75,788 research outputs found

    Preparation and characterisation of irradiated waste eggshells as oil adsorbent

    Get PDF
    Adsorption method had been developed by using natural organic adsorbent for the removal of oil because of its ability to bind the oil molecules into the surface of adsorbent. In this study, chicken eggshells waste was used and it undergoes irradiation process with four different amount of dose which was 0.5 kGy, 1.0 kGy, 1.5 kGy, and 2.0 kGy by using Gamma Cell Irradiator. Three equipment had been used for the characterization process which were the Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX), and Fourier-Transform Infrared Spectroscopy (FTIR). The adsorption experiment was conducted to calculate the sorption efficiency by using different mass of samples. The result showed that irradiated chicken eggshells powder with 2.0 kGy amount of radiation dose has a best performance as oil adsorbent

    Intelligent redundant actuation system requirements and preliminary system design

    Get PDF
    Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed

    Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire.

    Get PDF
    Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition

    Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma

    Get PDF
    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) is pivotal to the pathophysiology of widespread allergic diseases mediated by type 2 helper T cell (Th2) responses, including asthma and atopic dermatitis. The emergence of human TSLP as a clinical target against asthma calls for maximally harnessing its therapeutic potential via structural and mechanistic considerations. Here we employ an integrative experimental approach focusing on productive and antagonized TSLP complexes and free cytokine. We reveal how cognate receptor TSLPR allosterically activates TSLP to potentiate the recruitment of the shared interleukin 7 receptor a-chain (IL-7Ra) by leveraging the flexibility, conformational heterogeneity and electrostatics of the cytokine. We further show that the monoclonal antibody Tezepelumab partly exploits these principles to neutralize TSLP activity. Finally, we introduce a fusion protein comprising a tandem of the TSLPR and IL-7Ra extracellular domains, which harnesses the mechanistic intricacies of the TSLP-driven receptor complex to manifest high antagonistic potency
    corecore