427 research outputs found

    Quasibrittle fracture scaling and size effect

    Get PDF
    The report attempts a broad review of the problem of size effect or scaling of failure, which has recently come to the forefront of attention because of its importance for concrete and geotechnical engineering, geomechanics, arctic ice engineering, as well as in designing large loadbearing parts made of advanced ceramics and composites, e.g. for aircraft or ships. First the main results of Weibull statistical theory of random strength are briefly summarized and its applicability and limitations described. In this theory as well as plasticity, elasticity with a strength limit, and linear elastic fracture mechanics (LEFM), the size effect is a simple power law because no characteristic size or length is present. Attention is then focused on the deterministic size effect in quasibrittle materials which, because of the existence of a non-negligible material length characterizing the size of the fracture process zone, represents the bridging between the simple powerlaw size effects of plasticity and of LEFM. The energetic theory of quasibrittle size effect in the bridging region is explained and then a host of recent refinements, extensions and ramifications are discussed. Comments on other types of size effect, including that which might be associated with the fractal geometry of fracture, are also made. The historical development of the size effect theories is outlined and the recent trends of research are emphasized

    A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography

    Full text link
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy's foundational work associated with the work of Boyer and Grabiner; and to Bishop's constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.Comment: 57 pages; 3 figures. Corrected misprint

    Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator

    Full text link
    The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is well-known now for powers up to the fourth. The paper describes an extension of this uniformity for the totally antisymmetrised n-th powers up to n=9, identifying (see Tables 3 and 6) families of representations with integer eigenvalues 5,...,9 for the quadratic Casimir operator, in each case providing a formula (see eq. (11) to (15)) for the dimensions of the representations in the family as a function of D=dim g. This generalises previous results for powers j and Casimir eigenvalues j, j<=4. Many intriguing, perhaps puzzling, features of the dimension formulas are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered.Comment: 16 pages, LaTeX, 1 figure, 9 tables; v2: presentation improved, typos correcte

    Quasibrittle fracture scaling and size effect

    Get PDF
    The report attempts a broad review of the problem of size effect or scaling of failure, which has recently come to the forefront of attention because of its importance for concrete and geotechnical engineering, geomechanics, arctic ice engineering, as well as in designing large loadbearing parts made of advanced ceramics and composites, e.g. for aircraft or ships. First the main results of Weibull statistical theory of random strength are briefly summarized and its applicability and limitations described. In this theory as well as plasticity, elasticity with a strength limit, and linear elastic fracture mechanics (LEFM), the size effect is a simple power law because no characteristic size or length is present. Attention is then focused on the deterministic size effect in quasibrittle materials which, because of the existence of a non-negligible material length characterizing the size of the fracture process zone, represents the bridging between the simple powerlaw size effects of plasticity and of LEFM. The energetic theory of quasibrittle size effect in the bridging region is explained and then a host of recent refinements, extensions and ramifications are discussed. Comments on other types of size effect, including that which might be associated with the fractal geometry of fracture, are also made. The historical development of the size effect theories is outlined and the recent trends of research are emphasized

    The Impact of Dutch Mathematics Education on Danish Mathematics Education

    Get PDF

    On branched covering representation of 4-manifolds

    Get PDF
    We provide new branched covering representations for bounded and/or non-compact 4-manifolds, which extend the known ones for closed 4-manifolds. Assuming MM to be a connected oriented PL 4-manifold, our main results are the following: (1) if MM is compact with (possibly empty) boundary, there exists a simple branched cover p:M→S4−Int(B14∪⋯∪Bn4)p:M \to S^4 - \mathop{\mathrm{Int}}(B^4_1 \cup \dots \cup B^4_n), where the Bi4B^4_i's are disjoint PL 4-balls, n≥0n \geq 0 is the number of boundary components of MM; (2) if MM is open, there exists a simple branched cover p:M→S4−EndMp : M \to S^4 - \mathop{\mathrm{End}} M, where EndM\mathop{\mathrm{End}} M is the end space of MM tamely embedded in S4S^4. In both cases, the degree d(p)d(p) and the branching set BpB_p of pp can be assumed to satisfy one of these conditions: (1) d(p)=4d(p)=4 and BpB_p is a properly self-transversally immersed locally flat PL surface; (2) d(p)=5d(p)=5 and BpB_p is a properly embedded locally flat PL surface. In the compact (resp. open) case, by relaxing the assumption on the degree we can have B4B^4 (resp. R4R^4) as the base of the covering. We also define the notion of branched covering between topological manifolds, which extends the usual one in the PL category. In this setting, as an interesting consequence of the above results, we prove that any closed oriented topological 4-manifold is a 4-fold branched covering of S4S^4. According to almost-smoothability of 4-manifolds, this branched cover could be wild at a single point.Comment: 16 pages, 9 figure

    IDR : a participatory methodology for interdisciplinary design in technology enhanced learning

    Get PDF
    One of the important themes that emerged from the CAL’07 conference was the failure of technology to bring about the expected disruptive effect to learning and teaching. We identify one of the causes as an inherent weakness in prevalent development methodologies. While the problem of designing technology for learning is irreducibly multi-dimensional, design processes often lack true interdisciplinarity. To address this problem we present IDR, a participatory methodology for interdisciplinary techno-pedagogical design, drawing on the design patterns tradition (Alexander, Silverstein & Ishikawa, 1977) and the design research paradigm (DiSessa & Cobb, 2004). We discuss the iterative development and use of our methodology by a pan-European project team of educational researchers, software developers and teachers. We reflect on our experiences of the participatory nature of pattern design and discuss how, as a distributed team, we developed a set of over 120 design patterns, created using our freely available open source web toolkit. Furthermore, we detail how our methodology is applicable to the wider community through a workshop model, which has been run and iteratively refined at five major international conferences, involving over 200 participants

    A Proposal for a Problem-Driven Mathematics Curriculum Framework

    Get PDF
    A framework for a problem-driven mathematics curriculum is proposed, grounded in the assumption that students learn mathematics while engaged in complex problem-solving activity. The framework is envisioned as a dynamic technologicallydriven multi-dimensional representation that can highlight the nature of the curriculum (e.g., revealing the relationship among modeling, conceptual, and procedural knowledge), can be used for programmatic, classroom and individual assessment, and can be easily revised to reflect ongoing changes in disciplinary knowledge development and important applications of mathematics. The discussion prompts ideas and questions for future development of the envisioned software needed to enact such a framework

    Eurocode 7 and rock engineering design: The case of rockfall protection barriers

    Get PDF
    The Eurocode 7 or EC7 is the Reference Design Code (RDC) for geotechnical design including rock engineering design within the European Union (EU). Moreover, its principles have also been adopted by several other countries, becoming a key design standard for geotechnical engineering worldwide. It is founded on limit state design (LSD) concepts, and the reliability of design is provided mainly by a semi-probabilistic method based on partial factors. The use of partial factors is currently an advantage, mainly for the simplicity in its applicability, and a limitation, especially concerning geotechnical designs. In fact, the application of partial factors to geotechnical design has proven to be difficult. In this paper, the authors focus on the way to apply EC7 principles to rock engineering design by analyzing the design of rockfall protection structures as an example. A real case of slope subjected to rockfall is reported to outline the peculiarity connected to rock engineering. The main findings are related to the complementarity of the reliability-based design (RBD) approach within EC7 principles and the possibility of overcoming the limitations of a partial factor approach to this type of engineering problem
    • …
    corecore