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Abstract 

Based on the idea that intentions have different penetrability to perception and 

thought (Fodor, 1983), four Stroop-like tasks, AA, AW, WA, and WW are used, 

where the A represents an arrow and the CPPR (closest processing prior to response) 

is perception, and the W represents a word and the CPPR is thought. Event-related 

brain potentials were recorded as participants completed these tasks, and sLORETA 

(standardized low resolution brain electromagnetic tomography) was used to localize 

the sources at specific time points. These results showed that there is an interference 

effect in the AA and WA tasks, but not in the AW or WW tasks. The activated brain 

areas related to the interference effect in the AA task were the PFC and ACC, and 

PFC activation took place prior to ACC activation; but only PFC in WA task. 

Combined with previous results, a new neural mechanism of cognitive control is 

proposed.  
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Introduction 

The neural basis of cognitive control is thought to be a neural network 

consisting of different brain areas1, within which the ACC (anterior cingulate cortex) 

and PFC (prefrontal cortex) are often identified to be activated in conflict occurrence 

and/or control tasks. However, the special role of each area and the interaction 

between them in cognitive control is a subject of intense controversy among 

investigators. The two major theories developed to interpret the neural mechanism of 

cognitive control are the regulative view and the monitoring view2. Researchers who 

hold the regulative view believe that the PFC plays a monitoring role in conflict 

occurrence and the ACC implements control during conflict2-5. In contrast, researchers 

who hold the monitoring view propose that the ACC monitors the occurrence of 

conflict and the PFC carries out the control6-9. It is reasonable that cognitive control 

consists of two aspects: monitoring and control, otherwise the “homunculus” question 

is difficult to answer3,10. In fact, this viewpoint is accepted by both of the above 

theories, with the main difference being which structure executes the monitoring role 

and which executes the control role. However, what makes the problem more 

complex is that some studies have found just one structure, either the ACC or PFC, to 

be solely responsible for cognitive control11,12. 

According to the theories reviewed above, cognitive control is possible either 

through cooperation between the ACC and PFC, or through the activation of just one 

of these structures. Such a complex situation may stem from the use of different tasks 

in which the mental components and corresponding neural activities are different3. In 
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a typical cognitive control task, the target and the distracter each elicit a particular 

response. When two responses are incongruent, the incongruent response elicited by 

the distracter would need to be controlled in order to execute the task-relevant 

response. It is thus clear that cognitive control takes place between competitive 

responses, and response conflict has been the focus of previous studies. Recent studies 

have proposed that different levels of conflict processing can take place before a 

response13-20. These studies imply that the process before a response may play an 

important role in cognitive control.  

A distracter that causes non-response-level conflict either does not elicit a 

behavioral response15-19or elicits the same response as the target13,14,17. However, 

non-response conflict studies demonstrate that there are several processing stages 

before a response21, and more importantly, that the same response can take place on 

different information processing levels. For example, in the Stroop task, the response 

to the color of a color word is behaviorally similar to that of the meaning of the color 

word, but the processes prior to the two responses are obviously different22. Types of 

responses frequently used in previous studies include vocal23, manual2, and saccade24, 

with the two conflicting responses generally sharing the same manner of response 

within the task. Since the overt behavioral responses to the target and distracter have 

the same manner of response, the difference between incongruent and congruent 

conditions should stem mainly from the processes prior to the response. Although 

there may be several processing stages prior to a response21, we assume that the 

closest processing prior to a response (CPPR) may be the critical stage in which to 
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 4

understand conflict between responses. 

After carefully analyzing the characteristics of major paradigms in cognitive 

control studies, we propose that the CPPR could be differentiated into two levels: 

perception and thought. For example, the CPPR in response to an arrow in the Eriksen 

flanker task may be perception, while the CPPR in response to a word in the Stroop 

task may be a thought. More concretely, when a participant executes a response 

according to an arrow, there is no semantic or phonemic processing; the response can 

be executed only after completing the perceptual processing of the arrow shape, since 

the information instructing the response is contained within the shape of the arrow. 

Therefore, the CPPR in response to the arrow could be regarded as perception 

processing. On the other hand, when a participant executes a response according to a 

word, it is necessary to complete further semantic or phonemic processing, because 

information is contained within the meaning of the word. The semantic or phonemic 

processing may involve some higher cognitive performance, such as working memory 

or representation maintenance; therefore, the CPPR in response to the word could be 

regarded as thought processing. In the opinion of Fodor (1983), perceptual processing 

is encapsulated and not affected by intention, but thought processing is open, slow, 

and easily affected by internal intention25,26. Apparently, due to differences in the 

intentional control of different types of conflict, the CPPRs of perception and thought 

would be different, as would the related neural activity. 

Based on the above analysis, we may use the Stroop-like arrow word task27 to 

detect the effects of CPPR on cognitive control. In such a task, the CPPR in response 
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 5

to the arrow is on the level of perceptual processing, but the CPPR in response to the 

word is on the level of thought processing. Both the target and distracter in this task 

can be either an arrow or a word. Therefore, four experimental tasks can be 

established: an arrow-arrow task (AA), where arrows are targets and distracters; an 

arrow-word task (AW), where arrows are targets and words are distracters; a 

word-arrow task (WA), where words are targets and arrows are distracters; and a 

word-word task (WW), where words are targets and distracters. The contrasts of 

CPPR in these four tasks are perception vs. perception in AA, thought vs. thought in 

WW, thought vs. perception in WA, and perception vs. thought in AW. In the present 

study, participants were asked to manually respond to stimuli with a left or right 

button press according to what the target indicated. Because the peripheral nerve 

pathways of the left and right button press are dissociated, conflict and control take 

place within the central nervous system28. We hope to investigate the effect of CPPR 

on behavioral performance and corresponding neural activities in a Stroop-like arrow 

word task.  

In numerous previous studies, event-related brain potentials (ERPs) have been 

used to explore the neural basis of cognitive control. Because of the high temporal 

resolution of this technique, it is possible to trace the neural dynamics of cognitive 

control. Several ERP components have been associated with cognitive control, such as 

the ERN29, MFN30, N217, P331, and N45019. In addition, a source analysis of the 

difference wave—the substraction of a congruent ERP wave from an incongruent 

one—can provide stable neural source results of cognitive control3,17. In the present 
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study, we searched for ERP components which showed a significant difference 

between congruent and incongruent conditions, and conducted a source analysis to 

understand the neural mechanism of cognitive control.  

 

Material and Methods 

Participants  

Sixteen young people (10 men; mean age = 22.5 years; SD = 2.3) 

participated in the experiment as paid volunteers. Some trials must be excluded from 

off-line data analysis because of incorrect responses and ocular and other artifacts. 

There were 80 trials in each condition for each task. If more than 20 trials per 

condition were excluded from a participant, that participant’s data for that task were 

excluded from grand averaging. All participants were healthy, right-handed, and had 

normal or corrected-to-normal vision. Prior to the test, participants gave written 

informed consent in accordance with the Human Subjects Institutional Review Board 

of Southwest University. After completing the test, each participant received a 

monetary payment for his/her participation. 

Stimuli and Psychological Task  

------------------------------------------ 

Please insert Figure 1 in about here 

------------------------------------------ 

Participants were seated comfortably and tested in a sound-attenuating and 

light-subduing room. In each trial, a stimulus combination was presented at the center 
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 7

of the CRT (Cathode Ray Tube) display. All possible combinations of arrows and 

words indicating left or right (in Chinese) were presented (Figure 1). The participant 

sat approximately 0.5 m away from the display, and the stimulus combination was 

subtended a 0.6° visual angle vertically and 0.6°-3.2° visual angle horizontally. 

Participants indicated by a left or right button press the direction denoted by the target 

stimulus, either an arrow or word, depending on the task. Participants were instructed 

to respond as quickly as possible while trying to avoid errors. Button presses were 

made using the index finger of each hand: the left index finger corresponded to a 

left-pointing target and the right corresponded to a right-pointing target.  

The present study consisted of four tasks: AA, AW, WA, and WW (Figure 1). 

On incongruent trials, the target and distracter indicated opposite responses, yielding 

response conflict. On congruent trials, the target and distracter indicated the same 

response, yielding no response conflict. Congruent or incongruent stimulus 

combinations were presented rapidly, in a randomly intermixed order to prevent 

subjects from anticipating and changing strategies for the different event types. Trials 

were blocked by task and position of the target (either above or below the central 

point). Because there were four tasks, there were 8 blocks of 100 trials each. In each 

block, the first 20 trials were for practice and the latter 80 trials formed the formal 

experiment. First, a fixation cross was presented in the center of the screen for 500 ms. 

Next, a blank screen was displayed for a random interval of 500-1500 ms. Finally, the 

stimulus combination was presented at the center of screen, and the participant was 

asked to press a button according to the direction denoted by the target. The stimulus 
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combination was terminated by button-press or 2000 ms post-stimulus.  

Data Acquisition  

Electroencephalography (EEG) was conducted with a 

64-channel (Brain Product, Munich, Germany) recording system with the left mastoid 

as the reference, and re-referenced to average mastoid off-line. The electrooculogram 

(EOG) was recorded with electrodes placed above and below the left eye. All 

interelectrode impedance was maintained below 5 kΩ during recording. The EEG and 

EOG were continuously sampled at 500 Hz with DC-100 Hz bandpass and 50 Hz 

notch on. Trials contaminated with EOG artifacts (mean EOG voltage exceeding ±80 

μV) or those with artifacts due to amplifier clipping, bursts of electromyographic 

(EMG) activity, or peak-to-peak deflection exceeding ±100 μV were excluded from 

averaging. 

Data Analysis 

 ERP waveforms were time-locked to the onset of the 

stimulus. The averaged epoch for ERPs was 800 ms including a 200 ms baseline. The 

following 20 sites were chosen for statistical analysis: F3, F1, Fz, F2, F4, FC3, FC1, 

FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4. For the AA task, 

the N2 amplitude peak was measured in the 200-250 ms time window, and the mean 

amplitude was measured in the 270-370 ms time window. For the WA task, the mean 

amplitude was measured in the 270-350 ms time window, and the peak amplitude and 

latency of the P3 were measured in the 330-410 ms time window. The amplitudes and 

latencies in the two tasks were analyzed using two-way repeated measures analysis of 
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variance (ANOVA) with factors of condition (congruent and incongruent) and 

electrode site (20 sites). The p-values of all main and interaction effects were 

corrected using the Greenhouse-Geisser method for repeated-measures effects.  

Because the actual sources are unlikely to be a single source32, we used 

sLORETA (standardized low resolution brain electromagnetic tomography)33-35 to 

generate equivalent distributed sources of the neural activity from the difference wave, 

incongruent minus congruent. By dividing the brain volume into a lattice of voxels 

and allocating a dipolar source to each voxel, sLORETA estimates the distributed 

dipole strengths (current density) across the brain volume while maximizing 

“smoothness”. The local maxima of the distributed dipole strengths are assumed to 

reflect active sources36 with Z values >3.09 (p < 0.001). The head model was based on 

the discrete Montréal Neurological Insitute (MNI) brain model of 5-mm resolution 

(MNI152 template), which consists of voxels unambiguously labeled as cortical grey 

matter with a final voxel number of 6239. The forward electric potential lead field for 

the inverse solution was generated by a boundary element method. MNI coordinates 

were transformed into Talairach coordinates. Details regarding sLORETA, including 

the software package used, are available at 

http://www.unizh.ch/keyinst/NewLORETA/LORETA01.htm. 

 

Results 

Behavioral Performance  

The reaction times (RTs) and error rates in each condition and the statistical 
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results of paired-samples t-tests between incongruent and congruent conditions in 

each task are presented in Table 1 and Figure 2. The statistical results showed that, in 

both AA and WA tasks, the responses to incongruent trials were significantly slower 

than on congruent trials. Meanwhile, the error rates on incongruent trials were 

significantly higher than on congruent trials. Based on these results, it could be 

suggested that the distracter on incongruent trials in the AA and WA tasks caused 

interference. However, in the AW and WW task, the RTs and error rates were not 

significantly different between incongruent and congruent conditions, suggesting 

there was no interference effect. 

------------------------------------------ 

Please insert Table 1 and Figure 2 in about here 

------------------------------------------ 

ERP Results 

After excluding data for excessive incorrect responses or artifacts, 13 

participants in the AA task, 12 in the AW task, 14 in the WA task, and 14 in the WW 

task were used for grand averaging. For the WA and AA tasks, in which significant 

interference effects appeared in the behavioral data (Table 1), the grand ERP 

waveforms in incongruent and congruent conditions and their difference wave are 

presented in Figure 3. In the AA task, the difference wave between the two conditions 

was manifested mainly in the 270 to 350 ms time window. A distinct difference was 

apparent after the N2, and the peak of the difference wave was at about 330 ms. In the 

WA task, the difference was delayed; it took place mainly in the 340 to 410 ms time 
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window, and the peak of the difference waveform was at about 370 ms. For both the 

AA and WA tasks, the amplitudes of congruent trials were larger than those of 

incongruent trials in the corresponding time windows. 

------------------------------------------ 

Please insert Figure 3 in about here 

------------------------------------------ 

In the AA task, the mean amplitude in the 270-370 ms time window was 

4.682 ± 1.334 μV (M ± SE) on incongruent and 5.779 ± 1.295 μV on congruent trials. 

Repeated-measures ANOVAs showed that there was a significant main effect of 

condition, F(1, 12) = 10.274, p = 0.008, and a significant main effect of electrode sites, 

F(19, 228) = 3.319, p = 0.046, but the interaction was not significant, F(19, 228) = 

1.759, p = 0.157.  

In the WA task, the peak amplitude in the 330-410 ms time window was 

6.643 ± 1.369 μV on incongruent and 8.633 ± 1.51 μV on congruent trials. There were 

significant main effects of condition, F(1, 13) = 14.909, p = 0.002, and electrode sites, 

F(19, 247) = 4.699, p = 0.013, as well as a significant interaction, F(19, 247) = 3.58, p 

= 0.018. The peak latency of P3 in the 330-410 ms time window was 372 ± 3.8 ms on 

incongruent and 371 ± 4.6 ms on congruent trials. There was no significant difference, 

F(1, 13) = 0.001, p = 0.988. The results of the N2 amplitude peak comparison showed 

that there was no significant effect of condition in the AA or WA task in the N2 time 

window, F(1, 12) = 0.148, p = 0.707 and F(1, 13) = 2.075, p = 0.173, respectively. 
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------------------------------------------ 

Please insert Figure 4 in about here 

------------------------------------------ 

As shown in Figure 4, the waveforms elicited by incongruent and congruent 

conditions in the AW and WW tasks nearly overlapped during the entire epoch, which 

suggested that there was no significant difference between the two conditions. Based 

on the above results (Table 1 and Figures 3-4), it is possible that the distracter in 

incongruent trials caused an interference effect on ERPs and behavior in the AA and 

WA tasks, which was not seen in the AW and WW tasks. 

------------------------------------------ 

Please insert Figure 5 in about here 

------------------------------------------ 

Although the temporal window of the difference can be acquired from the ERP 

waveforms (Figures 3-4), and the spatial distribution can be acquired from the 

topographies, the information is not sufficiently detailed. Based on a separation of the 

significance levels, the p-values of significance from single-sampled t-tests against 

zero were drawn as images (Figure 5); accordingly, the subtler temporal and spatial 

distributions of the difference were obtained. According to Figure 5, the distribution 

of the difference between congruent and incongruent trials was different between the 

AA and WA tasks temporally and spatially. Considering that the CPPRs are related 

components, the difference in AA begins at about 270 ms, the significance level of the 

early difference is lower (0.01 ≤ p < 0.05), and the distribution is partial on the 
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selected electrodes. In contrast, the difference in the WA task begins at about 330 ms, 

the significance level of the early difference is higher (0.001 ≤ p < 0.01), and the 

distribution is more orderly on almost all selected electrodes. Furthermore, the higher 

significance level (0.001 ≤ p < 0.01) in AA suggests that the distribution time window 

is more narrow than that in WA and there are fewer involved electrodes. The pattern 

of highly significant difference (p < 0.001) in AA showed middle and left 

lateralization, but that in WA showed mainly right lateralization. 

Three-dimensional current source imaging  

Initially, the cortex current density of the difference waves in the AA and WA 

tasks was estimated using BESA (brain electrical source analysis) software (version 

5.0; Figure 6). As shown in Figure 6, for the AA task, there were two activated areas 

in the right frontal and centro-frontal cortex at about 270 ms; but after 290 ms, the 

activation focused stably in the centro-frontal cortex. For the WA task, activation was 

maintained in the right centro-frontal cortex from 330 to 410 ms.  

------------------------------------------ 

Please insert Figure 6, Figure 7, and Table 2 in about here 

------------------------------------------ 

Three-dimensional current source density maps were estimated using 

sLORETA. Based on the previous waveform analysis, the difference wave of the AA 

task was analyzed at 270 ms, 290 ms, 310 ms, 330 ms, 350 ms, and 370 ms and the 

results were projected on magnetic resonance image maps of the brain (Figure 7). The 

Talairach coordinates and corresponding names of central positions in the activated 
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areas for each selected time point are included in Table 2. Using the same procedure, 

the difference wave in the WA task was analyzed at the following time points: 340 ms, 

350 ms, 360 ms, 370 ms, 380 ms, and 390 ms (Table 2 and Figure 7). 

For the difference wave in the AA task, the lateral PFC, medial PFC, ACC, 

and superior parietal cortex (SPC) were consecutively activated from 270 to 370 ms. 

It is clear that the medial PFC and right lateral PFC were simultaneously activated at 

270 ms, but at the peak difference time point of 330 ms, the main activation was in 

the dorsal ACC. Later, at 370 ms, the dorsal ACC and SPC were simultaneously 

activated. In the WA task, the medial PFC was activated at 340 ms, followed by the 

right lateral PFC and SPC; no ACC activation was detected. 

 

Discussion 

According to behavioral, ERP, and source imaging results, the manipulation 

of CPPR has a significant effect in the AA and WA tasks, but no effect in the AW and 

WW tasks. These findings suggest that when the distracter is a word—regardless of 

whether the target is an arrow or word—the interference effect does not appear. 

However, when the distracter is an arrow, it causes interference regardless of the type 

of target. In terms of CPPR levels, the distracter causes interference when the CPPR 

level of the target is higher than that of the distracter, as in the WA task where the 

CPPR level of the target, thought processing, is higher than the perceptual processing 

required by the distractor. When the CPPR level of the target is lower than that of 

distracter, there is no interference, as in the AW task where the perceptual processing 
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required by the target is lower than the thought processing of the distracter. Finally, 

when CPPR levels of the target and distracter are equal, interference takes place when 

both require perceptual processing, as in the AA task, but not if both require thought 

processing, as in the WW task.  

According to the ERP waveforms and statistical results, the N2 amplitude 

difference in the AA task was not significant and a distinct waveform difference was 

apparent after the N2, with a peak at about 330 ms. Some previous studies have found 

that N2 amplitude modulation reflects conflict and control17,37, but others have found 

the modulation was not significant5,19,38. The contradiction may stem from differences 

in task requirements: amplitude modulation of the N2 is often associated with conflict 

between internal expectations and newly input information.  

The source analysis of the difference wave showed that the PFC was mainly 

activated in the early stage of conflict (270-300 ms), and it is reasonable to infer that 

brain activation in the early stage may reflect monitoring of conflict occurrence10. 

Therefore, the results in the present study support the viewpoint that PFC activation 

reflects conflict occurrence2-5. It is worth noting that in experimental tasks that 

support the monitoring role of the PFC in conflict, conflict is between two kinds of 

newly input information. Subsequently, brain activation in middle and late stages of 

conflict may reflect conflict control, and we have found sources mainly in the ACC 

and SPC. As the SPC is associated with the orienting response1,39, conflict control in 

the AA task would be expected to mainly relate to ACC activation. In fact, there are 

many studies where ACC activation has been found to be associated with conflict 
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control in motor responses2,18,23,40. In addition, the difference wave returned to 

baseline at about the time of the P3 peak, which may indicate that higher cognitive 

processes, such as working memory41 and stimulus evaluation42 were not involved in 

conflict control in the AA task.  

Similar to the AA task, in the WA task, the N2 amplitude difference between 

the incongruent and congruent conditions was also not significant. What differentiated 

the WA task, however, was that the initial point of the distinct difference was delayed 

to the time window from 340 to 410 ms, and the peak of the difference waveform was 

at about 370 ms. This difference may result from the difference in CPPR levels: 

thought vs. perception in the WA task, but perception vs. perception in the AA task. 

Although the speed of perceiving the arrow is faster, the corresponding response can 

not be executed immediately after perceiving the arrow because it is not the target. 

The correct response could not be made until the participant completed the semantic 

or phonetic processing of the word. The direction indicated by the arrow then 

remained in the representation before the response was finally executed according to 

the word meaning3,43. Because the processes that the word triggers are completed in 

working memory, conflict would take place in the representation. The source analysis 

results showed that both conflict occurrence and conflict control were mainly 

associated with the PFC in the WA task. Because the PFC plays an important role in 

conflict control involving the representation, such as internal intentions44, these results 

suggest that conflict occurrence and control in the WA task are closely related to 

representation. This inference is further supported by the proximity of the difference 
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wave peak and the P3 peak.  

There was no significant interference effect in either the AW or WW tasks. 

However, compared with the AW task, the behavioral RTs and latencies of the N2 

and P3 in the WW task were longer, suggesting differences in the effect of CPPR 

manipulation on these two tasks and the underlying cognitive processes. In the AW 

task, the CPPR in response to the target is perception, which is faster than the thought 

processing required by the distracter; the correct response has been executed before 

the opposing response is elicited by the distracter45. In the WW task, the CPPR in 

response to the target is the same as that in response to the distracter, and processes at 

the level of thought processing can be affected by internal intentions25,26, i.e., 

processing of the distracter word would be terminated consciously by the intentions to 

execute the response to the target, resulting in preemptive control46. 

 

How and in what time course is the ACC or PFC responsible for monitoring 

conflict occurrence? 

The results of the present study suggest that the PFC is responsible for 

monitoring conflict occurrence. We noted that, in the present tasks, the number of 

incongruent and congruent trials was equal, and the presentation of both types of trials 

was random. Therefore, participants could not form specific expectations regarding 

the stimuli in advance. Interestingly, this situation seems to be a common feature in 

previous studies that have found that the PFC is responsible for monitoring conflict 

occurrence. In contrast, when participants can form specific expectations regarding 

the forthcoming stimulus, the corresponding results often show that the ACC is 

responsible for monitoring conflict.  
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In studies that support the monitoring role of the ACC, participants were 

unequivocally asked or unintentionally induced to form specific expectations of the 

forthcoming stimulus. Some studies directly provided instructions telling participants 

which dimension of the Stroop color word should be attended8. Similarly, some 

studies allowed participants to form expectations of a feature in a specific dimension 

before the stimulus was presented in partially incongruent categorization task37. In 

other studies, the percentage of incongruent trials was significantly higher or lower 

than that of congruent trials7,17,47,48. Because of learning or induction49, especially in 

late stages of the experiment, participants can often predict the next stimulus based 

on earlier experience. When the effect of the preceding trial on the current trial was 

analyzed6,9, the results showed that the role of the ACC in monitoring conflict was 

related to expectation from the preceding trial. 

In studies that support the monitoring role of the PFC, participants can not 

form clear expectations regarding forthcoming stimuli. Incongruent and congruent 

stimuli are often presented in equal frequencies and the two kinds of stimuli are 

presented randomly, without advance instruction2-5, 23. Two studies of patients with 

PFC damage found no activation in the intact ACC4,43, suggesting that the PFC is 

involved in the evaluation of inputs23.  

A previous ERP dipole analysis showed that ACC activation followed 

activation of the PFC5. These results support the viewpoint that the PFC plays a 

monitoring role and the ACC exerts control3. Generally, in ERP studies with 

expectation, ACC activation and related N2 amplitudes differ significantly between 

congruent and incongruent conditions17,37. In contrast, without expectation, N2 

amplitudes show no significant difference5,38. These results further suggest that 

expectation causes conflict to appear earlier; and when there is no expectation, more 
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cognitive processes, such as newly input information being transformed into 

representation, are needed before conflict is detected.   

How and in what time course is the ACC or PFC recruited in conflict control? 

Previous studies have shown that the ACC is associated with solving 

response conflict, such as motor selection2,18,23,40. Specifically, the dorsal ACC, below 

the supplementary motor area, is thought to be related to manual response23. In the 

present AA task, conflict is associated with left and right button presses, and conflict 

resolution mainly involved the dorsal ACC, the source location of the peak difference. 

The familiar symbol-response connection pathway is generally independent of the 

PFC44, which implies that this kind of control involved little higher cognitive 

processing, such as intention or thought. In fact, in our AA task, the CPPR comparison 

is perception vs. perception, where the conflict is on a lower level of cognitive 

processing. The role of the ACC may be that of control of a concrete action in 

response to conflict46. It may be involved in selectively enhancing the activation of 

the correct response until a selection threshold is exceeded2; this kind of control is 

mainly automatic processing involving little conscious attention15. 

When conflict takes place in higher cognitive processing, such as 

representation, conflict resolution would activate the PFC44,50. For example, 

non-response conflict is closely associated with PFC activation13,16. Consistent with 

previous studies, in the present WA task, conflict control was mainly completed by the 

PFC, for here the CPPR comparison is thought vs. perception. The conflict is between 

the response representations, and the corresponding control elicits PFC activation. 

Because the processing in representation is subject to be affected by attention and 

intention25,26, the control is at a more strategic level. For example, it may increase 

attention to task-relevant information46, or bias attention to task-relevant 
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representation44,50. This strategic control is closely associated with PFC activation20,40. 

 

Conclusion 

Cognitive control consists of at least two processes, conflict monitoring and 

conflict control, and the involved neural mechanisms are different from each other. 

According to the our findings and the literature, in situations when specific 

expectations are formed before the stimulus is presented, the ACC is usually involved 

in monitoring the occurrence of conflict. When participants have no expectations, the 

PFC is usually activated. If conflict primarily involves motor selection, the main 

neural anatomic structure for implementing control is the ACC. However, if conflict is 

mainly at the representation stage, the PFC is the main structure for conflict control. 
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Figure Legends 

Figure 1. Examples of the stimuli used in the arrow and word tasks. 

 

Figure 2. The behavioral findings in the present four tasks. Mean response times for 

the congruent and incongruent conditions are shown in left graph for each task. Mean 

error rates are shown in right graph, where the standard error is indicated in the error 

bar.  

 

Figure 3. The grand waves and difference waves for the AA task (left) and WA task 

(right) at FCz. In both tasks, the red line is the incongruent condition, the blue line is 

the congruent condition, and the black line is the difference wave. The topographies 

of the difference waves at representative time points are presented on the bottom of 

their respective graphs. The topographical scales for both tasks are the same. 

 

Figure 4. The grand waves for the AW task (top row) and WW task (bottom row). For 

both tasks, the thick black line is the incongruent condition, and the thick gray line is 

the congruent condition. 

 

Figure 5. The distributed plots of p-values of single-sample t-tests for the amplitudes 

of the difference waves of the AA and WA tasks against zero at each sampled point for 

all participants (left plot is AA and right plot is WA ). The time range on the X-axis is 

from 0 to 500 ms post-stimulus. All selected electrodes are presented on the Y-axis, 
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and are aligned as left, middle, and right brain areas, and the left and right electrodes 

are symmetrical. The statistical significance levels have been further divided into 

three categories: significant (0.01 ≤ p < 0.05), more significant (0.001 ≤ p < 0.01), and 

very significant (p < 0.001), so as to present a detailed temporal and spatial 

distribution of the difference. 

 

Figure 6. Cortical current density maps of the AA and WA difference waves.  

 

Figure 7. Anatomical (sLORETA) modeling of cortical regions of difference waves. 

The time points are 330 ms in AA and 370 ms in WA. The active areas (z > 3.09, p < 

0.001) are illustrated on normalized Talairach slices. 
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Tables 
 
Table 1. Behavioral statistical results. 

 Task Congruent Incongruent t p 

AA 393±10.1 ms 410±11.9 ms t(15)=7.39 p<0.001** 

AW 383±8.6 ms 384±9.3 ms t(15)=0.584 p=0.568 

WA 465±10.1 ms 491±10.8 ms t(15)=7.129 p<0.001** 

Response 

Time 

WW 461±11.4 ms 468±12.1 ms t(15)=1.843 p=0.451 

AA 0.45±0.183 0.95±0.375 t(15)= 2.784 p=0.017* 

AW 0.47±0.195 0.56±0.33 t(15)= 0.364 p=0.721 

WA 1.32±0.444 3.23±0.948 t(15)= 2.762 p=0.015* 
Error Rate 

WW 2.08±0.757 2.28±0.493 t(15)= 1.3 p=0.213 

 
 
 

Table 2. Analyzed time points, Talairach coordinates, and activated areas of conflict 

and control in the AA and WA tasks. 

AA WA 

Time-points 

(ms) 

Talairach 

x, y, z (mm) 

Brain 

area 

Time-points 

(ms) 

Talairach 

x, y, z (mm) 

Brain 

area 

270 
50, 10, 40 

-6, -20, 64 

LPFC 

mPFC 
340 14, 16, 48 mPFC 

290 -2, -10, 56 mPFC 350 10, 12, 46 mPFC 

310 -2, -2, 54 mPFC 360 
32, 28, 44 

38, -56, 56 

LPFC 

SPC 

330 -2, -4, 44 dACC 370 
32, 28, 46 

38, -56, 54 

LPFC 

SPC 

350 
-4, 20, 44 

38, -60, 52 

dACC 

SPC 
380 

36, 26, 44 

42, -58, 52 

LPFC 

SPC 

370 
4, 18, 40 

42, -68, 48 

ACC 

SPC 
390 36, 24, 44 LPFC 

Note: dACC is dorsal anterior cingulate cortex, mPFC is medial prefrontal cortex, 

LPFC is lateral prefrontal cortex, SPC is superior parietal cortex. 
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