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Quasibrittle fracture scaling and size effect
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ABSTRACT

The report attempts a broad review of the problem of
size effect or scaling of failure, which has recently come
to the forefront of attention because of its importance
for concrete and geotechnical engineering, geomechanics,
arctic ice engineering, as well as in designing large load-
bearing parts made of advanced ceramics and composites,
e.g. for aircraft or ships. First the main results of Weibull
statistical theory of random strength are briefly summa-
rized and its applicability and limitations described. In
this theory as well as plasticity, elasticity with a strength
limit, and linear elastic fracture mechanics (LEFM), the
size effect is a simple power law because no character-
istic size or length is present. Attention is then focused
on the deterministic size effect in quasibrittle materials
which, because of the existence of a non-negligible ma-
terial length characterizing the size of the fracture process
zone, represents the bridging between the simple power-
law size effects of plasticity and of LEFM. The energetic
theory of quasibrittle size effect in the bridging region is
explained and then a host of recent refinements, exten-
sions and ramifications are discussed. Comments on other
types of size effect, including that which might be associ-
ated with the fractal geometry of fracture, are also made.
The historical development of the size effect theories is
outlined and the recent trends of research are emphasized.

1 INTRODUCTION impossible to acquire a sufficient statistical basis on
the full scale).

The size effect is a problem of scaling, which is The question of size effect recently became a
central to every physical theory. In fluid mechanerucial consideration in the efforts to use advanced
ics research, the problem of scaling continuouslfiber composites and sandwiches for large ship hulls,
played a prominent role for over a hundred yeardulkheads, decks, stacks and masts, as well as for
In solid mechanics research, though, the attention large load-bearing fuselage panels. The scaling
scaling had many interruptions and became intengpeoblems are even greater in geotechnical engineer-
only during the last decade. ing, arctic engineering, and geomechanics. In ana-

lyzing the safety of an excavation wall or a tunnel,

Not surprisingly, the modern studies of nonclasthe risk of a mountain slide, the risk of slip of a fault
sical size effect, begunin the 1970s, were stimulatgd the earth crust, or the force exerted on an oil plat-
by the problems concrete structures, for which thefigrm in the Arctic by a moving mile-size ice floe, the
inevitably is a large gap between the scales of larggale jump from the laboratory spans many orders of
structures (e.g. dams, reactor containments, bridgefhgnitude.
and of laboratory tests. This gap involves in such
structures about one order of magnitude (even in the In most of mechanical and aerospace engineer-
rare cases when a full scale test is carried out, it isg, on the other hand, the problem of scaling has
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been less pressing because the structures or strucQuasibrittle behavior can be attained by creat-
tural components can usually be tested at full size.ihig or enhancing material inhomogeneities. Such
must be recognized, however, that even in that cabehavior is desirable because it endows the struc-
the scaling implied by the theory must be correcture made from a material incapable of plastic yield-
Scaling is the most fundamental characteristic of arigg with a significant energy absorption capability.
physical theory. If the scaling properties of a theorj.ong ago, civil engineers subconsciously but clev-
are incorrect, the theory itself is incorrect. erly engineered concrete structures to achieve and

The size effect on structural strength is unde€nhance quasibrittle characteristics. Most modern
stood as the effect of the characteristic structure siAégh-tech’ materials achieve quasibrittle character-
(dimension)D on the nominal strength v of struc- istics in much the same way—by means of inclu-
ture when geometrically similar structures are conions, embedded reinforcement, and intentional mi-
pared. The nominal stress (or strength, in case efocracking (as in transformation toughening of ce-
maximum load) is defined asy = cyP/bD or ramics, analogous to shrinkage microcracking of
enP/D? for two- or three-dimensional similarity, concrete). In effect, they emulate concrete.
respectively;P = load (or load parameter),struc- In materials science, an inverse size effect span-
ture thickness, andy arbitrary coefficient chosen ning several orders of magnitude must be tackled
for convenience (normallyy = 1). Sooy isnotreal in passing from normal laboratory tests of mate-
stress but a load parameter having the dimension il strength to microelectronic components and mi-
stress. The definition dD can be arbitrary (e.g. the cromechanisms. A material that follows linear elas-
beam depth or half-depth, the beam span, the diatie fracture mechanics (LEFM) on the scale of labo-
onal dimension, etc.) because it does not matter foatory specimens of sizes from 1 to 10 cm may ex-
comparing geometrically similar structures. hibit quasibrittle or even ductile (plastic) failure on

The basic scaling laws in physics are power lawte scale of 0.1 or 100 microns.
in terms of D, for which no characteristic size (or The purpose of this report is to present a brief re-
length) exists. The classical Weibull (1939) theview of the basic results and their history. For an in-
ory of statistical size effect caused by randomneskepth review with several hundred literature refer-
of material strength is of this type. During theences, the recent article by Bazant and Chen (1997)
1970s it was found that a major deterministic size efnay be consulted. A full exposition of most of the
fect, overwhelming the statistical size effect, can beaterial reviewed here is found in the recent book
caused by stress redistributions due to stable propy Bazant and Planas (1998), henceforth simply ref-
agation of fracture or damage and the inherent errenced as [BP]. The problem of scale bridging in
ergy release. The law of the deterministic size effetihe micromechanics of materials, e.g., the relation
provides a way of bridging two different power lawsof dislocation theory to continuum plasticity, is be-
applicable in two adjacent size ranges. The structuyend the scope of this review (it is treated in this
size at which this bridging transition occurs reprevolume by Hutchinson).
sents a characteristic size.

The material for which this new kind of size ef-
fect was identified first, and studied in the greate& HISTORY OF SIZE EFFECT UP
depth and with the largest experimental effort by farTO WEIBULL
is concrete. In general, a size effect that bridges the
small-scale power law for nonbrittle (plastic, duc- Speculations about the size effect can be traced
tile) behavior and the large-scale power law for britback to Leonardo da Vinci (1500s) (Williams 1957).
tle behavior signals the presence of a certain nohie observed that “among cords of equal thickness
negligible characteristic length of the material. Thi¢he longest is the least strong,” and proposed that “a
length, which represents the quintessential proper@prd is so much stronger ... as it is shorter,” imply-
of quasibrittle materials, characterizes the typicaig inverse proportionality. A century later, Galileo
size of material inhomogeneities or the fracture prd>alilei (1638), the inventor of the concept of stress,
cess zone (FPZ). Aside from concrete, other quargued that Leonardo’s size effect cannot be true. He
sibrittle materials include rocks, cement mortardurther discussed the effect of the size of an animal
ice (especially sea ice), consolidated snow, toudh the shape of its bones, remarking that bulkiness
fiber composites and particulate composites, toughf bones is the weakness of the giants.
ened ceramics, fiber-reinforced concretes, dental ce-A major idea was spawned by Mariotte (1686).
ments, bone and cartilage, biological shells, stiBased on his extensive experiments, he observed
clays, cemented sands, grouted soils, coal, paptrat “a long rope and a short one always support
wood, wood particle board, various refractories anthe same weight unless that in a long rope there
filled elastomers, as well as some special toughay happen to be some faulty place in which it will
metal alloys. Keen interest in the size effect antlreak sooner than in a shorter”, and proposed the
scaling is now emerging for various ’high-tech’ apprinciple of “the inequality of matter whose abso-
plications of these materials. lute resistance is less in one place than another.” In
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other words, the larger the structure, the greater Wittmann 1977, Mihashi 1983; Mihashi and Izumi

the probability of encountering in it an element 0fLl977, Carpinteri 1986, 1989), and others.

low strength. This is the basic idea of the statistical Until about 1985, most mechanicians paid almost

theory of size effect. no attention to the possibility of a deterministic size
Despite no lack of attention, not much progresgffect. Whenever a size effect was detected in tests,

was achieved for two and half centuries, until thd Was automatically assumed to be statistical, and
remarkable work of Griffith (1921), the founder Ofthus its study was supposed to belong to statisticians

fracture mechanics. He showed experimentally th§ither than mechanicians. The reason probably was
the nominal strength of glass fibers was raised froffat N0 size effect is exhibited by the classical con-
292 MPa to 3.39 GPa when the diameter decreasiigUm mechanics in which the failure criterion is
from 107 um to 3.3um, and concluded that “the written in terms of stresses and strains (elasticity
weakness of isotropic solids...is due to the presengAth strength limit, plasticity and viscoplasticity, as
of discontinuities or flaws... The effective strengtAV€!l as fracture mechanics of bodies containing only

of technical materials could be increased 10 or 2®Croscopic cracks or flaws); Bazant (1993). hThE
times at least if these flaws could be eliminatedSUbJ€Ct was not even mentioned by S.P. Timoshenko

In Griffith’s view, however, the flaws or cracks at" 1953 in his monumental History of the Strength

the moment of failure were still only microscopic:© Materials. -

their random distribution controlled the macroscopic | he attitude, however, changed drastically in the
strength of the material but did not invalidate the-980s. In consequence of the well-funded research
concept of strength. Thus, Griffith discovered thé concrete structures for nuclear power plants, the-

physical basis of Mariotte’s statistical idea but not 87i€s exhibiting a deterministic size effect have been
new kind of size effect. developed. We will discuss it later.

The statistical theory of size effect began to
emerge after Peirce (1926) formulated the weakest POWER SCALING AND THE
link model for a chain and introduced the extremes ASE OF NO SIZE EFFECT
value statistics which was originated by Tippett
(1925), Fischer and Tippett (1928), and Freéchet | is proper to explain first the simple scaling
(1927), and refined by von Mises (1936) and othergjicaple to all physical systems that involve no
(see also Freudenthal 1968, Freudenthal and GURharacteristic length. Let us consider geometrically
bell 1956, Selected Papers 1981, Evans 1978). Thgyijar systems, for example the beams shown in
capstone of the statistical theory was laid by We|bu|iig_ 1a, and seek to deduce the response Y (e.g.
(1939) (also Weibull 1949, 1951, 1956). ON §he maximum stress or the maximum deflection)
heuristic and experimental basis, he concluded tha¢ 5 function of the characteristic size (dimension)
the tail distribution of low strength values with anp ¢ the structure. We choose a certain reference
extremely small probability coulq not be adequgtel_gize Dy and denote the corresponding response as
represented by any of the previously known distriy.  For 4 geometrically similar structure of an ar-
butions. He introduced what came to be known §Sjirary size D, the response can be expressed as
the Weibull distribution, which gives the probabil-y- _ Yo f(D/Dg) wheref is a dimensionless func-
ity of a small material element as a power law Ofisy of 4 dimensionless argument, describing the
the strength difference from a finite or zero threshécanng law. For example, for sizé8, and D, we
old. Others (e.g., Freudenthal 1968; Selected PRavey, = Yof(D1/Do) andYs = Yo f(Ds/Dy).
pers 1981) later offered a theoretical justificatiofyoyever, since there is no characteristic length, we
by means of a statistical distribution of microscopig.5 ais0 takeD, as the reference size and write

flaws or microcracks. Ref.inement of applications tg; — Y f(D»/D,). Consequently, the equation
metals and ceramics (fatigue embrittlement, cleav-

age toughness of steels at low and brittle-ductile D D D

. . 2 1 2
transition temperatures, evaluation of scatter of frac- f <_> f <_> =f <_> (1)
ture toughness data) has continued until today (e.qg. Dy Do Do

Evans 1978, Beremin 1983, Ruggieri and Dodds
1996, Lei et al. 1998). must hold for any combination of sizés,, D; and

Ds. This is a functional equation for the unknown

Most subsequent studies of the statistical theog¢.jing functionf. Any possible solution must have
of size effect dealt basically with refinements anghe form of a power law

applications of Weibull's theory to fatigue embrit-

tled metals and to ceramics (e.g., Kittl and Diaz D DA\?

1988, 1990). Applications to concrete, where the f <_> = <_> (2)
size effect were of the greatest concern, have been Do Do

studied by Zaitsev and Wittmann 1974; Mihashi and

Zaitsev 1981, Wittmann and Zaitsev 1981, Zech angheres is an arbitrary but fixed exponent.
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guasibrittle materials and structures, for which the

=}
il : ho o ,_Yield or strangth size effect bridges these two power laws.
) § ' TRy Caleria
o) ~—=if
) I}_'_!Jr :;& I% 4 WEIBULL STATISTICAL SIZE
L | | )2 EFFECT
a f t B l.i}sJD . . .
The classical theory of size effect has been statis-
|- LAe-gis tical. Three-dimensional continuous generalization
& | N aramn of the weakest link model for the failure of a chain
E e . of links of random strength (Fig. 2a) leads to the dis-
% [ Plastory tribution
E' Srrual-izg
[ asympbodic
H e S o) =1-ew |- [ dot@)omlav (@)
= o =B || {1+ D—u:- . Y
- Bire-allag L | . . (3)
2 by asymptatic malching 5 which represents the probability that a structure that
el . T fails as soon as macroscopic fracture initiates from

lag O {struciura siza) a microcrack (or a some flaw) somewhere in the

Fig. 1— (a) Geometrically similar structures of different sizesStrUCture’ o = stress tensor field induced by the

(b) power scaling laws, (c) size effect law for quasibrittle failure?@d that corresponds to the nominal stress, =
bridging the power law of plasticity (horizontal asymptote) and= coordinate vector})’ = volume of structure, and

the power law of LEFM (inclined asymptote). c(o) = function giving the spatial concentration of
failure probability of the material (¥, x failure
probability of material representative volumég.)
On the other hand, when for instancgFreudenthal 1968) (o) ~ >, Pi(0:)/Vo Where
f(D/Do) = log(D/Dy), Eq. (1) is not satisfied. ¢; = principal stresses (i = 1,2,3) aij (o) = failure
So, the logarithmic scaling could be possible onlprobability (cumulative) of the smallest possible test
if the system possessed a characteristic length andgecimen of volum&}, (or representative volume of
change of the reference size implied a change of thige material) subjected to uniaxial tensile stress
scaling functiony. .
The power scaling must apply for every physical Pi(o) = <a — Oy > @)
theory in which there is no characteristic length. In 50

solid mechanics such failure theories include elas“f\'Neibull 1939) wheren, so, o, = material constants
ity with a strength limit, elasto-plasticity, viscoplas-, . Z \veibull modulus ’usoL;aI}y between 5 and 50;
ticity as well as I.‘EFM (fqr which the FPZ is as-_ scale parameters,, = strength threshold, whic;h
sumed shrun.ken into a point). . L may usually be taken as 0) af@ = reference vol-

To determine exponent the failure criterion of ume understood as the volume of specimens on
the material must be taken into account. For elagzich () was measured. For specimens under uni-
ticity with a strength I_|n_1|t (str_ength _theory), or plas-¢orm uniaxial stress (and,, = 0), (3) and (4) lead to
ticity (or elasto-plasticity) with a yield surface ex-yhe fo|lowing simple expressions for the mean and

pressed in terms of stresses or strains, or both, 0f&afficient of variation of the nominal strength:
finds thats = 0 when respons&” represents the

stress or strain (for example the maximum stress, on = sol'(1+ m—l)(vo/v)l/m (5)
or the stress at certain homologous points, or the .
nominal stress at failure); Bazant (1993). Thus, if w \/F(l +2m71) _ (6)
there is no characteristic dimension, all geometri- 2(1+m-1)

cally similar structures of different sizes must fail aEvhereF is the gamma function. Since depends

the same nominal stress. By convention, this car%%l onm. it is often used for determinina from
to be known as the case b size effect. y onm, ng

In LEEM, on the other hands = —1/2, pro- the observed statistical scatter of strength of identi-

cal test specimens. The expressiondqy includes

vided that the geometrically similar structures Wltrc"he effect of volumeV” which depends on siz®.

eometrically similar cracks or notches are consiq- . . -
9 y n general, for structures with nonuniform multidi-

ered. This may be generally demonstrated with t . . .
help of Rice’s J-integral (Bazant, 1993). r](‘fnoern;loza(l))sitsre;ihéhtizlps;.ze effect of Weibull theory
u ~ .

If logoy is plotted versudog D, the power law
is.a straightline (Fi_g. 1b). For plasticity, or elasticity GN oc Dna/m (7)
with a strength limit, the exponent of the power law .
vanishes, i.e., the slope of this linelisFor LEFM, Whereng = 1, 2 or 3 for uni-, two- or three-
the slope is-1/2. An emerging ‘hot’ subject is the dimensional similarity.

4 Size effect and scaling of quasibrittle fracture
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T

' 4. The size effect differences between two- and
three-dimensional similarityn(; = 2 or 3) are
/ predicted much too large.

i

TR

Py 5. Many tests of quasibrittle materials (e.g., di-
! a agonal shear failure of reinforced concrete
beams) show a much stronger size effect than
predicted by Weibull theory ([BP], and the re-
view in BaZzant 1997a).

B 6. The classical theory neglects the spatial cor-
IR i relations of material failure probabilities of
N neighboring elements caused by nonlocal
Fig. 2 — (a) Chain with many links of random strength, (b) pr_opgrtles of damage evolution (while gengr-
failure probability of a small element, (c) structure with many alizations based on some phenomenological
microcracks of different probabilities to become critical. load-sharing hypotheses have been divorced
from mechanics).

" 0000

In view of (5), the valuery = on(V/Vy)!/™ 7. When (5) is fit to the test data on statisti-

for a uniformly stressed specimen can be adopted as €@l scatter for specimens of one siZé ¢
a size-independent stress measure called the Weibull ~ €onst.), and when (7) is fit to the mean test

stress. Taking this viewpoint, Beremin (1983) pro- data on the effect of size df (of unnotched
posed taking into account the nonuniformstressina  Plain concrete specimens), the optimum val-
large crack-tip plastic zone by the so-called Weibull ues of Weibull exponent. are very different,
stress: namelym = 12 andm = 24, respectively
1/m (BaZant and Novék 2000c). If the theory were
ow = (Z o™ E) (8) applicable, these value would have to coin-
- Vi cide.

whereV; (i = 1,2, ...Ny) are elements of the plas- In view of these limitations, among concrete
tic zone having maximum principal stress,. Rug- structures Weibull theory appears applicable to some
gieri and Dodds (1996) replaced the sum in (5) bgxtremely thick plain (unreinforced) structures, e.g.,
an integral; see also Lei et al. (1998). Eq. (8), howthe flexure of an arch dam acting as a horizontal
ever, considers only the crack-tip plastic zone whode&eam (but not for vertical bending of arch dams
size is almost independent 8f. Consequently, Eq. Nor gravity dams because large vertical compressive
(8) is applicable only if the crack at the moment ofitresses cause long cracks to grow stably before the
failure is not yet macroscopic, still being negligiblenaximum load). Most other plain concrete struc-
compared to structural dimensions. tures are not thick enough to prevent the determinis-
As far as quasibrittle structures are concerned, afic size effect from dominating. Steel or fiber rein-
plications of the classical Weibull theory face a numtorcement prevents it as well.
ber of serious objections:

1. The fact that in (7) the size effect is a power5 QUASIBRITTLE SIZE EFFECT
law implies the absence of any characteristi® R DGING PLASTICITY AND LEFEM,

length. But this cannot be true if the materiahND | TS HISTORY
contains sizable inhomogeneities.
Quasibrittle materials are materials that (1) are
2. The energy release due to stress redistribincapable of purely plastic deformations and (2),
tions caused by macroscopic FPZ or stabli@ normal use, have an FPZ which is not negligi-
crack growth before the peak load,,.., ble compared to structure siZe. The concept of
gives rise to a deterministic size effect whichlyuasi-brittleness is not absolute belative, depend-
is ignored. Thus the Weibull theory is validing on D. For a large enough, every quasibrittle
only if the structure fails as soon as a microstructure becomes brittle, i.e., follows LEFM, except
scopic crack becomes macroscopic. that crack initiation is governed by material strength
(which itself is determined by fracture behavior of
3. According to the classical Weibull theory, ev-microscopic flaws in the FPZ, as in brittle ceramics
ery structure would be mathematically equivor fatigue-embrittled steel). For small enough
alent to a uniaxially stressed bar (or chaingvery quasibrittle structure is equivalent to an elas-
Fig. 2), which means that no information ontic body with a perfectly plastic crack (as proven
the structural geometry and failure mechain BaZant 2002a) and follows the theory of plas-
nism is taken into account. ticity, although the sizeD for which such plastic

5 Size effect and scaling of quasibrittle fracture
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behavior is attained may represent an abstract thgswer law also implied nonexistence of a character-
oretical extrapolation in whic is smaller than the istic length (see BaZant and Chen, 1997, Egs. 1-
inhomogeneity size of the material. All brittle ma-3), which cannot be the case for concrete due to
terials (i.e., materials in which the crack growth ighe large size of its inhomogeneities. More exten-
governed by LEFM) become quasibrittle on a smablive tests of notched geometrically similar concrete
enough scale (e.g., a fine-grained ceramic, brittle ftmeeams of different sizes were carried out by Walsh
D >1 mm, may be quasibrittle fap ~ 1 yum), and (172, 1976). Although he did not attempt a math-
all quasibrittle materials become perfectly brittle oematical formulation, he was first to make the dou-
a large enough scale (e.g., concrete with normal-sibdy logarithmic plot of nominal strength versus size
aggregate on the scale of a large gravity dam, seaad observe that it was transitional between plastic-
ice on the scale of 100 m, or jointed rock mass, witity and LEFM.
joints at 10 m separation, on the scale of a whole An important advance was made by Hillerborg
mountain, exceeding 1 km). et al. (1976) (also Petersson 1981). Inspired by
While plasticity alone, as well as LEFM alone the softening and plastic FPZ models of Barenblatt
possesses no characteristic length, the combinatigk®59, 1962) and Dugdale (1960), they formulated
of both, which must be considered for the bridgthe cohesive (or fictitious) crack model character-
ing of plasticity and LEFM, does. Irwin (1958)ized by a softening stress-displacement law for the
studied the size,, of the plastic zone that forms crack opening and showed by finite element calcu-
ahead of a crack tip. He derived a rough estimatations that the failures of unnotched plain concrete
l, ~ K?/mo2, whereK| is the mode- stress in- beams in bending exhibit a deterministic size effect,
tensity factor and, is the material strength or yield in agreement with tests of the modulus of rupture.
limit. At incipient crack propagation under plane Analyzing distributed (smeared) cracking dam-
stress K is equal to the fracture toughne$s;- = age, Bazant(1976) demonstrated that its localization
VEGF, whereFE is Young’s modulus and r is the into a crack band engenders a deterministic size ef-
fracture energy. This motivates the definition of dect on the postpeak deflections and energy dissipa-

characteristic length (material length) tion of structures. The effect of the crack band is
approximately equivalent to that of a long fracture

EdG with a sizable FPZ at the tip. Subsequently, using an

bo = o2 ©) approximate energy release analysis, Bazant (1984)

derived for the quasibrittle size effect in structures
which approximately characterizes the size of thigiling after large stable crack growth the following
FPZ in quasibrittle materials. So the key to the deapproximate size effect law:
terministic quasibrittle size effect is a combination L
. ) D\ /2
of thg concept of strength_ or yield Wlth fracture me- on = Boy (1 + _> +on (12)
chanics. In dynamics, this further implies the exis- 0

tence of a characteristic time (material time):
or more generally:

D\" —1/2r
on = Boy |:1+<D_0> :| +oR (12)

70 ={lo/v (10)

representing the time a wave of velocitytakes to
propagate the distanéeg. in which r, B = positive dimensionless constants;
After LEFM was first applied to concrete (Ka-D, = constant representing the transitional size (at
plan 1961), it was found to disagree with test resultshich the power laws of plasticity and LEFM inter-
(Kesler et al. 1971; Leicester 1969; Walsh 197Zect); bothD, and B depend on the structure ge-
1976). Leicester (1969) tested geometrically simiemetry (shape). Usually constan = 0, except
lar notched beams of different sizes, fit the resultshen there is a residual crack-bridging stres®ut-
by a power lawg y o« D", and observed that theside the FPZ (as in fiber composites), or when at
optimumn was less tharl /2, the value required large sizes some plastic mechanism acting in parallel
by LEFM. The power law with a reduced exponenemerges and becomes dominant (as in the Brazilian
of course fits the test data in the central part of theplit-cylinder test).
transitional size range well but does not provide the Eq. (11) was shown to be closely followed by the
bridging of the ductile and LEFM size effects. Itnumerical results for the crack band model (BaZzant
was tried to explain the reduced exponent value 976, Bazant and Oh 1983), as well as for the non-
notches of a finite angle, which however is objedocal continuum damage models, which are capable
tionable for two reasons: (i) notches of a finite anef realistically simulating the localization of strain-
gle cannot propagate (rather, a crack must emanataftening damage and avoiding spurious mesh sen-
from the notch tip), (ii) the singular stress field ofsitivity.
finite-angle notches gives a zero flux of energy into Beginning in the mid 1980s, the interest in the
the notch tip. Same as Weibull theory, Leicesterquasibrittle size effect of concrete structures surged

6 Size effect and scaling of quasibrittle fracture
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enormously and many researchers made notewaimply supported beam of spah with a rectan-
thy contributions; to name but a few: Planas andular cross section of depth and widthb, sub-
Elices (1988, 1989, 1993), Petersson (1981), anected to concentrated load. The maximum load
Carpinteri (1986). The size effect has recently bés not decided by the stress = 3PL/2bD? =
come a major theme at conferences on concrete fr§6L./2D)on at the tensile face, but by the stress
ture (Bazant, ed., 1992, Mihashi et al., eds., 1994alueg roughly at distance; from the tensile face
Wittmann, ed., 1995, Carpinteri, ed., 1996, Mihashiwhich is roughly at the middle of FPZ). Approx-
and Rokugo, eds., 1998, BaZzant and Rajapaksmately, ¢ = o1 — ojc; whereg’ = 20,/D =
1999). stress gradient. Settirg= f/ = tensile strength of
Measurements of the size effect éh,,, were the material, we hav@3L/2D)on (1 — 2¢;/D) =
shown to offer a simple way to determine the fracf{, which giveson = 0o/(1 — Dy/D), in which
ture characteristics of quasibrittle materials, includso = (2D/3L) f{ andD;, = 2¢; (= thickness of the
ing the fracture energy, the effective FPZ length, anloundary layer of cracking) are constants because
the (geometry dependent) R-curve. the ratioD /L is constant for geometrically similar
structures. This expression fer;, however, is un-
acceptable folD < D,. But since the derivation
6 SIZE EFFECT MECHANISM: s valid only for small enougl/D (i.e., up to the
STRESS REDISTRIBUTION AND EN- first-order term of the asymptotic expansioncof
ERGY RELEASE in terms of1/D), one may replace it by the follow-
ing asymptotically equivalent size effect formula:

Let us now describe the gist of the deterministic
quasibrittle size effect. LEFM applies when the FPZ
is negligibly small compared to structural dimen- rDy 1/r
sion D and can be considered as a point. Thus the ON = 00 (1 + 7) (13)
LEFM solutions can obtained by methods of elastic-
ity. The salient characteristic of quasibrittle materi-
als is that there exists a sizable FPZ with distributed, . .
cracking or other softening damage that is not ne vhich happens to be acceptable for the entire range

ligibly small compared to structural dimensidn LD ('?CIUd”P? %2011; " |s§1ny posm(\j/? constanti
This makes the problem nonlinear, although approi— € values: = 1 or < have been used for concrete

imately equivalent LEFM solutions can be applie Bazant 1998), while ~ 1.47 is optimum accord-

unless FPZ reaches near the structure boundaries"¥ to Bazant and Novak's (2000a) latest analysis of

The existence of a large FPZ means that the ditse-St data.
tance between the tip of the actual (traction-free)
crack and the tip of the equivalent LEFM crack at6.2 Scaling for failures with a long
P, is equal to a certain characteristic length crack or notch
(roughly one half of the FPZ size) that is not negligi-
ble compared t®. An “equivalent LEFM” solution Let us now give a simple explanation of the sec-
may be rigorously defined as the solution for whiclond case of structures failing only after stable for-
the load-point stiffness is the same as the actual stifhation of large cracks, or notched fracture speci-
ness (BaZzant and Planas 1998); this occurs when ifens. Failures of this type, exhibiting a strong size
tip of the LEFM crack is placed approximately ineffect ([BP], Bazant 1996, Walraven 1995, Iguro et
the center of FPZ. The large FPZ size causes a nail: 1985, Shioya and Akiyama 1995, Bazant and
negligible macroscopic stress redistribution with erkazemi 1991, Gettu et al. 1990, Marti 1989) are typ-
ergy release from the structure. ical of reinforced concrete structures or fiber com-
With respect to the fracture lengtly, (distance posites (Bazant, Li and Daniel 1986, Wisnom 1992),
from the mouth of notch or crack to the beginning oind are also exhibited by some unreinforced struc-
the FPZ), two basic cases may now be distinguishettires (e.g., dams, due to the effect of vertical com-
() ag = 0, which means tha®,,,, occurs at the ini- pression, or floating ice plates in the Arctic). Con-
tiation of macroscopic fracture propagation, and (iiyider the rectangular panel in Fig. 3, which is ini-
ayp is finite and not negligible compared i», which tially under a uniform stress equal &Qy. Introduc-
means thatP,,,, occurs after large stable fracturetion of a crack of lengtlu with a FPZ of a certain
growth. length and widthh may be approximately imagined
to relieve the stress, and thus release the strain en-
6.1 Scaling for failure at crack initia- ergy. from the shaded triangles on the flanks of the
tion crack band shown in Fig. 3. The slopeof the ef-
fective boundary of the stress relief zone need not be
An example of the first case is the modulus ofletermined; what is important is thatis indepen-
rupture test, which consists in the bending of dent of the sizeD.

7 Size effect and scaling of quasibrittle fracture
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Fig. 3 — Approximate zones of stress relief due to fracture.
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For the usual ranges of interest, the length of t|
crack at maximum load may normally be assum:
approximately proportional to the structure sie
while the sizeh of the FPZ is essentially a con:
stant, related to the inhomogeneity size in the ma ek @ 05 i ] W
rial. This has been verified for many cases by exp¢-
iments (showing similar failure modes for small an

large specimens) and finite element solutions bas [ | . -
on crack band, cohesive or nonlocal models. ) A= g | —
. . - = § ™ |
The stress reduction in the triangular zones of ¢ | == OF an %,
|

|
easka? /2 (Fig. 3) causes (for the case= 1) the en- . LA
ergy releasd/, = 2 x (ka®/2)o% /2E. The stress =4 = _ -
drop within the crack band of width causes fur- — ) ] o= 3 R a—
ther energy releas€, = hao3 /2E. The total en- * e
ergy dissipated by the fracturei® = aG r, Wwhere  Fig. 4— (a) Comparisons of size effect law with Mode | test

; ; data obtained by various investigators using notched specimens
G 15 the fracture energy, a material property rep of different materials, (b) size effect in compression kink-band

resenting the energy dissipated per unit area of the tajiyres of geometrically similar notched carbon-PEEK
fracture surface. Energy balance during static fail- specimens (after Bazant et al. 1999).

ure requires thad(U, + Uy) /0a = dW/da. Setting

a = D(a/D) wherea/D is approximately a con-

stant if the failures for different structure sizes are

geometrically similar, the solution of the last equa- The ratio3 = D/Dy is called the brittleness

tion for o yields BaZant's (1984) approximate sizélumber of a structure. Fgt — oo the structure is
effect law in (11) witho = 0 (Fig. 1c). perfectly brittle (i.e. follows LEFM), in which case

the size effect is the strongest possible, while for

; — 0 the structure is non-brittle (or ductile, plas-
cable to arbitrary structure geomeiry, have be ), in which case there is no size effect. Quasibrit-
given in terms of asymptotic analysis based equi\(— j

. ] le structures are those for whi¢hl < g < 10, in
glent LEFM (B'azant 1997? ) or on Rice’s pathy hich case the size effect represents a smooth tran-
independent J-integral (BaZzant and Planas 199%‘

. " -~ sition (or interpolation) that bridges the power law
This law has also been verified by nonlocal f|n|t<=Size effects for the two asymptotic cases. The law
element analysis, and by random particle (or dis- :

te el " dels. Th . tal verifi 11) has the character of asymptotic matching and
crete elemen ) MOGE'S. € expenmental Verlicas ves to provide the bridging of scales. In the qua-
tions, among which the earliest is found in the fa-

sibrittle range, the stress analysis is of course nonlin-
mous Walsh’s (1972, 1976) tests of notched concrjs g 4

More rigorous derivations of this law, appli-

b h b b bundant Fi %r, calling for the cohesive crack model or the crack
eams, have by now become abundant (e.g. Fig. and model (which are mutually almost equivalent),

For very large sizes§ > D,), the size effect or some of the nonlocal damage models.

law in (11) reduces to the power lawy oc D=/2, The meaning of the term quasibrittle is relative.

which represents the size effect of LEFM (for geof the size of a quasibrittle structure becomes suffi-
metrically similar large cracks) and corresponds tgjently large compared to material inhomogeneities,
the inclined asymptote of slopel /2 in Fig. 1c. For the structure becomes perfectly brittle (for concrete
very small sizeslp < Do), this law reduceston  structures, only the global fracture of a large dam
= const, which corresponds to the horizontal asymps describable by LEFM), and if the size becomes
tote and means that there is no size effect, as in plagsfficiently small, the structure becomes non-brittle
tic limit analysis. (plastic, ductile) because the FPZ extends over the

8 Size effect and scaling of quasibrittle fracture
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whole cross section of the structure (thus a micro- The areas under the load-deflection curves in
machine or a miniature electronic device made dfig. 5 characterize the energy absorption. The ca-
silicone or fine-grained ceramic may be quasibrittlpability of a quasibrittle structure to absorb energy
or non-brittle). decreases, in relative terms, as the structure size in-
creases. The size effect on energy absorption capa-
bility is important for blast loads and impact.

The progressive steepening of the postpeak
curves in Fig. 5 with increasing size and the devel-

The plots of nominal stress versus the relativBPment of a snapback can be most simply described
structure deflection (normalized so as to make tH¥ the series coupling model, which assumes that
initial slope in Fig. 5 size independent) have, fofhe response of a structure may be at least approxi-
small and large structures, the shapes indicated fately modeled by the series coupling of the cohe-
Fig. 5. Apart from the size effect off,,,, there Sive crack or damage zone with a spring characteriz-
is also a size effect on the shape of the postpeH}d the elastic unloading of the rest of the structure
descending load-deflection curve. For small stru¢BaZzantand Cedolin 1991, Sec. 13.2, Bazant 2000).
tures the postpeak curves descend slowly, for larger One possible exception to the behavior described
structures they are Steeper, and for Sufﬁcienﬂy |arﬁ)ove is in the fracture of fiber-reinforced concrete
structures they may exhibit a snapback, that is, @RC), where the larger crack opening that occurs
change of slope from negative to positive. Thes# bigger specimens/structures mobilizes the fibers
structural size effects were analyzed for concref@ore effectively. This results in more ductile re-
structures by Carpinteri (1984), Carpinteri, Di TomSponse after cracking in larger specimens of similar

maso and Fanelli (1985), Carpinteri (1989a-e), an@eometry as seen in Fig. 6, where experimental re-
Carpinteri and Colombo (1989). sults (Jamet et al., 1995) from tests of two sizes of

plain concrete (PC) and FRC beams are compared.

6.3 Size effect on postpeak softening
and ductility

+ 4
| L EE x"\.‘ : * . 1 3 point bend specimens
+ b=90 mm, a,=0.275d
- PC=70 MPa concrete
l_ * FRC=PC with 80kg/m?® of hooked fibers
N w X 30000 —j
%, i ", \H"\-\. . Y \"\-\.E Y
: " B T Y - FRC, d=320 mm
Z 20000 —
o]
3]
= ° 7
PC, d=320 mm
10000 —
Small
g a FRC, d=90 mm
- PC,
d=90mm
0 T T T
Larga 0 100 200 300 400
deflection (microns)
Ral, cafl

Fig. 6 — Load-deflection curves of plain concrete and

Fig. 5 » Load-d_eflection curves of quasipri_t?le structures of fiper reinforced concrete beams of different sizes (after Jamet et
different sizes, scaled to the same initial slope. al.. 1995.

_ _ 6.4 Asymptotic analysis of size effect
If a structure is loaded under displacement con- by equivalent LEFM

trol through an elastic device with spring constant
Cs, it loses stability and fails at the point where the To obtain simple approximate size effect formu-
load-deflection diagram first attains the slop€’; lae that give a complete prediction of the failure
(if ever); Fig. 5. The ratio of the deflection at thesdoad, including the effect of geometrical shape of the
points to the elastic deflection characterizes the dustructure, equivalent LEFM may be used. In this ap-
tility of the structure. As apparent from the figure proach the tip of the equivalent LEFM (sharp) crack
small quasibrittle structures have a large ductilitis assumed to lie at distancg ahead of the tip of

while large quasibrittle structures have small ductilthe traction-free crack or notch; being a constant

ity. (representing roughly one half of the length of the

9 Size effect and scaling of quasibrittle fracture
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FPZ ahead of the tip. Two cases are relatively sinfitting can be best done by using the Levenberg-
ple: (i) If a large crack grows stably prior #8,,,, Marquardt nonlinear optimization algorithm, but it
or if there is a long notch, can also be accomplished by a (properly weighted)
linear regression o(fr;f versusD. The specimens
_ VEGy + oy /7' (@0)cy + v(a0) D (14) do not have to be geometrically similar, although
Vg (ao)es + g(ag)D when they are the evaluation is simpler and the er-
ror smaller. The lower the scatter of test results, the
narrower is the minimum necessary rangesdfor
concrete and fiber composites, the sizerange 1: 4 is

\/E—Gf + UY\/’}/’(O)Cf + ’Y”(O)(C?/QD) the minimum).

- ; . 5 The size effect method of measuring fracture
\/g (0)ey +¢"(0)(c}/2D) characteristics has been adopted for an international

(15) standard recommendation for concrete (RILEM
(Bazant 1997b, Bazant 1998) where the primes deggo, [BP] Sec. 6.3), and has also been verified and
note derivativesy(ao) = K;p/o% D andy(ag) = used for various rocks, ceramics, orthotropic fiber-
K;2/o%D are dimensionless energy release fungolymer composites, sea ice, wood, tough metals
tions of LEFM ofa = ao/D wherea, = length of and other quasibrittle materials. The advantage of
notch or crack up to the beginning of the FRZ; p,  the size effect method is that the tests, requiring only

K, = stress intensity factors for loat and for the maximum loads, are foolproof and easy to carry
loading by uniform residual crack-bridging stresgt.

oy, respectively,ocy = 0 for tensile fracture, but i )
oy # 0 in the cases of compression fracture in With regard to the cohesive crack model, note that

concrete, kink band propagation in fiber compoghe size effect method gives the energy value corre-
ites, and tensile fracture of composites reinforcegPOnding to the area under the initial tangent of the
by fibers short enough to undergo frictional pu||0u§often|ng stress-displacement curve, rather than the

rather than breakage. The asymptotic behavior fptal area under the curve. The stress-displacement
(14)forD — oo is of the LEFM typep vy — oy oo oc  CUTVES used by cohesye crack models for goncrete
D=1/2 whereoy o = oy /7 (ao)/g(ao). Formula typically start by a relatively steep descending part
(15) approaches fob — oo a finite asymptotic foIIowed_ by a long tail. The area under the entire
value. So does formula (14) ify > 0. Note that stress-displacement curve corresponds to the frac-

parametet? ; in (14)—(15) is related to but different turé energyG » that would be consumed per unit
from the fracture energg , as will be explained in area of the crack advance in an infinitely large spec-
the next subsection. imen. Laboratory specimens used by the size-effect
method are not large enough to activate the long tail
6.5 Size-effect method for measuring of the curve already before peak, and the peak load
) terial fract ot d R is usually attained with only a partially developed
material Tracture parameiers an " process zone. Consequenly, the shape of the tail has
curve no influence on the peak load and the corresponding
Comparison of (14) with (11) yields the relationsPart of the fracture energy cannot be captured by the
size-effect method. This is why, for the usual range
Dy = cpg'(ap)/g(ap) (16) of sizes tested in the laboratory, the fracture energy
B _ G ; 17 Gy identified from the size effect law is smaller
op = t/crg' (o) (17) than the fracture energy for an infinite specimen,
- - _ G r, which can be approximately determined by the
Therefore, by fitting formula (11) witlr g = 0 to
the values ob y measured on test specﬁmens of dif\_/vork-of—fracture method (RILEM 1985). Parameter
ferent sizes with a sufficiently broad range of brittIeTG_f_Can be roughly understqod as the area under the
ness numbets initial tangent of the softening stress-displacement
curve, and the typical rati@' ; : G is aboutl : 2.5.
B

ON

and (i) if P4, Occurs at fracture initiation from a
smooth surface

ON

D o g(ap)

== (18)  The size effect method also permits determin-
Do cg'(ao)

ing the R-curve (resistance curve) of the quasibrit-
the values ofG; andc; can be identified (Bazanttle material—a curve that represents the apparent
and Pfeiffer 1987, Bazant and Kazemi 1990). Theariation of fracture energy with crack extension for

1A practically useful brittleness number should be independent of structure geometry. This condition is satisfied by definition
(18) proposed by Bazant (1987) on the basis of the size effect law. The term brittleness number was applied earlier to other quan-
tities, which however lack the crucial geometry factotg and thus are not generally applicable. This is the case for the so-called
‘brittleness numbers’ proposed by Gogotsi et al. (1978) and Homeny et al. (1980); and also for tie/{atioherel., is Irwin's
characteristic length introduced in a discussion of brittleness by Irwin and later called the ‘brittleness number’ by Hillerborg (1985);
and furthermore for the rati&'r /(o D) called the ‘brittleness number’ by Carpinteri (1981). With these earlier definitions, the value
B = 2 could for instance mean a very brittle behavior for one geometry, and a very ductile behavior for another geometry, making the
term ‘brittleness number’ meaningless.

10 Size effect and scaling of quasibrittle fracture
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which LEFM becomes approximately equivalent talepends only on the tensile strength (being inde-
the actual material with a large FPZ. The R-curvependent of the softening curve). The BaZant-Yu-Zi
which (in contrast to the classical R-curve definimethod uses the regression equation

tion) depends on the specimen geometry, can ob- _

tained as the envelope of the curves of the energy V=AX+C-AX) (19)
release rate aP = P,,,. (for each size) versus thewith
crack extension for specimens of various sizes. In X =D/, Y = (f!/on)? (20)

general, this can easily be done numerically, ‘i”d Hunction A(X), which must be accurately com-
the size effect law has the form in (11) withk = teq in advance, gives the deviations of the exact

0, a parametric analytical expression for the R-CUVgz¢ effect curve of the cohesive crack model from
exists (Bazant and Kazemi 1990, [BP] Sec. 6.4). ihe size effect law (11) (it = 0); A(X) van-

The fracture model implied by the size effec{Shes forD — co and i;S asymptotic expansion be-
law in (11) or (14) has one independent charadinS W'th. the terml/D . For normal-size hotched
teristic length,c;, representing about one half oftNfée-point bend specimens, the correctiday)
the FPZ length. Froma, using the relatiort; = is insignificant (error of a few percent only), but

B2g'(ag)cy, one can determine the characteristifo" Zero size the correction b (0) is important

- 2 (Bazant, Yu and Zi 2002). Knowing functial(X),
length £y = E'Gy/fi” where Gy represents the . i the limitA (0), Eq. (19) can be fitted to the

area under the initial tangent of the softening Stress_easuredr values for notehed specimens of one
separation curve of the cohesive crack model an;EI]Ze and th:; values correspon diFr)1 W6 at zero-
must be distinguished from fracture energyy, N P gty

which represents the area under the entire softef2¢ limit. The fitting yields the values of andC,

ing curve and is measured by the work—of—fratctur]!?Om WhichG s, ¢y and?, follow (Bazant, Yuand Zi

. 7 . 002).
method (the ratia? /G, exhibits very high scat- . . .
ter and on the average is about 2.5, which means The improved size effect method of Bazant, Yu

thatéy /¢, is on the average about 2.5); BaZant, i nd Zi is equivalent to Guinea et al.'s method except
and Zi (2002). The value of cont.rolys the siz'e or the statistical evaluation. The fact that the former

Dy at the center of the bridging region (intersecpermits identification of material parameters by sta-

tion of the power-law asymptotes in Fig. 1c anéistical regression of both the notched specimen data
oo or Gy controls a vertical shift of the size effectand the strength data is an advantage.

curve at constanb,. Aside from geometry factors . . . .
expressed in terms of functigf{«), the locations 6.6 Critical crack-tip opening dis-

of the large-size and small-size asymptotes depend placement, dcrop

onlyonk. = \/EG; andEG /cy, respectively. The quasibrittle size effect, bridging plasticity

A very effective method for measuring ; has and LEFM, can also be simulated by the fracture
been the notched-unnotched method, conceived ngdels characterized by the critical stress intensity
Guinea, Planas and Elices (1994a,b) without any réictor K. (fracture toughness) ardrop; for met-
erence to size effect. BaZant, Yu and Zi (2002) rédls see Wells (1961) and Cottrell (1963), and for
cently improved this method by exploiting the exacEoncrete Jeng and Shah (1985). Jenqg and Shah's
dimensionless size effect curve of the cohesive cragkodel, called the two-parameter fracture model, has
model which is calculated in advance for given spec2€€n shown to give similar results as the R-curve
imen geometry. This is possible because only tHgerived from the size effect law in (11) withy = 0.
initial downward slope of the softening curve mat-/ & approximate relationship of size effect law and
ters for the maximum load. The reason is that, if€Nd-Shah model is given by

normal-size notched specimens, the crack stress pro- K. = EG; (21)
file at maximum load terminates at notch tip with a

finite stress so large that the tail portion of the soft- Sorop = l, / 8G ey (22)
ening curve is not reached. The improved method, ™ E

as well as Guinea et al.'s, makes it possible to detdfowever, Jeng-Shah model suffers from a depen-
mineGy (or the initial slope of the softening curve)dence of its results on the slope of the unloading
simply by measuring solely the maximum loads ofurve of the cohesive crack model (this dependence
notched specimens of only one size (and one geonen change the measur@g within a range of about
try), supplemented by direct measuremenf pffor 15% and is, in principle, inadmissible because the
which the Brazilian split-cylinder test has been redracture energy is defined by the softening curve in-
ommended). If the cohesive crack model is assumel@pendently of the unloading properties of the cohe-
to hold for the entire size range € (0, 00), then sive crack model); BaZzant, Yu and Zi (2002). Using
the strength data correspond to the zero-size limit ¢21) and (22), the values df . andécrop can be
the size effect plot (i.e., to zero brittleness numbeeasily identified by fitting the size effect law (11) to
Bazant and Li 1996) becauseno for D — 0 measured values of the peak la&gl ..

11 Size effect and scaling of quasibrittle fracture
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Like the size effect law in (11) witrg = 0, the sides of the damage band gets reduced, which
the two-parameter model has only one independecduses an energy release that grows in proportion
characteristic lengti,crop, which is related td;  to D2, while the energy consumed and dissipated
orcy. in the band grows in proportion t&. The mis-

match of energy release rates inevitably engenders
6.7 Material heterogeneity and repre- @ deterministic sizg effect of the q'uasibrit'tle type,
sentative volume element analogous to the size effect associated with tensile
fracture. In consequence of the size effect, failure

The smallest specimens in size effect tests hatwy lateral propagation must prevail over the failure
often been only about five aggregate sizes in croby axial propagation if a certain critical size is ex-
section dimension. One may wonder whether thiseeded.
is enough in view of the concept of the representa- The size effect can again be approximately de-
tive volume element (RVE). The answer depends aicribed by the equivalent LEFM. This leads to Eq.
statistical considerations. (14) in whichoy is determined by analysis of the

The RVE is defined as the smallest elemergicrobuckling in the laterally propagating band of
which, when translated through the heterogeneo@aial splitting cracks. The spacingof these cracks
material, does not change its statistical propertieis. in (14) assumed to be dictated by material inho-
But what statistical properties? And with what acmogeneities. However, if the spacing is not dictated
curacy? There is much confusion in the literatur@nd is such that it minimizesy, then the size effect
stemming from ignorance of the statistical aspect. gets modified as:

If one considers the moments of the probability a5
distributions of the strength and stiffness parameters oy =CD + 000 (23)
up to infinite order, and demands complete accy-
racy, an RVE would have to be infinitely large (an [BP] Sec. 10.5.11) wheré", 0 = constants, the
continuum mechanics inapplicable at any size) u ipproximate values of Whlch.have been calculated
less that material has an artificial perfectly periodi r the breakout of boreholes in rock.
structure. For the first two moments of the distri- .
bution (i.e., including the invariance of the standard/-2 Fracturing truss model for con-
deviation during RVE shifts), the RVE must be much  crete and boreholesin rock
larger than for the first moment only, i.e., for the
mean response (as long as the shifting of the RV
through a single specimen is considered).

Propagation of compression fracture is what ap-
ears to control the maximum load in diagonal shear
g failure of reinforced concrete beams with or without

_ Therefore, if the test results are evaluated staliggns, for which a very strong size effect has been
tically, the RVE can in practice be quite small. Th'sdemonstrated experimentally (e.g. Walraven 1995,

is confirmed by the fact that the mean of size effegh, raven and Lehwalter 1994, Bazant and Kazemi

evaluated statistically from many specimens exhibitfggl, Kani 1967, Iguro et al. 1985, Bazant 1997a,
a rather smooth extension of the trend observed 8§} 5 mra and Maekawa 1994, Reinhardt 1981, Sh-
large sizes, even though continuum mechanics a5 ang Akiyama 1994). A long diagonal tension
plied to one specimen alone, without statistical avsa ek grows stably under shear loading until the con-
eraging, would lead to gross random scatter. crete near its tip gets crushed. A simplified formula
for the size effect can be obtained by energetic mod-

7 EXTENSIONS. RAMIFICATIONS ification of the classical truss model (strut-and-tie

model) (BaZant 1997a).
AND APPLICATIONS The explosive breakout of boreholes (or mining

. . . stopes) in rock under very high pressures is know

7.1 Size effects in compression frac- 1o also exhibit size effect, as revealed by the tests
ture of Carter (1992), Carter et al. (1992), Haimson and
TJ—|errick (1989) and Nesetova and Lajtai (1973). An

Loading by high compressive stress without su ggproximate analytical solution can be obtained by
X

ficient lateral confining stresses leads to damage
the form of axial splitting microcracks engendere
by pores, inclusions or inclined slip planes. This
damage localizes into a band that propagates eith
axially or laterally.

For axial propagation, the energy release from the A kink band, in which axial shear-splitting cracks
band drives the formation of the axial splitting frac-develop between fibers which undergo microbuck-
ture, and since this energy release is proportionkthg, is one typical mode of compression failure
to the length of the band, there is no size effectf composites or laminates with uniaxial fiber re-
For lateral propagation, the stress in the zones amforcement. This failure mode, whose theory was

ploiting Eschelby’s theorem for eigenstresses in
lliptical inclusions (Bazant et al. 1993).

73 Kink bandsin fiber composites

12 Size effect and scaling of quasibrittle fracture
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begun by Rosen (1965) and Argon (1972), was urinear regression of the,,,,, data. The value of ¢

til recently treated by the theory of plasticity, whichis in the order of meters (which can be explained
implies no size effect. Recent experimental and théy inhomogeneities such as brine pockets and chan-
oretical studies (see Budianski et al. 1997), howeverels, as well as preexisting thermal cracks, bottom
revealed that the kink band propagates side-way likeughness of the plate, warm and cold spots due to
a crack and the stress on the flanks of the band getisernating snow drifts, etc.). Information on the size
reduced to a certain residual value, which is here deffect in sea ice can also be extractic from acoustic
noted assy and can be estimated by the classicaheasurements (Li and BaZant, 1998).

plasticity approach of Budianski (1983). The crack-

like behavior implies a size effect, which is demonﬂo;ﬁ]p'd (I:;)tc()almbge::ji;he rﬁ‘:}cr;'z:gnlgrroguecr?o? Lhe'io
strated by the latest Bazant et al. ’s (1999) laborator 9p 9 'arg gn
ause fracture. According to plasticity or elasticity

tests of notched carbon-PEEK specimens (Fig. 4] o " .
these tests also demonstrated the possibility ofa s a'—t h a strength limit, the critical temperature differ-

ble growth of a long kink band, which was achieve dgﬁfﬁfT CTa?gr&?il::eesgatig?:ﬁ?ehsxgl bsislniir\:\in-
by rotational restraint at the ends). P ' ysis,

) i ever, indicated a quasibrittle size effect. Curiously,
There are again two types of size effect, depenqé asymptotic form is noAT,, o« D~1/2 but
ing on whethet, ,,, is reached (i) when the FPZ of «

the kink band is attached to a smooth surface or (ii)

or when there exists either a notch or a long segment

of kink band in which the stress has been reduced to AT, « D3/3 (24)

oy. Formulae (14) and (15), respectively, approxi-

mately describe the size effects for these two basic

cases; in this cas€&'y now plays the role of frac-

ture energy of the kink band (area below the stresggazant 1992). The reason is tHatis not a charac-

contraction curve of the kink band and abovedhe  teristic dimension in the plane of the boundary value

value), andc; the role of the FPZ size of the kink proplem of plate bending; rather it is the flexural

band, which is assumed to be approximately coRgavelength of a plate on elastic foundation, which

stant, governed by material properties. is proportional taD?3/* rather thanD. It seems that
The aforementioned carbon-PEEK tests also co(?4) may explain why long cracks of length 10 to

firm that case (ii), in which a long kink band grows100 km, which suddenly form in the fall in the Arc-

stably prior toP,,,., is possible (in those test, thistic ice cover, often run through thick ice floes and do

is by virtue of a lateral shift of compression resulnot follow the thinly refrozen water leads around the

tant in wide notched prismatic specimens with endioes.

restrained against rotation).
g ) In analyzing the vertical penetration of float-

. . . ing ice plate (load capacity for heavy objects on
7.4 Sizeeffectsin seaiceand snow ice, or the maximum forc@ required for penetra-

Normal laboratory specimens of sea ice exhibﬂondf_rom bekI)(w), one mL;]St tzlikehinto e;}ccount ;hzt
no notch sensitivity. Therefore, failure of sea ice€Nding cracks are reach only through part of the

has been thought to be well described by pIastf@iCkness' their ligaments transmitting compressive

limit analysis, which exhibits no size effect (e_g_forces, which produces a dome effect. Because

Sodhi 1995, Kerr 1996). This perception, howevef?t ma>_<imum load that_ pa_rt—throu_gh ben_ding i
changed drastically after Dempsey carried out ikPf varlab_le dgpth prof|'|e) IS gro;/vmg vertlcallg,/;he
1993 on the Arctic Ocean size effect tests of roatinEﬁSymptOtIC size effect is ndi/f/z Zonyx D
notched square specimens with an unprecedentég €PYan 1990) bury oc D~1/%. This was deter-

record-breaking size range (with square sides ran ined by a simplified analytical solution (with a uni-
ing from 0.5 m to 80 m!) (see Dempsey et al. 199540 crack depth) by Dempsey et al. (1995b), and
1999, Mulmule et al. 1995). confirmed by a detailed numerical solution with a

variable crack depth profile (Bazant and Kim 1998).

It is now clear that floating sea ice plates are qua- : -
- o he latter also led, to an approximate prediction for-
sibrittle and their size effect on the scale of 10 : ! L
mula for the entire practical range @f, which is

ge?r?pstga’zhrisa'g]raet:xOfel;iEnFe,\r/:'.ta?rrg:ﬁ g:(hT;i:;r;?r?m the type of (11) withyy = 0. This formula was
psey J P Xpia hown to agree with the existing field test (Franken-

the measured forces exerted by moving ice on Qi o

) . ..~ stein 1963, 1966; Lichtenberger et al. 1974).

fixed oil platform are one to two orders of magnitude

smaller than the predictions of plastic limit analysis Analytical solutions of size effect in sea ice were

based on the laboratory strength of ice. The size gifesented by BaZant (2002b) and BaZant and Guo

fect law in (11) withor = 0, or in (14) (withoy (2002). Recent analysis (BaZant, Zi and McClung

= 0), agrees with these results well, permitting th2003) also revealed a significant size effect in the

values ofGG; andcy of sea ice to be extracted bytriggering of dry slab snow avalanches.
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7.5 Influence of crack separation rate, effect and localization only within a narrow range of
creep and viscosity time delays and rates, but not generally.

There are two mechanisms in which the Ioading7 6 Envi tal infl .
rate affects fracture growth: (i) creep of the mate-"* nvironmen Influences on size

rial outside the FPZ, and (ii) rate dependence of the effect
severance of material bonds in the FPZ. The latter

. Drying and temperature changes are known to
may be modeled as a rate process controlled by acti- .
; . } roduce very large stresses and damage in concrete.
vation energy, with Arrhenius type temperature dex

. 0 it is natural to expect that they could modify the
pendence. This Ier_alds toa erendence of the SOﬁeéEz'e effect curves considerably.
ing stress-separation relation of the cohesive crac i ¢ q | i
model on the rate of opening displacement. In an PfYINg of concrete produces large self-
equivalent LEFM approach, the latter is modeled b quilibrated stresses in the cross sections of concrete
considering the crack extension rate to be a pow jructures. These stresses lead to microcracking as

function of the ratio of the stress intensity factor tgVe!l @s continuous cracks, and can have a major ef-
its critical R-curve value. fect on the deformation under superimposed applied

For quasibrittle materials exhibiting creep (e.gl.oalds' But this effecthhas ahtremendf(f)us \,’a”?b'“ty'

concretes and polymer composites, but not rocks 8t 1'9€ s(,jtru_ctures, w erel the size e eCL'SdO mhos:

ceramics), the consequence of mechanism 1 (credierest, drying is a very slow process. The depth o
: e fggnetration of a drying front into a wall is roughly

duration of a sustained load, causes a decreasepé?_port'onal,to\/,z wheret is the drying time. The
the effective length of the FPZ. This in turn mean8"Ying half-time is about one year for a 15 cm slab
an increase of the brittleness number manifested Bid iNcreases in proportion to the square of thick-
a leftward shift of the size effect curve in the plot of €SS, Which means that it is about 40 years for a 1
log on versudog D, i.e. a decrease of effectivey. m th_|_ck _vvaII._ The time to closely approach moisture
For slow or long-time loading, quasibrittle structure€9uiliorium is about 20 years for a 15 cm slab and

become more brittle and exhibit a stronger size eP0C Years for a 1 m thick wall. These times and
fect (Bazant and Li 1997). moisture content distributions strongly depend on

Mechanism 2 (rate dependence of separatiome cross section shape. For thi_ck structu_res drying

causes that an increase of loading rate, or a d&eY SIOWly, creep causes a major relaxation of the

crease of sustained load duration, leads to an u ternal stresses, but has relatively little effect in
mall test specimens (which therefore show greater

ward shift of the size effect curve fowg o 5 but has . :
no effect onD,, and thus on brittleness (this mecha&ffécts of drying). Consequently, the alteration of

nism also explains an interesting recently discovereif® effect '3 Iar%e drylnr? struclzltureﬁ mqstlggnerally
phenomenon—a reversal of softening to hardenirgf €XPected to be much smaller than in laboratory

after a sudden increase of the loading rate, whiclPecimens. At the beginning of drying, the surface
cannot be explained by creep). layer of load-free specimens is in tension and un-

So far all our discussions dealt with statics. In dygergoes microcracking, but in a late stage of drying

namic problems, any type of viscosityof the ma- the s_urface_ layer goes ir_1to com_pre_ssion w_hile the
terial (present in models for creep, viscoelasticity of°"e 1 subjected to tension, which is explained by
viscoplasticity) implies a characteristic length. InCreep andthe irreversibilty of crack opening. Cyclic

deed, since) has the dimension of stress over Straiﬁnvironment affects only the surface layer of thick
rate, i.e., kg / m s, and the Young's modulEiand structures. Temperature changes have similar effects

mass density have dimensiongZ] = kg/m ¢ and and, especially when simultaneous with drying, fur-
(o] = kg / m?, the material length associated witH"e" complicate the behavior.

viscosity is given by Thanks to developmen.t of realistic mo_dgls for
drying and thermal effects in concrete and finite ele-
n E ment computational approaches (Roelfstra, Sadouki

b, = E: V= (25)  and Wittmann, 1985; Bazant and Chern, 1985;

Bazant and Xi, 1994; Coussy, 1995; Lewis and
wherev = longitudinal wave speed. ConsequentlySchrefler, 1998; Hellmich, Ulm and Mang, 1999;
any rate dependence in the constitutive law implieBorrenti et al., 1999; Sadouki and Wittmann, 2001,
a size effect. There is, however, an important difAcker 2001; BaZant, Cusatis and Cedolin, 2003),
ference. Unlike the size effect associated wiglor the effects of drying and wetting can nowadays be
cy, the viscosity-induced size effect (as well as theimulated numerically quite well. Coupling the dry-
width of damage localization zones) is not time ining and thermal effects with the computational mod-
dependent. It varies with the rates of loading and deils for tensile and compressive fracturing and failure
formation of the structure and vanishes as the ratasalysis (e.g., inthe manner of BaZzant and Xi 1994),
drop to zero. For this reason, an artificial viscosityhe designers of sensitive special structures have to-
or rate effect can approximate the nonviscous sizkay the means for calculating the failure loads of
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structures subjected to drying and thermal effects. plot of the logarithm of the crack length increment
this way, using state-of-art material models and hayper cycle versus the amplitude of the stress intensity
ing adequate information on the hygrothermal matdactor in logarithmic scale is a rising straight line.
rial properties, one can realistically predict the mod-or quasibrittle material it turns out that a size in-
ification of size effect under these influences. Farrease causes this straight line to shift to the right,
instance, Planas and Elices (1992, 1993) evaluattite shift being derivable from the size effect law in
numerically the size effect on the modulus of rupturél 1) ([BP] Sec. 11.7).

and showed that it strongly depends on the shrinkage

strains induced by drying. 7.8 Sizeeffect for cohesive crack model

and crack band model

7 log G (MPa) The cohesive crack model (called by Hillerborg

5 %‘gﬁﬂfiﬁs etal., 1976, and Petersson, 1981, the fictitious crack
senes model) is more accurate yet less simple than the
equivalent LEFM. It is based of the hypothesis that
there exists a unique decreasing functioe: g,,(o)
relating the crack opening displacemen{separa-
a tion of crack faces) to the crack bridging stresm
' the FPZ. The obvious way to determine the size ef-
(] - fect is to solveP,,,, by numerical integration for
step-by-step loading (Petersson 1981).
The size effect plot, however, can be solved di-
0.1 : . : rectly if one inverts the problem, searching the size
‘15 20 25 3.0 3.5 D forwhich a given relative crack length= a/D
log D (mm)  corresponds t&y... This leads to the equations (Li
and Bazant 1996):

Fig. 7 — Effect of drying conditions on nominal tensile strength

ool L

o v -

YY)

[e%

of concrete (after van Vliet and van Mier, 2000). D coo (f E') /U(fl) df’ _ g' [U(f)] v(f)
" (26)
The fact that the influence of drying can be large P Jo v(€) de 27)

is documer_lted by recent exqellent tests of van Vliet D ftjo CoP (&) v(€) dE
and van Mier (1999, 2000) in Delft, the results of
which are reproduced in Fig. 7. As one can sedvhere the first represents an eigenvalue problem for
drying can even reverse the size effect in small ted homogeneous Fredholm integral equation, with
cylinders subjected to drying for a certain period of? a@s the eigenvalue and(¢) as the eigenfunc-
time. However, very different results must be extion; ¢ = z/D, z = coordinate along the crack
pected for specimens tested to failure at differedfig- 8); @ = a/D, ag = ao/D; a,a0 = total
times of the drying process, for different specimeﬁraCk length and traction-free crack length (or notch
sizes and shapes, different environmental humiditié&ngth);C”° (¢, ¢"), €77 (€) = compliance functions
and histories. of structure for crack surface force and given load
In view of the great number of factors govern£ v(§) has the meaning of the derivative(d) /d¢;
ing these environmental effects, searching for a siff.x = 99w/do is the inverse slope of the stress-
ple formula that takes the environmental influence¥eparation curve. When this slope is considered con-
into account is doubtless futile. Detailed predicStant (which is the case of linear softening, suffi-
tions will always depend on computer simulationsCi€nt for most applications), the eigenvalue problem
But one observation is pertinent: The size effect if$ inéar, but when the slope is considered variable,
very large structures will usually be affected by drythe eigenvalue problem is nonlinear, in which case
ing much less than small laboratory specimens sinflgnay be solved |terat|vc_aly. In the first iteration, the
their cores do not suffer drying for the entire life-9. values atall crack points are assumed to be equal
time. In these cases of main interest, the simpl@ the initial slope of the stress separation curve,
size effect laws calibrated on specimens that hayglich makes the eigenvalue problem in (26) linear

not suffered drying may be expected to give reasond directly solvable. After calculating nei and
able predictions . Ppqz, ONe must obtaia for each crack point, from

which one can evaluate new sloglg for each point.
h All ¢!, values being fixed, the new eigenvalue prob-
lem in (26) is again linear and the procedure may be
Cracks slowly grow under fatigue (repeatediterated. For detailed explanation, see Zi and BaZant
loading. This is for metals and ceramics describe@003) who also give generalization for a softening
the Paris (or Paris-Erdogan) law, which states th&w terminating with a finite residual stress (used for

7.7 Sizeeffect in fatigue crack growt
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simulating kink bands in fiber composites, Bazant ehatters only when the cracking is not localized but
al. 1999). distributed (e.g. due to the effect of dense and strong

These results have also been extended to obtanough reinforcement), and it governs the spacings
directly the load and displacement correspondingf parallel cracks. Their spacing cannot be unam-
on the load-deflection curve, to a point with anybiguously captured by the cohesive crack model.
given tangential stiffness, including the displace-

ment at the snapback point which characterizes th? 9 Sizeeffect vianonlocal, gradient or
ductility of the structure. .discrete dement models '

The hypostatic feature of any model capable of
bridging the power law size effects of plasticity and
LEFM is the presence of some characteristic length,
£. In the equivalent LEFM associated with the size
effectlaw in (11) ¢ serves as a characteristic length
of the material, although this length can equivalently
L be identified withd 7o p in Wells-Cottrell or Jeng-
Shah models, or with the crack opening at which
the stress in the cohesive crack model (or crack band
model) is reduced to zero (for size effect analysis
| with the cohesive crack model, see [BP] and BaZant
Y and Li 1995).

Fig. 8 — Cohesive crack and distribution of crack-bridging In the integral-type nonloca! Conltlnuum damage
stresses. models,/ represents the effective size of the repre-

sentative volume of the material, which in turn plays
the role of the effective size of the averaging domain
The cohesive crack model possesses at least ofgenonlocal material models. In the second-gradient

but for concrete typically two, independent charachonlocal damage models, which may be derived as
teristic lengths:¢y = EGr /o5 and{, = EGy/og  an approximation of the integral-type nonlocal dam-
whereG r = area under the entire softening stressgge models, a material length is involved in a rela-
displacement curve = f(w), andG; = area un- tjon combining the strain with its Laplacian. In dam-
der the initial tangent to this curve, which is equal t@ge simulation by the discrete element (or random
G only if the curve is simplified as linear (typically particle) models, the material length is represented
Gr ~ 2.5Gy). The bilinear stress-displacemenpy the statistical average of particle size.
law used for c_oncre_te involves fu_rther_parameters The existence of in these models engenders a
of the length d|men_S|on—the opening d|splaqeme asibrittle size effect that bridges the power-law
wy whenthe stress is reduced to zero at the displacg: . ofrects of plasticity and LEFM and follows
m_ent at the change of slope, but their values are i losely equation (11) witlry = 0, as documented
plied byG s, Gr, oo and the stress at the change y numerous finite element simulations. It also

slope. poses a lower bound on the energy dissipation dur-

The scatter of size effect measurements W'thmiﬂg failure, prevents spurious excessive localization

practlcab_le_ siz€ range (up to 1:30) normally 0.'°‘?8f softening continuum damage, and eliminates spu-
not permit identifying more than one characteristi ious mesh sensitivity ([BP], ch. 13)

length (measurements of postpeak behavior are used ) ] ) )
for that purpose). Vice versa, when only the maxi- These important subjects will not be discussed

mum loads of structures in the bridging region pehere any further because there exist recent extensive

tween plasticity and LEFM are of interest, hardly€Views (Bazant 1999, Bazant and Jirasek 2002).
more than one characteristic length (name}y is
needed. 7.10 Nonlocal statistical generalization
The crack band model, which is easier to imple-  of Weibull theory
ment is used in commercial codes (e.g. DIANA,
SBETA, Cervenka and Pukl 1994), is for localized Two cases need to be distinguished: (a) The front
cracking or fracture, nearly equivalent to the coheaf the fracture that causes failure can be at only one
sive crack model ([BP], Planas et al. 1993), proplace in the structure, or (b) the front can lie, with
vided that the effective (average) transverse ineladiferent probabilities, at many different places. The
tic strain in the crack band is taken ag = w/h former case occurs when a long crack whose path
whereh is the width of the band. All that has beenis dictated by fracture mechanics grows before the
said about the cohesive crack model also applies teaximum load, or if a notch is cut in a test spec-
the crack band model. Width, of course, repre- imen. The latter case occurs when the maximum
sents an additional characteristic length,= h, It load is achieved at the initiation of fracture growth.
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In both cases, the existence of a large FPZ calBase (b):
for a modification of Weibull concept: The failure 1/
probability P; at a given point of the continuous on = oo(M/™ (1 + r(lf”"d/m) (30)
structure depends not on the local stress at that point, B
but on the nonlocal strain, which is calculated as the ¢ = D/D (31)
average of the local strains within the neighborhoog@here it is assumed that; < m, which is nor-
of the point constituting the representative volumgnally the case.
of the material. The nonlocal approach broadens the The first formula, which was obtained for= 1
applicability of Weibull concept to the case notchepy Bazant and Xi (1991) and refined far# 1 by
or long cracks, for which the existence of crack-tipp|anas, has the property that the statistical influence
singularity causes the classical Weibull probabilityn the size effect disappears asymptotically for large
integral to diverge at realistiz:-values (in cleavage p. The reason is that, for long cracks or notches
fracture of metals, the problem of crack singularityyith stress singularity, a significant contribution to
has been circumvented differently—by dividing thehe Weibull probability integral comes only from the
crack-tip plastic zone into small elements and superpz, whose size does not vary much with The
posing their Weibull contributions; Lei et al. 1998).second formula has the property that the statistical
influence asymptotically disappears for small sizes.
The reason is that the FPZ occupies much of the
structure volume.

Numerical analyses of test data for concrete show
that the size ranges in which the statistical influence
on the size effect in case (a) as well as (b) would
be significant do not lie within the range of practical
interest. Thus, the deterministic size effect domi-
nates and its statistical correction in (28) and (30)
may be ignored for concrete, except in the rare sit-
uations where the deterministic size effect vanishes,
which occurs rarely (e.g., for centric tension of an
unreinforced bar).

3
=)

g ay

7.11 Other types of size effect

Aside from the statistical and quasibrittle size ef-
fects, there are further types of size effect that influ-
ence nominal strength:

1. The boundary layer effect, which is due to
material heterogeneity (i.e., the fact that the
surface layer of heterogeneous material such

— as concrete has a different composition be-

b g D cause the aggregates cannot protrude through

i ) . o the surface), and to Poisson effect (i.e., the
Fig. 9 — Scaling laws according to nonlocal generalization of

Weibull theory for failures after long stable crack growth (a) or fact that a plane strain S.tat? on planes paral-
at crack initiation (b). lel to the surface can exist in the core of the

test specimen but not at its surface).

2. The existence of a three-dimensional stress
singularity at the intersection of crack edge
with a surface, which is also caused by the
Poisson effect ([BP], Sec. 1.3). This causes
the portion of the FPZ near the surface to be-
have differently from that in the interior.

Using the nonlocal Weibull theory (Bazant and Xi
1991, Bazant and Novak 2000a, 2000b, 2000c), one
can show that the proper statistical generalizations
of (11) (with o = 0) and (13) having the correct
asymptotic forms foD — oo, D — 0 andm — oo

are (Fig. 9):
Size effect is also observed in delamination frac-
Case (a): ture that occurs in the interface between concrete
and fiber-reinforced plastic (FRP) laminates used
on = Boy (62rnd/m +Br)‘1/2’" (28) in the repair and strgngthening of _concrete strug-
tures. When FRP laminates are subjected to tension
B = D/Dy (29) (as in Fig. 10), the interface can fail under shear

due to Mode Il fracture. Considering tests on dif-
ferent widths of FRP laminates with unidirectional
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0.117 mm thick carbon fibers bonded over a lengtregarding the fractal size effect, there is no consen-
L, = 100 mm and with an (unbonded) interfacialsus yet. There are two schools of thought regarding
defect of lengthl.,, = 40 mm, the failure load per the explanation of size effect by means of the frac-
unit width decreases with increase in the width, asility of crack surface or microcrack distributions —
seen in the plot. This Weibull-type size effect detemne positive, one skeptical.
mines the minimum width of the laminate that can Carpinteri (1994a) explored the possibility of
be used in the laboratory characterization for obtaimandling mechanical quantities in fractal bodies by
ing the design strength (dos Santos et al., 2001). means of renormalization group transformations.
The purpose was to extract macroscopic models
from microscopic phenomena and to obtain the uni-
versal, i.e. scale-invariant, properties. In the fractal
theory, the scale-independent mechanical quantities
have noninteger physical dimensions. Energy dis-
sipation during the fracture process is supposed to
occur in an invasive fractal domain which is inter-
mediate between a surface (LEFM hypothesis) and
a volume (plasticity hypothesis). At the same time,
the strength is defined with respect to a lacunar frac-
Fig. 10— Size effect in interfacial fracture (after dos Santos dafal domain with fractal dimension lower than 2.

al., 2001). A possible role of fractality in size effects of sea
ice was discussed by Bhat (1990). The fractal na-
ture of crack surfaces and of the distribution of pores

An important size effect is exhibited by failure of . . N
. and microcracks in concrete and other quasibrittle
concrete columns (Bazant and Kwon 1994, Brocca

< materials has been advanced as the physical origin
and Bazant 2002, BaZant 2002a, Burtscher2002).0f the size effects observed in concrete structures

(Carpinteri 1994ab, Carpinteri, Chiaia and Ferro
8 FRACTAL EXPLANATION OF 1994, Carpinteriand Chiaia 1995). Results of uniax-
SIZE EFFECTS ial tensile tests on dog-bone shaped specimens (van

Vliet and van Mier 1999, 2000, Carpinteri and Ferro

Mechanical quantities are normally referred to1993)suggest that the parameters characterizing the

Euclidean geometrical entities and have integtg"IOheswe law (tensile strength., critical crack open-
physical dimensions. For instance, the stress is opd and fracture energy) are size-dependent, which

tained as the internal force intensity per unit area aryg ot taken into accqunt by the 0”9'”?" Hllle_rborg
has the dimension of Nii?. For fractured or porous model. The assumption that energy dissipation oc-

media, this nominal stress may not reflect the agyrs in a fractal band suggests a power-type scaling

tual internal forces acting in the material microstrucg,f the parameters of the cohesive law. However, this

ture. In damage mechanics, it is common to defiriMP!€ scaling cannot be valid on the large scale, be-
the effective stress as the internal force intensity pgpuse Lhe szlf—gmllagny;])f th_e mm;rohstrlljcture has an
unitundamaged area. Traditionally, the area that cijpper bound given by the size 0 the argest_ r_nat(_e-
still transmit stress is understood in the sense of E[|3! heterogeneities. The order-disorder transition is
clidean geometry, interpreted in the form of the so-called Multifractal

Recently it has been suggested to model a poroSaling Laws (MFSL). For fracture energy (Carpin-
fracturing material as a fractal object with a self-ter! and_ C_h'a'a 1996) and tensile strength (Carpin-
similar or self-affine microstructure (Goldshteinte”’ Ch|a|§ and Ferro 1995), such laws have been
and Mosolov 1992, Mosolov and Borodich 1992!oroposed in the form
Carpinteri 1994a). If this point of view is accepted,

CHRP ksninas

it width (Nimm)

maximum load per ur

40 &
width of lamina (mm)

—1/2
the effective area in the traditional sense depends on Gr(b) = G¥ <1 + lm_f) ! (32)
the scale of observation and its Euclidean measure b
tends to zero as the scale is refined. Consequently, Lnf 1/2
the effective stress becomes scale-dependentas well. ou(d) = fi (1 + T) (33)

The same holds for other mechanical quantities such

as the mass density or the internal energy densiyhereGr is the fracture energys,, is the tensile

(per unit volume of the bulk material, with the ex-strength,G%® and f; are the asymptotic values of

clusion of pores). Gr ando, attained in the limit of an infinite size,
The fact that the crack surfaces and microcradk, is an internal length of the material, abds the

distributions can be described within a certain ranggcale of observation. These scaling laws are shown

of scales as fractals is generally accepted. However,Fig. 11.
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Fig. 11 — Multifractal Scaling Laws for fracture energy and tensile strength.

The dimensionless term in the parentheses, whiSEL formula (11) withcg = 0. The fracture ex-
is controlled by the ratio between the characteristiglanation of eq. (33) has the advantage that the de-
material length scale and the scale of observatiopendence of the parametefs and/,,; on the ge-
reflects the influence of disorder on the mechanicametry can be evaluated. After a wide investigation
quantity measured at scabe The transition from of the existing experimental data, Carpinteri, Chiaia
the fractal regime to the Euclidean one takes pla@nd Ferro (1997, 1998) concluded that the MFSL for
around point@) at whichb = [,,;. The internal strength (eq. 33) approximates well the behavior of
lengthi,,; should be related to some characteriginnotched structures (e.g. predicts their asymptotic
tic size of the microstructure, for example, in thdinite strength), whereas formula (11) witty = 0
case of concrete, to the maximum aggregate sizapplies to structures with large notches or with large
dmaez- The internal length parameter becomes instable crack growth prior to collapse.

portant when the scaling behavior of two different The MFSL for fracture energy has been applied
materials is compared. For instance, in the case 0f@ many experimental results, and seems to agree
finer grained mixture, the MFSL should be shifted Qe \vel| with these data. Trends similar to those

the left with respect to the case of ordinary Concret‘ﬁredicted by (32) can also be captured by other the-
due to the lower value . ories, for instance, by the theory of the local fracture
energy influenced by boundary effects (Wittmann

2001). The invasive domain of energy dissipation

might not be restricted to the surface, but might

Interestingly, BaZant (1998) demonstrated tha&llso be able to spread into a network of microcracks

eq. (33) can be obtained as a special case of fégarpinteri, Chiaia and Nemati 1997). Moreover,

mula (13), which follows from fracture mechanicsfractality of the final fracture surface was used to

with # = 2. His derivation is based on consideringeXplai,n R—gurve bghgvior in quasi-brittle materials
in the asymptotic power expansion, both the secorirarpinteri and Chiaia 1996).

and the third term, since the first term is practically Bazant, Gettu, Jirdsek, Planas and Xi are skep-
zero in the absence of a macroscopic notch. Instedital about the foregoing arguments and formula-
when large stable crack growth occurs before faitions. They raise the following criticisms: 1) Frac-
ure, or when a macroscopic notch scaled propotality could come only as a generalization, but not
tionally to the size of the structure is present, era replacement, of the energetic and statistical size
ergy release becomes predominant and the first tegfiects of large cracks and large FPZ, which are un-
in the power expansion prevails, yielding Bazant'sleniable. 2) The fractal concept would be of little
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use as it does not provide the structure geometry dergon, A.S. (1972). “Fracture of compositesiteatise
pendence of size effect coefficients. 3) The argu- of Materials Science and Technology, Vol. 1, p. 79,
ment for MFSL implies a series of hypotheses but Academic Press, New York.

no mathematical derivations from them. 4) The diBarenblatt, G.I. (1959). “The formation of equilibrium
mensional analysis argument for fractal size effect cracks during brittle fracture. General ideas and hy-
is inconclusive and inconsistent, although the renor- pothesis, axially symmetric cracks.Prikl. Mat.
malization group has been invoked. 5) The exponent Mekh. 23(3), 434-444.

of (33), taken as = 1/2 but not proven, cannot be Barenblatt, G.I. (1962). “The mathematical theory of
independent of the fractal dimensiérof cracking equilibrium cracks in brittle fracture”,Advanced
morphology; e.g., i — & (Euclidean dimension), ~ Appl. Mech. 7, 55-129.

doesn = 1/2 still apply even thoug must be 0 Bazant, Z.P. (1976). “Instability, ductility, and size effect
for & = 65? 6) Fractal explanations of the R-curve I strain-softening concrete.J. Engng. Mech. Div,,
and size effect o  are questionable. 7) By frac- ~ AM- Soc. Civil Engrs,, 102, EM2, 331-344; disc.
tality, a V-fold width increase of beams would have 103, 357-358, 775__777' 104’_501_502'

to cause the same size effect a&’dold depth in- Bazant, Z.P. (1984). “%lze effect in blunt f_racture: Con-
crease, but does not. 8) Fractality is observed for ‘irl%tes'lrgcg'srgftal' J. of Engng. Mechanics, ASCE,

up to 1.5 orders of magnitude of refinement, which = ’

is much less than the range important for size ef323nt Z.P. (1987). “Fracture energy of heterogeneous
fect laws. 9) The renormalization group transfor- g:;?”il:l‘:;;ﬂ:gﬁeéoigfggn;i’dssol\éllﬁlhl‘e%witﬁ
mation is insufficient since it merely gives the inter- Houéton Texas, June 1987), ed. by S.P. Shah and
section of two power laws for adjacent scales, but ' ' L .

.. . S.E. Swartz, publ. by SEM (Soc. for Exper. Mech.)
not the transition which spreads over many orders 3945_402.

of magnitude. 10) The lacunarity concept as used 'gazam’ ZP., Editor (1992). Fracture Mechanics of

at variance with the definition in mathematics (Man-  ~ . crete Sructures Proc.. First Intern.  Conf.
delbrot, 1983). 11) Although MFSL can fit the exist- (FraMCoS-1), held in Breckenridge, Colorado, June
ing modulus of rupture tests, the energetic size effect 1_5 Esevier, London (1040 pp.).

law for failure at fracture initiation fits them at leastg gyt 7.p. (1992). “Large-scale thermal bending frac-

as closely. ture of sea ice platesJ. of Geophysical Research, 97
(C11), 17,739-17,751.
Bazant, Z.P. (1993). “Scaling Laws in Mechanics of Fail-
9 CLOSING REMARKS ure.” J. of Engrg. Mech., ASCE, 119 (9), 1828-1844.
Bazant, Z.P. (1997a). “Fracturing truss model: Size effect
Substantial though the recent progress has been, in shear failure of reinforced concretel"of Engrg.
the understanding of the scaling problems of solid Mechanics ASCE 123 (12), 1276-1288.
mechanics is nevertheless far from complete. MaBazant, Z.P. (1997b). “Scaling of quasibrittle fracture:
tering the size effect that bridges different behaviors Asymptotic analysis.nt. J. of Fracture 83 (1), 19—
on adjacent scales in the microstructure of material 40.
will be contingent upon the development of realisBazant, Z.P. (1997c). “Scaling of quasibrittle fracture:
tic material models that possess a material length HYPotheses of invasive and lacunar fractality, their
(or characteristic length). The theory of nonlo- critique and Weibull connection!ht. J. of Fracture
cal continuum damage will have to move beyond v83 (1), 41-65. _ _ _
the present phenomenological approach based Bﬁza_nt, Z.P. (1998). “Size effect in tensile and compres-
isotropic spatial averaging, and take into account the S1on fracture of concrete structures: computational
directional and tensorial interactions between the ef- M°deling and de:'g” : Iﬁr;ﬁture Med;an[l:csclcl‘ Con-
fects causing nonlocality. A statistical description of (:etl\j”?;:ﬁgsj K rgf)'l‘(ui;o g(t"s C:g d.i’fic;?io ggt?hsgh
such interactions will have_ to be developed. Discrete ers, Freiburg, Germany, 1905-1922.
element models of.the mlcrOStrUCture of fracu"rm%aiant, Z.P. (1999). “Structural stabilitylhternational
or damaging matena}ls will be ngeded to shed more Journal of Solids and Structures 37, 55-67
light on the mechanics of what is actually happer’E

ing inside th terial and te the | t taiant, Z.P. (2000). “Stability of elastic, anelastic and dis-
Ing nside the ma e”a. and separate the importan integrating structures: a conspectus of main results.”
processes from the unimportant ones.
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