

where u ∈ Dp(L(J)) and v ∈ Dq(L(J)). As Q is not in a K3 and the definition

of divalent paths, L−j0(P ) = L−1(Q) is a divalent (u, v)-path in J , where {u, v} ⊂
E(J). Let L−j0(P ) be a (x, y)-path where {x, y} ⊂ V (J). Since d(x) = d(u1)− 2 +

2 = p and d(y) = d(v)− 2 + 2 = q, L−j0(P ) is a divalent (p, q)-path of length r+ j0,

which contradicts our choice of j0.

4.3.2 A Formula to Compute d̃(G)

Recall that d̃(G) = min{i : δ(Li(G)) ≥ 3}, which is defined in (4.2). Define

`1(G) = max{|E(P )| : P is a divalent (1, 3)-path of G},

`2(G) = max{|E(P )| : P is a divalent (1, q)-path of G, where q ≥ 4},

`3(G) = max{|E(P )| : P is a divalent (p, q)-path of G, where p, q ≥ 3},

(4.5)

and

`0(G) = max{`1(G) + 1, `2(G), `3(G)− 1}.

In [47], it is claimed that “It is easy to see d̃(G) = `0(G).” However, there exists an

infinite family of graphs each of which shows that this claim might be incorrect. Let

T = {T : T is a tree with V (T ) = D1(T ) ∪D3(T )}. Members in T are often called

binary trees. For each G ∈ T , we have `1(G) = `3(G) = 1 and `2(G) = 0. Direct

computation indicates that d̃(G) = 3 > `0(G). See Figure 4.1 for an illustration.

Thus what would be the correct formula to compute d̃(G) becomes a question

to be answered. Before presenting our answer to it, we need some notation. Let

F =
⋃
v∈U

∂G(v),
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G L(G) L2(G)

Figure 4.1: A member G ∈ T and its iterated line graphs.

where U = {v ∈ V (G) : |NG(v)| = 1}.

Lemma 4.3.2. Let G ∈ G be a graph with δ(G) ≤ 2, d̃ = d̃(G) and `0 = `0(G). The

formula below computes d̃:

d̃ =

{
max{`0, 3}, if |∂G(v) ∩ F | = 2 for some v ∈ D3(G);

`0, otherwise.
(4.6)

Proof. Let m be the right-hand side of (4.6). Let `i = `i(G) for each i ∈ {1, 2, 3}.
Then m ≤ d̃ by definitions of d̃ and line graphs. Now, it suffices to show that

δ(Lm(G)) ≥ 3. We assume that δ(Lm(G)) ≤ 2 to seek a contradiction.

If δ(Lm(G)) = 1, then Lm(G) has a divalent (1, q)-path of length r where q ≥ 3.

By Lemma 4.3.1, G has a divalent (1, q)-path of length r + m. If q = 3, then

m+1 ≤ m+r ≤ `1 ≤ m−1, a contradiction; if q > 3, then m+1 ≤ m+r ≤ `2 ≤ m,

which is also a contradiction.

Then, δ(Lm(G)) = 2. Pick u ∈ D2(Lm(G)). If u is not in any triangles of

Lm(G), then u is in a divalent (p′, q′)-path of length r′ ≥ 2 in Lm(G) that is not

in a K3, where p′ ≥ 3 and q′ ≥ 3. It follows that G has a divalent (p′, q′)-path of

length r′ + m by Lemma 4.3.1, which shows that 2 + m ≤ r′ + m ≤ `3 ≤ m + 1,

a contradiction. Thus, u ∈ V (H) where H ∼= K3 is a subgraph of Lm(G). By the

definition of line graphs, L−1(H) is isomorphic to one member of {K3,K1,3, J1, J2}.
Let u = xy ∈ E(L−1(H)).

When L−1(H) ∼= K1,3, as d(u) = 2, we have `1(Lm−1(G)) ≥ 1. By Lemma 4.3.1,

`1 ≥ 1 + (m− 1) = m ≥ `1 + 1, a contradiction.

When L−1(H) ∼= J1 or J2, as there is no parallel edges in line graphs, m = 1.

If L−1(H) ∼= J2, then G ∼= J2 as d(u) = 2, contradicting the definition of G. Then,

L−1(H) ∼= J1. If u = xy is one of the parallel edges of J1, then one of end vertices of

u, say x, of degree 3 in G satisfying |∂G(x) ∩ F | = 2, which implies m ≥ 3 by (4.6).

It is a contradiction with m = 1.

When L−1(H) ∼= K3, we have d(x) = d(y) = 2 as d(u) = 2. If m = 1, as
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d(u) = 2, then `3 ≥ 3, and so 1 = m ≥ `3− 1 ≥ 2, a contradiction. So, m ≥ 2. Note

that L−2(H) is isomorphic to one member of {K3,K1,3, J1, J2}. If L−2(H) ∼= K3 or

J2, then Lm−2(G) ∼= G ∼= K3 or J2, respectively, as d(x) = d(y) = 2. It contradicts

G ∈ G. Now, L−2(H) is isomorphic to one member of {K1,3, J1}. Since d(x) =

d(y) = 2 as well as line graphs are claw-free and contain no parallel edges, it shows

that m = 2. As d(x) = d(y) = 2, {x, y} ⊆ F and there is a common end vertex of

edges x and y of degree three, which shows m ≥ 3 by (4.6). It contradicts the fact

we got before that m = 2.

4.3.3 The k-Triangular Index

A cycle of length 3 is often called a triangle. Following [10], for an integer k > 0,

a graph G is k-triangular if every edge lies in at least k distinct triangles in G; a

graph G is triangular if G is 1-triangular. Thus, δ(G) ≥ k+ 1 if G is k-triangular.

Triangular graphs are often considered as models for some kinds of cellular net-

works ( [42]) and for certain social networks ( [61]), as well as mechanisms to study

network stabilities and to classify spam websites ( [3]). In addition to its applica-

tions in the hamiltonicity of line graphs ( [10]), triangular graphs are also related to

design theory.

In 1984, Moon in [68] introduced the Johnson graphs J(n, s), named after Selmer

M. Johnson for the closely related Johnson scheme. The vertex set of J(n, s) is all

s-element subsets of an n-element set, where two vertices are adjacent whenever the

intersection of the corresponding two subsets contains exactly s − 1 elements. For

example, J(n, 1) is isomorphic to Kn. By definitions, for any integers n ≥ 3 and s

with n > s, J(n, s) is (n − 2)-triangular. Therefore, it is of interests to investigate

k-triangular graphs for a generic value of k.

For an integer k > 0, define tk(G) to be the k-triangular index of G ∈ G, that

is, the smallest integer m such that Lm(G) is k-triangular. The triangular index

t1(G) is first investigated by Zhang et al.

Theorem 4.3.3. Let G ∈ G be a simple graph. Each of the following holds.

(i) (Zhang et al., Proposition 2.3 (i) of [95]) Being triangular is line graph stable.

(ii) (Zhang et al., Lemma 3.2 (iii) of [94]) t1(G) ≤ `(G).

One of the purposes of this section is to determine, for any positive integer k,

the best possible bounds for tk(G) and to investigate whether being k-triangular is

line graph stable.
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Before establishing the bounds for tk(G), we need some lemmas.

Theorem 4.3.4 (Niepel, Knor and Šoltés, Lemma 1(1) of [70]). Let G be a simple

graph with δ(G) ≥ 3. Then, δ(Li(G)) ≥ 2i(δ(G)− 2) + 2 for each integer i ≥ 0.

By the definition of line graphs, if G is a regular graph, then for each integer

i ≥ 0, we always have δ(Li(G)) = 2i(δ(G) − 2) + 2, and so the lower bound in

Theorem 4.3.4 is best possible in this sense.

Lemma 4.3.5. Let G ∈ G be a simple graph with δ = δ(G). Each of the following

holds for each integer i > 0.

(i) If δ ≥ 3, then Li(G) is (2i−1(δ − 2))-triangular.

(ii) If δ ≤ 2, then Ld̃+i(G) is (2i−1(δ0− 2))-triangular where δ0 = δ(Ld̃(G)(G)). In

particular, Ld̃+i(G) is 2i−1-triangular.

Proof. Let e1e2 ∈ E(L(G)) be an arbitrary edge in L(G). Then there exists a

vertex u ∈ V (G) such that {e1, e2} ⊂ ∂G(u). Suppose δ ≥ 3. In general, as

L(G)[∂G(u)] ∼= Kd(u), the edge e1e2 lies in at least d(u) − 2 ≥ δ − 2 ≥ 1 distinct

triangles. It means that L(G) is (δ − 2)-triangular. By Theorem 4.3.4, for each

integer i > 0, δ(Li−1(G)) ≥ 2i−1(δ−2)+2 ≥ 3. It follows that Li(G) is (2i−1(δ−2))-

triangular and (i) is proved.

To show (ii), as δ0 ≥ 3, it follows by (i) that Ld̃+i(G) = Li(Ld̃(G)) is (2i−1(δ0 −
2))-triangular.

Theorem 4.3.6. Let k ≥ 2 be an integer and G ∈ G be a simple graph with δ = δ(G)

and d̃ = d̃(G). Each of the following holds.

(i) Being k-triangular is line graph stable.

(ii)

tk(G) ≤


d̃+ 1 + dlg ke, if δ ≤ 2;

1 +

⌈
lg

k

δ − 2

⌉
, if 3 ≤ δ ≤ k + 1;

1, otherwise.

(4.7)

Moreover, the equality holds for sufficiently large k when δ ≤ k + 1.

Proof. (i). Suppose G ∈ G is a simple k-triangular graph for given k ≥ 2. Then

δ(G) ≥ k+ 1 ≥ 3. Pick an edge e1e2 ∈ E(L(G)). To show that L(G) is k-triangular,

it is enough to prove that e1e2 lies in at least k distinct triangles in L(G). Let x be

the common vertex of e1 and e2 in G, and X = ∂G(x) − {e1, e2}. If d(x) ≥ k + 2,
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then |X| ≥ k. It means that e1e2 lies in at least k distinct triangles in L(G). Now,

we consider that d(x) = k + 1. Since G is a simple k-triangular graph, G[NG(x)] is

a complete graph and then e1e2 lies in at least k distinct triangles in L(G).

(ii). Let t = tk(G). First, we consider the situation when δ ≤ 2. As k ≥ 2,

by the definition of d̃, we have t ≥ d̃. If t < d̃ + 2, then t < d̃ + 1 + dlg ke as

k ≥ 2. Assume next that k is so large that t ≥ d̃ + 2. As Lt(G) is k-triangular

while Lt−1(G) is not k-triangular, by Lemma 4.3.5(ii), 2t−d̃−2 < k ≤ 2t−d̃−1. Then

algebraic manipulation leads to t − d̃ − 2 < lg k ≤ t − d̃ − 1, which means that

dlg ke = t− d̃− 1. Hence we conclude that t = d̃+ 1 + dlg ke.

Now, we suppose that δ ≥ 3. If δ ≥ k + 2, then L(G) is (δ − 2)-triangular by

Lemma 4.3.5(i), which implies that L(G) is k-triangular and then t ≤ 1.

If δ ≤ k + 1 and t ≥ 2, then, by Lemma 4.3.5(i), for each integer i > 0, Li(G)

is (2i−1(δ − 2))-triangular. So 2t−2(δ − 2) < k ≤ 2t−1(δ − 2) by the definition

of t = tk(G). It follows that t = 1 +
⌈
lg k

δ−2

⌉
. Then, t ≤ 1 +

⌈
lg k

δ−2

⌉
when

3 ≤ δ ≤ k + 1.

4.4 Proof of Theorem 4.2.1

Lemma 4.4.1. For an integer k > 1, if G ∈ G is a k-triangular simple graph and

X ⊂ E(G) with |X| = s where 1 ≤ s < k, then G−X is (k − s)-triangular.

Proof. Pick e ∈ E(G−X). Since G is k-triangular, edge e lies in at least k distinct

triangles in G, say Ce1 , C
e
2 , . . . , C

e
k. As E(Cei ∩ Cej ) = {e} for each {i, j} ⊆ [1, k]

and |X| = s < k, there exist k − s such triangles Cei′ where i′ ∈ [1, k] such that

E(Cei′) ∩X = ∅. It follows that G−X is (k − s)-triangular.

Lemma 4.4.2. Given two non-negative integers s and t. If G ∈ G is a (s+ t+ 1)-

triangular simple graph, then G is (s, t)-supereulerian.

Proof. For any X,Y ⊂ E(G) with X ∩Y = ∅, |X| = s′ ≤ s and |Y | ≤ t. Then |X ∪
Y | ≤ s+ t. Let H = G− (X ∪ Y ). By Lemma 4.4.1, H is triangular. It follows that

H is collapsible by Theorem 1.2.2(iv). Let X = {x1, x2, . . . , xs′}. Then V (G(X)) =

V (G)∪{v(x1), v(x2), . . . , v(xs′)}. Note that G(X)−Y −{v(x1), v(x2), . . . , v(xs′)} =

H is collapsible. Since every edge of (G(X)−Y )/H lies in a cycle of length 2, which

implies that (G(X) − Y )/H is collapsible by Theorem 1.2.2(iv). It indicates that

G(X) − Y is collapsible by Theorem 1.2.2(ii) as H is collapsible. Then G(X) − Y
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is supereulerian, which means that G(X)− Y has a spanning eulerian subgraph J .

Note that dG(X)−Y (v(xi)) = 2 for each i ∈ [1, s′]. Then subgraph J contains all

edges incident with some v(xi), which means that G − Y has a spanning eulerian

subgraph containing X, and so G is (s, t)-supereulerian.

Proof of Theorem 4.2.1. Combine Theorem 4.3.3(ii), Theorem 4.3.6(ii) and Lemma

4.4.2, and then we complete the proof.
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Chapter 5

On Hamiltonian Line Graphs of

Hypergraphs

5.1 Background

A hypergraph H is an ordered pair (V (H), E(H)), where V (H) is the vertex set

of H and E(H) is a collection of not necessarily distinct nonempty subsets of V (H),

called hyperedges or simply edges of H. For notational convenience, given an

edge subset X ⊆ E(H), we often also use X to denote the induced sub-hypergraph

H[X] = (UX , X), where UX =
⋃
F∈X F .

A single element edge is referred to as a loop. We consider loopless hypergraphs.

The rank of a hypergraph H is r(H) = maxE∈E(H){|E|}. Thus if r(H) = 2, then

H is a loopless graph permitting parallel edges. Following [9], a graph is simple if it

is loopless and contains no parallel edges.

A hypergraph J is called a sub-hypergraph of a hypergraph H if V (J) ⊆ V (H)

and E(J) ⊆ E(H). If V (J) = V (H), then J is called a spanning sub-hypergraph

of H. The line graph L(H) of a hypergraph H, is a simple graph with vertex set

V (L(H)) = E(H), where two vertices Ei and Ej are adjacent in L(H) if and only if

Ei ∩ Ej 6= ∅ in H.

For a proper subset U ⊂ V (H), ∂H(U) is the set of all the edges of H which

intersect both U and V (H) − U . If U = {u}, we use ∂H(u) instead of ∂H({u}).
For an integer k > 0, a hypergraph H is k-edge-connected if for every nonempty

proper subset U of V (H), |∂H(U)| ≥ k.
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A trail of a hypergraph H is an alternating sequence

Γ = (v0E0v1E1 · · · vs−1Es−1vs) (5.1)

of vertices and edges such that

(T1) Ei and Ej are two distinct edges for each {i, j} ⊆ [0, s− 1];

(T2) vi, vi+1 ∈ Ei and vi 6= vi+1 for each i ∈ [0, s− 1].

We also view the trail Γ in (5.1) as a sub-hypergraph (also denoted by Γ) with V (Γ)

being the vertices occurring in the trail and with E(Γ) = {E0, E1, . . . , Es−1}. We

also write the trail in (5.1) as Γ = (E0E1 · · ·Es−1) in an edge sequence notation.

Moreover, if r(Γ) = 2, then we can write the trail in (5.1) as Γ = (v0v1 · · · vs) in a

vertex sequence notation. The trail Γ in (5.1) is a closed trail if v0 = vs.

Definition 5.1.1. Let Γ be the trail in (5.1). If Γ is closed, let I = Zs; otherwise,

let I = [1, s − 2]. For each i ∈ I, we define PVΓ(Ei) = (Ei−1 ∩ Ei) ∪ (Ei ∩ Ei+1),

and the pivot set PV (Γ) of Γ as

PV (Γ) =
⋃
i∈I

PVΓ(Ei).

To describe a closed trail in an edge sequence (E0E1 · · ·Es−1), we make the

following observations, which are immediate consequences of the definition.

Observation 5.1.1. Let the edge sequence Γ = (E0E1 · · ·Es−1) denote the trail in

(5.1). Then, Γ is closed if and only if for each i, j ∈ Zs, each of the following holds.

(CT1) Ei and Ej are two distinct edges for each j 6= i;

(CT2) Ei ∩ Ej 6= ∅ whenever |i− j| = 1;

(CT3) |
⋃
|i−j|=1Ei ∩ Ej | ≥ 2.

A hypergraph H is eulerian if it has a closed trail Γ with E(H) = E(Γ). Thus,

an eulerian sub-hypergraph of H is a closed trail of H. If a vertex v ∈ PVΓ(Ei),

then v is called a pivot of edge Ei with respect to the closed trail Γ. A closed

trail Γ in H is pivot-spanning if PV (Γ) = V (H). A hypergraph H is pivot-

supereulerian if H has a pivot-spanning eulerian sub-hypergraph. A closed trail Γ

in H is dominating if for any E ∈ E(H), E ∩ PV (Γ) 6= ∅. We define a hypergraph

H to be supereulerian if H has a dominating spanning eulerian sub-hypergraph.

A hypergraph H is heavy supereulerian if H has a dominating spanning

eulerian sub-hypergraph Γ such that |∂Γ(v)| ≥ 2 for each v ∈ V (H). In Figure

5.1, an example is presented to indicate that a heavy supereulerian hypergraph may

not always be pivot-supereulerian. Nevertheless, we have the following observations

from their definitions.
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Observation 5.1.2. Each of the following holds.

(i) Every pivot-supereulerian hypergraph is heavy supereulerian.

(ii) Every heavy supereulerian hypergraph is supereulerian.

(iii) If r(H) = 2, then a hypergraph H is pivot-supereulerian if and only if H is

heavy supereulerian, which is also equivalent to that H is supereulerian.

v1

v2 v3 v4

v5

E1 E3

E2

E4

H

Figure 5.1: A heavy supereulerian but not pivot-supereulerian hypergraph

Recall that Harary and Nash-Williams [41] discovered a nice relationship between

dominating eulerian subgraphs in a graph G and Hamilton cycles in the line graph

L(G).

Theorem 1.2.7 (Harary and Nash-Williams, Proposition 8 of [41]). Let G be a

graph with at least three edges. Then L(G) is Hamiltonian if and only if G has a

dominating eulerian subgraph.

For a graph G, if G is supereulerian, then G has a spanning eulerian subgraph,

which is dominating. Theorem 1.2.7 indicates that every supereulerian graph with

at least three edges has a Hamiltonian line graph. As indicated in Catlin’s resource-

ful survey [14], supereulerian graphs play an important role in the investigation of

Hamiltonian line graphs.

In [13], Catlin introduced a powerful reduction method to study supereulerian

graphs. Let H be a hypergraph. For an edge subset X ⊆ E(H), the contraction

H/X is a hypergraph obtained from H by identifying all vertices of each edge in X

and then by deleting the resulting loops. If J is a sub-hypergraph of H, then we

write H/J for H/E(J). Moreover, if J is connected, then we denote the new vertex

by vJ onto which all vertices in V (J) are contracted in H/J .

Theorem 5.1.1 (Catlin, Theorem 2 of [13]). Let G be a graph and L be a subgraph

of G with τ(L) ≥ 2. Then, G is supereulerian if and only if G/L is supereulerian.

Let P(H) be the collection of all partitions of V (H) such that a partition P =

(V1, V2, . . . , Vt) ∈ P(H) if and only if P satisfies each of the following:
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(P1) V (H) =
⋃t
i=1 Vi,

(P2) Vi 6= ∅ for each i ∈ [1, t], and

(P3) Vi ∩ Vj = ∅ for each {i, j} ⊆ [1, t].

For a partition P = (V1, V2, . . . , Vt) ∈ P(H), each Vi is a partition class of P . Let

|P | = t denote the number of classes of P , and let e(P ) be the number of edges

intersecting at least two classes of P .

Definition 5.1.2 (Frank, Király and Kriesell [31]). A hypergraph H is k-partition-

connected if for every partition P ∈ P(H),

e(P ) ≥ k(|P | − 1).

5.2 Main Results

We extend the above-mentioned results of Harary and Nash-Williams, of Jaeger and

of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamil-

tonian, and showing that every 2-partition-connected hypergraph is a contractible

configuration for supereulerianicity.

Li et al. (Corollary 7 in [64]) charaterized the correspondent relationship between

hamiltonicity of a line graph of a hypergraph of rank 3 and the dominating structure

in the root hypergraph. One of the purposes of this research is to extend Theorem

1.2.7 to hypergraphs.

Theorem 5.2.1. Let H be a hypergraph with at least three edges. Then L(H) is

Hamiltonian if and only if H has a dominating eulerian sub-hypergraph.

Another purpose of this research is to generalize certain supereulerian graph

results to hypergraphs. In the current research, we prove the following, as an attempt

to extend Theorem 5.1.1 to hypergraphs.

Theorem 5.2.2. Let J be a 2-partition-connected sub-hypergraph of a hypergraph H.

If H/J has a dominating spanning closed trail Γ with vJ ∈ PV (Γ), then H is supereu-

lerian. In particular, if H/J is pivot-supereulerian, then H is pivot-supereulerian.

Theorem 5.2.3. Let H be a hypergraph and J be a 2-partition-connected sub-

hypergraph of H. Then, H is pivot-supereulerian if and only if H/J is pivot-

supereulerian.

Corollary 5.2.4. If H is a 2-partition-connected hypergraph, then H is pivot-

supereulerian. In particular, every 2r-edge-connected hypergraph with rank r is pivot-

supereulerian.

44



Corollary 5.2.4 is a generalization of Theorem 1.2.3(i) to hypergraphs. Thus, by

Theorem 5.2.1 and Corollary 5.2.4, we obtain the following corollary immediately.

Corollary 5.2.5. If H is a 2-partition-connected hypergraph, then the line graph

L(H) is Hamiltonian. In particular, if H is 2r-edge-connected with rank r, then

L(H) is Hamiltonian.

5.3 Contraction

Let H be a hypergraph. We denote the number of connected components of H by

ω(H). If W ⊆ V (H), then the hypergraph (W, EW ), where EW = {F ∈ E(H) :

F ⊆W}, is the sub-hypergraph induced by the vertex subset W , denoted by

H[W ].

For a subset X ⊆ E(H), let H − X = (V (H), E(H) − X). Let H1 and H2

be two hypergraphs. The intersection of H1 and H2, denoted by H1 ∩ H2, has

V (H1 ∩H2) = V (H1)∩ V (H2) and E(H1 ∩H2) = E(H1)∩ E(H2); and the union of

H1 and H2, denoted by H1∪H2, has V (H1∪H2) = V (H1)∪V (H2) and E(H1∪H2) =

E(H1) ∪ E(H2). If E(H2) = {E}, then we write H1 ∪ E for H1 ∪H2.

A formal definition of hypergraph contractions is as follows.

Definition 5.3.1. Let J be a sub-hypergraph of H with components labeled by

J1, J2, . . . , Js, and let UJ = {vJ1 , vJ2 , . . . , vJs} with UJ ∩ (V (H)−V (J)) = ∅. Define

a mapping c : V (H)→ V (H) ∪ UJ by

c(v) =

{
vJi , v ∈ V (Ji);

v, otherwise.
(5.2)

Denote the images of vertex v ∈ V (H) and E ∈ E(H) by

im(v) = c(v) and im(E) = {c(v) : v ∈ E},

respectively. Conversely, the vertex v and the edge E are called preimages of im(v)

and im(E), respectively. Let U ⊆ V (H) and X ⊆ E(H). Then, im(U) = {im(v) :

v ∈ U} and im(X) = {im(E) : E ∈ X} are called the images of U and X,

respectively.

The terms and notation of the hypergraph contraction in Definition 5.3.1 allow

us to make the following observation.
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Observation 5.3.1. Let J be a sub-hypergraph of a hypergraph H such that J

has components J1, J2, . . . , Js, and let UJ = {vJ1 , vJ2 , . . . , vJs} with UJ ∩ (V (H) −
V (J)) = ∅. Define a mapping c as in (5.2). Then the contraction H/J is the

hypergraph with vertex set V (H/J) = im(V (H)) = (V (H) − V (J)) ∪ UJ and edge

set E(H/J) = im(E(H)).

Given a sub-hypergraph Γ of H, the image of Γ is defined by

im(Γ) = (H/J)[im(V (Γ))].

Thus, if every vertex v ∈ V (Γ) lies in an edge E ∈ E(Γ), then im(Γ) = (H/J)[im(E(Γ))].

In particular, if Γ = H[X] is a sub-hypergraph induced by the edge subset X, then

im(Γ) = (H/J)[im(X)].

Conversely, given W ⊆ V (H/J), Y ⊆ E(H/J), and a sub-hypergraph Γ1 of

H/J . The preimages of W , Y and Γ1 are pre(W ) = {v ∈ V (H) : im(v) ∈ W},
pre(Y ) = {E ∈ E(H) : im(E) ∈ Y } and pre(Γ1) = H[pre(V (Γ1))], respectively.

We adopt the terms and notation in Definition 5.3.1 in our discussions. If H has

a closed trail Γ, then we define

UJ(Γ) = {vJi ∈ UJ : V (Ji) ∩ PV (Γ) 6= ∅},

and

X(J,Γ) = {E ∈ E(Γ) : E − V (J) 6= ∅, PVΓ(E) ⊆ V (Ji) for some i}.

By definitions, im(PV (Γ)) = (PV (Γ)− V (J)) ∪ UJ(Γ) ⊆ V (H/J).

Lemma 5.3.1. Let H be a hypergraph with a closed trail Γ and J be a sub-hypergraph

of H. If E ∩ PV (Γ) 6= ∅ where E ∈ E(H), then im(E) ∩ im(PV (Γ)) 6= ∅.

Proof. Pick E ∈ E(H). Suppose that there exists a vertex v ∈ E ∩ PV (Γ). If

v ∈ V (J), then im(v) ∈ UJ(Γ); otherwise, v ∈ PV (Γ) − V (J), then im(v) ∈
PV (Γ)− V (J). It follows that im(v) ∈ (PV (Γ)− V (J))∪UJ(Γ) = im(PV (Γ)). As

im(v) ∈ im(E), im(E) ∩ im(PV (Γ)) 6= ∅.

Lemma 5.3.2. Let H be a hypergraph with a closed trail Γ and J be a sub-hypergraph

of H. Then, L = im(E(Γ) − X(J,Γ)) is a closed trail of H/J with PV (L) =

im(PV (Γ)).

Proof. Let Γ = (E0E1 · · ·Es−1) be an edge sequence satisfying (CT1)-(CT3) and

let Y = E(Γ) −X(J,Γ). For each i ∈ [0, s − 1], let Fi = im(Ei) if Ei ∈ Y , and let

L = im(Y ) = {Fy(0), Fy(1), . . . , Fy(t−1)} where y(0) < y(1) < · · · < y(t− 1).
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Claim 1.
⋃
i∈Zt

(Fy(i) ∩ Fy(i+1)) = im(PV (Γ)).

Note that a vertex v ∈ PV (Γ)− V (J), if and only if v ∈ (Er ∩Er+1)− V (J) for

some Er, Er+1 ∈ E(Γ), if and only if v ∈ (Fr∩Fr+1)−UJ(Γ) ⊆
⋃
i∈Zt

(Fy(i)∩Fy(i+1))−
UJ(Γ). Then, PV (Γ) − V (J) =

⋃
i∈Zt

(Fy(i) ∩ Fy(i+1)) − UJ(Γ). As im(PV (Γ)) =

(PV (Γ) − V (J)) ∪ UJ(Γ), it suffices to show that UJ(Γ) ⊆
⋃
i∈Zt

(Fy(i) ∩ Fy(i+1)).

Pick u ∈ UJ(Γ). By the definition of UJ(Γ), there exists v ∈ V (Ji) ∩ PV (Γ) such

that u = im(v) and Ji is a component of J . It follows that v ∈ Ek ∩ Ek+1 for

some edges Ek, Ek+1 ∈ E(Γ). Let k1 ≤ k be the largest integer with Ek1 ∈ Y and

let k2 > k be the smallest integer with Ek2 ∈ Y . It means that u ∈ Fk1 ∩ Fk2 ⊆⋃
i∈Zt

(Fy(i) ∩ Fy(i+1)).

Claim 2. L is a closed trail.

We can view L = im(Y ) = (Fy(0)Fy(1) · · ·Fy(t−1)) as an edge sequence. By

Observation 5.1.1, it suffices to show that L satisfies (CT1)-(CT3).

Pick Fy(i), Fy(j) ∈ L. Since Ey(i) and Ey(j) are distinct edges, Fy(i) = im(Ey(i))

and Fy(j) = im(Ey(i)) are distinct edges as well, which means that L satisfies (CT1).

To show that L satisfies (CT2), by symmetry, it suffices to show that Fy(i) ∩
Fy(i+1) 6= ∅. If y(i + 1) − y(i) = 1, then Ey(i)+1 ∈ Y and Fy(i+1) = Fy(i)+1.

Since Ey(i) ∩ Ey(i)+1 6= ∅, Fy(i) ∩ Fy(i+1) 6= ∅. If y(i + 1) − y(i) = q ≥ 2, then

{Ey(i)+1, Ey(i)+2, . . . , Ey(i)+q−1} ⊆ X(J,Γ). It follows that for each k ∈ [1, q − 1],

PVΓ(Ey(i)+k) ⊆ V (Jk) for some component Jk of J . As

PVΓ(Ey(i)+k) ∩ PVΓ(Ey(i)+k+1) 6= ∅

for each k ∈ [1, q− 2],
⋃
k∈[1,q−1] PVΓ(Ey(i)+k) ⊆ V (Jr) for some component Jr of J .

This implies that vJr ∈ Fy(i) ∩ Fy(i+1). Hence, L satisfies (CT2).

We are to show that L satisfies (CT3). By contradiction, and by the fact that

L satisfies (CT2), we assume that |
⋃
|i−j|=1 Fy(i) ∩ Fy(j)| = 1 for some i, say {u} =

Fy(i)∩Fy(i−1) = Fy(i)∩Fy(i+1). By Claim 1, either u ∈ PV (Γ)−V (J) or u ∈ UJ(Γ).

If u ∈ UJ(Γ), then Ey(i) ∈ X(J,Γ) contradicting with Ey(i) ∈ Y = E(Γ) −X(J,Γ);

otherwise, u ∈ PV (Γ) − V (J), then y(i − 1) = y(i) − 1, y(i + 1) = y(i) + 1 and

{u} = Ey(i) ∩ Ey(i)−1 = Ey(i) ∩ Ey(i)+1, which contradicts that Γ satisfies (CT3).

By Claims 1 and 2, L is a closed trail with PV (L) = im(PV (Γ)).

Lemma 5.3.3. Let H be a hypergraph and J be a sub-hypergraph of H. Each of the

following holds.
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(i) If H is supereulerian, then H/J has a dominating closed trail.

(ii) If H is pivot-supereulerian, then H/J is pivot-supereulerian.

(iii) If H is heavy supereulerian and J is connected, then H/J is supereulerian.

Proof. Let Γ be a closed trail of H and X = X(J,Γ). By Lemma 5.3.2, L =

im(E(Γ)−X) is a closed trail of H/J with PV (L) = im(PV (Γ)).

(i) Suppose that Γ is dominating and spanning in H. Pick an edge E′ ∈ E(H/J).

Let E be the preimage of E′ in H. Since Γ is dominating in H, E ∩ PV (Γ) 6= ∅,
and then, by Lemma 5.3.1, ∅ 6= E′ ∩ im(PV (Γ)) = E′ ∩ PV (L). It shows that L is

dominating in H/J .

(ii) Suppose PV (Γ) = V (H). Then, UJ(Γ) = UJ . This follows that PV (L) =

im(PV (Γ)) = (PV (Γ)−V (J))∪UJ(Γ) = (V (H)−V (J))∪UJ = V (H/J), and then

H/J is pivot-supereulerian.

(iii) Suppose that for each vertex v ∈ V (H), |∂Γ(v)| ≥ 2. Since J is connected

and Γ is dominating, |UJ | = |UJ(Γ)| = 1. Let {vJ} = UJ = UJ(Γ). Then, vJ ∈
im(PV (Γ)) = PV (L). For each edge E ∈ E(H), we denote E′ = im(E) to be the

image of E in H/J . We shall verify (iii) by showing the following claims.

Claim 3. For each vertex u ∈ V (H/J)−V (L), there exists a pair of edges {Eu, Fu} ⊆
X such that Cu = (vJE

′
uuF

′
uvJ) is a closed trail.

As V (H/J) − V (L) = V (im(X)) ∩ V (H), for each vertex u ∈ V (H/J) − V (L),

there exists Eu ∈ X such that u ∈ E′u ∩Eu. Then, there exists Fu ∈ E(Γ) such that

u ∈ Fu 6= Eu as |∂Γ(u)| ≥ 2. If Fu /∈ X, then u ∈ V (L), which contradicts with

u ∈ V (H/J) − V (L). Thus, Fu ∈ X and then u ∈ F ′u. As {Eu, Fu} ⊆ X, we have

{vJ , u} ⊆ E′u ∩ F ′u. Hence, Cu = (vJE
′
uuF

′
uvJ) is a closed trail.

Claim 4. There exists a subset W ⊆ V (H/J)− V (L) such that CW =
⋃
u∈W Cu is

a closed trail with W ∪ {vJ} ⊆ PV (CW ) and V (CW ) ∪ V (L) = V (H/J).

By Claim 3, we assume that W1 ⊆ V (H/J)− V (L) such that CW1 =
⋃
u∈W1

Cu

is a closed trail with W1 ∪ {vJ} ⊆ PV (CW1) and |V (CW1)| maximized. If V (CW1)−
{vJ} = V (H/J) − V (L), then V (CW1) ∪ V (L) = V (H/J) and so we are done by

taking W = W1. Now, we consider that there exists a vertex w ∈ V (H/J) −
V (L) − V (CW1). By Claim 3, there exists a pair of edges {Ew, Fw} ⊆ X such that

Cw = (vJE
′
wwF

′
wvJ) is a closed trail. If {E′w, F ′w} ∩ E(CW1) 6= ∅, then w ∈ V (CW1),

which contradicts with w ∈ V (H/J)−V (L)−V (CW1). Then {E′w, F ′w}∩E(CW1) = ∅.
Set W2 = W1 ∪ {w}. Then, CW2 =

⋃
u∈W2

Cu = CW1 ∪ Cw = (vJCW1vJCwvJ) is a
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closed trail with PV (CW2) ⊇ PV (CW1) ∪ {w} ⊇ W1 ∪ {vJ , w} = W2 ∪ {vJ} and

|V (CW2)| > |V (CW1)|, which contradicts the maximality of |V (CW1)|.

Claim 5. L ∪ CW is a spanning closed trail of H/J .

As Γ is a closed trail and by the definition of contraction, every pair of edges in

L∪CW are distinct. Then, as vJ ∈ PV (L)∩CW , L∪CW = (vJLvJCW vJ) is a closed

trail of H/J . By Claim 4, V (L ∪ CW ) = V (CW ) ∪ V (L) = V (H/J).

Claim 6. L ∪ CW is dominating.

Pick F ′ ∈ E(H/J)− E(L ∪ CW ). Suppose F ′ ∩ PV (L ∪ CW ) = ∅. Since PV (L ∪
CW ) ⊇ PV (L)∪W , ∅ = F ′ ∩ (PV (L)∪W ) = F ′ ∩ (im(PV (Γ))∪W ), which implies

that F ′ ∩ im(PV (Γ)) = ∅. Then, by Lemma 5.3.1, F ∩ PV (Γ) = ∅ where F is the

preimage of F ′. It contradicts that Γ is dominating in H.

Combine Claims 5 and 6, H/J is supereulerian.

5.4 Partition-Connected Hypergraphs and Hypertrees

Frank, Király and Kriesell in [31] indicated the following proposition that k-partition-

connected hypergraphs can be characterized in a different form, which is often used

in applications.

Theorem 5.4.1 (Frank, Király and Kriesell [31]). Let H be a hypergraph and k > 0

be an integer. The following are equivalent.

(i) H is k-partition-connected;

(ii) for each partition P ∈ P(H), e(P ) ≥ k(|P | − 1);

(iii) for each subset X ⊆ E(H), |X| ≥ k(ω(H −X)− 1).

By definition, every k-partition-connected hypergraph must be k-edge-connected.

Following [31], a hypergraph is partition-connected if it is 1-partition-connected.

A graph is partition-connected if and only if it is connected. In general, partition-

connected hypergraphs must be connected, but a connected hypergraph may not be

partition-connected.

Theorem 5.4.2. Let H be a hypergraph with a sub-hypergraph J and k > 0 be an

integer. Each of the following holds.

(i) (Frank, Király and Kriesell, Corollary 2.9 of [31]) If H is kr-edge-connected

where r = r(H), then H is k-partition-connected.
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(ii) (Gu and Lai, Proposition 4.1 of [34]) If H is k-partition-connected, then for

any E ∈ E(H), H/E is k-partition-connected. Furthermore, if J and H/J are

k-partition-connected, then H is k-partition-connected.

A hypergraph H is a hyperforest if for every nonempty subset U ⊆ V (H),

|E(H[U ])| ≤ |U | − 1. A hyperforest T is a hypertree if |E(T )| = |V (T )| − 1. For a

partition P = (V1, V2, . . . , Vt) of V (T ),

e(P ) = |E(T )| −
t∑
i=1

|E(T [Vi])| ≥ (|V (T )| − 1)−
t∑
i=1

(|Vi| − 1) = t− 1.

It shows that every hypertree is partition-connected.

Theorem 5.4.3 (Frank, Király and Kriesell, Corollary 2.6 of [31]). Each of the

following holds.

(i) For each partition-connected hypergraph H, |E(H)| ≥ |V (H)| − 1 with equality

if and only if H is a hypertree.

(ii) Each partition-connected hypergraph contains a spanning hypertree.

Theorem 5.4.4 (Frank, Király and Kriesell, Theorem 2.8 of [31]). Let H be a

hypergraph. The following are equivalent.

(i) H is k-partition-connected.

(ii) H has k edge-disjoint spanning partition-connected sub-hypergraphs.

Lemma 5.4.5. Suppose that H is a partition-connected hypergraph and E ∈ E(H)

with |E| ≥ 3. Then there exists a vertex v ∈ E such that with E′ = E − {v},
(H − E) ∪ E′ is partition-connected.

Proof. For a vertex u ∈ E, let Eu = E − {u} and Hu = (H − E) ∪ Eu. By

Theorem 5.4.3(ii), H contains a spanning hypertree. If E is not contained in this

hypertree, then for each vertex u ∈ E, Hu is partition-connected. Thus we assume

that E lies in every spanning hypertree of H. Let T be a hypertree of H such that

T contains E as an edge with |V (T )| minimized. (5.3)

As T is partition-connected, by Theorem 5.4.1, 1 = |{E}| ≥ ω(T − E) − 1, which

implies that ω(T − E) ≤ 2. As |E| ≥ 3, it follows that there exist two vertices

u, v ∈ E such that both u and v are in the same component of T − E.

Claim 7. T ′ = (T − E) ∪ Ev is a hypertree.
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Suppose to the contrary that T ′ is not a hypertree. Since V (T ′) = V (T ) and

|E(T ′)| = |E(T )|, by definition, there exists a nonempty subset U ⊆ V (T ′) such that

|E(T ′[U ])| > |U | − 1. Since T is a hypertree, |E(T [U ])| ≤ |U | − 1 < |E(T ′[U ])|.
It follows that |E(T [U ])| = |E(T ′[U ])| − 1 and E − U = {v}. Then, |U | − 1 <

|E(T ′[U ])| ≤ |U |, which leads to |E(T ′[U ])| = |U | and |E(T [U ])| = |U | − 1. Let

U ′ = U ∪{v}. Then |E(T [U ′])| ≥ |E(T [U ])|+1 = |U | = |U ′|−1. As T is a hypertree,

|E(T [U ′])| ≤ |U ′| − 1, and then |E(T [U ′])| = |U ′| − 1, which means T [U ′] is also a

hypertree. By (5.3), we have T = T [U ′]. Since |E(T [U ])| = |U | − 1 = |E(T [U ′])| − 1,

E is the only one edge satisfying both E ∩ U 6= ∅ and v ∈ E. It follows that v is an

isolated vertex in T −E, which contradicts the fact that vertices u and v are in one

component of T −E. This contradiction implies that T ′ must be a hypertree. This

proves Claim 7.

By Claim 7 and Theorem 5.4.2(ii), both T ′ and Hv/T
′ = H/T are partition-

connected. Hence by Theorem 5.4.2(ii), Hv = (H − E) ∪ Ev is also partition-

connected.

Lemma 5.4.5 motivates the concept of partition-connected mappings on hyper-

graphs when studying partition-connectedness of hypergraphs. For a hypergraph

H, let 2E(H) = {F : F ⊆ E ∈ E(H)}. For a mapping g : E(H) → 2E(H), we denote

g(H) = g(E(H)).

An injective mapping g : E(H) → 2E(H) is a partition-connected mapping

(or pc-mapping) of a hypergraph H if each of the following holds:

(PC1) For each E ∈ E(H), g(E) ⊆ E and (H − E) ∪ g(E) is partition-connected;

and

(PC2) g(H) is a connected (multi)graph with V (g(H)) = V (H).

Corollary 5.4.6. Let H be a partition-connected hypergraph. Each of the following

holds.

(i) H has a pc-mapping.

(ii) If g(H) is supereulerian, where g is a pc-mapping of H, then H is pivot-

supereulerian.

Proof. Suppose that H is a partition-connected hypergraph. We shall argue by

induction on θ(H) =
∑

E∈E(H), |E|≥3(|E| − 2) to prove (i). If θ(H) = 0, then as

H is a (multi)graph, the identity mapping is a pc-mapping of H, and so we are

done. Thus we assume that θ(H) ≥ 1 and that (i) holds for partition-connected

hypergraphs with smaller values of θ. Since θ(H) ≥ 1, there exists an edge E0 ∈
E(H) with |E0| ≥ 3. By Lemma 5.4.5, there exists a vertex v ∈ E0 such that with
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E′0 = E0 − {v}, H ′ = (H − E0) ∪ E′0 is partition-connected. By definition, we have

θ(H ′) < θ(H) and V (H ′) = V (H), and so by induction, H ′ has a pc-mapping g′. Set

g : E(H)→ 2E(H) with g(E) = g′(E′0) if E = E0, and g(E) = g′(E) if E 6= E0. Since

g′ is injective, g is injective as well. Note that g(H) = g′(H ′) is a connected graph

and V (H) = V (H ′) = V (g′(H ′)) = V (g(H)). This means that g satisfies (PC2).

Note that g(E0) = g′(E′0) ⊆ E′0 ⊆ E0 and (H −E0) ∪ g(E0) ∼= (H ′ −E′0) ∪ g′(E′0) is

partition-connected. For each edge E ∈ E(H)−E0, we have g(E) = g′(E) ⊆ E and

(H − E) ∪ g(E) ∼= (H ′ − E) ∪ g′(E) is partition-connected. Thus, g satisfies (PC1)

and then it is a pc-mapping of H, and so (i) follows by induciton.

To prove (ii), we assume that g(H) has a dominating spanning closed trail Γ′ =

(F1F2 · · ·Fm) where each Fi ∈ E(g(H)). Then

Γ = H[g−1(E(Γ′))] = (g−1(F1)g−1(F2) · · · g−1(Fm))

is a closed trail. As V (H) ⊇ PV (Γ) ⊇ PV (Γ′) = V (g(H)) = V (H), we have Γ is a

pivot-spanning closed trail in H.

Corollary 5.4.7. Let H be a hypergraph and J1, J2, . . . , Jq be a list of pairwise edge-

disjoint partition-connected sub-hypergraphs of H. Then, there exists an injection

g : E(H)→ 2E(H) such that:

(i) g|E(Ji)
is a pc-mapping of Ji for each i;

(ii) V (g(H)) = V (H)and for each E ∈ E(H), g(E) ⊆ E.

Furthermore, if g(H) is pivot-supereulerian (resp., supereulerian), then H is pivot-

supereulerian (resp., supereulerian).

Proof. By Corollary 5.4.6, let g1, g2, . . . , gq be the corresponding pc-mappings of

J1, J2, . . . , Jq. Take g : E(H) → 2E(H) with g(E) = gi(E) if E ∈ E(Ji); otherwise,

g(E) = E. Then, g is an injection satisfying (i) and (ii).

Furthermore, let Γ′ = (F1F2 · · ·Fm) be a closed trail of g(H) where each Fi ∈
E(g(H)). Then H[g−1(E(Γ′))] = (g−1(F1)g−1(F2) · · · g−1(Fm)), denoted Γ, is a

closed trail of H with V (Γ′) ⊆ V (Γ) and PV (Γ′) ⊆ PV (Γ).

If g(H) is pivot-supereulerian, then Γ′ is pivot-spanning in g(H). Then V (H) =

V (g(H)) = PV (Γ′) ⊆ PV (Γ) ⊆ V (H), which implies that PV (Γ) = V (H) and so

H is pivot-supereulerian.

If g(H) is supereulerian, then Γ′ is dominating and spanning in g(H). As V (H) =

V (g(H)) = V (Γ′) ⊆ V (Γ) ⊆ V (H), Γ is spanning. Pick an edge E ∈ E(H). Since
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Γ′ is dominating and g(E) ⊆ E, ∅ 6= g(E) ∩ PV (Γ′) ⊆ E ∩ PV (Γ′) ⊆ E ∩ PV (Γ),

which implies that Γ is dominating. Hence, H is supereulerian.

Proposition 5.4.1. Let H be a hypergraph and T be a partition-connected sub-

hypergraph of H. Then the following are equivalent.

(a) T is a spanning hypertree;

(b) T has a pc-mapping, and for every pc-mapping g of T , g(T ) is a tree with

V (g(T )) = V (H);

(c) T is an edge-minimum spanning partition-connected sub-hypergraph of H.

Proof. Suppose that T is an edge-minimum spanning partition-connected sub-

hypergraph of H. By Theorem 5.4.3(i), |E(T )| ≥ |V (T )|−1 = |V (H)|−1. By Theo-

rem 5.4.3(ii), T has a spanning hypertree T0. It follows that |E(T0)| = |V (T0)|−1 =

|V (T )| − 1 ≤ |E(T )|. If |E(T0)| < |E(T )|, then it contradicts the assumption that

T is an edge-minimum spanning partition-connected sub-hypergraph of H. Then,

|V (T )| − 1 = |E(T0)| = |E(T )| and then T is a hypertree by Theorem 5.4.3(i). Thus,

(c) implies (a).

Now, we show that (a) implies (b). As T is a spanning partition-connected

sub-hypergraph of H, by Corollary 5.4.6, T has a pc-mapping g and V (g(T )) =

V (T ) = V (H). Since T is a hypertree, we have |E(g(T ))| = |E(T )| = |V (T )| − 1 =

|V (g(T ))| − 1, which implies that g(T ) is a tree as g(T ) is connected.

Then, we claim that (b) implies (c). Suppose T1 is a spanning partition-connected

sub-hypergraph of H. By Corollary 5.4.6, T1 has a pc-mapping g1. Then, g1(T1) is

a connected graph with |E(g1(T1))| = |E(T1)| and V (g1(T1)) = V (T1) = V (H). It

follows that

|E(g1(T1))| ≥ |V (g1(T1))| − 1 = |V (H)| − 1 = |V (g(T ))| − 1 = |E(g(T ))|,

which shows that T is an edge-minimum spanning partition-connected sub-hypergraph

of H.

5.5 Proofs of the Main Results

For notational convenience, we allow an empty sequence to denote an empty trail

(or path) in a hypergraph. If

Γ1 = (v0E0v1E1 · · · vj−1Ej−1vj) and Γ2 = (vjEjvj+1Ej+1 · · · vn−1En−1vn)

53



are two edge-disjoint trails, then we use Γ1Γ2 or, to emphasize the termini of the

trails, v0Γ1vjΓ2vn, to denote the trail Γ = (v0E0v1E1 · · · vn−1En−1vn) obtained by

amalgamating the trails Γ1 and Γ2. Thus if Γ2 is an empty trail, then Γ1Γ2 = Γ1. As

Γ′ = (Eivi+1Ei+1 · · ·Ej) is a subtrail of Γ, this trail amalgamating notation allows

us to rewrite Γ as (v0E0v1E1 · · · viΓ′vj+1 · · · vn−1En−1vn). If some vertex v ∈ V (Γ)

and some indices i and j with j > i, we have vi = vi+1 = · · · = vj+1 = v, then

we define a v-subsequence of Γ to be (viEivi+1Ei+1 · · · vjEjvj+1). If vi−1 6= v and

vj+2 6= v, then the v-subsequence is a maximal v-subsequence. A maximal v

sequence of Γ is denoted by Γv.

Proof of Theorem 5.2.1: To prove the sufficiency, we assume that H has a dom-

inating eulerian sub-hypergraph H ′ = (v1E1v2E2 · · · vtEtv1). Define S1 = {F ∈
E(H)− E(H ′) : v1 ∈ F}. Inductively, for each i ≥ 2, assume that S1, . . . , Si−1 have

been defined, we set

Si =

F ∈ E(H)−

E(H ′) ∪

⋃
j<i

Sj

 : vi ∈ F

 .

It is possible that some of the Si’s may be empty. Since H ′ is dominating in H,

E(H) − E(H ′) can be partitioned into S1, S2, . . . , St. For each i ∈ [1, t], let Si =

{F 1
i , F

2
i , . . . , F

s(i)
i } and Pi = (F 1

i F
2
i · · ·F

s(i)
i ) denote a path from F 1

i to F
s(i)
i in the

line graph L(H) of H. Thus we obtain a Hamilton cycle in L(H) by amalgamating

the paths P1, P2, . . . , Pt, as follows:

(EtP1E1P2 · · ·Et−1PtEt).

Conversely, we assume that L(H) is Hamiltonian to prove the necessity. Let

(E0E1 · · ·Em−1E0) be a Hamilton cycle in L(H) where each Ei ∈ E(H). By the

definition of L(H), for each i ∈ Zm, Ei ∩ Ei+1 6= ∅ and then let vi+1 ∈ Ei ∩
Ei+1. Then, Γ = (v0E0v1E1 · · · vm−1Em−1v0) satisfies (CT1) and (CT2). Let V =

{v0, v1, . . . , vm−1}. Construct a new sequence Γ′ = Γ/
⋃
v∈V Γv by contracting every

maximal v-subsequence Γv into the vertex v for every v ∈ V . Then each two

consecutive vertices in Γ′ are distinct. It follows that Γ′ satisfies (CT1)-(CT3) and

then Γ′ is a closed trail by Observation 5.1.1. By the definition of Γ′, for any edge

E ∈ E(H)− E(Γ′), there exists a vertex u ∈ V such that E ∈ E(Γu), and so u ∈ E.

Hence, Γ′ is a dominating eulerian sub-hypergraph of H.

Proof of Theorem 5.2.2: Suppose that J is 2-partition-connected and H/J has

a dominating spanning closed trail Γ with vJ ∈ PV (Γ). Let X = {E ∈ E(Γ) : vJ ∈
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PVΓ(E)}. Then |X| ≡ 0 (mod 2). For each F ∈ pre(X), since F ∩ V (J) 6= ∅, we

choose a vertex v ∈ F ∩ V (J). Let R be the collection of all these vertices. Note

that there may be a pair of vertices v1 and v2 in R such that v1 = v2. Remove this

pair of vertices and repeat this operation such that the rest of vertices form a set of

vertices R′. Then R′ ⊆ V (J) and |R′| ≡ 0 (mod 2).

Case 1. r(J) = 2.

Since J is 2-partition-connected and r(J) = 2, by Theorem 1.2.3(i) and Theorem

5.4.4, J is collapsible. It follows that J has a spanning connected subgraph L with

O(L) = R′ as |R′| ≡ 0 (mod 2). Then, Γ1 = L ∪ pre(Γ) is a closed trail of H

with PV (Γ1) = V (J)∪ (PV (Γ)−{vJ}). Since V (Γ1) = V (L)∪V (pre(Γ)) = V (J)∪
(V (pre(Γ))−V (J)) = V (J)∪(V (Γ)−{vJ}) = V (J)∪(V (H/J)−{vJ}) = V (H), Γ1 is

spanning. Pick an edge E ∈ E(H). If E∩V (J) 6= ∅, then E∩PV (Γ1) 6= ∅; otherwise,

im(E) = E, then E∩(PV (Γ1) = E∩[V (J)∪(PV (Γ)−{vJ})] = E∩(PV (Γ)−{vJ}) =

im(E) ∩ (PV (Γ)− {vJ}) 6= ∅ as Γ is dominating. Thus, Γ1 is dominating spanning

closed trail of H and then H is supereulerian.

In particular, if PV (Γ) = V (H/J), then PV (Γ1) = V (J) ∪ (PV (Γ) − {vJ}) =

V (J) ∪ (V (H/J)− {vJ}) = V (H). This implies that H is pivot-supereulerian.

Case 2. r(J) ≥ 3.

As J is 2-partition-connected, by Theorem 5.4.3(ii) and Theorem 5.4.4, J has

2 edge-disjoint spanning hypertrees T1 and T2. By Corollary 5.4.7, there exists an

injection g : E(H) → 2E(H) satisfying that g|E(Ti)
is a pc-mapping of Ti for each i,

V (g(H)) = V (H) and for each E ∈ E(H), g(E) ⊆ E. By Proposition 5.4.1, g(Ti) is

a tree with V (g(Ti)) = V (J) for each i = 1, 2. Let H1 = g(T1)∪ g(T2)∪ (H −E(J)).

Then, V (H1) = V (H). Since H1/(g(T1) ∪ g(T2)) ∼= H/J and r(g(T1) ∪ g(T2)) = 2,

H1 is supereulerian by Case 1. Let L be a dominating spanning closed trail of H1.

Then V (J) ⊂ PV (L). As H1 is a spanning sub-hypergraph of g(H), to show that

g(H) is supereulerian, it suffices to prove that for each edge E ∈ E(g(H))− E(H1),

E∩PV (L) 6= ∅. Pick E ∈ E(g(H))−E(H1). Then E ⊆ V (J), and so E∩PV (L) 6= ∅
since V (J) ⊂ PV (L). Therefore, g(H) is supereulerian and so, by Corollary 5.4.7,

H is supereulerian.

In particular, if H/J is pivot-supereulerian, H1 is pivot-supereulerian by Case 1.

Let L1 be a pivot-spanning closed trail of H1. As PV (L1) = V (H1) = V (H), H is

pivot-supereulerian.

Proof of Theorem 5.2.3: By Lemma 5.3.3 and Theorem 5.2.2, we are done.
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Proof of Corollary 5.2.4: If H is 2-partition-connected, then by Theorem 5.2.2,

H is pivot-supereulerian. By Theorem 5.4.2(i), if r(H) = r, then every 2r-edge-

connected hypergraph H is 2-partition-connected, and so H is pivot-supereulerian.
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Chapter 6

On Eigenvalues of Uniform

Hypergraphs

6.1 Background

For a simple graph G on n vertices, the adjacency matrix of G is the n× n matrix

AG := (auv), where auv = 1 if vertices u and v are adjacent; otherwise, auv = 0.

As G is simple and undirected, AG is a symmetric (0, 1)-matrix. The eigenvalues of

G are defined to be the eigenvalues of AG. We use λi(G) to denote the ith largest

eigenvalue of G.

Cioabă in [28] established a sufficient condition in term of λ2(G) of regular graphs

to be k-edge-connected as follows.

Theorem 6.1.1 (Cioabă, Theorem 1.3 of [28] ). If d ≥ k ≥ 2 are two integers and

G is a d-regular graph such that λ2(G) ≤ d− (k−1)n
(d+1)(n−d−1) , then κ′(G) ≥ k.

Li and Shi in [65], and Liu et al. in [66] extended independently the result of

Cioabă’s above to general graphs as follows.

Theorem 6.1.2 (Li and Shi, Theorem 3 of [65]; Liu, Hong and Lai, Theorem 1.10

of [66]). Let k be an integer and let G be a graph with minimum degree δ ≥ k ≥ 2

of order n. If λ2(G) ≤ δ − (k−1)n
(δ+1)(n−δ−1) , then κ′(G) ≥ k.

A hypergraph H is r-uniform if |E| = r for every E ∈ E(H). Recall that

for an integer k > 0, a hypergraph H is k-edge-connected if for every nonempty
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proper subset U of V (H), |∂H(U)| ≥ k. The edge-connectivity of a hypergraph

H, denoted κ′(H), is the largest k for which the hypergraph is k-edge-connected.

One goal of this chapter is to study the relationship between edge-connectivity

and eigenvalues of hypergraphs. Rodŕıguez in [76–78] defined one adjacency matrix

of a hypergraph H as follows.

Definition 6.1.1 (Rodŕıguez, [76–78]). The adjacency matrix of a hypergraph H

with |V (H)| = n is the n× n matrix AH = (auv), where auv is the number of edges

containing both vertices u and v.

The eigenvalues of H are defined to be the eigenvalues of AH . We use λi(H) to

denote the ith largest eigenvalue of H. It can be observed that if H is a d-regular

r-uniform hypergraph, then λ1 = (r − 1)d.

v1

v2 v3 v4

v5

E1 E3

E2

E4

E5

Figure 6.1: The hypergraph H in Example 6.1.1

Example 6.1.1. Let H be a hypergraph with five edges and five vertices (see Figure

6.1). The adjacency matrix of H is

AH =



0 1 1 0 2

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

2 0 1 1 0


.

6.2 Main Result

Theorem 6.2.1. Let H be a r-uniform hypergraph of order n with r ≥ 4 even and

the minimum degree δ ≥ 2. For every integer k with 2 ≤ k ≤ δ and k 6= r + 2, if

λ2(H) ≤ (r − 1)δ − r2(k − 1)n

4(r + 1)(n− r − 1)
,

then κ′(H) ≥ k.
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6.3 Mechanisms

Let H be a hypergraph. For two subsets S, T ⊂ V (H), let EH [S, T ] = {E ∈
E(H) : E ∩ S 6= ∅, E ∩ T 6= ∅}. Recall that ∂H(S) is the set of all edges of H

intersecting both S and S = V (H) − S. Then, ∂H(S) = EH [S, S]. If S = {v},
then we use ∂H(v) for ∂H({v}) shortly, and denote dH(v) = |∂H(v)|. We omit

the subscript H if it is understood from context. The minimum degree of H is

δ(H) = min{dH(v) : v ∈ V (H)}.

Following Brouwer and Haemers [11], he quotient matrix and the equitable par-

tition are defined as follows.

Definition 6.3.1. Let A be a symmetric real matrix whose rows and columns are

indexed by V = {1, . . . , n}. If {V1, . . . , Vm} is a partition of V , then A can be

partitioned according to {V1, . . . , Vm}, that is,

A =


A11 · · · A1m

...
. . .

...

Am1 · · · Amm

 ,
where Aij is the submatrix (or block) of A formed by rows in Vi and the columns in

Vj.

(i) B = (bij) is the quotient matrix of A, where bij is the average row sum of

Aij for each 1 ≤ i, j ≤ m.

(ii) If Aij has a constant row sum, i.e., Aij1j = bij1i, where 1k = (1, · · · , 1︸ ︷︷ ︸
k

)T , for

each 1 ≤ i, j ≤ m, then B is the equitable quotient matrix of A.

For example, if A is the adjacency matrix of a simple graph G, and A has an

equitable quotient matrix B, then there exists a partition {V1, . . . , Vm} of the vertex

set V (G) such that every vertex in Vi has the same number of neighbors in Vj , that

is, |NG[Vj ](v)| = bij for each v ∈ Vi and 1 ≤ i, j ≤ m. Such partitions are called

equitable partitions of the graph.

Now, by Definition 6.3.1, we can extend the related concepts to hypergraphs as

follows.

Definition 6.3.2. Let A = (auv) be the adjacency matrix of a hypgergraph H, and

let {V1, . . . , Vm} be a partition of V (H) with ni = |Vi|. We denote

αVj (v) = αj(v) =
∑
u∈Vj

auv =
∑

E∈∂(v)

|E ∩ Vj | (6.1)
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and

αij =
∑
v∈Vi

∑
E∈∂(v)

|E ∩ Vj |. (6.2)

Then, the quotient matrix of A is

B =


α11/n1 · · · α1m/n1

...
. . .

...

αm1/nm · · · αmm/nm

 .
Moreover, if αj(v) = αij/ni for each vertex v ∈ Vi and each 1 ≤ i, j ≤ m, then B is

equitable and {V1, . . . , Vm} is called an equitable partition of the hypergraph H.

Given a partition {V1, . . . , Vm} of V (H), by definition, αij = αji for each 1 ≤
i, j ≤ m. If {V1, . . . , Vm} is an equitable partition of the hypergraph H, then each

vertex v ∈ Vi has the same value of αj(v) =
∑

E∈∂(v) |E ∩ Vj | for each j ∈ [1,m].

Given two sequences of real numbers θ1 ≥ · · · ≥ θn and η1 ≥ · · · ≥ ηm with

m < n. The second sequence is interlace the first one if

θi ≥ ηi ≥ θn−m+i, for each i ∈ [1,m].

The interlace is tight if there exists an integer k ∈ [1,m] such that

θi = ηi for 1 ≤ i ≤ k, and θn−m+i = ηi for k + 1 ≤ i ≤ m.

Theorem 6.3.1 (Brouwer and Haemers [11]). Let B be the quotient matrix of a

symmetric matrix A whose rows and columns are partitioned according to a parti-

tioning {V1, . . . , Vm}.
(i) The eigenvalues of B interlace the eigenvalues of A.

(ii) If the interlacing is tight, then the partition is equitable.

6.4 Proof of Theorem 6.2.1

Given two integers r ≥ 2 and δ ≥ 2. Let s(r, δ) be the size of the smallest vertex

subset S ⊂ V (H) such that H is a simple r-uniform hypergraph and |S| < δ = δ(H).

Let

A(r, δ) =

{
s :

(
s− 1

r − 1

)
≥ δ
}

(6.3)

and

B(r, δ) =

{
s : r + 1 ≤ s ≤ (r − 1)(δ − 1)

δ −
(
s−1
r−1

) and

(
s− 1

r − 1

)
< δ

}
. (6.4)
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Set

a(r, δ) = min{s : s ∈ A(r, δ)}, and b(r, δ) = min{s : s ∈ B(r, δ)}.

Then, a(2, δ) = δ + 1.

Lemma 6.4.1. Given two integers r ≥ 2 and δ ≥ 2. Let s = s(r, δ), a = a(r, δ) and

b = b(r, δ). Then,

r + 1 ≤ s = min{a, b} =

{
a, if B(r, δ) = ∅;

b, if B(r, δ) 6= ∅.
(6.5)

Proof. Let H be a simple r-uniform hypergraph with the minimum degree δ, and

let S ∈ V (H) be a proper vertex subset of size x. For a vertex u ∈ S, we denote

d1(u) = dH[S](u) and d2(u) = d∂(S)(u). Since H is simple and r-uniform,

d1(u) ≤
(
x− 1

r − 1

)
and d2(u) = d(u)− d1(u) ≥ δ −

(
x− 1

r − 1

)
, (6.6)

for every vertex u ∈ S. By counting the sum of d2(u),

x ·
[
δ −

(
x− 1

r − 1

)]
≤
∑
u∈S

d2(u) ≤ (r − 1) · |∂(S)|. (6.7)

Let us start with several claims.

Claim 1. s ≤ min{a, b}.

Suppose that |E(H[S])| is maximized and |∂(S)| is minimized.

Let x = a. Then d1(u) =
(
a−1
r−1

)
≥ δ by the equation (6.3). Since |∂(S)| is

minimized, we have |∂(S)| = 0 < δ. Thus, a ≥ s by the definition of s = s(r, δ).

Let x = b. Then, by (6.7), |∂(S)| ≥ b[δ−(b−1
r−1)]

r−1 . By the equation (6.4), we have

b ·
[
δ −

(
b−1
r−1

)]
≤ (r−1)(δ−1) and then δ−1 ≥ b[δ−(b−1

r−1)]
r−1 . Since |∂(S)| is minimized,

|∂(S)| = δ − 1 < δ. Thus, b ≥ s by the definition of s = s(r, δ).

After completing the proof of Claim 1, to show Claim 2 and Claim 3 below, we

suppose that x = s and |∂(S)| < δ.

Claim 2. s ≥ r + 1.

Assume to the contrary that s ≤ r. Since |∂(S)| < δ, for each vertex u ∈ S, there

exists one edge in H[S] contains u, that is, ∂H[S](u) 6= ∅ . This follows s ≥ r and

then s = r. As H is simple and r-uniform, S = E for some edge E ∈ E(H). It shows

that δ − 1 ≤ d(u)− d1(u) = d2(u) ≤ |∂(S)| ≤ δ − 1 for each u ∈ S, which indicates
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that every edge E ∈ ∂(S) contains all vertices in S, contrary to the assumption that

H is r-uniform, |S| = r, and the definition of ∂(S).

Claim 3. If
(
s−1
r−1

)
< δ, then s ∈ B(r, δ) and so s ≥ b.

Since
(
s−1
r−1

)
< δ, by (6.7), s ≤ (r−1)·|∂(S)|

δ−(s−1
r−1)

≤ (r−1)(δ−1)

δ−(s−1
r−1)

. By Claim 2, s ≥ r + 1,

then s ∈ B(r, δ) by (6.4) and then s ≥ b.

Now, let us continue our argument of this lemma. Note that

B(r, δ) = ∅ if and only if

(
s− 1

r − 1

)
≥ δ. (6.8)

The sufficiency of (6.8) holds by (6.4), and the necessity of (6.8) holds by Claim 3.

To show (6.5) holds, by Claim 2, it suffices to show that s = a when B(r, δ) = ∅,
and s = b when B(r, δ) 6= ∅.

If B(r, δ) = ∅, then
(
s−1
r−1

)
≥ δ by (6.8). It follows that s ∈ A(r, δ) by (6.3), and

then s ≥ a. Thus, s = a = min{a, b} by Claim 1.

If B(r, δ) 6= ∅, then the value b exists. As
(
a−1
r−1

)
≥ δ and

(
b−1
r−1

)
< δ, we have

b < a. Then s ≤ b by Claim 1. As B(r, δ) 6= ∅, by (6.8),
(
s−1
r−1

)
< δ, which implies

b ≤ s by Claim 3. Thus, s = b = min{a, b}.

Corollary 6.4.2. Given two integers r ≥ 2 and δ ≥ 2. Each of the following holds.

(i) [Gu, Lai and et al., Lemma 2.8 of [35]] s(2, δ) = a(2, δ) = δ + 1.

(ii) δ ≤ dr2/2e if and only if s(r, δ) = b(r, δ) = r + 1.

(iii) If r ≥ 3 and δ ≥ 3, then

s(r, δ) = min

{
s : r + 1 ≤ s ≤ (r − 1)(δ − 1)

δ − d
, where d = min

{(
s− 1

r − 1

)
, δ − 1

}}
.

Proof. (i). As a(2, δ) = δ+1, by Lemma 6.4.1, it suffices to show that B(2, δ) = ∅.
Assume that

(
s−1
2−1

)
= s− 1 < δ and 3 ≤ s ≤ δ−1

δ−(s−1) . As s ≤ δ−1
δ−(s−1) and s ≤ δ, we

have s ≤ 1
2(δ + 1−

√
δ2 − 2δ + 5) or s ≥ 1

2(δ + 1 +
√
δ2 − 2δ + 5).

If s ≤ 1
2(δ + 1 −

√
δ2 − 2δ + 5), then, since δ + 1 −

√
δ2 − 2δ + 5 < 2, we have

3 ≤ s ≤ 1
2(δ + 1−

√
δ2 − 2δ + 5) < 1, a contradiction.

If s ≥ 1
2(δ + 1 +

√
δ2 − 2δ + 5), then, since δ − 1 <

√
δ2 − 2δ + 5, we have

δ < 1
2(δ + 1 +

√
δ2 − 2δ + 5) ≤ s ≤ δ, a contradiction.

Thus, B(2, δ) = ∅.
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(ii). By Lemma 6.4.1, it suffices to show that δ ≤ dr2/2e if and only if b(r, δ) = r+1.

As

δ ≤ dr2/2e ⇐⇒ 2δ ≤ r2 + 1

⇐⇒ (r + 1)(δ − r) ≤ (r − 1)(δ − 1)

⇐⇒ r + 1 ≤ (r − 1)(δ − 1)

δ − r
& r < δ

⇐⇒ r + 1 ∈ B(r, δ)

⇐⇒ b(r, δ) = r + 1,

it completes the proof of (ii).

(iii). Let

C(r, δ) =

{
s : r + 1 ≤ s ≤ (r − 1)(δ − 1)

δ − d
, where d = min

{(
s− 1

r − 1

)
, δ − 1

}}
,

and c(r, δ) = min{s : s ∈ C(r, δ)}.

If B(r, δ) 6= ∅, then, by (6.8), C(r, δ) = B(r, δ). It follows that s(r, δ) = b(r, δ) =

c(r, δ) by Lemma 6.4.1.

If B(r, δ) = ∅, then, by (6.8), C(r, δ) = {s : r+1 ≤ s ≤ (r−1)(δ−1) and
(
s−1
r−1

)
≥

δ}. When r = 3 and δ = 3, a(3, 3) = 4 = c(3, 3) and we are done. Now we consider

that situation of r > 3 or δ > 3. As C(r, δ) ⊆ A(r, δ), we have a(r, δ) ≤ c(r, δ).

Thus, to show a(r, δ) ≥ c(r, δ), it is enough to prove that a(r, δ) ∈ C(r, δ). As δ ≥ 3,

by (6.3), we have a(r, δ) ≥ r + 1 and
(
a(r,δ)−1
r−1

)
≥ δ. Then, it suffices to prove that

a(r, δ) ≤ (r − 1)(δ − 1). Assume a(r, δ) > (r − 1)(δ − 1). Then,
(

(r−1)(δ−1)−1
r−1

)
≥(

(r−1)(δ−1)−1
r−1

)r−1
≥
(
δ − 3

2

)r−1
> δ, which follows that (r − 1)(δ − 1) ∈ A(r, δ) and

then (r − 1)(δ − 1) ≥ a(r, δ) > (r − 1)(δ − 1), a contradiction.

Table 6.1: Some examples on the value of s(r, δ)

r

δ
2 3 4 5 6 7

3 4 4 4 4 5 5

4 5 5 5 5 5 5

5 6 6 6 6 6 6

In Table 6.1, we list some values of s(r, δ) for given r and δ. Even though it is

not easy to get a formula to compute the value of s(r, δ), applying Lemma 6.4.1 and
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(6.8), we can provide an algorithm (Algorithm 1) to calculate the value of s(r, δ)

as follows.

Algorithm 1 Calculate s(r, δ)

Input: Two integers r ≥ 2 and δ ≥ 2.

Output: s = s(r, δ).

1: s← r + 1;

2: if
(
s−1
r−1

)
< δ then

3: if s[δ −
(
s−1
r−1

)
] ≤ (δ − 1)(r − 1) then

4: return s;

5: else

6: s← s+ 1

7: go to Step 2.

8: end if

9: else

10: return s.

11: end if

The running time of the algorithm above is O(rδ
1

r−1 ). Since the running time of

the algorithm is at most the number of s’s such that r + 1 ≤ s and
(
s−1
r−1

)
< δ. As(

s−1
r−1

)r−1
≤
(
s−1
r−1

)
, if

(
s−1
r−1

)
< δ, we have s ≤

⌊
(r − 1)δ

1
r−1

⌋
. Thus, the number of

s’s satisfying such that r + 1 ≤ s and
(
s−1
r−1

)
< δ is at most⌊

(r − 1)δ
1

r−1

⌋
− (r + 1).

So, the running time of Algorithm 1 is O(rδ
1

r−1 ).

Lemma 6.4.3. Let H be a r-uniform and d-regular hypergraph with r even and

2 ≤ d ≤ r2/2. Given an integer k with 2 ≤ k ≤ d and k 6= r+2, there is no equitable

partition (S, S) of V (H) such that |S| = r+ 1, |∂(S)| = k− 1 and |E ∩S| = r/2 for

every edge E ∈ ∂(S).

Proof. Assume that there is an equitable partition (S, S) of V (H) such that |S| =
r+ 1, |∂(S)| = k− 1 and |E ∩S| = r/2 for every edge E ∈ ∂(S). Since 2 ≤ d ≤ r2/2

and |∂(S)| < δ(H) = d, by Corollary 6.4.2(ii), |S| = r + 1 ≤ |S|.

As the partition (S, S) is equitable, and
∑

E∈∂(v) |E ∩S| = d∂(S)(v) · r/2 for each

vertex v ∈ S, we have d∂(S)(u) = d∂(S)(v) for each pair of vertices {u, v} ⊂ S. Set

d0 = d∂(S)(v) for a vertex v ∈ S. Since there are k − 1 edges connecting S and S,
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and for each edge E ∈ ∂(S), |E ∩ S| = r/2, we have

(k − 1) · r/2 =
∑
v∈S

d∂(S)(v) = (r + 1)d0.

As r/2 and r + 1 have no common factors except 1, it follows that d0 = nr/2 and

k − 1 = n(r + 1), where n is a positive integer.

If n = 1, then k = r + 2, which contradicts the assumption of k.

If n ≥ 2, then d = dH(v) = d0 + dH[S](v) ≤ nr
2 +

(|S|−1
r−1

)
= nr

2 + r. As k ≤ d,

n(r+ 1) < nr
2 + r, which implies that n > 2 and r < − 2n

n−2 , or n < 2 and r > − 2n
n−2 .

As n ≥ 2 and r ≥ 2, it has no solutions.

Thus, there is no equitable partition (S, S) of V (H) satisfying the conditions.

Proof of Theorem 6.2.1. Suppose to the contrary thatH is not k-edge-connected.

Then there is a non-empty proper subset S of V (H) such that |∂(S)| < k ≤ δ. Let

∂(S) = {F1, . . . , Ft}, s = s(r, δ), n1 = |S| and n2 = |S|. Without lose of generality,

we assume n1 ≤ n2. Then, n1n2 = n1(n− n1) ≥ (r+ 1)(n− r− 1) by Lemma 6.4.1.

Let

a1 =
r − 1

n1

∑
v∈S

d(v), a2 =
r − 1

n2

∑
v∈S

d(v), and c =

t∑
i=1

fi(r − fi),

where fi = |Fi ∩ S| for each i ∈ [1, t]. Thus,

a1 ≥ (r − 1)δ, a2 ≥ (r − 1)δ, and c ≤ tr2/4 ≤ r2(k − 1)/4.

According to the partition {S, S}, H has a quotient matrix,

B =

[
a1 − c

n1

c
n1

c
n2

a2 − c
n2

]
,

and the eigenvalues of B are

λ(B) =
1

2

[
a1 −

c

n1
+ a2 −

c

n2

±

√(
a1 −

c

n1
+ a2 −

c

n2

)2

− 4

(
a1 −

c

n1

)(
a2 −

c

n2

)
+ 4

c2

n1n2

]
.
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Assume λ2(B) ≤ λ1(B). Then

λ2(B) =
1

2

[
a1 −

c

n1
+ a2 −

c

n2

−

√(
a1 −

c

n1
+ a2 −

c

n2

)2

− 4

(
a1 −

c

n1

)(
a2 −

c

n2

)
+ 4

c2

n1n2

]

=
1

2

a1 −
c

n1
+ a2 −

c

n2
−

√(
a1 −

c

n1
− a2 +

c

n2

)2

+ 4
c2

n1n2


=

1

2

[
a1 −

c

n1
+ a2 −

c

n2

−

√
(a1 − a2)2 + 2 (a1 − a2)

(
c

n2
− c

n1

)
+

(
c

n1
+

c

n2

)2
]

≥ 1

2

[
a1 −

c

n1
+ a2 −

c

n2

−

√
(a1 − a2)2 + 2 |a1 − a2|

(
c

n2
+

c

n1

)
+

(
c

n1
+

c

n2

)2
]

=
1

2

[
a1 −

c

n1
+ a2 −

c

n2
−
(
|a1 − a2|+

c

n1
+

c

n2

)]
= min{a1, a2} −

cn

n1n2

≥ (r − 1)δ − r2(k − 1)n

4(r + 1)(n− r − 1)
.

By Theorem 6.3.1(i), λ2(B) ≤ λ2(H) ≤ (r − 1)δ − r2(k−1)n
4(r+1)(n−r−1) . This implies that

λ2(B) = λ2(H) = (r − 1)δ − r2(k − 1)n

4(r + 1)(n− r − 1)
.

Thus, as c > 0, we have a1 = a2 = (r − 1)δ, c = r2(k − 1)/4 and n1 = s = r + 1.

As c = r2(k − 1)/4 and n1 ≤ n2, we have t = k − 1 and fi = r/2 for each i ∈ [1, t].

Since n1 = s = r + 1 and a1 = a2 = (r − 1)δ, by Corollary 6.4.2(ii), the hypergraph

H is δ-regular with δ ≤ r2/2. This shows that λ1(H) = (r − 1)δ.

66



On the other hand, since

λ1(B) =
1

2

[
a1 −

c

n1
+ a2 −

c

n2

+

√(
a1 −

c

n1
+ a2 −

c

n2

)2

− 4

(
a1 −

c

n1

)(
a2 −

c

n2

)
+ 4

c2

n1n2

]

=
1

2

2(r − 1)δ − cn

n1n2
+

√(
c

n2
− c

n1

)2

+ 4
c2

n1n2


= (r − 1)δ − 1

2

(
− cn

n1n2
+

c

n1
+

c

n2

)
= (r − 1)δ,

we have λ1(H) = (r − 1)δ = λ1(B). Then, the eigenvalues of B interlace the

eigenvalues of AH and the interlacing is tight. By Theorem 6.3.1(ii), the partition

{S, S}, with |S| = r + 1, |∂(S)| = k − 1 and fi = r/2 for each i ∈ [1, t], is equitable.

It contradicts Lemma 6.4.3.
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Chapter 7

Future Problems

In this dissertation, we investigated the generalizations of the supereulerian problem,

the (s, t)-supereulerian problem and the supereulerian problem on hypergraphs. In

Chapter 2, we determined the smallest integer j(s, t) such that every j(s, t)-edge-

connected graph is (s, t)-supereulerian, and characterized (s, t)-supereulerianicity

when t ≥ 3 in terms of the edge-connectivity ( [90]). In Chapter 3, we further inves-

tigated the structural properties of (s, t)-supereulerian graphs, and obtained a suf-

ficient and necessary condition for the permutation graph to be (s, t)-supereulerian

( [58]). The upper bounds of (s, t)-supereulerian index and s-Hamiltonian index were

established in Chapter 4 ( [85]). Some common and useful results in supereulerian

graphs were extended to the versions of hypergraphs in Chapter 5 ( [37]). In Chapter

6, a sufficient condition to be a k-edge-connected hypergraph H was established in

terms of the second largest adjacency eigenvalue of H.

We conclude this dissertation with some future research problems that are related

and of interests.

7.1 Thomasson’s Conjectures on Hypergraphs

By Theorem 5.2.1, the line graph of a supereulerian hypergraph is always Hamilto-

nian. Thomassen [86] conjectured that every 4-connected line graph is Hamiltonian.

Matthews and Sumner [67] also conjectured that every 4-connected K1,3-free graph

is Hamiltonian. Chen and Schelp extended the conjecture of Matthews and Sumner

in the following.

Conjecture 7.1.1 (Chen and Schelp, Conjecture 2 of [27]). Let r ≥ 2 be an integer.
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Every 2r-connected K1,r+1-free graph of order n ≥ 3 is Hamiltonian.

When r = 2, Conjecture 7.1.1 is exactly Matthews-Sumner Conjecture. Ryjáček

in [79] proved that Conjecture 7.1.1 with r = 2 is equivalent to Thomassen Conjec-

ture. It is known that if H is a hypergraph with rank r, then L(H) is a K1,r+1-free

graph. The following is a weaker form of Conjecture 7.1.1 which is also of interest

on its own.

Conjecture 7.1.2. Let r ≥ 2 be an integer.

(i) There is an integer ϕ(r) such that for each integer k ≥ ϕ(r), every k-connected

line graph of a rank r hypergraph is Hamiltonian.

(ii) Furthermore, we conjecture that ϕ(r) = 2r.

Thomassen (Conjecture 2 of [86]) conjectured that ϕ(2) = 4, which motivates

Conjecture 7.1.2(ii). While Ryjáček [79] indicated that Conjecture 7.1.1 and Con-

jecture 7.1.2 are equivalent when r = 2, it is currently not known whether such

equivalence exists for large values of r.

Recently, the class of line graphs of hypergraphs of rank 3 has been investigated

in [46,64]. Li et al. in [64] obtained the equivalent versions of Thomassen conjecture

in [86] for line graphs of hypergraphs of rank 3. A graph G is Hamilton-connected

if G has a Hamiltonian (u, v)-path for any u, v ∈ V (G). A cycle C in a graph G is

called a Tutte cycle if each component of G − E(C) has at most three neighbors

on C.

Conjecture 7.1.3 (Li et al., Conjectures 1-4 in [64]).

(i) every 2-connected line graph of a rank 3 hypergraph has a Tutte maximal cycle

containing any two prescribed vertices.

(ii) every 3-connected line graph of a rank 3 hypergraph has a Tutte maximal cycle

containing any three prescribed vertices.

(iii) every connected line graph of a rank 3 hypergraph has a Tutte maximal (u, v)-

path two vertices u, v.

(iv) every 4-connected line graph of a rank 3 hypergraph is Hamilton-connected.

Kaiser and Vrána in [46] investigated Conjecture 7.1.2(i) in the case of r = 3 as

follows.

Theorem 7.1.1 (Kaiser and Vrána, Theorem 1.5 in [46] ). If G is the line graph

of a rank 3 hypergraph with κ(G) ≥ 18 and δ(G) ≥ 52, then G is Hamiltonian.

Therefore, ϕ(3) ≤ 52.
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7.2 On (s, t)-Supereulerian Hypergraphs

The concept of (s, t)-supereulerian graphs can be easily generalized to (s, t)-super-

eulerian hypergraphs. A hypergraph H is (s, t)-supereulerian if for any disjoint

sets X,Y ⊂ E(H) with |X| ≤ s and |Y | ≤ t, H − Y has a dominating spanning

eulerian sub-hypergraph containing X. Similarly, a hypergraph H is (s, t)-pivot-

supereulerian if for any disjoint sets X,Y ⊂ E(H) with |X| ≤ s and |Y | ≤ t, H−Y
has a pivot-spanning eulerian sub-hypergraph containing X.

One of our future goals is to extend Theorem 2.2.1 from graphs to hypergraphs.

Conjecture 7.2.1. Let r ≥ 2 be an integer and let s, t be non-negative integers.

(i) There exists a smallest integer j(r; s, t) such that every j(r; s, t)-edge-connected

line graph of a rank r hypergraph is (s, t)-supereulerian.

(ii) There exists a smallest integer jp(r; s, t) such that every jp(r; s, t)-edge-connected

line graph of a rank r hypergraph is (s, t)-pivot-supereulerian.

By Observation 5.1.2(iii), Theorem 2.2.1 determined that j(2; s, t) = jp(2; s, t) =

j(s, t). Thus, Conjecture 7.2.1 with r ≥ 3 is of interest.
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