2,571 research outputs found

    Behavioral and electrophysiological correlates of cognitive control in ex-obese adults

    Get PDF
    Impaired cognitive control functions have been documented in obesity. It remains unclear whether these functions normalize after weight reduction. We compared ex-obese individuals, who successfully underwent substantial weight loss after bariatric surgery, to normal weight participants on measures of resistance to interference, cognitive flexibility and response inhibition, obtained from the completion of two Stroop tasks, a Switching task and a Go/NoGo task, respectively. To elucidate the underlying brain mechanisms, event-related potentials (ERPs) in the latter two tasks were examined. As compared to controls, patients were more susceptible to the predominant but task-irrelevant stimulus dimension (i.e., they showed a larger verbal Stroop effect), and were slower in responding on trials requiring a task-set change rather than a task-set repetition (i.e., they showed a larger switch cost). The ERP correlates revealed altered anticipatory control mechanisms (switch positivity) and an exaggerated conflict monitoring response (N2). The results suggest that cognitive control is critical even in ex-obese individuals and should be monitored to promote weight loss maintenance

    Rapid modulation of sensory processing induced by stimulus conflict

    Get PDF
    Humans are constantly confronted with environmental stimuli that conflict with task goals and can interfere with successful behavior. Prevailing theories propose the existence of cognitive control mechanisms that can suppress the processing of conflicting input and enhance that of the relevant input. However, the temporal cascade of brain processes invoked in response to conflicting stimuli remains poorly understood. By examining evoked electrical brain responses in a novel, hemifield-specific, visual-flanker task, we demonstrate that task-irrelevant conflicting stimulus input is quickly detected in higher level executive regions while simultaneously inducing rapid, recurrent modulation of sensory processing in the visual cortex. Importantly, however, both of these effects are larger for individuals with greater incongruency-related RT slowing. The combination of neural activation patterns and behavioral interference effects suggest that this initial sensory modulation induced by conflicting stimulus inputs reflects performance-degrading attentional distraction because of their incompatibility rather than any rapid task-enhancing cognitive control mechanisms. The present findings thus provide neural evidence for a model in which attentional distraction is the key initial trigger for the temporal cascade of processes by which the human brain responds to conflicting stimulus input in the environment

    Event-related brain potentials in the study of inhibition: cognitive control, source localization and age-related modulations

    Get PDF
    In the previous 15 years, a variety of experimental paradigms and methods have been employed to study inhibition. In the current review, we analyze studies that have used the high temporal resolution of the event-related potential (ERP) technique to identify the temporal course of inhibition to understand the various processes that contribute to inhibition. ERP studies with a focus on normal aging are specifically analyzed because they contribute to a deeper understanding of inhibition. Three time windows are proposed to organize the ERP data collected using inhibition paradigms: the 200 ms period following stimulus onset; the period between 200 and 400 ms after stimulus onset; and the period between 400 and 800 ms after stimulus onset. In the first 200 ms, ERP inhibition research has primarily focused on N1 and P1 as the ERP components associated with inhibition. The inhibitory processing in the second time window has been associated with the N2 and P3 ERP components. Finally, in the third time window, inhibition has primarily been associated with the N400 and N450 ERP components. Source localization studies are analyzed to examine the association between the inhibition processes that are indexed by the ERP components and their functional brain areas. Inhibition can be organized in a complex functional structure that is not constrained to a specific time point but, rather, extends its activity through different time windows. This review characterizes inhibition as a set of processes rather than a unitary process

    Neural activity dissociation between thought-based and perception-based response conflict

    Get PDF
    Based on the idea that intentions have different penetrability to perception and thought (Fodor, 1983), four Stroop-like tasks, AA, AW, WA, and WW are used, where the A represents an arrow and the CPPR (closest processing prior to response) is perception, and the W represents a word and the CPPR is thought. Event-related brain potentials were recorded as participants completed these tasks, and sLORETA (standardized low resolution brain electromagnetic tomography) was used to localize the sources at specific time points. These results showed that there is an interference effect in the AA and WA tasks, but not in the AW or WW tasks. The activated brain areas related to the interference effect in the AA task were the PFC and ACC, and PFC activation took place prior to ACC activation; but only PFC in WA task. Combined with previous results, a new neural mechanism of cognitive control is proposed

    Brain oscillations in cognitive control: a cross-sectional study with a spatial Stroop task

    Get PDF
    An important aspect of cognitive control is the ability to overcome interference, by boosting the processing of task-relevant information while suppressing the irrelevant information. This ability is affected by the progressive cognitive decline observed in aging. The aims of this study were to shed light on the neural spectral dynamics involved in interference control and to investigate age-dependent differences in these dynamics. For these reasons two samples of participants of different ages (23 younger and 20 older adults, age range=[18 35] and [66 82], respectively) were recruited and administered a spatial Stroop task while recording electroencephalographic activity. Scalp- and source-based time-frequency analyses revealed a main role of theta and beta frequencies in interference control. Specifically, for the theta band, we found age-dependent differences both for early event-related spectral perturbation (ERSP) Stroop effects at the source level \u2013 which involved dorsomedial and dorsolateral prefrontal cortices \u2013 and for related brain-behaviour correlations. This ERSP Stroop effect in theta was greatly reduced in magnitude in the older group and, differently from what observed in younger participants, it was not correlated with behavioural performance. These results suggest an age-dependent impairment of the theta-related mechanism signalling the need of cognitive control, in line with existing findings. We also found age-related differences in ERSP and source spectral activity involving beta frequencies. Indeed, younger participants showed a specific ERSP Stroop effect in beta \u2013 with the main involvement of left prefrontal cortex \u2013 whereas the pattern of older participants was delayed in time and spread bilaterally over the scalp. This study shows clear age-related differences in the neural spectral correlates of cognitive control. These findings open new questions about the causal involvement of specific oscillations in different cognitive processes and may inspire future interventions against age-related cognitive decline

    Different electrophysiological signatures of similarity-induced and Stroop-like interference in language production

    Get PDF
    Published: August 01 2023Contextual similarity between targets and competitors, whether semantic or phonological, often leads to behavioral interference in language production. It has been assumed that resolving such interference relies on control processes similar to those involved in tasks such as Stroop. This article tests this assumption by comparing the electrophysiological signatures of interference resulting from a contextual similarity versus a Stroop-like manipulation. In blocks containing two items, participants repeatedly named pictures that were semantically related, phonologically related, or unrelated (contextual similarity manipulation). In straight blocks, the pictures were named by their canonical names. In reverse blocks, participants had to reverse the names (Stroop-like manipulation). Both manipulations led to behavioral interference, but with different electrophysiological profiles. Whole-scalp stimulus-locked and response-locked analyses of semantic and phonological similarity pointed to a system with global modularity with some degree of cascading and interactivity, whereas the effect of phase reversal was sustained and of the opposite polarity. More strikingly, a representational similarity analysis showed a biphasic pattern for Stroop-like reversal, with earlier higher similarity scores for the reverse phase flipping into lower scores ~500 msec poststimulus onset. In contrast, contextual similarity induced higher similarity scores up to articulation. Finally, response-locked mediofrontal components indexing performance monitoring differed between manipulations. Correct response negativity's amplitude was lower in the phonological blocks, whereas a pre-correct response negativity component had higher amplitude in reverse versus straight blocks. These results argue against the involvement of Stroop-like control mechanisms in resolving interference from contextual similarity in language production.This work was supported in part by the Therapeutic Cognitive Neuroscience Fund at Johns Hopkins Universit

    Domain-general Stroop Performance and Hemispheric Asymmetries: A Resting-state EEG Study

    Get PDF
    The ability to suppress irrelevant information while executing a task or interference resistance is a function of pFC that is critical for successful goal-directed human behavior. In the study of interference resistance and, more generally, executive functions, two key questions are still open: Does pFC contribute to cognitive control abilities through lateralized but domain-general mechanisms or through hemispheric specialization of domain-specific processes? And what are the underlying causes of interindividual differences in executive control performance? To shed light on these issues, here we employed an interindividual difference approach to investigate whether participants' hemispheric asymmetry in resting-state electrophysiological brain dynamics may reflect their variability in domain-general interference resistance. We recorded participants' resting-state electroencephalographic activity and performed spectral power analyses on the estimated cortical source activity. To measure participants' lateralized brain dynamics at rest, we computed the right-left hemispheric asymmetry score for the \u3b2/\u3b1 power ratio. To measure their domain-general interference resistance ability, verbal and spatial Stroop tasks were used. Robust correlations followed by intersection analyses showed that participants with stronger resting-state-related left-lateralized activity in different pFC regions, namely the mid-posterior superior frontal gyrus, middle and posterior middle frontal gyrus, and inferior frontal junction, were more able to inhibit irrelevant information in both domains. The present results confirm and extend previous findings showing that neurophysiological difference factors may explain interindividual differences in executive functioning. They also provide support for the hypothesis of a left pFC hemispheric specialization for domain-independent phasic cognitive control processes mediating Stroop performance

    Cognitive Control and Bilingualism: The Bilingual Advantage Through the Lens of Dimensional Overlap

    Get PDF
    Past research shows that the bilingual experience may enhance cognitive executive function. In this experiment, we evaluated cognitive control in bilinguals relative to monolinguals by using a dimensional overlap model to predict performance in a task composed of Stroop and Simon stimuli. A group of 24 Spanish monolinguals and 24 bilinguals with differing first languages and all having Spanish as a second language (L2) did a picture naming task and a task composed of Stroop and Simon stimuli, where the effect of different overlap conditions (spatial/color) between stimuli and responses were examined. The tasks were performed in Spanish for both groups and performance was indexed with behavioral and electrophysiological measures. We hypothesized that the bilinguals’ daily language practice in L2 reflected overlap conditions similar to the Simon task. Both naming a picture in L2 and the Simon task would involve conflict at the response level. L2 picture naming entails interference between two potential oral responses, to name in L2 vs. L1 (correct vs. incorrect responses, respectively). Similarly, incongruent stimuli in the Simon task produce interference because the irrelevant dimension (spatial location) overlap with an incorrect response. In contrast, the manual Stroop task involves a different type of conflict between two overlapping stimulus dimensions (the ink color and the color meaning). We predicted for these reasons a superior performance in Simon tasks over Stroop tasks for bilinguals, while monolinguals were expected to have a similar performance in both tasks. We also expected to see a correlation between the performance on the picture naming task and the Simon task in bilinguals. However, the behavioral results did not confirm these hypotheses. In fact, both groups had similar congruency effects as measured by reaction times and error rates, and there was no correlation between the picture naming and Simon task in bilinguals. Despite this, the electrophysiological data suggested a relationship between the picture naming task and the P300 congruency effect in bilinguals. Our findings provide insights into the neurocognitive bases of language and serve as a research avenue for language behaviors in bilinguals.Spanish Government PID2019-111359GB-I00/SRA State Research Agency/10.13039/50110001103

    A review on the electroencephalography markers of Stroop executive control processes

    Get PDF
    The present article on executive control addresses the issue of the locus of the Stroop effect by examining neurophysiological components marking conflict monitoring, interference suppression, and conflict resolution. Our goal was to provide an overview of a series of determining neurophysiological findings including neural source reconstruction data on distinct executive control processes and sub-processes involved in the Stroop task. Consistently, a fronto-central N2 component is found to reflect conflict monitoring processes, with its main neural generator being the anterior cingulate cortex (ACC). Then, for cognitive control tasks that involve a linguistic component like the Stroop task, the N2 is followed by a centro-posterior N400 and subsequently a late sustained potential (LSP). The N400 is mainly generated by the ACC and the prefrontal cortex (PFC) and is thought to reflect interference suppression, whereas the LSP plausibly reflects conflict resolution processes. The present overview shows that ERP constitute a reliable methodological tool for tracing with precision the time course of different executive processes and sub-processes involved in experimental tasks involving a cognitive conflict. Future research should shed light on the fine-grained mechanisms of control respectively involved in linguistic and non-linguistic tasks
    • …
    corecore