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Abstract

Assuming M to be a connected oriented PL 4-manifold, our main results are
the following: (1) if M is compact with (possibly empty) boundary, there exists
a simple branched covering p : M ! S4 � Int(B4

1 [ . . . [ B4
n), where the B4

i ’s are
disjoint PL 4-balls, n � 0 is the number of boundary components of M ; (2) if
M is open, there exists a simple branched covering p : M ! S4 � EndM , where
EndM is the end space of M tamely embedded in S4.

In both cases, the degree d(p) and the branching set Bp of p can be assumed to
satisfy one of these conditions: (1) d(p) = 4 and Bp is a properly self-transversally
immersed locally flat PL surface; (2) d(p) = 5 and Bp is a properly embedded lo-
cally flat PL surface. In the compact (resp. open) case, by relaxing the assumption
on the degree we can have B4 (resp. R4) as the base of the covering.

A crucial technical tool used in all the proofs is a quite delicate cobordism
lemma for coverings of S3, which also allows us to obtain a relative version of the
branched covering representation of bounded 4-manifolds, where the restriction
to the boundary is a given branched covering.

We also define the notion of branched covering between topological manifolds,
which extends the usual one in the PL category. In this setting, as an interesting
consequence of the above results, we prove that any closed oriented topological
4-manifold is a 4-fold branched covering of S4. According to almost-smoothability
of 4-manifolds, this branched covering could be wild at a single point.
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Introduction

In [12], Montesinos proved that any oriented 4-dimensional 2-handlebody is a
3-fold simple covering of B4 branched over a ribbon surface. In [18], based on this
result and on covering moves for 3-manifolds (see [17]), the first author proved that
every closed connected oriented PL 4-manifold M is a four-fold simple covering of S4

branched over an immersed locally flat PL surface, possibly having a finite number
of transversal double points. Subsequently, Iori and Piergallini [8] showed that the
double points of the branch set can be removed after stabilizing the covering with an
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extra fifth sheet, in order to get an embedded locally flat PL surface. This partially
solves Problem 4.113 (A) of Kirby’s list [9], but it is still unknown whether double
points of the branch set can be removed without stabilization.

It is then natural to ask whether such results can be generalized to arbitrary com-
pact 4-manifolds with (possibly disconnected) boundary and to open 4-manifolds.
Moreover, it is intriguing to explore what we can do in the TOP category, namely
for compact topological 4-manifolds.

The aim of the present article is to answer these questions. This can be done in
light of the results obtained by Bobtcheva and the first author in [2] (see also [1]),
about covering moves relating di↵erent branched coverings of B4 having PL home-
omorphic covering spaces.

In the PL category, we prove Theorems 1.4 and 1.5 below in the compact case,
as well as Theorems 1.6 and 1.8 in the open case. Then, by compactifying coverings,
we obtain Theorem 2.3, which provides a similar representation result for topological
4-manifolds in terms of (possibly wild) topological branched coverings, according to
Definitions 2.1 and 2.2.

These results were inspired by Guido Pollini’s PhD thesis [20], written under
the advise of the first author. We are grateful to Guido for his contribution.

A key ingredient in our arguments is the fact that, for any two d-fold simple
coverings p0, p1 : M ! S3 branched over links, with d � 4, there exists a d-fold simple
cobordism covering p : M ⇥ [0, 1] ! S3 ⇥ [0, 1] branched over a self-transversally
immersed (embedded for d � 5) locally flat PL surface, whose restrictions over
S3⇥ {0} and S3⇥ {1} coincide with p0⇥ id{0} and p1⇥ id{1}, respectively, provided
p0 and p1 are ribbon fillable, a technical condition explained in Definition 1.3.

The existence of such cobordism branched covering follows as a special case
of Theorem 1.4 and it is used in the proofs of Theorems 1.5, 1.6 and 1.8. On the
other hand, the proof of Theorem 1.4 depends on the weaker version of the above
cobordism property represented by Lemma 3.6, in which the restriction of p over
S3 ⇥ {1} is only PL equivalent but not necessarily equal to p1 ⇥ id{1}.

In [19] we use Theorem 1.4 to characterize the PL 4-manifolds that are branched
coverings of one of the following manifolds: CP 2, CP 2, S2⇥S2, S2 e⇥S2, or S3⇥S1.
Therein, we derive also representation results for submanifolds as branched coverings
of standard submanifolds of such basic 4-manifolds.

We will always adopt the PL point of view if not di↵erently stated, referring to
the book of Rourke and Sanderson [21] for the basic definitions and facts concern-
ing PL topology. However, all our results in the PL category also have a smooth
counterpart, being PL = DIFF in dimension four.

1. Definitions and results in the PL category

We recall that a branched covering M ! N between compact PL manifolds
is defined as a non-degenerate PL map that restricts to a (finite degree) ordinary
covering over the complement of a codimension two closed subpolyhedron of N .
This is the usual specialization to compact PL manifolds of the very general topo-
logical notion of branched covering introduced by Fox in his celebrated paper [5]
(see also Montesinos [15]).
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First of all, we extend the above definition to non-compact PL manifolds. In
doing so, we also remove the finiteness assumption on the degree. This will be useful
in Theorem 1.8, where we need infinitely many sheets.

Definition 1.1. We call a non-degenerate PL map p : M ! N between PL
m-manifolds with (possibly empty) boundary a d-fold branched covering, provided
the following two properties are satisfied: (1) every y 2 N has a compact connected
neighborhood C ⇢ N such that all the connected components of p�1(C) are compact;
(2) the restriction p| : M�p�1(Bp) ! N�Bp over the complement of an (m�2)-di-
mensional closed subpolyhedron Bp ⇢ N is an ordinary covering of degree d  1 .

More precisely, by Bp we denote the minimal subpolyhedron of N satisfying
property (2), which is homogeneously (m� 2)-dimensional, that is each top cell of
it has dimension m� 2. This is unique and is called the branch set of the branched
covering p. The degree d = d(p) coincides with the maximum cardinality of the fibers
p�1(y) with y 2 N and it is called the degree of the branched covering p. In fact, when
d(p) is finite, then y 2 Bp if and only if p�1(y) has cardinality less than d(p).

We remark that property (1) in the above definition implies (and, in our situ-
ation, it is equivalent to) the completeness of p in the sense of Fox [5], therefore p
is the Fox completion of its restriction p| : M � p�1(Bp) ! N (cf. Montesinos [15]).
As such, p is completely determined, up to PL homeomorphisms, by the inclusion
Bp ⇢ N and by the ordinary covering p| : M � p�1(Bp) ! N � Bp, or equivalently,
by the associated monodromy homomorphism !p : ⇡1(N � Bp) ! ⌃d(p). Finally,
p is called a simple branched covering if the monodromy !p(µ) of any meridian
µ 2 ⇡1(N � Bp) around Bp is a transposition (in general, it decomposes into dis-
joint cycles of finite order). We recall that meridians around Bp are only defined at
the locally flat points of Bp, as the loops obtained by a concatenation of the form
µ = aca�1, where c is a loop parametrizing the boundary of a small locally flat PL
disk transversal to Bp and a is a path from the base point of N � Bp to the base
point of c.

In the special case when N is simply connected, the group ⇡1(N � Bp) is gen-
erated by a suitable set of meridians, such as a Hurwitz system in dimension 2 or
a Wirtinger set of generators in dimension 3 and 4, and the monodromy can be en-
coded by labeling (a diagram of) Bp with the transpositions corresponding to these
meridians.

According to the above definitions and notations, we collect the results men-
tioned in the introduction in the following statement.

Theorem 1.2 ([18, 8]). Every closed connected oriented PL 4-manifold M can
be represented by a simple branched covering p : M ! S4, with degree d(p) and
branch set Bp ⇢ S4 satisfying one of the following conditions:

(a) d(p) = 4 and Bp is a self-transversally immersed locally flat PL surface;

(b) d(p) = 5 and Bp is an embedded locally flat PL surface.

Next theorems represent the extensions of the previous one to bounded and
open 4-manifolds, respectively, that we will prove in this paper. In order to state
and prove them, we recall the notion of ribbon surface in B4 and introduce the
ribbon fillability property for simple branched coverings of S3.
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A properly embedded PL surface S ⇢ B4 is a ribbon surface if and only if it
can be realized by pushing inside B4 the interior of a PL immersed surface S0 ⇢
S3 = @B4, whose only self-intersections consist of transversal double arcs like the
one depicted in Figure 1. Up to PL isotopy of ribbon surfaces in B4 the surface S
is uniquely determined by the surface S0, which is called the 3-dimensional diagram
of S, and in the Figures we will always draw the latter to represent the former.

Figure 1. A self-intersection arc in the diagram of a ribbon surface.

Definition 1.3. A simple branched covering p : M ! S3 is defined to be
ribbon fillable if it can be extended to a simple branched covering q : W ! B4

whose branch set Bq ⇢ B4 is a ribbon surface (which immediately implies that
M = @W , Bp = @Bq ⇢ S3 is a link, and d(p) = d(q)). For the sake of convenience,
we also call ribbon fillable any simple branched covering p : M ! S3

1 [ . . . [ S3
n

that is a disjoint union of ribbon fillable coverings.

We observe that the above definition is invariant under equivalence of p up to PL
homeomorphisms. Hence, ribbon fillability of p : M ! S3 can be expressed in terms
of the labeled branch set Bp by requiring that it is a labeled link in S3 bounding a
labeled ribbon surface in B4.

When using simple branched coverings of S3 to represent closed connected ori-
ented 3-manifolds, ribbon fillability arises quite naturally and it is not so restrictive.
In fact, it is satisfied by any branched covering representation of such a 3-manifold
derived from an integral surgery description of it by the procedure given in Mon-
tesinos [12] (cf. also Edmonds [4]) or by the more e↵ective one provided in Bobtcheva
and Piergallini [1, 2] (see Section 3 below).

Theorem 1.4. Every compact connected oriented PL 4-manifold M with n
boundary components can be represented by a simple branched covering p : M !
S4 � Int(B4

1 [ . . . [ B4
n) satisfying property (a) or (b) as in Theorem 1.2, with the

B4
i ’s pairwise disjoint standard PL 4-balls in S4 and Bp a bounded surface properly

immersed or embedded in S4 � Int(B4
1 [ . . . [ B4

n). Moreover, the restriction of p
to the boundary can be required to coincide with any given ribbon fillable simple
branched covering b : @M ! @B4

1 [ . . . [ @B4
n with d(b) = d(p).

In Theorem 1.4, if the boundary is connected and non-empty, that is n = 1,
we have a simple branched covering p : M ! B4. By relaxing the constraint on the
degree, we can always require that the base of the covering be B4, even if M has
more than one boundary component.

Theorem 1.5. Every compact connected oriented PL 4-manifold M with
n � 2 boundary components is a 3n-fold simple covering of B4 branched over a
properly embedded locally flat PL surface in B4. Moreover, the restriction of the
covering to the boundary can be required to coincide with any given 3n-fold ribbon
fillable simple branched covering of S3.
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For a non-compact manifold M , we denote by EndM the end space of M , that
is the inverse limit of the inclusion system of component spaces C(M �K) with K
varying on the compact subspaces K ⇢ M (see Freudenthal [6]). Since EndM is a
compact totally disconnected metrizable space, possibly containing a Cantor set, it
can be embedded in R.

Theorem 1.6. Every open connected oriented PL 4-manifold M can be repre-
sented by a simple branched covering p : M ! S4�EndM satisfying property (a) or
(b) as in Theorem 1.2, with EndM embedded in S4 as a tame totally disconnected
subspace (in particular, we can have EndM ⇢ S1 ⇢ S4) and Bp an unbounded
surface properly immersed or embedded in S4 � EndM .

In the special case when M has only one end, that is EndM consists of a
single point, then Theorem 1.6 tells us that M is a simple branched covering of R4.
As a direct consequence we have the following corollary.

Corollary 1.7. For every exotic R4
ex there is a simple branched covering

p : R4
ex ! R4 to the standard R4, satisfying property (a) or (b) as in Theorem 1.2.

In the same spirit of Theorem 1.5, we have a similar result for open 4-manifolds.
Namely, by relaxing the constraint on the degree as above, we can always require
that the base of the covering is R4, even if M has more than one end.

Theorem 1.8. Every open connected oriented PL 4-manifold M with more
than one end is a 3n-fold simple covering of R4 branched over a properly embedded
locally flat PL surface in R4, with n = min{@0, |EndM |}.

The theorems above can be combined in various ways, by including in a single
statement di↵erent points of view. In particular, we limit ourselves to consider next
Theorems 1.9 and 1.10 below. The former includes Theorems 1.4 and 1.6, while the
latter includes Theorems 1.4 and 1.5, as well as Lemma 3.6 stated in Section 3. The
proofs of these new theorems are nothing else than combinations of the proofs of
the constituent ones, so we leave them to the reader.

Theorem 1.9. For every connected oriented PL 4-manifold M with (possibly
empty) compact boundary, there exists a simple branched covering p : M ! S4 �
Int(B4

1 [ . . .[B4
n)�EndM satisfying property (a) or (b) as in Theorem 1.2, where

the B4
i ’s are pairwise disjoint locally flat PL 4-balls in S4, n � 0 is the number of

boundary components of M , and EndM is the (possibly empty) end space of M
tamely embedded in S4 � Int(B4

1 [ . . . [B4
n).

Theorem 1.10. Let M be a compact connected oriented PL 4-manifold with
boundary and b : @M ! S3

1 [ . . . [ S3
k be a d-fold ribbon fillable simple branched

covering over a disjoint union of 3-spheres, with k � 1 and d � 4 (resp. d � 5). Then b
can be extended to a d-fold simple branched covering p : M ! S4�Int(B4

1[. . .[B4
k),

whose branch set Bp is a properly self-transversally immersed (resp. a properly
embedded) locally flat PL surface.

2. Branched coverings in the TOP category

In order to deal with topological 4-manifolds, we need a more general notion
of branched covering, not requiring PL structures and admitting a possibly wild
branch set.
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Definition 2.1. We call a continuous map p : M ! N between topological
m-manifolds with (possibly empty) boundary a tame topological branched covering
if it is locally modeled on PL branched coverings, meaning that for every y 2 N
there exists a local chart V of N at y and pairwise disjoint local charts Ui of M at
all the xi 2 p�1(y), such that p�1(V ) = U = [iUi and p| : U ! V is a PL branched
covering.

The local chart V in the above definition can be replaced by an m-ball C cen-
tered at y such that p�1(C) = [iCi is the union of pairwise disjoint m-balls, each
Ci being centered at a point xi of p�1(y) and each restriction p| : Ci ! C being
topologically equivalent to the cone of a PL branched covering Sm�1 ! Sm�1.
Using this local conical structure, one could also define the notion of topological
branched covering by induction on the dimension m, starting with ordinary cover-
ings for m = 1.

As an immediate consequence of the existence of the local models, a tame topo-
logical branched covering p is a discrete open map. Furthermore, the union of all
the branch sets of the local restrictions over charts V as in the definition is an
(m� 2)-dimensional (locally tame) subspace Bp ⇢ N , which we call the branch set
of p, and the restriction p| : M�p�1(Bp) ! N�Bp over the complement of Bp is an
ordinary covering of degree d(p)  1, which we call the degree of p. So, p satisfies
property (2) as in Definition 1.1, but with Bp being a polyhedron only locally.

On the other hand, p turns out to be complete, satisfying the condition (1) as
in Definition 1.1, hence it is the Fox completion of p| : M � p�1(Bp) ! N (cf. Fox
[5] or Montesinos [15]). Thus, like in the PL case, p is completely determined, up to
homeomorphisms, by the inclusion Bp ⇢ N and by the monodromy homomorphism
!p : ⇡1(N�Bp) ! ⌃d(p). Moreover, it still makes sense to speak of meridians around
Bp (based on the PL structure of local models, the same notion of meridian recalled
at page 3 after Definition 1.1 still works here), and to call p simple if the monodromy
of each meridian is a transposition.

Definition 2.2. We call a continuous map q : M ! N between topological m-
manifolds with (possibly empty) boundary a wild topological branched covering if it
is discrete and open, q�1(@N) = @M , and the following two conditions hold: (1) every
y 2 N has a compact connected neighborhood C ⇢ N such that all the connected
components of q�1(C) are compact; (2) the restriction p = q| : M � q�1(Wq) !
N �Wq over the complement of a closed nowhere dense subspace Wq ⇢ N is a tame
topological branched covering.

We always assume Wq to be minimal with the property required in the above
definition, and call it the wild set of q. Of course q is actually wild only if Wq 6= 6O,
otherwise it is a tame topological branched covering.

For a wild topological branched covering q : M ! N , with p its tame restriction
as in the definition, we call Bq = Wq [ Bp the branch set of q and d(q) = d(p)
the degree of q. By the minimality of Wq and Bp, we have Bq = q(Sq), with
Sq ⇢ M denoting the singular set of q, that is the set of points of M where q
is not a local homeomorphism. Then, Theorem 2 of Church [3] applies to give the
following estimate for the Lebesgue covering dimension: dimSq = dimBq  m� 2.
This easily implies that dim q�1(Bq)  m � 2 as well. Therefore, N � Bq and
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M � q�1(Bq) are dense and locally connected in N and M , respectively, and so we
can conclude that q is the Fox completion of the restriction q| : M � q�1(Bq) ! N .
Since q| : M � q�1(Bq) ! N � Bq is an ordinary covering, q is a branched covering
in the sense of Fox [5] (for M connected) and Montesinos [15], and it is complete-
ly determined, up to topological equivalence, by the inclusion Bq ⇢ N and the
monodromy !q = !p : ⇡1(N �Bq) ! ⌃d(q).

In the special case when M and N are compact and dimWq = 0, according to
Montesinos in [14, Theorem 2], the Fox compactification theorem [5, pag. 249] can be
generalized to see that q is actually the Freudenthal end compactification (see [6]) of
its restriction p over N �Wq. In particular, M and N are the end compactifications
of M � q�1(Wq) and N �Wq, respectively, hence q�1(Wq) 5 End(M � q�1(Wq)) and
Wq 5 End(N �Wq).

In light of the above definitions and recalling that any open 4-manifold admits
a PL structure (is smoothable) by a theorem of Lashof [10] (see also Freedman and
Quinn [7]), we can state our third theorem about the branched covering representa-
tion of topological 4-manifolds.

Theorem 2.3. Every closed connected oriented topological 4-manifold M can
be represented by a topological branched covering q : M ! S4, which is the one-point
compactification of a simple PL branched covering of R4 satisfying property (a) or
(b) as in Theorem 1.2. Then, the branch set Bq is the one-point compactification of
a surface in R4 and the wild set Wq consists of at most a single point.

3. Proofs

Our starting point is the branched covering representation of compact connect-
ed oriented 4-dimensional 2-handlebodies up to 2-deformations that is provided in
Bobtcheva and Piergallini [1, 2]. As usual, here and in the following, we call a 2-
handlebody any handlebody whose handles all have index  2, and a 2-deformation
any sequence of handle operations (isotopy, sliding and addition/deletion of cancel-
ing handles) not involving any handle of index > 2.

Below we briefly recall the procedure described in [1, Section 3] (see also [2,
Sections 6.1 and 3.4]), for deriving from any Kirby diagram K of a connected oriented
4-dimensional 2-handlebody H a labeled ribbon surface SK ⇢ B4 representing a
simple 3-fold covering p : H ! B4 branched over SK .

Let K ⇢ R3 5 S3 � {1} be any Kirby diagram of an oriented 4-dimensional
2-handlebody H 5 H0 [ H1

1 [ . . . [ H1
m [ H2

1 [ . . . [ H2
n with a single 0-handle

H0, 1-handles H1
i and 2-handles H2

j . Denote by B1, . . . , Bm ⇢ R3 the disjoint
disks spanned by the dotted unknots of K representing the 1-handles and by
L1, . . . , Ln ⇢ R3 the framed components of K representing the attaching maps
of the 2-handles. Then, the labeled ribbon surface SK ⇢ R4

+ 5 B4 � {1} can be
constructed as follows (look at Figure 2, where a simple Kirby diagram K and the
corresponding labeled ribbon surface SK are drawn, respectively on the left and on
the right side).

Procedure 3.1 (Construction of SK).

1) Choose a trivializing set of crossings in the diagram of the framed link L =
L1[ . . .[Ln (the asterisked ones in Figure 2); denote by L0 = L0

1[ . . .[L0
n ⇢ R3
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3 2

B1
B1

B0

B2

C1

C2

L1
L2

1
2

B′
1

B2

B′
2

A
A1

1

1

0A

α 2α

β 2β
γ 2γ

(1 2)

(2 3)

Figure 2. A Kirby diagram K and the labeled ribbon surface SK .

the trivial link obtained by inverting those crossings, and by D1, . . . , Dn ⇢ R3

a family of disjoint disks spanned by L0
1, . . . , L

0
n, respectively;

2) let A1, . . . , An ⇢ R3 be a family of disjoint (possibly non-orientable) narrow
closed bands, each Aj having L0

j as the core and representing half the framing
that L0

j inherits from Lj (by parallel transport at the crossing changes);

3) let B0
1, . . . , B

0
m ⇢ R3 be a family of disjoint disks, each B0

i being parallel to Bi;

4) let C1, . . . , C` ⇢ R3 be a family of disjoint small disks, each Ck being placed at
one of the trivializing crossings and forming with the involved bands Aj a fixed
pattern of ribbon intersections inside a 3-ball thickening of it, as in Figure 2;

5) choose a family of disjoint narrow bands ↵1, . . . ,↵n ⇢ R3, each ↵j connecting
Aj to a fixed disk A0 disjoint from all the other disks and bands, with the only
constraints that it cannot meet any disk D1, . . . , Dn, the 3-ball spanned by any
pair of parallel disks Bi and B0

i, and the 3-ball thickening of any Ck;

6) choose a family of disjoint narrow bands �1, . . . ,�m ⇢ R3, each �i connecting
B0

i to a fixed disk B0 disjoint from all the other disks and bands, with the same
constraints as above;

7) choose a family of disjoint narrow bands �1, . . . , �` ⇢ R3, each �k connecting Ck

to the disk B0, with the same constraints as above;

8) put A = A0 [n
j=1 (↵j [Aj) ⇢ R3 and B = B0 [m

i=1 (�i [B0
i)[`

k=1 (�k [Ck) ⇢ R3;

9) then, SK ⇢ R4
+ ⇢ B4 is the ribbon surface whose 3-dimensional diagram is

given by A [ B [ B1 [ . . . [ Bm; in other words, SK is obtained by pushing
the interior of the connected surfaces A,B,B1, . . . , Bm inside the interior of R4

+,
in such a way that all the ribbon intersections (formed by A passing through
B [B1 [ . . . [Bm) disappear;

10) finally, the labeling of SK giving the monodromy of the simple 3-fold branched
covering p : H ! B4 is the one determined by assigning the transpositions (1 2)
and (2 3) to the standard meridians of A0 and B0 [B1 [ . . .[Bm, respectively,
in the 3-dimensional diagram of SK .
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The construction above depends on various choices, the significant ones being
in steps 1, 5, 6 and 7. However, the labeled ribbon surfaces obtained from di↵erent
choices become equivalent up to labeled isotopy of ribbon surfaces in B4 (called
1-isotopy in Bobtcheva and Piergallini [1, 2]) and the covering moves R1 and R2

depicted in Figure 3, after adding to them a separate trivial disk with label (3 4).
We recall that the addition of such disk represents the stabilization of the branched
covering p with an extra trivial fourth sheet to give a simple 4-fold branched coveringep : H 5 H #@ B4 ! B4.

The labels a, b, c and d in Figure 3, as well as in Figures 4 to 8, are assumed to
be pairwise distinct.

R1

13

(a b) (a b) (a b) (a b) (a b) (a b)(a c) (a c)

(b c) (b c) (c d)(c d)

R2

13

Figure 3. Covering moves for labeled ribbon surfaces.

The covering space H of any simple branched covering p : H ! B4 described
by a labeled ribbon surface S ⇢ B4 is a 4-dimensional 2-handlebody whose handle
structure is uniquely determined, up to 2-deformations, by the ribbon structure of
S. Moreover, the following equivalence theorem holds (Theorem 1 in [1], Theorem
6.1.5 in [2]).

Theorem 3.2 ([1, 2]). Let S and S0 be two labeled ribbon surfaces in B4

representing compact connected oriented 4-dimensional 2-handlebodies as simple
branched coverings of B4 of the same degree � 4. Then, S and S0 are related by
labeled isotopy of ribbon surfaces and the moves R1 and R2 in Figure 3 if and only
if the handlebodies they represent are equivalent up to 2-deformations.

For the purposes of this paper, we need to consider the implication of the above
theorem on the boundary. This implication is stated in a precise way in the next
theorem, which is a restatement of Theorem 2 in [1], or Theorem 6.1.8 in [2]. In
fact, handle trading and blow-up moves (see Figure 4), introduced therein in order
to interpret the Kirby calculus for 3-manifolds in terms of labeled ribbon surfaces,
reduce to isotopy when restricted to the boundary.

P
13

(a b) (a b)

T
13

(a b)

(a b)

(a b)

(a b)

Figure 4. Handle trading and blow-up moves for labeled ribbon surfaces.

– 9 –



Theorem 3.3 ([1, 2]). Let L and L0 be two labeled links in S3 representing
closed connected oriented 3-manifolds as ribbon fillable simple branched coverings
of S3 of the same degree � 4. Then, L and L0 are related by labeled isotopy and the
moves B1 and B2 in Figure 5 if and only if the oriented 3-manifolds they represent
are PL homeomorphic.

B1

13

(a b) (a b) (a b) (a b) (a b) (a b)(a c) (a c)

(b c) (b c) (c d)(c d)

B2

13

Figure 5. Covering moves for labeled links bounding labeled ribbon surfaces.

Now, before proceeding with the proofs of the theorems stated in Section 1, let
us prove two lemmas.

Lemma 3.4. Let W 5 M ⇥ [0, 1] [ H1
1 [ . . . [ H1

m [ H2
1 [ . . . [ H2

n be an
oriented 4-dimensional 2-cobordism between closed connected oriented 3-manifolds
M0 = M ⇥ {0} and M1 = @W �M0. Then, any d-fold simple branched covering
p0 : M0 ! S3 ⇥ {0} of degree d � 3 extends to a d-fold simple branched covering
p : W ! S3 ⇥ [0, 1], such that Bp ⇢ S3 ⇥ [0, 1] is a properly embedded locally flat
PL surface. Moreover, if p0 is ribbon fillable, then we can choose p in such a way
that also p1 = p|M1 : M1 ! S3 ⇥ {1} is ribbon fillable.

Proof. This immediately follows from the main result in Edmonds [4] and its
proof. ⇤

Remark 3.5. If one is only interested in the existence of a 3-fold covering
p : W ! S3 ⇥ [0, 1] as in the lemma above, without insisting that it restricts to a
given covering p0, then the following argument provides a more explicit construction.

Let K0 be a Kirby diagram representing a 4-dimensional 2-handlebody W0 =
H0 [H2

n+1 [ . . . [H2
` such that @W0 5 M . By identifying a collar C of @W0 in W0

with M ⇥ [0, 1] ⇢ W , in such a way that @W0 corresponds to M ⇥ {1}, we get a
4-dimensional 2-handlebody W1 = W0[C5M⇥[0,1]W = H0[H1

1[. . .[H1
m[H2

1[. . .[
H2

n [H2
n+1 [ . . .[H2

` . Here, the handles have been reordered in the usual way, once
the attaching maps of the handles of W are isotoped in @W0 out of the 2-handles of
W0. So, we have a Kirby diagram K1 of W1 that contains K0 as a framed sublink.

Procedure 3.1 determines a labeled ribbon surface SK1 . By pushing the part
of SK1 corresponding to K0 a little bit more inside the interior of B4 than the
rest of SK1 , we can assume that for some r < 1 the intersection of SK1 with the
4-ball B4

r ⇢ IntB4 of radius r is a copy of SK0 in B4
r . Then, the branched covering

q1 : W1 ! B4 represented by SK1 restricts to two branched coverings q0 : W0 ! B4
r

and q : W ! B4� IntB4
r . At this point, the desired 3-fold simple branched covering

p : W ! S3 ⇥ [0, 1] is just the composition of q with the canonical identification
B4 � IntB4

r 5 S3 ⇥ [0, 1].

Lemma 3.6. Let M be a closed connected oriented 3-manifold and assume
d � 4. For any two d-fold ribbon fillable simple branched coverings p0, p1 : M ! S3,
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there is a d-fold simple branched covering p : M ⇥ [0, 1] ! S3 ⇥ [0, 1] satisfying the
following properties: 1) the restriction p|M⇥{0} : M ⇥ {0}! S3⇥ {0} coincides with
p0⇥id{0}; 2) the restriction p|M⇥{1} : M⇥{1}! S3⇥{1} is equivalent to p1⇥id{1} up
to PL homeomorphisms; 3) the branch set Bp ⇢ S3 ⇥ [0, 1] is a properly immersed
locally flat PL surface, whose singularities (if any) consist of an even number of
transversal double points. In addition, if d � 5 there is such a branched covering p
with Bp a properly embedded surface.

Proof. By Theorem 3.3, the labeled links L0 and L1 representing the coverings
p0 and p1, respectively, are related by labeled isotopy and moves B1 and B2 depicted
in Figure 5. Each move Bi can be realized as a composition of two iterations of the
same Montesinos move Mi depicted in Figure 6, applied in opposite directions and
in the alternative form of Figure 7 for i = 1 (the two directions are equivalent for
i = 2). This is shown in Figure 8 for B1, while it is trivial for B2 (cf. [1, page 5], or
the proof of Theorem 6.2.3 in [2]).

M1

13

(a b) (a b)

(b c) (b c) (c d)(c d)

13
M2

(a b) (a b)

(b c) (b c)

(a b) (a b)

(c d)

(a b)

(c d)

(a b)

Figure 6. Montesinos covering moves for labeled links.

M1

13

(a b)

(a b)(b c)

(a c) (a b)

(a b)(b c)

(a c)

Figure 7. Alternative form of move M1.

(a b) (a b)(a c) (a c)

(b c) (b c)

M1

13

(a b) (a c)

(b c)

M1

13

Figure 8. Generating B1 move as the composition of two (opposite) M1 moves.

The labeled links L0 to L1 can be joined by a family of singular links Lt ⇢ S3

with t 2 [0, 1], which present a singular point at a finite (even) number of values
of t, say t1 < . . . < t2n, in correspondence of the Montesinos moves, while giv-
ing an isotopic deformation of (non-singular) links in each open interval (ti, ti+1)
for i = 1, . . . , 2n � 1. Following the argument proposed by Montesinos in [13],
and then used in Piergallini [18], things can be arranged in such a way that
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S = [t2[0,1](Lt ⇥ {t}) ⇢ S3 ⇥ [0, 1] is a labeled locally flat PL surface with a cusp
singularity (the cone of a trefoil knot) for each move M1 and a node singularity
(a transversal double point) for each move M2. This is suggested by Figure 9.

M

cusp node

1

13
M2

13
ti − ε ti + ε ti − ε ti + ε

Figure 9. Singularities of the branch surface deriving from Montesinos moves.

Then, the labeled surface S determines a d-fold simple branched covering q : M⇥
[0, 1] ! S3 ⇥ [0, 1], whose restrictions over S3 ⇥ {0} and S3 ⇥ {1} are equivalent to
p0⇥id{0} and p1⇥id{1}, respectively, up to PL homeomorphisms. In particular, there
exists a PL homeomorphisms h : M ! M such that q|M⇥{0} � (h⇥ id{0}) = p0⇥ id{0},
and we can replace q by q�(h⇥id[0,1]) to have the restriction over S3⇥{0} coinciding
with p0 ⇥ id{0} as required.

Here, cusp singularities come in pairs, each pair corresponding to two opposite
moves M1 and hence consisting of cones of a left-handed and a right-handed trefoil
knot. Then, since d � 4, the technique described in [18] applies in the present
context as well, being essentially local in nature, in order to remove all the (pairs
of) cusp singularities (see Iori and Piergallini [8] for a di↵erent approach). As the
result we get a new labeled surface S0 representing a d-fold simple branched covering
p : M ⇥ [0, 1] ! S3 ⇥ [0, 1], such that Bp = S0 is a properly immersed locally flat
PL surface whose singularities (if any) are transversal double points. Moreover, as
shown in [8], if d � 5 transversal double points can also be removed in pairs from
Bp to give a properly embedded locally flat PL surface. ⇤

At this point, we are ready to prove our main results.

Proof of Theorem 1.4. The existence of a branched covering b as in the second
part of the statement is guaranteed by Procedure 3.1 applied to Kirby diagrams
representing (4-dimensional 2-handlebodies bounded by) the components of @M . So,
we can directly assume that b is given. We denote simply by d = 4 or 5, depending
on the property (a) or (b) we desire, the degree d(b) of this covering.

Let us start with the case n = 1, when @M is connected. Given any relative
handlebody decomposition H of (M, @M) with a single 4-handle and no 0-handles,
let M 0 consists of the 1-handles and the 2-handles of H attached to a collar of @M ,
and put M 00 = Cl(M � M 0). Hence, M 0 is an oriented 2-cobordism from @M to
@M 00, while we can think of M 00 as a 4-dimensional 1-handlebody, by dualizing the
3-handles and the 4-handle of H.

Lemma 3.4 allows us to extend the given branched covering b : @M ! @B4
1 5

@B4
1⇥{0} 5 S3⇥{0} to a d-fold simple covering p0 : M 0 ! @B4

1⇥ [0, 1] 5 S3⇥ [0, 1],
such that the restriction p01 = p0| : @M 00 ! S3 ⇥ {1} 5 S3 is ribbon fillable. On the
other hand, M 00 is the boundary connected sum of a certain number k of copies of
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S1 ⇥ B3, hence it admits a standard representation as a 2-fold branched covering
of B4. This can be stabilized to a simple d-fold covering p00 : M 00 ! B4 branched
over a ribbon surface (in fact, the union of k + d � 1 separated trivial disks, with
monodromies (1 2), . . . , (1 2), (2 3), (3 4) and possibly (4 5), depending on d).

Now, Lemma 3.6 gives us a d-fold simple branched covering q : @M 00 ⇥ [0, 1] !
S3 ⇥ [0, 1] satisfying (a) or (b) and such that, with the obvious canonical identifi-
cations, the restriction q0 = q| : @M 00 ⇥ {0} ! S3 ⇥ {0} coincides with p01, while
the restriction q1 = q| : @M 00 ⇥ {1} ! S3 ⇥ {1} is equivalent to the restriction
p00@ = p00| : @M 00 ! S3 up to PL homeomorphisms.

Then, we can glue together the coverings p0 and p00 through q, by identifying the
corresponding restrictions, to obtain a d-fold simple branched covering p : M ! B4

with the property (a) or (b). In fact, according to Laudenbach and Poénaru [11],
the result of the gluing is always PL homeomorphic to M , no matter what the
homeomorphism occurring in the identification between q1 and p00@ is. This concludes
the proof of the case n = 1.

The case n > 1 can be reduced to n = 1 as follows. Denote by C1, . . . , Cn the
connected components of @M . For every i = 1, . . . , n, we consider the restriction
bi = b| : Ci ! @B4

i and a d-fold simple covering qi : Wi ! B4
i branched over a ribbon

surface Bqi ⇢ B4
i that extends bi. Then, we enlarge the 4-balls B4

1 , . . . , B
4
n to disjoint

PL 4-balls bB4
1 , . . . , bB4

n ⇢ S4 with a collar of their boundary, and each labeled surface
Bqi to a properly embedded labeled ribbon surface bBqi ⇢ bB4

i by using the product
structure along the collar. Let B4 ⇢ S4 be a PL 4-ball obtained by attaching tobB4

1 [ . . .[ bB4
n an embedded 1-handle between bB4

i and bB4
i+1 for each i = 1, . . . , n� 1.

These 1-handles can be chosen so that each attaching 3-ball meets @ bBq1 [ . . .[@ bBqn

in d � 1 trivial arcs labeled (1 2), . . . , (d � 1 d). Finally, we attach labeled bands
running along the connecting 1-handles of B4 to get a labeled ribbon surface in B4,
as sketched in Figure 10 (where the bands labeled (4 5) occur only if d = 5).

(1 2)

(2 3)

(1 2)

(2 3)

(3 4)

(4 5)

(3 4)

(4 5)

B4
1 n

n

labeled
ribbon
surface

1Bq

labeled
ribbon
surface

2Bq

B4
2

labeled
ribbon
surface

Bq

B4

Figure 10. The labeled ribbon surface Bq.

This is the labeled branch set Bq ⇢ B4 of a d-fold simple branched covering
q : W = W0 [W1 [ . . .[Wn ! B4, where W0 5 (@M ⇥ [0, 1])[H1

1 [ . . .[H1
n�1 is a

1-cobordism between @M = C1[ . . .[Cn and C 5 C1 # . . . #Cn, with the 1-handle
H1

i connecting Ci and Ci+1.
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Since M is connected, we can assume W0 ⇢ M and put M 0 = Cl(M �W0). The
restriction q0 = q| : W0 ! B4 � Int(B4

1 [ . . . [ B4
n) is a simple branched covering

whose branch surface is properly embedded in B4 � Int(B4
1 [ . . . [ B4

n), while the
restriction q| : Wi ! B4

i coincides with qi by construction for every i = 1, . . . , n.
By construction, the restriction q0|@M 0 : @M 0 ! S3 is ribbon fillable, bounding

the covering q. Hence, by the case n = 1 proved above, we can extend such restriction
to a simple covering p0 : M 0 ! B4 satisfying property (a) or (b). Then, to obtain
the wanted branched covering p : M ! S4 � Int(B4

1 [ . . . [B4
n), we just glue q0 and

p0 together by identifying their restrictions over S3. ⇤

Proof of Theorem 1.5. Following the proof of Theorem 1.4 for n > 1 and adopt-
ing the notations therein, we consider: the decomposition @M = C1 [ . . . [ Cn;
the cobordism W0 = (@M ⇥ [0, 1]) [ H1

1 [ . . . [ H1
n�1 ⇢ M between @M and

@M 0 5 C1 # . . . #Cn, with M 0 = Cl(M �W0); the 3-fold simple branched coverings
qi : Wi ! B4 and their restrictions to the boundary qi| : Ci ! S3, i = 1, . . . , n; the
simple branched covering p0 : M 0 ! B4.

Now, let q00 : @M ⇥ [0, 1] ! S3 ⇥ [0, 1] be the 3n-fold simple branched covering
such that Ci⇥ [0, 1] is given by the three sheets from 3i�2 to 3i, and the restriction
q00|Ci⇥[0,1] coincides with qi| ⇥ id[0,1] up to a shifting by 3(i� 1) in the numbering of
the sheets. This covering q00 can be extended to a 3n-fold simple branched covering
q000 : W0 ! S3 ⇥ [0, 1], by adding separated trivial disks D1, . . . , Dn�1 to the labeled
branch set, with @Di ⇢ S3 ⇥ {1} and Di labeled by (1 3i + 1). The restriction of q000
over S3 ⇥ {1} gives a 3n-fold simple branched covering q000| : @M 0 ! S3 ⇥ {1}.

Finally, we apply Theorem 1.4 (actually the strong version of Lemma 3.6 pro-
vided by it, where the restriction p|M⇥{1} coincides with the covering p1 ⇥ id{1}) to
connect such restriction with the restriction over the boundary of a stabilization to
degree 3n > 5 of the covering p0 : M 0 ! B4. This gives the wanted simple branched
covering p : M ! B4, and concludes the proof of the first part of the statement.

For the second part, it su�ces to replace the covering q00 in the argument above
by b ⇥ id[0,1], with b : @M ! S3 any given 3n-fold ribbon fillable simple branched
covering. ⇤

Proof of Theorem 1.6. By a standard argument, it is possible to construct an
infinite family {Mi}i�0 of (non-empty) 4-dimensional compact connected PL sub-
manifolds of M , such that M = [i�0Mi and Mi ⇢ IntMi+1 for every i � 0. Then,
we put W0 = M0 and Wi = Cl(Mi �Mi�1) for every i � 1, and note that these
are 4-dimensional compact PL submanifolds of M . Furthermore, for every i � 1, we
can assume that each component C of Wi shares exactly one boundary component
with Mi�1 (otherwise, if there are more shared components, we connect them by
attaching to Mi�1 some 1-handles contained in C \ IntMi). Let {Cv}v2V be the
set of all components of all the Wi’s, and {Be}e2E be the set of all their boundary
components. We can think of V and E as the sets of vertices and edges of a graph
T , respectively, with the edge e 2 E joining the vertices v, w 2 V if and only if Cv

and Cw share the boundary component Be. Actually, the above assumption about
the intersection of the components of each Wi and the corresponding Mi�1, implies
that T is a tree. We assume T rooted at the vertex v0 with Cv0 = W0 and orient the
edges of T starting from v0, so that each vertex v 6= v0 has a single incoming edge
ev
0 and a non-empty set of outgoing edges ev

1, . . . , e
v
n(v) (we will use this notation also
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for the edges outgoing from v0). According to this setting, the components of Wi are
the Cv such that d(v, v0) = i, where d denotes the edge distance in T . Moreover, for
each such component Cv we have @Cv = Bev

0
[Bev

1
[ . . .[Bev

n(v)
, with Bev

0
the unique

boundary component shared with Wi�1 if i � 1, while the boundary components
Bev

1
, . . . , Bev

n(v)
are shared with Wi+1. In light of these facts, it is not di�cult to see

that EndM 5 EndT , with end points bijectively corresponding to infinite rays in
T starting from v0.

Now, based on the same tree T , we want to construct a similar pattern in S4

consisting of families {C 0
v}v2V and {B0

e}e2E. We begin with any family {B4
e}e2E of

standard PL 4-balls in S4 satisfying the following properties: 1) the diameter of
B4

e vanishes when the edge distance d(e, v0) goes to infinity; 2) B4
ev
1
, . . . , B4

ev
n(v)

are
pairwise disjoint for every v 2 V and contained in IntB4

ev
0

if v 6= v0. Then, we put
C 0

v = B4
ev
0
�Int(B4

ev
1
[ . . .[B4

ev
n(v)

) for every v 2 V (assume B4
ev0
0

= S4), and B0
e = @B4

e

for every e 2 E. By the very definition, we have @C 0
v = B0

ev
0
[ B0

ev
1
[ . . . [ B0

ev
n(v)

for every v 2 V (assume B0
ev0
0

= 6O). Moreover, C 0
v and C 0

w share the boundary
component B0

e if and only if the edge e joins the vertices v, w 2 V as above, and
thus End([v2V C 0

v) 5 EndT 5 EndM .
The space X = S4�[v2V C 0

v = \i�0[d(e,v0)=i B4
e is tame in S4 (cf. Osborne [16]).

In particular, we can have X ⇢ S1 by choosing each B4
e to be a round spherical 4-

ball centered at a point of S1 ⇢ S4. We can conclude that X 5 EndM , being S4

the Freudenthal compactification of S4 �X = [v2V C 0
v.

At this point, we can define the desired branched covering p : M ! S4 � X
in three steps. First, for every e 2 E, we choose a Kirby diagram Ke providing an
integral surgery presentation of Be, and denote by pe : Be ! B0

e 5 S3 the restriction
to the boundary of the simple branched covering of B4 determined by the labeled
ribbon surface SKe , stabilized to degree 4 or 5, depending on the property (a) or
(b) we want to obtain for p. Then, for every v 2 V , we apply Theorem 1.4 in
order to extend pev

0
[ pev

1
[ . . . [ pev

n(v)
: @Bv ! @B0

v to a simple branched covering
pv : Cv ! C 0

v satisfying property (a) or (b). Finally, we define p = [v2V pv : M =
[v2V Cv ! S4 �X = [v2V C 0

v. ⇤

Proof of Theorem 2.3. Because of Theorem 1.2, it su�ces to consider the case
when M is not PL. Since any open 4-manifold admits a PL structure (see Lashof
[10] or Freedman and Quinn [7, Section 8.2]), we can apply Theorem 1.6 to the
one-ended open connected oriented 4-manifold M � {x}, with x any point of M , in
order to get a PL branched covering p : M�{x}! R4 satisfying property (a) or (b).
Then, the one-point compactification of p gives the wanted wild branched covering
q : M ! S4, once M and S4 are identified with the one-point compactifications of
M � {x} and R4, respectively. ⇤

Proof of Theorem 1.8. Consider the decomposition M = [i�0Wi and the fam-
ilies {Cv}v2V and {Be}e2E, as in the proof of Theorem 1.6. For every i � 0, put
Mi = Wi \Wi+1 = @Wi \ @Wi+1 and observe that this is a closed 3-manifold with
a finite number ni  n of components. The sequence (ni)i�1 is non-decreasing, and
without loss of generality we can assume ni � 2 for every i � 0. Then, denoting by S3

i

and B4
i respectively the 3-sphere and the 4-ball of radius i in R4, there is a 3ni-fold

simple branched covering bi : Mi ! S3
i+1, bounding a 3ni-fold simple covering of B4

i+1

branched over a ribbon surface. Theorem 1.10, which combines Theorems 1.4 and 1.5
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proved above, gives us 3ni-fold simple coverings pi : Wi ! Cl(B4
i+1�B4

i ) with i � 0,
such that the restrictions of pi over S3

i and S3
i+1 respectively coincide with a 3ni-fold

stabilization of bi�1 and with bi (where b�1 is empty). At this point, we can glue the
pi’s together, up to stabilization. More precisely, we start with p0, and then we add
each pi in order, by gluing it to the appropriate 3ni-fold stabilization of [j<ipj. This
gives the wanted 3n-fold branched covering p = [i�0pi : M = [i�0Wi ! R4. ⇤

4. Final remarks

We remark that all the simple branched coverings obtained in Theorems 1.4, 1.5,
1.6, 1.8 and 2.3 can be stabilized to any degree greater than the stated one. While
this is obvious for branched coverings of S4 or B4 (like in Theorem 1.2), in the
other cases it can be achieved by suitable covering stabilizations in the construction
process.

We just sketch the case of Theorem 1.4, as the other cases can be treated
in a similar way. In the proof of this theorem, it is enough to let d be any giv-
en number � 4 from the beginning. Then, the monodromies of the k + d � 1
branch disks of the d-fold branched covering p00 : M 00 ! B4 at page 13 change
to (1 2), . . . , (1 2), (2 3), . . . , (d � 1 d), while the rest of the proof for the case n = 1
can be repeated word by word. Similarly, for the case n > 1 the only change is that
the monodromies of the d� 1 bands in Figure 10 become (1 2), (2 3), . . . , (d�1 d).

We also remark that the arguments in the proofs of those theorems can be
combined to prove various extensions of them. In particular, we have the following.

1) Any non-compact connected oriented PL 4-manifold M whose boundary has only
compact components, is a simple branched covering of S4�(EndM[c2C IntB4

c ),
where {B4

c}c2C is a family of pairwise disjoint 4-balls in S4�EndM , indexed by
the set C of the boundary components of M . The limit set of the balls {B4

c}c2C

is contained in EndM ⇢ S4.

2) Any compact connected oriented topological 4-manifold M with boundary is a
simple topological branched covering of S4� Int([c2CB4

c ) with at most one wild
point.

Finally, we observe that when M does not admit a PL structure, the branch
set Bp of the covering p : M ! S4 in Theorem 2.3 cannot be reduced to a locally
flat PL surface properly immersed or embedded in S4 by our proof. In fact, in this
case there is a single wild point in Bp, at which we concentrate all the pathological
aspects of the topology of Bp and/or of the inclusion Bp ⇢ S4. However, one might
wonder if the situation could be simplified by di↵using the wild set Wp, or even
more if such wild set could be eliminated at all, to get a tame topological branched
covering at least under particular circumstances.

On the other hand, if the Kirby-Siebenmann invariant ks(M) is non-zero, then
there is no a tame topological branched covering p : M ! S4 such that Bp is
an embedded or a self-transversally immersed topologically locally flat surface in
S4. Indeed, any such surface admits a compact tubular neighborhood T ⇢ S4 by
Freedman and Quinn [7, Section 9.3]. Then, T admits a PL structure such that Bp is a
PL embedded or immersed surface in T , hence ks(T ) = 0. Putting U = Cl(S4�T ) ⇢
S4, we also have ks(U) = 0, since the Kirby-Siebenmann invariant is additive and
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ks(S4) = 0. It follows that p�1(T ) is PL because it is a branched covering of T , and
p�1(U)⇥R is smoothable because it is an unbranched covering of U ⇥R, which we
know to be smoothable. Therefore, ks(M) = ks(p�1(T )) + ks(p�1(U)) = 0.

So, we conclude with the following open problem.

Question 4.1. When, in representing a connected oriented topological 4-mani-
fold M that is not PL by a simple branched covering p : M ! S4, can we require Bp

to be a topological surface wildly immersed or embedded in S4? If ks(M) = 0, can
we require p to be a tame topological branched covering, with Bp a (locally) tame
2-complex or a topological surface (locally) tamely immersed or embedded in S4?
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