
PLACES'10: The 3rd Workshop on Programmng Language Approaches to

concurrency and Communication-Centric Software
Honda, Kohei; Mycroft, Alan

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/5003

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/5003

22

PLACES’10: The 3rd Workshop on Programming Language
Approaches to concurrency and Communication-Centric
Software

ISSN 2043-0167

EECSRR-10-02 March 2010 School of Electronic Engineering
and Computer Science

Editors: Kohei Honda and Alan Mycroft

PLACES’10

The 3rd Workshop on

Programming Language Approaches

to Concurrency and

Communication-Centric Software

Paphos, Cyprus

March 2010

Preface

This is the pre-proceedings of PLACES’10, the 3rd Workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric Soft-
ware, to be held in Paphos, Cyprus, on March 21, 2010, co-located with ETAPS’10.
PLACES aims to offer a forum where researchers from different fields exchange
new ideas on one of the central challenges in programming in near future, the
development of programming methodologies and infrastructures where concur-
rency and distribution are a norm rather than a marginal concern.

PLACES’10 welcomed William Cook for the invited talk. We are excited
to be able to hear William’s talk on concurrency, and sincerely thank him for
agreeing to come from Texas Austin.

For the submitted contributions, the Program Committee, after a careful
and thorough reviewing process, selected for the inclusion in the programme
10 papers out of 13 submissions. Each submission was evaluated by at least
two referees, and the accepted papers were selected during one week electronic
discussions. This volume contains all of the 10 contributed papers.

PLACES’10 was made possible by the contribution and dedication of many
people. First of all, we would like to thank all the authors who submitted pa-
pers. Secondly we would like to thank our invited speaker. We would also like
to thank the members of the Program Committee for their careful reviews. We
appreciate continuous help by Anna Philippou (ETAPS General Co-Chair) for
her continuous help and George A. Papadopoulos (ETAPS Local Chair) for his
valuable assistance.

March 2010

Kohei Honda
Alan Mycroft

Conference Organization

Programme Chairs

Kohei Honda
Alan Mycroft

Programme Committee

Alastair Beresford
Marco Carbone
Simon Gay
Joshua Guttman
Hanne Nielson
John Reppy
Konstantinos Sagonas
Vivek Sarkar
Vasco Vasconcelos
Jan Vitek
Nobuko Yoshida

External Reviewers

Fossati, Luca

Table of Contents

Secure Execution of Distributed Session Programs . 1
Nuno Alves, Raymond Hu, Nobuko Yoshida, Pierre-Malo DeniÃlou

Channels as Objects in Concurrent Object-Oriented Programming 9
Joana Campos, Vasco T. Vasconcelos

Towards a Modal Logic for the Global Calculus . 16
Marco Carbone, Thomas Hildebrandt, Hugo A. LÃpez

Analysing DMA Races in Multicore Software . 24
Alastair Donaldson, Daniel Kroening, Philipp Ruemmer

A Type System for Unstructured Locking that Guarantees Deadlock
Freedom without Imposing a Lock Ordering . 29

Prodromos Gerakios, Nikolaos Papaspyrou, Konstantinos Sagonas

Distributed Dynamic Condition Response Structures 35
Thomas Hildebrandt, Raghava Rao Mukkamala

Session Type Inference in Haskell . 43
Keigo Imai, Shoji Yuen, Kiyoshi Agusa

A Modular Toolkit for Theories of Distributed Interactions 53
Julien Lange, Emilio Tuosto

Inference of Conversation Types for Distributed Multiparty Systems 60
LuÃsa LourenÃo, Luis Caires

An Investigation on Types for X10 Clocks . 70
Francisco Martins, Vasco Vasconcelos, Tiago Cogumbreiro

Secure Execution of Distributed Session Programs
Nuno Alves

Freelance Consultant
nma08@imperial.ac.uk

Raymond Hu Nobuko Yoshida Pierre-Malo Deniélou
Imperial College London

{rhu,yoshida,malo}@doc.ic.ac.uk

Abstract

The development of the SJ Framework for session-based distributed programming is part of
recent and ongoing research into integrating session types and practical, real-world programming
languages. SJ programs featuring session types (protocols) are statically checked by the SJ com-
piler to verify the key property of communication safety, meaning that parties engaged in a session
only communicate messages, including higher-order communications via session delegation, that are
compatible with the message types expected by the recipient.

This extended abstract presents current work on security aspects of the SJ Framework. Firstly,
we discuss our implementation experience from improving the SJ Runtime platform with security
measures to protect and augment communication safety at runtime. We implement a transport com-
ponent for secure session execution that uses a modified TLS connection with authentication based
on the Secure Remote Password (SRP) protocol. The key technical point is the delicate treatment of
secure session delegation to counter a previous vulnerability. We find that the modular design of the
SJ Runtime, based on the notion of an Abstract Transport for session communication, supports rapid
extension to utilise additional transports whilst separating this concern from the application-level
session programming task. In the second part of this abstract, we formally prove the target security
properties by modelling the extended SJ delegation protocols in the π-calculus.

1 Session Programming in SJ

It has become increasingly important to understand and specify the behaviour of applications across
many domains as sequences of communications and interaction between concurrently executing com-
ponents, as opposed to independent black boxes that simply return a final output from a given input.
Unfortunately, the most common technologies and programming techniques for communication-based
programming in use today do not provide the level of support and safety guarantees enjoyed for tradi-
tional single-threaded, “localised” programming. For example, low-level network socket APIs provide
only the minimal mechanisms for exchanging untyped data in an unstructured manner, and higher-level
RPC/RMI libraries are typically coupled to the synchronous call-return pattern and lack the facility to
encapsulate a series of such exchanges as one complete unit of interaction.

SJ [9, 11] is an extension of Java that uses session types [7] to address the above issues. Program-
mers use session types, which can be thought of as communication protocols, to specify the abstract
communication behaviour of a program. Concrete communication behaviour is implemented using spe-
cial session primitives; in particular, SJ supports higher-order session types, implemented by session
delegation actions, that express the migration of ongoing sessions to new parties. The SJ compiler per-
forms static session type checking, guaranteeing that session implementations conform to their declared
types, i.e. a SJ session between compatible peers will never reduce to a communication error other than
premature termination due to e.g. network failure. Other works have presented SJ implementations of
communications-based applications from widely different domains, such as Internet Web services [9]
and parallel algorithms for cluster computing [3], demonstrating competitive performance in both cases.
Securing session execution. To enforce the statically verified communication safety property at run-
time, the SJ Runtime (SJR) validates peer compatibility at session initiation and provides a session mon-
itoring service that dynamically tracks session progress against the expected type. Nevertheless, the
development of the SJ Framework as a research project, until now, had yet to focus on session security

1

Secure Execution of Distributed Session Programs Alves, Hu, Yoshida and Deniélou

Figure 1: The interaction between a Customer, the Vendor and Payment Handler service in an online
purchase session.

as a primary objective. Indeed, the security of session delegation has been a frequently posed question.
In this abstract, we identify a potential vulnerability in the existing SJ session delegation protocols; we
then implement and formalise SJR extensions for secure session execution, solving the above problem
and strengthening runtime communication safety. § 2 starts with an example SJ application (a modified
version of the main example in [9]) that illustrates both the usual security concerns and issues specific to
session delegation. § 3 then briefly discusses the design and implementation of a new Transport Module
that enables secure session execution over a modified TLS connection with authentication based on the
Secure Remote Password (SRP) protocol. In § 4, we formalise the extended delegation protocols encap-
sulated by the new Transport Module, and prove the target security properties. Finally, § 5 concludes by
describing our ongoing and future work.

2 An Example SJ Application

To illustrate the session security issues, in particular regarding session delegation, we examine the inter-
action in a modified version of the main Web services example from [9], an implementation of Use Case
C-UC-001 from the W3C Web Services Choreography Requirements [5].

The basic scenario is an online purchase session involving three parties, a Customer (C), the Vendor
(V) and a Payment Handler service (H). The interaction between these parties constituting one session is
depicted in Figure 1, where each side represents one of the two ways to complete the session. Both start
by C connecting to V, and V sending a list of the products for sale. In the next part, C adds a product to
the basket and V returns the updated total cost of the basket; this segment can be repeated an arbitrary
number of times by C. After this, C has two choices. On the left-hand side, C cancels the purchase
and ends the session by selecting the EXIT branch. On the right-hand side, C proceeds by selecting the
CHECKOUT branch. At this point, V enters a session with the third party, H. The single action between
V and H is an example of session delegation: the message type itself is a session type that specifies the
remaining session actions to be completed by H on behalf of V. After V delegates its side of the session
to H, the interaction proceeds between C and H: C sends her credit card details, and H issues a receipt.

Session types for this application. Figure 2 lists the session types, declared as SJ protocols, for the
interaction between C and V from the perspective of each party. The customerToVendor protocol starts

2

Secure Execution of Distributed Session Programs Alves, Hu, Yoshida and Deniélou

protocol customerToVendor {
cbegin. // Client session request.
?(ProductList). // Get product list.
![// Can repeat this segment.
!<ProductId>. // Add product to basket.
?(int) // Get updated basket total.

]*.
!{ // Two branch options.
CHECKOUT: // Proceed to checkout.
!<CreditCard>.
?(Receipt),

EXIT: // Cancel purchase.
}

}

protocol vendorToCustomer {
sbegin.
!<ProductList>.
?[
?(ProductId).
!<int>

]*.
?{
CHECKOUT:
?(CreditCard).
!<Receipt>,

EXIT:
}

}

Figure 2: Session types (declared as SJ protocols) for the interaction depicted in Figure 1.

with the cbegin element to denote the client side of the session. Receiving and sending messages have
the syntax, e.g. ?(ProductList) and !<ProductId> respectively. The repeated segment of the session
is specified as a session iteration type, ![...]. Here, the ! signifies that C controls the termination
condition of the loop. Finally, the two session branches are collected within the !{...} constructor and
labelled, e.g. CHECKOUT; the ! again signifies that C makes the branch decision. The vendorToCustomer
protocol is the dual session type that describes the reciprocal behaviour, in this case given by simply
inverting the output (!) and input (?) symbols. Note that the ?[...] (resp. ?{...}) type specifies that V
should follow the iteration (resp. branch) decision made by C.

Recall that V will not actually perform the final ?(CreditCard).!<Receipt> exchange itself, but
will delegate these actions to H. These actions must still be specified in vendorToCustomer to achieve
duality between the behaviours of C and H (in SJ, session initiation between non-dual parties raises an
exception). However, the delegation action from V to H, specified by the protocols

protocol vendorToHandler {
cbegin.
!<?(CreditCard).!<Receipt>>

}

protocol handlerToVendor {
sbegin.
?(?(CreditCard).!<Receipt>)

}

ensures that V indeed fulfils the vendorToCustomer protocol contract. This Use Case demonstrates how
session types provide a type-safe discipline for communications programming, including higher-order
communications that evolve the shape of the session network.

Due to space limitations, we omit the application-level implementations of these protocols in order
to focus on the runtime security of delegation. The full source code for this example can be found in
the tests/src directory (see the places.purchase package) of the SJ Google Code repository (linked
from [11]); see [9] for further explanation of the SJ session primitives. The types and implementation
of this application can be readily extended (e.g. to pass additional information from V to H before the
delegation, and for H to return an acknowledgment after completing the session with C) by adding the
required session interactions.
A vulnerability in session delegation. Needless to say, conducting the above session over an insecure
transport connection jeopardises message confidentiality and integrity, an especial concern for highly
sensitive messages like CreditCard. For this purpose, the SJR includes SSL and HTTPS variants of the
basic TCP and HTTP Transport Modules, implemented using the standard Java APIs for these features.
However, the current version of SJ does not have dedicated support for mutual peer authentication outside

3

Secure Execution of Distributed Session Programs Alves, Hu, Yoshida and Deniélou

1. V→H: START_DELEGATION
2. H: Open server socket on free port pH ; accept connection on pH

3. H→V : pH

4. V→C: DSV
C(H) = 〈STV

C, IPH ,pH〉
5. C→V : ACKCV

6. C: Close s 6’. V : Close s
7. C: Connect to IPH:pH

8. C→H: LM(STC
V −STV

C)

Figure 3: Operation of the original Resending Protocol between the Vendor, Handler and Customer.

of TLS certificate-based authentication (which is used to accomplish only unilateral authentication in
most typical TLS authentication scenarios).

In addition to the general attacks mentioned above, we identify a specific vulnerability in the SJ
session delegation protocols. The first work on implementing session delegation [9] presented three
alternative SJR protocols with varying tradeoffs for coordinating the three (or four) parties involved in
the delegation of an ongoing session. Two of these protocols, the Resending Protocol and Bounded
Forwarding Protocol, are termed as reconnection-based. As the name suggests, these protocols involve
closing the original transport-level connection underlying the application-level session being delegated,
and establishing a new connection to reflect the session migration. A detailed recap of the delegation
protocols is beyond the scope of this abstract, but Figure 3 lists an instance of the Resending Protocol
for the above application: V (resp. H, C) denotes the SJR supporting V (resp. H, C), DSV

C(H) denotes
the Delegation Signal for the delegation from V to C with passive party H, STV

C the remaining type of the
session between V and C from the former’s side, ACKCV the Delegation Acknowledgement from C to V ,
and LM(STC

V −STV
C) the “lost messages” corresponding to the difference between the two session types.

The reconnection itself is performed by the C SJR over steps 6 and 7. The crucial point is that the lack of
mutual authentication between all three peers, and hence the inability to confirm that the party accepted
by H (step 2) is the same as the original C, allows an attacker to infiltrate the session, masquerading as
C, at this weak point. This attack also applies to the Bounded Forwarding delegation protocol [9] for the
same reasons.
For secure session delegation, we extend the reconnection-based protocols with additional authentica-
tion message exchanges: Figure 4 lists the new secure version of the original protocol instance from
Figure 3. Our extended protocol is different from the original in step 1, the creation of a fresh credential
by V , and steps 2 and 5, which send the credential to H and C respectively. H then stores the creden-
tial and waits for a connection on pH . The key action in the extended protocol lies on step 9, where C
sends the credential to H after connecting: if H can validate that the credentials match, the connection is
successfully established, otherwise the delegation has failed and the session is aborted.

The above protocol listings correspond to Case 1 of the Resending Protocol [9]. A complete analysis
of all four Delegation Cases for our Secure Resending and Forwarding Protocols is specified in [2].

3 Implementation of a Secure Transport Module

We first summarise the SJ Framework and the structure of the SJ Runtime (SJR). We then briefly explain
the design and implementation of a secure Transport Module plugin for the SJR that solves the security
issues described in § 2.
The SJ Framework comprises the compiler and the SJ Runtime (SJR). The compiler transforms SJ
programs into a transport-independent form in standard Java, translating the application-level SJ session

4

Secure Execution of Distributed Session Programs Alves, Hu, Yoshida and Deniélou

1. V : Credential creation
2. V→H: START_DELEGATION::CRED
3. H: Open server socket on free port pH ; accept connection on pH

4. H→V : pH

5. V→C: DSV
C(H) = 〈STV

C, IPH ,pH ,CRED〉
6. C→V : ACKCV

7. C: Close s 7’. V : Close s
8. C: Connect to IPH:pH

9. C→H: CRED 9’. H: CRED checking
9a. -pass: Connection successful 9a’. -pass: Connection established
9b. -fail: Credential rejected, close s 9b’. -fail: Authentication error, close pH

10. C→H: LM(STC
V −STV

C)

Figure 4: Operation of the Secure Resending Protocol between the Vendor, Handler and Customer.

primitives in terms of Java control flow and calls to Interaction Services hosted by the SJR, also imple-
mented in Java. Thus, SJ programs can be executed on any standard JVM, where the purpose of the SJR
is to perform the requested Interaction Services as actions on an underlying transport connection. The
key element in the SJR is the Abstract Transport Interface, which represents an idealised asynchronous,
reliable and order-preserving message-oriented transport for session communication. Interaction Service
components are implemented as actions on the Abstract Transport, which are in turn implemented by
Transport Modules that encapsulate the communication mechanisms of specific “concrete” transports,
such as TCP and shared memory. The Abstract Transport thus serves to decouple the realisation of ses-
sion interaction semantics in the SJR from the provision of the underlying communication mechanisms.

Design. Our primary goal was to provide a SJR Transport Module that incorporates a means of peer
authentication in addition to message confidentiality and integrity, and thereby solve the security concern
exposed by the reconnection-based delegation protocols. After evaluating the available options (see
[2] for the omitted details), our chosen design adapts TLS to use the Secure Remote Password (SRP)
[12] authentication method [6]. Although standard usage of TLS provides confidentiality and integrity,
authentication primarily relies on certificates and external authorities: our approach instead combines
TLS and SRP to provide session security without requiring trusted third-parties or certificates, whilst still
being able to use these mechanisms if available. Retaining session independence from external third-
parties is also in line with the established session theory (which our formalism in § 4 follows), where
scope restriction of each session to just the two parties involved is an important invariant in proving
communication safety [10].

Implementation and the extended delegation protocols. TLS consists of three basic phases: ne-
gotiation of the algorithms supported, key exchange and authentication, and symmetric cipher encryp-
tion/message authentication. Unfortunately, none of the publically available Java implementations of
SSL/TLS fulfilled all of our requirements: pure Java implementations either lacked support for SRP
integration or were otherwise incomplete, and using JNI to interface e.g. C libraries would break SJ
portability [2]. As a consequence, we decided to implement SRP as an initial mutual authentication
phase before the standard TLS phases. At the client side, we use a modified SJ transport negotiation
protocol to activate the SRP; at the server side, we override the behaviour of the accept method of the
standard Java SSLServerSocket API.

With the SRP authentication in place, the resending-based delegation protocols are strengthened by
using the (successfully authenticated) session-sender (i.e. the party delegating the session — in our
example, V) to generate and distribute fresh, secure credentials on behalf of the party performing the

5

Secure Execution of Distributed Session Programs Alves, Hu, Yoshida and Deniélou

reconnection (C), as illustrated in § 2. By presenting these credentials to the session-receiver (H) over the
new TLS connection (ruling out replay attacks), the latter can confirm the authenticity of the connecting
party. The detailed protocol specifications for the extended delegation protocols can be found in [2].

4 A Process Model for Secure Sessions
To prove the design of the new Transport Module satisfies the intended security properties, we model
the extended delegation protocols in the π-calculus and formalise each property. The three original
properties for correct session delegation are Linearity, Liveness and Session Consistency, which were
proved by case analysis for each of the four valid delegation scenarios (referred to as Delegation Cases
1–4) [9]. To these, we add a new Session Security property to rule out attacks on the delegation protocols:
there are three aspects to this property, corresponding to the key security mechanisms that the delegation
protocols depend on. In the following, we focus on the three aspects of the latter; the other properties
(plus the cases omitted from below) are fully documented in [2]. As a convention, we use A, B and C
to respectively denote the passive party, session-sender and session-receiver in the three-party delegation
scenarios (Delegation Cases 1–3 in [2]). (In the previous example of § 2, the passive party, session-sender
and session-receiver are respectively the Customer, the Vendor and the Payment Handler; we now use a
general notation for the delegation roles rather than the parties from that specific example.) Our approach
has been influenced by [7, 10]. Below, we use “∀protocols” to mean all of the protocols formalised in
[2].
Freshness (The credentials are fresh for only the current session.)

∀protocols.∃P ≡ make(Cred);Q s.t. P is a session-sender

where make(Cred);Q is a binder for Cred in Q whose reduction instantiates Cred to a fresh value in
Q. Freshness means that every session-sender P (defined as P ≡ s !〈Cred〉; P1; s′ !〈...,Cred, ...〉; P2)) in
the protocols creates a new credential for that specific session. Freshness in the Resending Protocol is
verified for Delegation Case 1 as follows (we omit the parallel composed processes):

B = make(CredA); s′BC !〈CredA〉; B1 −→ s′BC !〈CredA〉; B1 −→
B1 −→∗ sAB !〈S′, IPC,xpC ,CredA〉; B2 −→ B2

B creates a new credential specific to the current session before the actual delegation action, which it
sends to both C and A (for A, it is sent together with other important session information). So, we can
conclude that Freshness holds in this case since the credential is fresh by the semantics of make.
Credential Checking (Session delegation only succeeds if the credentials of the passive party matches
that of the session-receiver. Otherwise, a delegation error has occurred and the session is terminated.)

∀protocols.∃PC ≡ s?(xCred); P; port (x : S).x?(yCred);
if xCred == yCred then x!Success;Q else x!Fail;close(x)

and ∃PA ≡ port (x : S).x !〈yCred〉; x"{Success : Q,Fail : close(x)}
s.t. PC is the session-receiver and PA is the passive party

where P is defined to be a session-receiver if P ≡ s?(Cred); P1; s′ ?(Cred); P2, and a passive party if
P ≡ s′ ?(...,Cred, ...); P1; s !〈Cred〉; P2. This property states that in all protocols, the session-receiver
must start by receiving a set of credentials from the session-sender. The session-receiver then accepts a
new connection on the open port, and receives another set of credentials. If the credentials match, then
the session is continued by selecting Success branch; otherwise the new connection is closed, aborting the
session. The passive party starts by requesting a connection on port followed by sending the credential
it received from the session-sender. If the credential is accepted it similarly follows the Success branch;
otherwise it goes to the Fail branch, which closes the new connection from the other end.

6

Secure Execution of Distributed Session Programs Alves, Hu, Yoshida and Deniélou

Below we verify Credential Checking for the Resending Protocol Delegation Case 2 in [2]. Due to
space limitations, we omit B’s specification and interactions, and focus on the interactions between A
and C.

Let P = x"{Success : x !〈LM(S−S′)〉,Fail : close(x)}
and Q = if xCredA == yCredA then x!Success; x?(xLM) else x!Fail; close(x); close(pC)

A | B |s′BC ?(xCredA); C1 −→∗ pC (x : S).x !〈zCredA〉; P | B′ | pC (x : S).x?(yCredA); Q
−→∗ x !〈zCredA〉; P | B′ | x?(yCredA); Q
−→∗ (P | B′ | Q)−→∗ 0

The delegation protocol starts with C = s′BC ?(xCredA); C1 receiving a credential from B. Then A connects
to C via pC and establishes a new session (bound to x). To finalise the delegation, A sends its credentials
to C who compares this value with the one received from B: if they match, the delegation is successful;
otherwise the session is closed along with the port pC.
Attack Protection (Protection against attacks from the Network, ensuring message authentication,
confidentiality and integrity.)

The formalism assures protection of sessions from Network attacks due to the firm restriction that
each session channel can only be accessed by the processes involved in that session, i.e. each channel is
private to those parties and cannot be interfered by others. To fully prove this property, an additional layer
is needed to model the lower level protocols underneath the session calculus; one suitable approach would
be the Applied π-Calculus [1], which we leave as future work. As a simple demonstration, however, we
can model a Network Attacker E that attempts to interfere with the genuine session parties.

E = sABC ?(S′,xIPC ,ypC ,zCredA); sABC !〈ACK〉; yPC (z : S).z !〈zCredA〉;
z"{Success : z !〈LM(S−S′)〉,Fail : 0}

If E is able to intercept the delegation information, then she will be able to masquerade as A without C
knowing. Note that E does not close the session after the ACK as the attack may benefit from remaining
connected to all parties. However, since there is no interaction with any external sABC in any of the
delegation protocols, we can infer that E will remain blocked forever. This is in line with the design
choice to keep SJ close to the original session types theory by restricting the scope of all sessions from
foreign parties.

5 Conclusion

The aim of this work was to examine and improve session security in SJ. In addition to standard security
concerns, we identified a vulnerability in the resending-based Resending and Bounded Forwarding pro-
tocols by modelling and analysing the delegation protocols in the π-calculus. To overcome this problem,
we implemented a new Transport Module for secure session execution that combines TSL with SRP
authentication. We found that the structure of the SJ Framework cleanly decouples application-level
logic related to implementing specific sessions from the provision of general, lower-level communica-
tion mechanisms. Hence, we were able to readily extend the SJR so that all existing SJ programs can
immediately utilise this new Transport Module without any modifications to the application source code
or other SJR components. To verify the correctness of our approach, we incorporated our new extensions
into the formal model to formalise and prove the intended security properties.
Future Work. We are currently looking at modifying a TLS implementation to include the SRP
protocol in the cipher suite list. This way, the additional key exchange could be avoided and the SRP
would be part of the key exchange phase of the TLS protocol. We are also working on timestamping and
revocation of credentials. Extension to multiparty session types [8] is an interesting future direction for

7

Secure Execution of Distributed Session Programs Alves, Hu, Yoshida and Deniélou

SJ and our session security work. One idea is to automatically generate a cryptographic protocol from
the session specification to secure the multiparty session executions despite compromised participants
[4]. However, the work in [4] has yet to be extended to support delegation and be adapted to the SJ
Framework. In order to prove the security properties in more complex contexts, we also plan to model
the delegation protocols at a lower level using the applied π-calculus.

References
[1] Martı́n Abadi and Cédric Fournet. Mobile Values, New Names, and Secure Communication, 2001.
[2] Nuno Alves. A Secure Session-Based Distributed Programming Language. Imperial College London - MSc

Thesis, 2009. http://www.doc.ic.ac.uk/teaching/distinguished-projects/2010/n.alves.pdf.
[3] Andi Bejleri, Raymond Hu, and Nobuko Yoshida. Session-based programming for parallel algorithms. In

PLACES, 2009. To appear in EPTCS.
[4] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and James J. Leifer. Crypto-

graphic Protocol Synthesis and Verification for Multiparty Sessions. CSF 09, 2009.
[5] Web Services Choreography Requirements. http://www.w3.org/TR/ws-chor-reqs/.
[6] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin. Using the Secure Remote Password (SRP) Protocol

for TLS Authentication. RFC 5054, 2007.
[7] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and Type Discipline for Struc-

tured Communication-Based Programming. In ESOP ’98: Proceedings of the 7th European Symposium on
Programming. Springer-Verlag, 1998.

[8] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In POPL
’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 273–284, New York, NY, USA, 2008. ACM.

[9] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming in Java. In
ECOOP ’08: Proceedings of the 22nd European conference on Object-Oriented Programming, pages 516–
541, 2008.

[10] Dimitris Mostrous and Nobuko Yoshida. Session-based communication optimisation for higher-order mobile
processes. In TLCA ’09, pages 203–218. Springer, 2009.

[11] SJ homepage. http://www.doc.ic.ac.uk/~rhu/sessionj.html.
[12] Thomas Wu. The secure remote password protocol. In Proceedings of the 1998 Internet Society Network

and Distributed System Security Symposium, pages 97–111, 1998.

8

Channels as Objects
in Concurrent Object-Oriented Programming

Joana Campos
Department of Informatics

University of Lisbon

Vasco T. Vasconcelos
Department of Informatics

University of Lisbon

Abstract

Session types have been proposed to specify the interactions in communication protocols, allow-
ing channel implementations to be verified by static type checking. Motivated by a recent approach
for distributed object-oriented languages that abstracts from the details of the communication proto-
col by hiding channel primitive operations in an API, we present a prototype compiler for a small
concurrent object-oriented language that extends previous work by eliminating channel operations
and defining method call as the single communication primitive in both sequential and concurrent
settings. In contrast to previous works, we define a single category for objects, instead of distinct
categories for linear and for shared objects. We qualify types as linear or shared, and let the status of
an object to be governed by its type, allowing linear objects to evolve into shared ones. Finally, we
introduce a sync qualifier to enforce mutual exclusion in concurrent access to certain operations of
shared objects.

Keywords: Session types, object-oriented programming, concurrency, type systems, aliasing control

Motivation Session types, introduced in [8, 9, 15], have been proposed to enhance the verification of
programs at compile-time by specifying the sequences and types of messages in communication proto-
cols. Traditionally associated with communication channels, session types provide a means to enforce
that channel implementations obey the requirements stated by their types, and are thus of great assistance
to programmers who want to verify the correctness of their programs. Originally developed for dyadic
sessions, the concept was extended to multi-party sessions, although this is a feature beyond the scope of
this paper. Programming languages that implement session types come in all flavours: pi calculus, an ide-
alised concurrent programming language in the context of which the original concepts were developed,
functional languages [7, 12, 17, 19], CORBA [16], object-oriented languages [3, 4, 6, 11, 20].

Channels as conceived in session type theory are special entities that carry messages of different
types, bi-directionally, in a specific sequence between two end points. These channels are usually imple-
mented in a socket-like style, and this involves having to work with request and accept primitive opera-
tions for creating a fresh channel and, once a connection is established, with send and receive operations
for message passing between processes. To our knowledge, none of the previous attempts to integrate
session types into object-oriented programming ever abstracted this notion of communication channels.
The work on Moose [3, 4], a multi-threaded object-oriented calculus with session types, was the first
attempt to marriage the (concurrent) object-oriented paradigm and session types. This and subsequent
work have kept distinct mechanisms for local and remote communication, in the form of message passing
and channel operations, respectively.

In this paper, we present our on-going work on the language MOOL, a mini object-oriented language
in a Java-like style that is being designed in the context of a prototype compiler targeting Mono, the
open-source clone of the CLR (Common Language Runtime). Our language offers a simple concurrency
mechanism for thread spawning and mutual exclusion control, and a type system that applies ideas taken
from session type theory. The design of our language is being guided by the attempt to make it not
only type-safe at compile-time, but also simple and intuitive for object-oriented practitioners. To achieve
simplicity, our communication model relies exclusively on remote method invocation in the style of Java
RMI, which we believe to be much easier to work with than sockets.

1

Channels as Objects Campos, and Vasconcelos

In other words, we do not claim to present a novel approach to session types, or an innovative
object-oriented language implementation. Rather, taking session types, and the object-oriented paradigm
as given, we investigate the problem of designing a concurrent object-oriented language that relies on
method call as the only primitive for structured communication, both in sequential and concurrent set-
tings. Our approach aims at extending the flexible style introduced by previous work on modular session
types [6, 20] where session-typed communication channels are treated as objects. One of the main dif-
ferences between our approaches is that we replace all channel operations by method calls, which is the
natural mechanism for code-level message passing between objects. Previous work hides channel prim-
itive operations in an API from where clients can call methods. We take one step further and reduce all
interaction between threads, and within a single thread, to the method call primitive.

From session types, we borrow the idea of attaching a session type at the class level, using what
we call a global usage declaration (the keyword usage is taken from [10]) that defines the sequence
of permitted method invocations. We spread the implementation of a session over separate methods
and classes, following a modular programming trend. This means that we have to handle non-uniform
objects, that is, objects that dynamically change the set of available methods. Nierstrasz [13] was the
first to study the behaviour of non-uniform, or active, objects in concurrent systems.

The use of method invocation as the single mechanism for communication made us aware of several
problems related to integrating linear objects into the object-oriented paradigm. The usage declaration,
because it prescribes a call sequence, allows us to define linear methods that can be called only once.
A linear method thus defined is consumed after being called, which means that the method is removed
from the object type, and this is handled implicitly by our type-state approach. But in shared objects,
the same cannot be done. The problem is closely related to the difficulty of controlling aliasing in this
paradigm, because of state held in instance fields. Consider an object o shared by multiple client objects
oi, each one holding a reference to o in its fields oi. f . Changes to o will change the type of the object,
and thus affect all client classes, resulting that the specification in the usage declaration no longer can be
guaranteed by the type system.

In our approach to object aliasing control, we define a single category for objects, as opposed to
distinct categories for linear and for shared objects. We let the current status of an object to be governed
by its type, allowing linear objects to evolve into shared ones (cf. [17, 18]). The opposite is not possible,
as we do not keep track of the number of references to a given object. We propose that an annotation
should be explicitly introduced by the programmer in the usage descriptor, indicating a lin type or un
type, and this will allow us to control the object current status. The lin qualifier describes the status of an
object that can be referenced once in exactly one thread object. The un qualifier stands for unrestricted,
or shared, and governs the status of an object referenced in multiple threads. To lighten the syntax, the
un qualifier can be omitted as it is the default type of every object. Foregoing work on session types for
objects deals with linear types only. Even though the introduction of shared objects into session type
theory looks unproblematic (and is dealt with in the implementation mentioned in [6]), the details have
not yet been worked out.

Still, this does not solve the problem of concurrent access in mutual exclusion. Since we are eliminat-
ing the channel communication model, we cannot rely on a shared channel playing the role of a monitor
with threads waiting on its queue. Thus, some additional mechanism must be used. Because our focus
are linear objects, to enforce serialised access to certain methods that manipulate shared data, we adopt a
standard and straight-forward solution similar to the synchronized mechanism used in Java, and specified
it in the class usage descriptor by an additional sync qualifier.

Summing up the main contributions of our approach:

• In contrast to other work on session types, we elect method invocation as the only communication
model in both concurrent and sequential programming;

2

Channels as Objects Campos, and Vasconcelos

• We annotate classes with an usage descriptor to structure method invocation by client objects, and
we enhance it with lin/un qualifiers for aliasing control, thus defining a single category for objects
that may evolve from a linear status into an unrestricted one;

• In contrast to other work on session types, we replace the well-known shared channel primitive by a
conventional synchronization primitive for mutual exclusion access. We introduce a sync qualifier
in the usage descriptor to describe those operations in shared objects that must be accessed without
thread interference.

The Auction System We now present an example adapted from [16, 17]. It is a simple auction system,
featuring three kinds of participants: the auctioneer, the sellers and the bidders. Sellers sell items for a
minimum price. Bidders place bids in order to buy some item for the best possible price. The auctioneer
controls these interactions.

The two scenarios of our auction system are best described by the UML sequence diagrams in Fig-
ures 1 and 2. The first diagram describes the scenario for a seller, while the second one describes the
scenario for a bidder. Following UML notation, we specify concurrent threads using an arrow with only
the upper half of the arrow showing. We are mainly interested in visualising interactions. Synchroniza-
tion is not represented here as this type of diagram is not suitable for describing concurrency control.

Figure 1: The scenario for a seller Figure 2: The scenario for a bidder

It is not difficult to conclude from the diagrams that the Selling and Bidding objects implement the
old linear channels, and provide the services to the client objects. A seller will start the interaction with
the auctioneer, who will delegate the service to the new Selling object. In the interaction initiated by a
bidder, the service is delegated to the Bidding object. Notice that a fresh Selling (and Bidding) object is
created at the start of each selling (and bidding) interaction, and is destroyed at the end. We signal object
destruction in the diagram to increase the expressiveness of the representation; the type system described
below provides crucial information to (remote) object deallocation.

Given the design of our auction system, it is straight-forward to write the code for each object. Fig-
ures 3–6 implement the scenario for a seller. Because the implementation for a bidder follows a similar
structure, we have omitted it from this paper. Each class begins by specifying the method availability

3

Channels as Objects Campos, and Vasconcelos

through the usage declaration. There is no need for further specification because, as conventionally estab-
lished, method signatures convey all the information a client class needs (number and type of parameters,
and return type).

Apart from the usage at the beginning of each class, our language presents a typical Java-like syntax.
Before explaining the implementation in detail, we briefly introduce some less obvious syntactic details
in the usage descriptor. If a program defines a conventional class named C with methods m1, m2 and
m3, and no usage declaration, our compiler will insert usage ∗{m1 + m2 + m3} as the class default usage
type, where each method (m1, m2 and m3) is always available. Formally, this usage defines a recursive
branch type of the form µ X{m1;X + m2;X + m3;X}. In the example, a choice between calling one of the
three available methods is indicated by (+). Because of the particular form of the recursive type, calling
any of these methods on an instance of class C will not change the object state nor the set of available
methods.

A typical usage declaration for a linear object is a sequential composition of available methods. If
class C is linear, usage lin m1; lin m2; lin m3; end; is a possible usage declaration. Calling methods in the
prescribed order on an instance of this class will change the object state and the set of available methods.
When an object is in state end, it means it has no further available methods. Formally, end is short for
the empty branch type un{}. A variant type, denoted 〈. . .+ . . .〉, is indexed by the two values of the
boolean type returned by the method preceding the variant in the usage declaration: if true is returned,
the new object state, and the available methods, will be found in the left-hand side of the variant; if false
is returned, it will be the right-hand side to dictate the object state and available methods. For simplicity,
we use binary-only variants as in typestates [14], but more generous variants using enumerations can be
found in the literature [6].

Consider now the usage specification in Figure 3. When an object of class Auctioneer is created, only
one reference exists to it, but then the object evolves into a shared type, as several sellers and bidders
will hold references to this object. Notice that we have defined a recursive (shared) type. Each client
object can do one of two things: (1) it can call method selling to obtain an object that provides an
implementation of the selling activity on the auctioneer; or (2) it can call method bidding and obtain an
object that implements the buying activity on the auctioneer. Then, it can repeat the interaction all over
again: a seller can lower the price of an item with no bids, and start a new sale; a bidder can bid a higher
price. The type never ends, and this illustrates why, in any program, we cannot keep track of the number
of references to a shared type.

Notice, still in Figure 3, that when a new selling request is made, a new Auction object is created (line
10). This instance is then added to the AuctionMap object (line 12), where the Auctioneer keeps all the
auctions, and is passed to the constructors of both the Selling and Bidding objects. In the first case, the
reference already exists (line 15); in the second one, it must be fetched from the AuctionMap object (line
20). It is through reading and writing to this shared Auction object that the protocol takes place.

The usage declaration in class Auction (Figure 5) shows another example of a recursive type in a
shared object. Notice also the sync qualifier in line 3 that is used to control concurrent bids made by
separate Bidder threads. This annotation also qualifies the put and get operations on the usage descriptor
of the AuctionMap class (omitted).

Figures 4 and 6 implement two linear types. The usage declaration of class Seller (Figure 4) is an
abbreviation for the nested composition of branch types lin{ init ; lin{run; un{}}}. Also notice an example
of a variant type in class Selling (line 3 of Figure 6), where (;) binds stronger than (+). A variant type
is always linear, so the redundant lin qualifier can be omitted. This type requires that the client object
evaluates the returned boolean value of method sold in order to determine the next available method: if
the value evaluates to true, then the caller can obtain the price (because the item was sold) via method
getPrice, otherwise the interaction ends.

4

Channels as Objects Campos, and Vasconcelos

1 class Auct ioneer {
2 usage l i n i n i t ;
3 ∗{ s e l l i n g + b idd ing } ;
4 AuctionMap map;
5 unit i n i t () {
6 map = new AuctionMap () ;
7 }
8 S e l l i n g s e l l i n g (str ing i tem ,
9 i n t i n i t P r i c e) {

10 Auct ion a = new Auct ion () ;
11 a . i n i t (i tem , i n i t P r i c e) ;
12 map. put (i tem , a) ;
13 S e l l i n g s = new S e l l i n g () ;
14 s . i n i t (a) ;
15 s ; / / r e t u r n s
16 }
17 Bidding b idd ing (str ing i tem) {
18 Bidding b = new Bidding () ;
19 b . i n i t (map. get (i tem)) ;
20 b ; / / r e t u r n b
21 }
22 }

Figure 3: An auctioneer

1 class S e l l e r {
2 usage l i n i n i t ; l i n run ; end ;
3 str ing i tem ; i n t p r i ce ;
4 Auct ioneer a ;
5 unit i n i t (Auct ioneer a ,
6 str ing i tem , i n t p r i ce) {
7 . . . / / i n i t i a l i z e f i e l d s
8 }
9 unit run () {

10 S e l l i n g s =
11 a . s e l l i n g (item , p r i ce) ;
12 i f (s . so ld ())
13 p r i n t (”made ” +
14 s . ge tPr i ce () + ” euros ! ”) ;
15 else i f (lowerPr ice ())
16 run () ;
17 }
18 boolean l owerPr ice () {
19 . . . / / implementat ion omi t ted
20 }
21 }

Figure 4: A seller

1 class Auct ion {
2 usage l i n i n i t ;
3 ∗{sync b id + g e t I n i t i a l P r i c e +
4 getMaxBid + getBidder } ;
5 str ing i tem ; i n t i n i t P r i c e ;
6 i n t b idder ; i n t maxBid ;
7 unit i n i t (str ing i tem , i n t i n i t P r i c e) {
8 . . . / / i n i t i a l i z e f i e l d s
9 }

10 unit b id (i n t pid , i n t b id) {
11 i f (maxBid <= bid) {
12 b idder = p id ;
13 maxBid = b id ;
14 }
15 }
16 . . . / / the g e t t e r s
17 }

Figure 5: An auction

1 class S e l l i n g {
2 usage l i n i n i t ; l i n so ld ;
3 〈 ge tPr i ce ; end + end〉 ;
4 Auct ion a ; i n t f i n a l P r i c e ;
5 unit i n i t (Auct ion a) {
6 . . . / / i n i t i a l i z e f i e l d s
7 }
8 boolean so ld () {
9 f i n a l P r i c e = a . getMaxBid () ;

10 f i n a l P r i c e >= a . g e t I n i t i a l P r i c e () ;
11 }
12 i n t ge tPr i ce () {
13 f i n a l P r i c e ;
14 }
15 }

Figure 6: A selling protocol

1 class Main {
2 usage l i n main ; end ;
3 unit main () {
4 Auct ioneer a = new Auct ioneer () ;
5 a . i n i t () ;
6 S e l l e r s e l l e r = new S e l l e r () ;
7 s e l l e r . i n i t (a , ” psp ” , 100) ;
8 spawn s e l l e r . run () ;
9 Bidder b idder1 = new Bidder () ;

10 bidder1 . i n i t (a , 1 , 100) ;
11 spawn bidder1 . run () ;
12 Bidder b idder2 = new Bidder () ;
13 bidder2 . i n i t (a , 2 , 100) ;
14 spawn bidder2 . run () ;
15 }
16 }

Figure 7: The main class

5

Channels as Objects Campos, and Vasconcelos

The method lowerPrice of class Seller (Figure 4) is not referred in the usage specification. Although
our language does not support method qualifiers, this can be regarded as a private method since the type
system ensures that it cannot be called from a client (cf. [6, 20]).

Finally, the Main class in Figure 7 creates an Auctioneer object that controls the auction, and spawns a
separate thread for a Seller and two Bidder objects, using a Java-like technique for thread creation.

The Language The main simplification in our language, as opposed to previous works that use session
types, is that it does not include channels; its syntax is straight-forward for an object-oriented language:
typical class and method declarations, and expressions. For brevity sake, we omit here the details. From
the technical point of view, all the tools that we need have already been developed in previous work,
and we do not anticipate technical difficulties. The core language of modular session types [6] describes
most of the typing rules and operational semantics that we need to implement our type system, and the
reconstruction of session types in [18] gives us insight into how to approach lin/un qualifiers. We have
been building our ideas mostly on these two works. Our main challenge is the reuse of previous work,
which involves a great deal of adaptation to fit our attempt to converge channels and objects.

Concluding Remarks In the literature, several lines of research can be found that reveal similarities
with session type theory. One of these lines introduces the concept of typestate [14] in which the state of
the object in some particular context determines the set of available operations in that context, based on
pre- and post-conditions. Objects, by nature, can be in different states throughout their life cycle. The
concept involves static analysis of programs at compile-time so that all the possible states of an object
and associated legal operations can be tracked at each point in the program text. Typestate checking
has been incorporated in several programming languages [1, 2, 5], and some ideas relate very closely to
session type recent approach on modularity.

In this paper, we have described our on-going work on defining a more intuitive approach to handle
session types within the object-oriented paradigm: we replace communication channels by method in-
vocations, we allow objects to change from a linear status to a shared one and we control concurrency
in shared objects through a standard synchronization mechanism, because we no longer have the well-
known shared channel. The existing work on modular session types has been the inspiration for our
specification language and type system. So far, we have developed a fully functional prototype compiler
that uses a conventional type checker, and we are currently in the process of implementing the type-
checking system described above. The type-checking algorithm defined in the foregoing work gives us
some insight into the work we are doing, and we hope to present our results in a near future.

References
[1] Kevin Bierhoff and Jonathan Aldrich. PLURAL: checking protocol compliance under aliasing. In ICSE

Companion ’08, pages 971–972. ACM Press, 2008.
[2] Robert DeLine and Manuel Fähndrich. The fugue protocol checker: Is your software baroque? Technical

Report MSR-TR-2004-07, Microsoft Research, 2003.
[3] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopolou. Session

types for object-oriented languages. ECOOP, Springer LNCS, 4067:328–352, 2006.
[4] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and Sophia Drossopolou. A distributed

object-oriented language with session types. TGC, Springer LNCS, 3705:299–318, 2005.
[5] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R. Larus, and Steven

Levi. Language support for fast and reliable message-based communication in Singularity OS. In EuroSys.
ACM Press, 2006.

6

Channels as Objects Campos, and Vasconcelos

[6] Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira. Modular
session types for distributed object-oriented programming. In POPL, pages 299–312. ACM Press, 2010.

[7] Simon J. Gay, António Ravara, and Vasco T. Vasconcelos. Session types for inter-process communication.
Technical Report TR-2003-133, Comp. Sci., Univ. Glasgow, 2003.

[8] Kohei Honda. Types for dyadic interaction. CONCUR, Springer LNCS, 715:509–523, 1993.
[9] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type discipline for structured

communication-based programming. ESOP, Springer LNCS, 1381:122–138, 1998.
[10] Filipe Militão. Design and implementation of a behaviorally typed programming system for web services.

Master’s thesis, New University of Lisbon, 2008.
[11] Dimitris Mostrous. Moose: a minimal object oriented language with session types. Master’s thesis, University

of London, 2005.
[12] Matthias Neubauer and Peter Thiemann. An implementation of session types. PADL, Springer LNCS,

3057:56–70, 2004.
[13] Oscar Nierstrasz. Regular types for active objects. In Object-Oriented Software Composition, pages 99–121.

Prentice Hall, 1995.
[14] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for enhancing software

reliability. IEEE Trans. Softw. Eng., 12(1):157–171, 1986.
[15] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its typing system.

PARLE, Springer LNCS, 817:398–413, 1994.
[16] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the behavior of objects and compo-

nents using session types. Fundamenta Informaticæ, 73(4):583–598, 2006.
[17] Vasco T. Vasconcelos. Session types for linear multithreaded functional programming. In PPDP, pages 1–6.

ACM Press, 2009.
[18] Vasco T. Vasconcelos. SFM, volume 5569 of LNCS, chapter Fundamentals of Session Types, pages 158–186.

Springer-Verlag, 2009.
[19] Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Typechecking a multithreaded functional language

with session types. Theoret. Comp. Sci., 368(1–2):64–87, 2006.
[20] Vasco T. Vasconcelos, Simon J. Gay, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira. Dynamic

interfaces. FOOL, 2009.

7

Towards a Modal Logic for the Global Calculus∗
Marco Carbone Thomas T. Hildebrandt

Hugo A. López

IT University of Copenhagen, Copenhagen, Denmark
{carbonem,hilde,lopez}@itu.dk

Abstract
We explore logical reasoning for the global calculus, a coordination model based on the notion

of choreography, with the aim to provide a methodology for the specification and verification of
structured communications. Starting with an extension of Hennessy-Milner logic, we propose a proof
system for the logic that allows for verification of properties among participants in a choreography.
Additionally, some examples of properties on service specifications are drawn, and we provide hints
on how this work can be extended towards a full verification framework.

1 Introduction
Due to the continuous growth of technologies, software development is recently shifting its focus on
communication, giving rise to various research efforts for proposing new methodologies dealing with
higher levels of complexity. A new software paradigm, known as choreography, has emerged with
the intent to ease programming of communication-based protocols. Intuitively, a choreography is a
description of the global flow of execution of a system where the software architect just describes which
interactions might take place. This idea differs from the standard approach where the communication
primitives are given for each single entity separately. A good illustration can be seen in the way a soccer
match is planned: the coach has an overall view of the team, and organizes (a priori) how players will
interact in each play (the role of a choreography); once in the field, each player performs his role by
interacting with each of the members of his team by throwing/receiving passes. The way each player
synchronize with other members of the team represents the role of an orchestration.

The work in [3] formalises the notion of choreography in terms of a calculus, dubbed the global
calculus, which pinpoints the basic features of the choreography paradigm. Although choreography
provides a good abstraction of the system being designed allowing to forget about common problems
that can arise when programming communication e.g. races over a channel, it can still have complex
structures hence being often error prone. Additionally, choreography can be non-flexible in early design
stages where the architect might be interested in designing only parts of a system as well as specifying
only parts of a protocol (e.g. initial and final interactions). In this view, we believe that a logical approach
can allow for more modularity in designing systems e.g. providing partial specification of a system using
the choreography paradigm.

In this document, we attempt to provide a link between choreography and logics. Starting with an
extension of Hennessy-Milner logic [6], we provide the syntax and the semantics of a logic for the global
calculus as well as several examples pointing out the usefulness of the method. Moreover, we provide a
proof system that allows for property verification of choreographies and show that it is sound.

2 The Global Calculus
The Global Calculus (GC) [3, 4] allows for the description of choreographies as interactions between
participants by means of message exchanges. The description of such interactions is centered around the
notion of session, in which two interacting parties first establish a private connection k, often referred
to as session channel, and then interact on k, possibly interleaved with other sessions. Each session k is
unique, therefore communication activities will be clearly separated.

∗Authors are listed alphabetically by last name.

1

Modal Logic for the Global Calculus Carbone, Hildebrandt, López

2.1 Syntax.
The syntax of GC [3, 4] is given by the following grammar.

C ::= A → B : a(k). C (init)
| A → B : k〈e,y〉. C (com)
| A → B : k[li : Ci]i∈I (choice)
| C1 | C2 (par)
| ife@A then C1 else C2 (cond)
| (νk) C (newL)
| 0 (inaction)

Terms C,C′, . . . are called choreographies; A,B, . . . range over participants; k,k′, . . . are session channels;
a,b,c, . . . shared channels; v,w, . . . variables; X ,Y, . . . process variables; l, li, . . . labels for branching; and
e,e′, . . . denote arithmetic and other first-order expressions over variables and some values.

Above, (init) denotes a session initiation by A via B’s service channel a, with fresh session channels k
and continuation C. (com) denotes an in-session communication of e over a session channel k. Note that
y does not bind in C. (choice) denotes a labelled choice over session channel k and set of labels I. C1 |C2
denotes the parallel product between C1 and C2. (νk) C works the same as the name restriction operator
in the π -calculus, binding k in C. Since such a hiding is only generated by session initiation, we assume
that a hiding never occurs inside a prefix or a conditional. In the standard conditional operator (cond),
e@A indicates that e is located at participant A. 0 denotes termination. The free and bound session
channels and term variables are defined in the usual way. The calculus is equipped with a standard
structural congruence ≡ [3].

2.2 Semantics.
We equip GC with a standard labelled transition semantics obtained by enriching the one in [3, 4].

Formally, actions in the semantics are defined using the notation (σ ,C)
!

−−−→ (σ ′,C′) which says that a
choreography C in a state σ (which maps participants to variable assignments) executes an action ! and
evolves into C′ with a new state σ ′ . Actions (or labels) are defined as ! = {init A→B on a(k), com A→
B over k, sel A → B over k : li}, denoting initiation, in-session communication and branch selection.
We write C −→ C′ when the states σ ,σ ′ and ! are irrelevant, and −→∗ for its transitive closure. A
variable x located at A’s is written as x@A. The same variable name labelled with different participant
names denotes different variables (hence σ@A(x) and σ@B(x) may differ). The transition relation −→
is defined as the minimum relation on pairs state/interaction satisfying the rules of Table 1.

In (G-INIT), after A initiates a session with B on service channel a, A and B share k locally. This
is denoted by the restriction of k over the continuation C. As for communication, in (G-COM), the
expression e is evaluated into v in the A-portion of the state σ and then assigned to the variable x located
at B resulting in the new state σ [x@B)→ v]. (G-CHOICE) chooses the evolution of a choreography
resulting from a labelled choice over a session key k. (G-IFT) and (G-IFF) show the possible paths that
a deterministic evolution of a choreography can produce. (G-PAR), (G-RES) (G-REC) and (G-STRUCT)
behave as the standard rules for parallel product, restriction, recursion and structural congruence.

Remark 1 (Global Parallel). Parallel composition in the global calculus differs from the notion of par-
allel found in standard concurrency models based on input/output primitives. In the latter, a term P1 | P2
may allow interactions between P1 and P2. However, in the global calculus, the parallel composition of
two choreographies C1 | C2 concerns two parts of the described system where interactions may occur in
C1 and C2 but never across the parallel operator | . This is because an interaction A→ B . . . abstracts from

2

Modal Logic for the Global Calculus Carbone, Hildebrandt, López

(G-INIT)
(σ , A → B : a(k). C)

init A→B on a(k)
−−−→ (σ ,(νk) C)

(G-COM)
σ ′ = σ [x@B)→ v] σ * e@A ⇓ v

(σ , A → B : k〈e,x〉. C)
com A→B over k

−−−→ (σ ′, C)

(G-CHOICE)
(σ , A → B : k[li : Ci]i∈I)

sel A→B over k:li
−−−→ (σ , Ci)

(G-IFT)
σ * e@A ⇓ tt (σ ,C1)

!
−−−→ (σ ′,C′

1)

(σ , ife@A then C1 else C2)
!

−−−→ (σ ′,C′
1)

(G-STRUCT)
C ≡C′′ (σ , C)

!
−−−→ (σ ′, C′) C′ ≡C′′′

(σ , C′′)
!

−−−→ (σ ′, C′′′)
(G-IFF)

σ * e@A ⇓ ff (σ ,C2)
!

−−−→ (σ ′,C′
2)

(σ , ife@A then C1 else C2)
!

−−−→ (σ ′, C2)

(G-RES)
(σ , C)

!
−−−→ (σ ′, C′) u ∈ {a,k}

(σ ,(νu) C)
!

−−−→ (σ ′, (νu) C′)
(G-PAR)

(σ , C1)
!

−−−→ (σ ′, C′
1)

(σ ,C1 | C2)
!

−−−→ (σ ′, C′
1 | C2)

Table 1: Operational Semantics for the Global Calculus

the actual end-point behaviour i.e. how A sends and B receives. In our model, dependencies between two
choreographies can be expressed by using variables (in the state σ).

Example 1 (Online Booking). We consider a simplified version of the online booking scenario presented
in [9]. Here, the customer establishes a session with the airline company AC using service ob (online
booking) and creating session keys k1,k2. Once sessions are established, the customer will request the
company about a flight offer with his booking data, along the session key k1. The airline company will
process the customer request and will send a reply back with an offer using the session key k2. The
customer will eventually accept the offer, sending back an acknowledgment to the airline company using
k1. The following specification in the global calculus represents the protocol:

COB = Cust → AC : ob(k1,k2).
Cust → AC : k1〈booking,x〉.
AC →Cust : k2〈o f f er,y〉.
Cust → AC : k1〈accept,z〉. 0 (1)

2.3 Session Types for the Global Calculus.
We use a generalisation of session types [7] for global interactions, first presented in [4]. Session types
in GC are used to structure sequence of message exchanges in a session.

A typing judgment has the form Γ *C : ∆, where Γ,∆ are service type and session type environments,
respectively. Typically, Γ contains a set of type assignments of the form a@A : ("k)α , which says that a
service a located at participant A may be invoked with a fresh"k followed by a session α . ∆ contains type
assignments of the form"k[A,B] : α which says that a vector of session channels"k, all belonging to the
same session between participants A and B, has the session type α when seen from the viewpoint of A.
The typing rules are omitted, and we refer to [5] for the full account of the type discipline. Returning
to the example presented in Equation 1, the service type of the airline company at channel ob can be
described as:

ob@AC : (k1,k2). k1 ↓ booking(string). k2 ↑ o f f er(int). k1 ↓ accept(int). end (2)

3 A Logic for the Global Calculus
In this section we provide the main ingredients of our logic for choreographies GL (Global Logic). In
Section 3.1, we introduce the reader to the syntax of GL and give several examples. In Section 3.2,

3

Modal Logic for the Global Calculus Carbone, Hildebrandt, López

we present the semantics of GL, inspired by the modal logic presented in [1]. The logical language
comprises assertions for equality, value/name passing and existential quantifiers, plus modalities for
timed execution of actions.

3.1 Syntax and Examples.
Choreography assertions (ranged over by φ ,χ, . . .) give a logical interpretation of the global calculus
introduced in the previous section. The grammar of assertions used in GL is defined as follows:

φ ::= 〈!〉φ | ∃t.φ | tt | e1 = e2 | φ ∧χ | ¬φ | ◦φ | ♦φ | φ | χ

In ∃t. φ , the variable t is meant to range over service and session channels, participants, labels and basic
placeholders for expressions. Accordingly, it works as a binder in φ . In addition to the standard operators,
we include an unspecified (decidable) equality on expressions (e1 = e2) as in [1]. Our operators depend
on the labels of the labelled transition system of the global calculus: 〈!〉φ represents the execution of
a labelled action ! followed by the assertion φ ; ◦φ and ♦φ denote the standard next and evenutally
operators respectively. The parallel operator in φ | χ denotes composition of formulae: because of the
unique nature of parallel composition in choreographies, we use the symbol | in order to stress the fact
that there is no interference between two choreographies running in parallel. As usual, we can get the full
account of the logic by deriving the standard set of modal operators from the syntax presented above. For
example, ff = ¬tt, (e1 2= e2) = ¬(e1 = e2), φ ∨χ = ¬(¬φ ∧¬χ), φ ⇒ χ = ¬φ ∨χ , ∀x. φ = ¬∃x. ¬φ ,
!φ = ¬♦¬φ , [!]φ = ¬〈!〉¬φ .

Example 2 (Availability, Service Usage and Coupling). The logic above allows to express that, given
a service invoker (known as A in this setting) requesting the service a, there exists another participant
(called B in the example) providing a with A invoking it. This can be formulated in GL as

∃B. 〈init A → B on a(k)〉tt

Assume now, that we want to ensure that services available are actually used. We can use the dual
property for availability i.e. for a service provider B offering a, there exists someone invoking a:

∃A. 〈init A → B on a(k)〉tt

Verifying that there is a service pairing two different participants in a choreography can be done by exis-
tentially quantifying over the shared channels used in an initiation action. A formula in GL representing
this can be seen below:

∃a. 〈init A → B on a(k)〉tt

Example 3 (Causality Analysis). We can use the modal operators of the logic in order to perform studies
of the causal properties that our specified choreography can fulfill. For instance, we can specify that
given an expression e evaluated to true at participant A, there is an eventual firing of a choreography
that satisfies property φ1, and φ2 will never be satisfied. Such a property can be specified as follows:

(e@A = tt)∧♦(φ1)∧!¬φ2

Example 4 (Response Abstraction). An interesting aspect of our logic is that it allows for the declaration
of partial specification properties regarding the interaction of the participants involved in a choreogra-
phy. Take for instance the interaction diagram below:

4

Modal Logic for the Global Calculus Carbone, Hildebrandt, López

Option 2

Option 1

A B D

Init b(k)

Init d(k')

k' (x)

k (x)

k'' (x)

Init a(k'')

Above, participant A invokes service b at B’s and then B invokes D’s service d. At this point, D can send
the content of variable x to A in two different ways: either by using those originally established sessions,
or by invoking a new service at A’s. However, at the end of the either computation path, variable z
(located at A’s) will contain the value of x. In the global calculus:

C = A → B : b(k). B → D : d(k′). ife@D then C1 else C2 where C1 = D → B : k′〈x,yB〉. B → A : k〈yB,z〉
C2 = D → A : a(k′′). D → A : k′′〈x,z〉

We argue that, under the point of view of A, both options are sufficiently good if, after an initial inter-
action with B is established, there is an eventual response that binds variable z. Such a property can be
expressed in the logic by the formula:

∃X ,k′′. 〈init A → B on a(k)〉 ♦
(
〈com X → A over k′′〉 (z@A = x@D)

)
(3)

Note that a third option for the protocol above is to use delegation. However, the current version of
the global calculus does not feature such an operation and we leave it as future work.

Example 5 (Connectedness). The work in [4] proposes a set of criteria for guaranteeing a safe end-point
projection between global and local specifications (note that the choreography in the previous example
does not respect such properties). Essentially, a valid global specification have to fulfill three different
criteria, namely Connectedness, Well-threadedness and Coherence. It is interesting to see that some of
this criteria relate to global and local causality relations between the interactions in a choreography,
and can be easily formalized as properties in the choreography logic here presented. Below, we consider
the notion of connectedness and leave the other cases as future work. Connectedness dictates a global
causality principle in interaction. If A initiates any action (say sending messages, assignment, etc) as a
result of a previous event (e.g. message reception), then such a preceding event should have taken place
at A. In the following, let Interact(A,B)φ be a predicate which is true whenever 〈!〉φ holds for some !
with an interaction from A to B. Connectedness can then be specified as follows:

∀A,B. !
(
Interact(A,B)tt ⇒ ∃C.

(
Interact(A,B) Interact(B,C) tt∨ Interact(A,B) ¬〈!〉tt

))

3.2 Semantics of the Logic.
We now give a formal meaning to the assertions introduced above with respect to the semantics of the
global calculus introduced in the previous section. In particular we introduce the notion of satisfaction.

5

Modal Logic for the Global Calculus Carbone, Hildebrandt, López

[Pinit]
C *σ φ

A → B : a(k). C *σ 〈init A → B on a(k)〉φ [PInact] 0 * tt

[Psel]
∀i∈I Ci *σ φi

A → B : k[li : Ci]i∈I *σ
∧

i∈I〈sel A → B over li : s〉φi
[Pres]

C *σ φ k is fresh
(νk) C *σ νk. φ

[Pcom]
C *σ φ

A → B : k〈e,y〉. C *σ 〈com A → B over s〉φ [Psub]
C *σ φ φ ⇒ χ

C *σ χ

[Pif]
C1 *σ e ⇒ φ C2 *σ ¬e ⇒ φ

ife then C1 else C2 *σ φ
[Ppar]

∀i∈{1,2} Ci *σ φi

C1 | C2 *σ φ1 | φ2

[Pand]
C *σ φ C *σ χ

C *σ φ ∧χ
[P∃]

C *σ φ{w)→ t}
C *σ ∃tφ

[Pexp]
σ(e1) = σ(e2)
C *σ e1 = e2

Table 3: Proof system for the Global Calculus

To guarantee the correctness of our logic, we shall prove the correspondence between the assertion
semantics and the proof system. The details of the proof here presented can be found at [8].

Theorem 1 (soundness). for any given choreography C, if C * φ , then C |= φ .

4 Conclusion and Related Work
The ideas hereby presented constitutes just the first step towards a verification framework of structured
communications. As a future work, our main concerns relate to establishing a completeness relation
between the choreography logic and its proof system and the ability of integrating our framework into
other end-point models and logical frameworks for the specification of sessions. In particular, our next
step will focus on relating the logic to the end-point projection [4], the process of automatically gener-
ating end-point code from choreography. Other improvements to the system proposed include the use
of fixed points, essential for describing state-changing loops, and auxiliary axioms describing structural
properties of a choreography.

This work can be fruitfully nourished by related work in types and logics for session-based com-
munication. In [9] the authors proposed a mapping between the calculus of structured communications
and concurrent contraint programming, allowing them to establish a logical view of session-based com-
munication and formulae in First-Order Temporal Logic. In [1], Berger et al. presented proof systems
characterizing May/Must testing preorders and bisimilarities over typed π -calculus processes. The con-
nection between types and logics in such system comes in handy to restrict the shape of the processes
one might be interested, allowing us to consider such work as a suitable proof system for the calculus
of end points. Finally, [10] studies a logic for choreographies in a model without services and sessions
while [2] proposes notion of global assertion for enriching multiparty session types with simple formula
describing changing in the state of a session.

Acknowlegments
This research has been partially supported by the Trustworthy Pervasive Healthcare Services (TrustCare)
project. Danish Research Agency, Grant # 2106-07-0019 (www.TrustCare.eu).

References
[1] Martin Berger, Kohei Honda, and Nobuko Yoshida. Completeness and logical full abstraction in modal

logics for typed mobile processes. In Luca Aceto, editor, ICALP’08, number 5126 in LNCS, pages 99–111.
Springer-Verlag, Berlin Germany, 2008.

7

Modal Logic for the Global Calculus Carbone, Hildebrandt, López

[2] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-contract
for distributed multiparty interactions. Available at http://www.cs.le.ac.uk/people/lb148/
AssertedTypes/assertedTypesExtended.pdf, January 2010.

[3] M. Carbone, K. Honda, and N. Yoshida. A calculus of global interaction based on session types. In 2nd
Workshop on Developments in Computational Models (DCM), ENTCS, 2006.

[4] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming for web services.
In (ESOP’2007), volume 4421 of LNCS, pages 2–17. Springer, Berlin Heidelberg, March 24–April 1 2007.

[5] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot. A Theoretical Basis of
Communication-Centred Concurrent Programming. Web Services Choreography Working Group mailing
list, to appear as a WS-CDL working report, 2009.

[6] M. Hennessy and R. Milner. On Observing Nondeterminism and Concurrency. In Proceedings of the 7th Col-
loquium on Automata, Languages and Programming, pages 299–309. Springer-Verlag London, UK, 1980.

[7] K. Honda, V.T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for Structured
Communication-Based Programming. In ESOP’1998, volume 1381 of LNCS, pages 122–138. Springer-
Verlag London, UK, 1998.

[8] Hugo A. López. Formal models for trustworthy process and service oriented systems. Master’s thesis, IT
University of Copenhagen, Copenhagen, January 2009.

[9] Hugo A. López, Carlos Olarte, and Jorge A. Pérez. Towards a Unified Framework for Declarative Structured
Communications. In Programming Language Approaches to Concurrency and Communication-cEntric Soft-
ware: PLACES’09, February 2009.

[10] Carlo Montangero and Laura Semini. A logical view of choreography. In COORDINATION, pages 179–193,
2006.

8

Modal Logic for the Global Calculus Carbone, Hildebrandt, López

C |=σ e1 = e2 ⇐⇒ σ(e1) = σ(e2)
C |=σ tt ⇐⇒ tt
C |=σ φ ∧χ ⇐⇒ C |=σ φ and C |=σ χ
C |=σ ¬φ ⇐⇒ C 2|=σ φ
C |=σ ∃t. φ ⇐⇒ C[w/t] |= φ (for some appropriate w)
C |=σ ♦φ ⇐⇒ (σ ,C)−→∗ (σ ′,C′) and C′ |=σ ′ φ

C |=σ 〈!〉φ ⇐⇒ (σ ,C)
!

−−−→ (σ ′,C′) and C′ |=σ ′ φ ! 2∈ {init A → B on a(k)}
C |=σ ◦φ ⇐⇒ (σ ,C)−→ (σ ′,C′) and C′ |=σ ′ φ

C |=σ 〈!〉φ ⇐⇒ (σ ,C)
!

−−−→ (σ ′,C′) and C′ |=σ ′ (ν) kφ ! = init A → B on a(k)
C |=σ (νk) . φ ⇐⇒ C ≡ (νk)C′ and C′ |=σ φ
C |=σ φ | χ ⇐⇒ C ≡C1 | C2 s.t. C1 |=σ φ and C2 |=σ χ

Table 2: Assertions of the Choreography Logic

We write C |=σ φ whenever an environment σ and a choreography C satisfy a GL formula φ . The relation
|=σ is the maximum relation satisfying the rules given in Table 2.

Above, we assume that variables occurring in an expression e are always located e.g. x@A. In the
∃t. φ case, w should be an appropriate value according to the type of t e.g. a participant if t is a participant
placeholder. A formula φ is a “logical consequence” of a formula χ if every interpretation that makes φ
true also makes χ true. In this case one says that χ is logically implied by φ (φ ⇒ χ). Moreover, let φ
and χ be two formulae in the choreography logic. We say that φ is semantically equivalent to χ (denoted
by φ ≡|= χ) if φ |=σ χ if and only if χ |=σ φ . A formula is satisfiable if there is some choreography under
which it is true. A formula with free variables is said to be satisfied by a choreography if the formula
remains true regardless which participants, names/values are assigned to its free variables. A formula φ
is valid if it is true in every choreography, that is C |=σ φ for any C.

Proof System. Here, the proof system is presented. In order to reason about judgments C |=σ φ , we
propose a proof (or inference) system for assertions of the form C * φ . Intuitively, we want C *σ φ to
be as approximate as possible to C |=σ φ (ideally, they should be equivalent). We write C *σ φ for the
provability judgement where C is a process and φ contains a choreography formula.

We say that a choreography C exhibits a formula φ under an environment σ (written C *σ φ) iff the
assertion C *σ φ has a proof in the proof system given in Table 3.

Let us now describe some of the inference rules of the proof system. Pinact and is the standard rule
for inaction Psel can be explained as follows: suppose we are given a process P = A → B : k[li : Ci]i∈I , a
set of branch labels {li} (determined by typing) and we are given a proof that each Ci satisfies φi, then we
certainly have a proof saying that every derivation of P should satisfy a guard li followed by a formula φi.
The initiation and interaction rule Pinit,Pcom behave similarly to Psel: given an initiation/communication
process in P and a proof that its continuation satisfies the proof term φ , we can derive a proof that P will
first exhibit an initiation/communication action followed by φ . The rules for existential quantification,
evaluation of expressions and conditional operators P∃, Pexp, Pif are standard. The subsumption rule
Psub is the standard consequence rule as found in Hoare logic. The rules for parallel composition and
hiding are represented in Ppar and Pres respectively, and they do not indicate the behaviour of a given
choreography, but hint information about the structure of the process: Ppar juxtaposes the behaviour of
two processes and combines their respective formulae by the use of a separation operator, Pres hides a
variable x in a formula φ ; the intuition is that since (νk) C is a choreography C with x restricted, then if
C proves φ and k is a fresh, then (νk) C should satisfy φ with hidden x.

6

Analysing DMA Races in Multicore Software
Alastair F. Donaldson, Daniel Kroening, Philipp Rümmer∗

Oxford University Computing Laboratory, Oxford, UK

Abstract

We present ongoing work on applying model checking techniques to automatically analyse multi-
core software where data is managed explicitly by the programmer via direct memory access (DMA)
operations. We describe SCRATCH, a DMA race analysis tool for the Cell BE processor which em-
ploys bounded model checking and k-induction. We then outline our plans to extend this work.

1 Introduction

In this position paper, we present ongoing work on applying model checking techniques to automatically
verify software for multicore processors. Our focus is on multicore architectures with multiple memory
spaces, where it is the programmer’s responsibility to orchestrate movement of data between memories in
an efficient manner, to achieve high performance. Such architectures are extremely difficult to program
correctly, and there is great scope for formal verification techniques to be of use.

The Cell Broadband Engine (BE) architecture [5] consists of a host core, the Power Processor El-
ement (PPE), and a number of accelerator cores, the Synergistic Processor Elements (SPEs). The PPE
is a regular processor connected to main memory, whereas each SPE is equipped with a private, 256 K
“scratch-pad” memory, also known as local memory. The SPE local memories are not coherent with
each other, or with main memory. As a result, an SPE can access its local memory very efficiently,
without contention. However, an SPE thread can only access main memory using direct memory access
(DMA). A DMA operation is a request to copy a chunk of data between host and local memory, and is
handled asynchronously by dedicated hardware. High performance can be achieved by organising DMA
operations so that computation and communication are overlapped, via buffering techniques. The price
for performance is programming complexity: writing data-movement code is error-prone. Programmer
errors related to DMA operations can result in memory corruption, due to multiple DMA operations
simultaneously accessing the same memory (DMA races). Errors due to misuse of DMA can result in
nondeterministic bugs that are difficult to consistently reproduce and fix.

In prior work, we have designed a tool, SCRATCH, to detect, or prove absence of, DMA races in
SPE programs [4]. The tool uses a combination of bounded model checking [2] and k-induction [9]
to automatically analyse SPE threads in isolation, checking for DMA races on local memory. After
describing DMA operations in more detail (§2) we summarise our existing work (§3). We then discuss
plans to extend this work (§4). Due to lack of space, we do not discuss related work in detail. Please
refer to [4] for such a discussion.

2 Direct memory access operations

We consider three DMA primitives: get(l,h,s, t), which issues a transfer of s bytes from host memory
address h to local memory address l, and is identified by tag t; put(l,h,s, t), which analogously transfers
data from local to host memory; and wait(t), which blocks until all DMA operations identified by tag t
have completed. On the Cell BE processor a tag is an integer in the range 0, . . . ,31, and it is legal for

∗Alastair F. Donaldson is supported by EPSRC grant EP/G051100. Daniel Kroening and Philipp Rümmer are supported by
EPSRC grant EP/G026254/1, the EU FP7 STREP MOGENTES, and the EU ARTEMIS CESAR project.

#define CHUNK 16384 // Process data in 16K chunks

float buffers[3][CHUNK/sizeof(float)]; // Triple-buffering requires 3 buffers

void process_data(float* buf) { ... }

/* ’in’ and ’out’ are pointers to host memory */
void triple_buffer(char* in, char* out, int num_chunks) {

unsigned int tags[3] = { 0, 1, 2 }, tmp, put_buf, get_buf, process_buf;

(1) get(buffers[0], in, CHUNK, tags[0]); // Get triple-buffer scheme rolling
in += CHUNK;

(2) get(buffers[1], in, CHUNK, tags[1]);
in += CHUNK;

(3) wait(tags[0]); process_data(buffers[0]); // Wait for and process first buffer
put_buf = 0; process_buf = 1; get_buf = 2;
for(int i = 2; i < num_chunks; i++) {

(4) put(buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed
out += CHUNK; // last iteration

(5) get(buffers[get_buf], in, CHUNK, tags[get_buf]); // Get data to process
in += CHUNK; // next iteration

(6) wait(tags[process_buf]); // Wait for and process data
process_data(buffers[process_buf]); // requested last iteration

tmp = put_buf; put_buf = process_buf; // Cycle the buffers
process_buf = get_buf; get_buf = tmp;

}
... // Handle data processed/fetched on final loop iteration

}

Figure 1: Triple-buffering example, adapted from an example provided with the IBM Cell SDK [6]

one SPE to issue up to 32 concurrent DMAs (thus each DMA can, in principle, be identified by a distinct
tag). Note that DMA operations are always issued from the point of view of an accelerator core (SPE),
e.g. get always denotes movement of data into local memory. It is usual for all DMA operations to be
initiated by the SPE cores, and we restrict our attention to this scenario.

Two DMA operations are said to race if they are pending simultaneously, operate on a common
region of (host or local) memory, and at least one modifies this region.
Example: triple-buffering. Figure 1, adapted from an example provided with the IBM Cell SDK [6],
is part of an SPE program, and illustrates the use of DMA operations to stream data from host memory to
local store to be processed, and to stream results back to host memory. Triple-buffering is used to overlap
communication with computation: each iteration of the loop in triple_buffer puts results computed
during the previous iteration to host memory, gets input to be processed next iteration from host memory,
and processes data which has arrived in local memory.

If num_chunks is greater than three, this example exhibits a local memory DMA race, which we can
observe by logging the first six DMA operations. To the right of each operation we record its source code
location and, if appropriate, its loop iteration. We omit host address parameters, irrelevant to the race:

get(buffers[0], . . . , CHUNK, tags[0]) (1)
get(buffers[1], . . . , CHUNK, tags[1]) (2)
wait(tags[0]) (3)

(*) put(buffers[0], . . . , CHUNK, tags[0]) (4), i=2
get(buffers[2], . . . , CHUNK, tags[2]) (5), i=2
wait(tags[1]) (6), i=2
put(buffers[1], . . . , CHUNK, tags[2]) (4), i=3

(*) get(buffers[0], . . . , CHUNK, tags[0]) (5), i=3

At this point in execution the operations marked (*) race with one another: they operate on the same

local memory, the second operation modifies the memory, and is not protected by an intervening wait.
The race can be avoided by inserting a wait with tag tags[get_buf] before the get at (5).

We discovered this bug using SCRATCH, our automatic DMA analysis tool, which can also show
that the fix is correct. The bug occurs in an example provided with the IBM Cell SDK, and was, to our
knowledge, previously unknown. Our bug report has been confirmed by an engineer at IBM.

3 Scratch: an automatic DMA race analyser for Cell BE software

SCRATCH (so called because it analyses scratch-pad memory) takes as input a C program written for
one of the SPE cores of the Cell BE processor. The program is transformed so that DMA operations are
replaced with statements to check for local memory races. In principle, the transformed program can be
analysed by any tool capable of checking assertions in C programs augmented with assume statements
and nondeterministic choice. In practice, SCRATCH is built on top of the bounded model checker CBMC
[3], which unwinds the transformed program to check for DMA races up to a user-specified depth, using
SAT techniques.
Translating DMA statements. This is achieved via an array of DMA entry records, called the tracker
array. A DMA entry represents a pending DMA operation, and has the form (valid, local,size, tag). The
valid field is a bit determining whether the entry represents a pending DMA, or is unused. If valid = 1
then the remaining fields store the local address, size, and tag associated with the DMA, otherwise they
are ignored. Note that host memory locations are not tracked, since SCRATCH does not currently analyse
DMA races on host memory; we discuss this further in §4. The size of the tracker array is, by default,
32, the maximum number of DMAs which may be simultaneously issued by an SPE.

At the start of the program, valid is set to 0 for each DMA entry in the tracker array.
A DMA command of the form op(l,h,s, t), where op is get or put, is translated into:

1. assert([l, l+s)∩[local, local+size)= /0) for all DMA entries matching the pattern (1, local,size,),
i.e. the new DMA does not operate on the same local memory as any pending DMA;

2. an assertion that some DMA matches the pattern (0, , ,), i.e. at least one entry is not valid;
3. a statement replacing a nondeterministically chosen DMA entry matching the pattern (0, , ,)

with (1, l,s, t), i.e. an entry for the new DMA operation is added to the tracker array.

A DMA wait operation of the form wait(t) is translated into statements that replace any DMA entry
matching the pattern (1, , , t) with (0, , , t).

In the translated program, issuing a DMA that races with an already pending DMA results in an
assertion failure due to 1 above; an attempt to issue more than the maximum number of allowed DMAs
also results in a failed assertion due to 2. The above translation is actually too strict: it prohibits con-
current, overlapping put operations, which cannot lead to local memory races. To avoid this limitation,
each DMA entry is extended with a flag indicating whether an operation is a put, and the assertion in 1
is modified to ignore simultaneous put operations.
Proving absence of DMA races. While bounded model checking is good at finding bugs, it cannot be
used in isolation to prove the absence of bugs. As well as detecting DMA races, we are interested in prov-
ing their absence. SCRATCH achieves this goal on many practical examples using a novel formulation of
k-induction, a technique first introduced in [9].

To verify absence of DMA races for a transformed program consisting of a single while loop with
prologue α , condition c, body β and epilogue γ , where β does not contain nested loops, SCRATCH solves
a series of verification problems using bounded model checking. For increasing values of k, starting with
k = 0, a base case and a step case are checked:

• Base case: α; if(c) {β} . . . if(c) {β}︸ ︷︷ ︸
k times

if(!c) {γ}

• Step case: havoc; assume(c); βassume; . . . ; assume(c); βassume︸ ︷︷ ︸
k times

; if(c) {β} else {γ}

The base case consists of the loop unwound k times. A base case failure yields a counterexample
exposing a DMA race; otherwise we know that a DMA race cannot occur within k loop iterations.

In the step case, havoc sets every program variable to a nondeterministic value. For a boolean
expression e, assume(e) at program point p tells the model checker to cease exploring an execution trace
if e does not hold at p; βassume denotes the sequence β with assert replaced by assume throughout.
The step case succeeds if, from any potential state, if it is possible to execute k loop iterations without
encountering a DMA race then it must be possible to execute one more iteration (if c still holds), or
execute the loop epilogue (if c does not hold), without a DMA race occurring.

If there is some k for which both the base case and step case hold, the theory of k-induction guarantees
that a DMA race can never occur. If the base case holds but the step case fails, a larger value of k must
be considered. Our formulation of k-induction is the first to operate at the loop level; other presentations
of the technique work at a finer granularity by unwinding the transition relation.

There is no guarantee that k-induction will terminate with a conclusive result for a feasibly small
value of k. However, we find that the technique works well in practice for DMA race analysis. Intuitively,
this is because DMA operations in loops are typically designed to be pending for only a bounded number
of loop iterations, allowing k-induction to succeed with a value of k proportional to the bound. This is
analogous to the intuition that k-induction works well for sequential hardware circuits with pipelines,
where the k required for induction to succeed is proportional to the pipeline depth [1].
Experimental summary. We have evaluated SCRATCH using a set of 22 benchmarks, adapted from the
IBM Cell SDK [6]. For correct and buggy version of each example, SCRATCH is able to find the DMA
race, or prove absence of DMA races. Bug finding is fast, as one would expect from bounded model
checking. More interestingly, for 15 of the benchmarks, correctness can be proved using k-induction
in less than 10 seconds on a state-of-the-art platform, with k ≤ 5 in all cases. One benchmark requires
a verification time of 7 minutes with k = 10. A full discussion of experimental results is given in [4],
including a comparison with model checking approaches based on predicate abstraction, and with a
run-time race checking tool from IBM.

4 Further opportunities for formal verification

We plan to extend this work in several ways.
Multi-loop k-induction. SCRATCH can currently only employ k-induction to programs consisting of
a single, non-nested loop. While we were able to verify many interesting examples with this restriction
(in some cases by manually slicing away inner data-processing loops) the limitation is, in general, rather
restrictive. It is always possible to transform a nest of loops into one monolithic loop, using a program
counter variable and conditional statements to simulate the nesting. We have applied this transformation
manually on Cell BE examples containing one nested loop, and found that k-induction succeeds, thus we
plan to automate the transformation and explore larger examples. The drawback is that if one nested loop
would require a large value of k to prove correct in isolation then this value will dominate the necessary
unwinding of the (potentially very large) monolithic loop. Alternatively, if k-induction is viewed as a
proof rule operating on loops, as in [4], the proof rule can be applied recursively to a loop nest. This
approach involves solving a possibly large series of verification problems, but has the advantage that each
problem can be solved using the smallest possible k. We plan to explore, and compare, both approaches.

Other extensions related to k-induction include using abstract interpretation to strengthen loop in-
variants, and exploring the success of k-induction in software verification more generally.
Inter-thread interference. SCRATCH currently checks for DMA races on local memory only. This
simplifies the verification problem, allowing the tool to analyse a single SPE thread in isolation. We
are keen to tackle the more challenging problem of checking for interference between threads running
on separate cores. For the Cell BE processor this corresponds to checking for DMA races on host
memory. One approach to verifying these kinds of properties is to use abstract interpretation to under-
/over-approximate the memory regions accessed by individual threads, determining presence/absence of
DMA races if these regions do/do not overlap. A related, but possibly more precise strategy for proving
non-interference is to derive invariants for the individual threads (or an invariant for the system) that
imply the absence of DMA races. Such invariants could be inferred by means of interpolation-based
model checking [8]: showing via bounded model checking that threads do not interfere up to a certain
search depth, using the unsatisfiability proof of the BMC formula to derive an interpolant, and iterating
the BMC/interpolant-computation process until an interpolant is computed that is an inductive invariant.
Pointer validity and alignment. The Cell BE processor requires that source and target pointers for
DMA operations are aligned to appropriate byte boundaries (16 for correctness, 128 for efficiency).
Misalignment is a common source of DMA errors, and it can be hard to track down the cause of a
misaligned pointer. In addition, the lack of separation between host and local pointers at the type level
means that errors can occur, e.g. if the programmer accidentally passes a host pointer where a local
pointer is required. We plan to consider two solutions to this problem: using type reconstruction to infer
alignment and memory space properties of pointers, and tracking pointer information during bounded
model checking, automatically adding assertions to check for invalid or misaligned pointer parameters
to DMA operations.
Support for OpenCL. OpenCL [7] is a new, open standard language for programming heterogeneous
multicore architectures including the Cell BE, and graphics processing units. OpenCL includes asyn-
chronous memory copy primitives, which are similar to DMA transfers: the same programming prob-
lems arise, and it appears that similar solutions should be applicable. Thus, we plan to build a verification
tool for OpenCL programs based on the technology behind SCRATCH.

References
[1] Roy Armoni, Limor Fix, Ranan Fraer, Scott Huddleston, Nir Piterman, and Moshe Y. Vardi. SAT-based

induction for temporal safety properties. Electr. Notes Theor. Comput. Sci., 119(2):3–16, 2005.
[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs. In TACAS,

volume 2988 of LNCS, pages 168–176. Springer, 2004.
[4] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic analysis of scratch-pad memory

code for heterogeneous multicore processors. In TACAS, LNCS. Springer, 2010. To appear.
[5] H. Peter Hofstee. Power efficient processor architecture and the Cell processor. In HPCA, pages 258–262.

IEEE Computer Society, 2005.
[6] IBM. Cell BE resource center, 2009. http://www.ibm.com/developerworks/power/cell/.
[7] Khronos Group. The OpenCL specification. http://www.khronos.org/opencl.
[8] Kenneth L. McMillan. Interpolation and SAT-based model checking. In CAV, volume 2725 of LNCS, pages

1–13. Springer, 2003.
[9] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using induction and a SAT-

solver. In FMCAD, volume 1954 of LNCS, pages 108–125. Springer, 2000.

A Type System for Unstructured Locking that Guarantees
Deadlock Freedom without Imposing a Lock Ordering

Prodromos Gerakios Nikolaos Papaspyrou Konstantinos Sagonas
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{pgerakios,nickie,kostis }@softlab.ntua.gr

Abstract

Deadlocks occur in concurrent programs as a consequence of cyclic resource acquisition between
threads. In this paper we present a novel type system that guarantees deadlock freedom for a lan-
guage with references, unstructured locking primitives, and locks which are implicitly associated
with references. The proposed type system does not impose a strict lock acquisition order and thus
increases programming language expressiveness.

1 Introduction

Lock-based synchronization may give rise to deadlocks. Two or more threads are deadlocked when each
of them is waiting for a lock that is acquired by another thread. Several type systems have been pro-
posed [5, 2, 9, 10, 11] that prevent deadlocks by imposing a strict (non-cyclic) lock-acquisition order that
must be respected throughout the entire program. This approach greatly limits programming language
expressiveness as many correct programs are rejected unnecessarily. Boudol has recently proposed a
type system that avoids deadlocks and is more permissive than existing approaches [1]. However, his
system can only deal with programs that use lexically-scoped locking primitives.

In this paper we sketch a simple language with functions, mutable references, explicit (de-)allocation
constructs and unstructured (i.e., non lexically-scoped) locking primitives. To avoid deadlocks, we pro-
pose a type system for this language based on Boudol’s idea. We argue that the addition of unstructured
locking primitives makes Boudol’s system unsound and show that it is possible to regain soundness by
preserving more information about the order of events both statically and dynamically.

Our work is part of a more general effort to design a low-level language suitable for systems pro-
gramming [6, 7] that not only guarantees deadlock freedom but also memory safety, race freedom and
definite release of resources such as memory and locks.

2 Deadlock Freedom and Related Work

We start by providing a concrete definition of deadlocks and compare our work with existing static
approaches to deadlock freedom. According to Coffman et al. [4], a set of threads reaches a deadlocked
state when the following conditions hold:

- Mutual exclusion: Threads claim exclusive control of the locks that they acquire.
- Hold and wait: Threads already holding locks may request (and wait for) new locks.
- No preemption: Locks cannot be forcibly removed from threads; they must be released explicitly

by the thread that acquired them.
- Circular wait: Two or more threads form a circular chain, where each thread waits for a lock held

by the next thread in the chain.

Therefore, deadlock freedom can be guaranteed by denying at least one of the above conditions before
or during program execution. Coffman has identified three strategies that guarantee deadlock-freedom:

1

Type-Based Deadlock Freedom without Lock Ordering P. Gerakios, N. Papaspyrou, and K. Sagonas

- Deadlock prevention: At each point of execution, ensure that at least one of the above conditions
is not satisfied. Thus, programs that fall into this category are correct by design.

- Deadlock detection and recovery: A dedicated observer thread determines whether the above con-
ditions are satisfied and preempts some of the deadlocked threads, releasing (some of) their locks,
so that the remaining threads can make progress.

- Deadlock avoidance: Using advance information regarding thread resource allocation, determine
whether granting a lock will bring the program to an unsafe state, i.e., a state which can result in
deadlock, and only grant locks that lead to safe states.

The majority of literature for language-based approaches to deadlock freedom falls under the first
two strategies. In the deadlock prevention category, one finds type and effect systems [5, 2, 9, 10, 11]
that guarantee deadlock freedom by statically enforcing a global lock-acquisition ordering that must be
respected by all threads. In this setting, starting with the work of Flanagan and Abadi [5], lock handles
are associated with type-level lock names via the use of singleton types. Thus, handle lkı is of type
lk(ı). The same applies to lock handle variables. The effect system tracks the order of lock operations
on handles or variables and determines whether all threads acquire locks in the same order.

Using a strict lock acquisition order is a constraint we want to avoid. It is not hard to come up with
an example that shows that imposing a partial order on locks is too restrictive. The simplest of such
examples can be reduced to program fragments of the form:

(lock x in . . . lock y in . . .) || (lock y in . . . lock x in . . .)

In a few words, there are two parallel threads which acquire two different locks, x and y, in reverse order.
When trying to find a partial order ≤ on locks for this program, the type system or static analysis tool
will deduce that x ≤ y must be true, because of the first thread, and that y ≤ x must be true, because of
the second. Thus, the program will be rejected, both in the system of Flanagan and Abadi which requires
annotations [5] and in the system of Kobayashi which employs inference [9] as there is no single lock
order for both threads. Similar considerations apply to the more recent works of Suenaga [10] and
Vasconcelos et al. [11] dealing with non lexically-scoped locks.

Recently, Boudol developed a type and effect system for deadlock freedom [1], which is based on
deadlock avoidance. The effect system calculates for each expression the set of acquired locks and
annotates lock operations with the “future” lockset. The runtime system utilizes the inserted annotations
so that each lock operation can only proceed when its “future” lockset is unlocked. The main advantage
of Boudol’s type system is that it allows a larger class of programs to type check and thus increases the
programming language expressiveness as well as concurrency by allowing arbitrary locking schemes.

The previous example can be rewritten in Boudol’s language as follows, assuming that the only lock
operations in the two threads are those visible:

(lock{y} x in . . . lock∅ y in . . .) || (lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type system which, in general, allows locks to be acquired in any
order. At runtime, the first lock operation of the first thread must ensure that y has not been acquired
by the second (or any other) thread, before granting x (and symmetrically for the second thread). The
second lock operations need not ensure anything special, as the future locksets are empty.

The main disadvantage of Boudol’s work is that locking operations have to be lexically-scoped. As
it will be shown, his type and effect system cannot guarantee deadlock freedom for unscoped locking
operations. In the section that follows, we discuss a novel type system for a simple language with
mutable references, that is intended to guard against deadlocks and, taking advantage of our previous
work [6], against race conditions and memory violations as well.

2

Type-Based Deadlock Freedom without Lock Ordering P. Gerakios, N. Papaspyrou, and K. Sagonas

let f = λ x.λy.λz. lock{y} x; x := x+1;
lock{z} y; y := y+ x;
unlock x;
lock∅ z; z := z+ y;
unlock z;
unlock y

in f a a b
(a) before substitution

lock{a} a; a := a+1;
lock{b} a; a := a+a;
unlock a;
lock∅ b; b := b+a;
unlock b;
unlock a

(b) after substitution

Figure 1: An example program, which is well typed before substitution (a) but not after (b).

3 Type System Overview

In this section, we sketch a type system that guarantees absence of deadlocks in a language supporting
non lexically-scoped locking operations. As mentioned earlier, Boudol’s proposal does not support un-
structured locking; even if his language had lock/unlock constructs, instead of lock . . .in . . ., Boudol’s
type system is not sufficient to guarantee deadlock freedom. The example program in Figure 1(a) will
help us see why: It updates the values of three shared variables, x, y and z, making sure at each step that
only the strictly necessary locks are held.

In our naı̈vely extended (and broken, as will be shown) version of Boudol’s type and effect system, the
program in Figure 1(a) will type check. The future lockset annotations of the three locking operations in
the body of f are {y}, {z} and ∅, respectively. (This can be easily verified by observing the lock operations
between a specific lock and unlock pair.) Now, function f is used by instantiating both x and y with the
same variable a, and instantiating z with a different variable b. The result of this substitution is shown in
Figure 1(b). The first thing to notice is that, if we want this program to work in this case, locks have to
be re-entrant. This roughly means that if a thread holds some lock, it can try to acquire the same lock
again; this will immediately succeed, but then the thread will have to release the lock twice, before it is
actually released.

Even with re-entrant locks, however, it is easy to see that the program in Figure 1(b) does not type
check with the present annotations. The first lock for a now matches with the last (and not the first)
unlock; this means that a will remain locked during the whole execution of the program. In the mean-
time b is locked, so the future lockset annotation of the first lock should contain b, but it does not. (The
annotation of the second lock contains b, but blocking there if lock b is not available does not prevent
a possible deadlock; lock a has already been acquired.) So, the technical failure of our naı̈vely extended
language is that the preservation lemma breaks. From a more pragmatic point of view, if a thread run-
ning in parallel already holds b and, before releasing it, is about to acquire a, a deadlock can occur. The
naı̈ve extension also fails for another reason: Boudol’s system is based on the assumption that calling a
function cannot affect the set of locks that are held. This is obviously not true, if non lexically-scoped
locking operations are to be supported.

The type and effect system proposed in this paper supports unstructured locking, by preserving more
information at the effect level. Instead of treating effects as unordered collections of locks, our type
system precisely tracks effects as an order of lock and unlock operations, without enforcing a strict
lock-acquisition order. A continuation effect of a term represents the effect of the function code succeed-
ing that term. In our approach, lock operations and application terms are annotated with a continuation
effect. At runtime, when a function application redex is evaluated, its continuation effect is pushed on the
stack. When a lock operation is evaluated, the future lockset is calculated by inspecting its continuation
effect and (if necessary) the lookup proceeds with the continuation effects of the enclosing context. The
lock operation succeeds only when both the lock and the future lockset are available.

Figure 2 illustrates the same program as in Figure 1, except that locking operations are now annotated

3

Type-Based Deadlock Freedom without Lock Ordering P. Gerakios, N. Papaspyrou, and K. Sagonas

let f = λ x.λy.λz. lock[y+, x−,z+,z−,y−] x; x := x+1;
lock[x−,z+,z−,y−] y; y := y+ x;
unlock x;
lock[z−,y−] z; z := z+ y;
unlock z;
unlock y

in f a a b
(a) before substitution

lock[a+,a−,b+,b−,a−] a; a := a+1;
lock[a−,b+,b−,a−] a; a := a+a;
unlock a;
lock[b−,a−] b; b := b+a;
unlock b;
unlock a

(b) after substitution

Figure 2: The program of Figure 1 with continuation effect annotations; now well typed in both cases.

Expression e ::= x | c | f | (e e)ξ | (e) [ρ] | e := e
| deref e | let ρ, x = ref e in e
| sharee | releasee | lockγ e
| unlocke | ()

Function f ::= λx.e as τ
γ−→τ | Λρ. f

Type τ ::= b | 〈〉 | τ γ−→τ
| ∀ρ.τ | ref(τ,ρ)

Calling mode ξ ::= seq(γ) | par

Capability κ ::= n,n | n,n
Effect γ ::= ∅ | γ,ρκ

Figure 3: Language syntax.

with continuation effects. For example, the annotation [y+, x−, z+, z−, y−] at the first lock operation
means that in the future (i.e., after this lock operation) y will be acquired, then x will be released, and so
on. If x and y were different, the runtime system would deduce that between this lock operation on x
and the corresponding unlock operation, only y is locked, so the future lockset in Boudol’s sense would
be {y}. On the other hand, if x and y are instantiated with the same a, the annotation becomes [a+, a−,
b+, b−, a−] and the future lockset that is calculated is now the correct {a,b}. In a real implementation,
there are several optimizations that can be performed (e.g., pre-calculation of effects) but we do not deal
with them in this paper.

4 Formalism

The syntax of our language is illustrated in Figure 3, where x and ρ range over term and “region” vari-
ables, respectively. Similarly to our previous work [6, 7], a region is thought of as a memory unit that
can be shared between threads and whose contents can be atomically locked. In this paper, we make the
simplistic assumption that there is a one-to-one correspondence between regions and memory cells, but
this is of course not necessary. The language supports explicit location polymorphism. Monomorphic
functions must be annotated with their type, which carries their overall effect. Application is annotated
with a calling mode which differentiates normal (sequential) application from parallel application, i.e.,
the spawning of a new thread. Sequential application is further annotated with the continuation effect,
as mentioned earlier. The construct let ρ, x = ref e1 in e2 allocates a fresh cell, initializes it to e1,
and associates it with variables ρ and x within expression e2. As in other approaches, we use ρ as the
type-level representation of the new cell. The type of reference variables x is the singleton type ref(ρ,τ),
where τ is the type of the cell’s contents. This allows the type system to connect x and ρ and thus to
statically track uses of the new cell. Assignment and dereference operators are standard. Notice that our
language does not support recursion.1

At any given program point, each cell is associated with a capability, which roughly consists of two

1Even if our language supported recursion, the type and effect system described in this paper would only be able to type-
check recursive functions that do not contain lock and unlock primitives. We are currently working on an extended language that
fully supports recursion, whose type and effect system is significantly different in the way that a function’s effect is calculated.

4

Type-Based Deadlock Freedom without Lock Ordering P. Gerakios, N. Papaspyrou, and K. Sagonas

∆;Γ (e1 : τ1
γa−→τ2 &(γ3;γ′) ξ (γa γ2 = γ⊕γa

∆;Γ (e2 : τ1 &(γ2;γ3) ξ = seq(γ)∨ (ξ = par∧τ2 = 〈〉)
∆;Γ ((e1 e2)ξ : τ2 &(γ;γ′)

(T-A)

∆;Γ (e1 : ref(τ,ρ)&(γ1;γ′)
∆;Γ (e2 : τ&(γ;γ1) γ(ρ) ≥ (1,1)
∆;Γ (e1 := e2 : 〈〉&(γ;γ′)

(T-AS)

∆;Γ (e1 : τ1 &(γ2 \ρ;γ′) γ1 = γ2,ρ
1,1

∆ (τ ∆,ρ;Γ, x : ref(τ1,ρ) (e2 : τ&(γ,ρ0,0;γ1)
∆;Γ (let ρ, x = ref e1 in e2 : τ&(γ;γ′)

(T-NG)

∆;Γ (e : ref(τ,ρ)&(γ,rκ−(0,1);γ′)
κ ≥ (1,1) γ(ρ) = κ
∆;Γ (lockγ e : 〈〉&(γ;γ′)

(T-LK)

Figure 4: Selected typing rules.

natural numbers: the capability counts. The first number is the cell reference count (n1), which denotes
whether the cell is live, and the second is the cell lock count (n2), which denotes whether the cell has
been locked by the current thread. (We use natural numbers, instead of booleans, to support sharing
and re-entrant locks.) Furthermore, a capability can be impure (denoted by n1,n2), which allows for
cell aliasing in the same spirit as in fractional permissions [3]. This aliasing information is required to
determine whether it is safe to pass lock capabilities to new threads. The remaining language constructs
operate on a cell reference and modify its capability: share and release increase and decrease n1,
respectively, whereas lock and unlock do the same for n2. As mentioned in the previous section, the
runtime system inspects the annotation on lock to determine whether it is safe to lock a cell.

We now briefly discuss the most interesting parts of our type and effect system. Effects are used to
statically track cell capabilities. An effect is an ordered list of elements of the form ρκ and represents
a sequence of operations that affect the capabilities of various cells. The typing relation is denoted by
∆;Γ (e : τ&(γ;γ′), where ∆ and Γ form the typing context, γ is the input effect, and γ′ is the output
effect. The reader should bear in mind two deviations from standard practice in type and effect systems.
First, as each lock operation must be annotated with the future lockset, effects flow backwards through
typing: the input effect to expression e represents the operations that follow after e is evaluated, and the
output effect is the combined effect of the expression and its future. Second, as effects must reflect the
exact order of cell operations, typing rules do not update effects, but rather append to them. Therefore,
the input effect is always a prefix of the output effect.

A few selected typing rules are given in Figure 4. The typing rule for function application (T-A)
joins the input effect γ and the function’s effect γa, which contains the entire history of events occurring
in the function body. In the case of parallel application, the function’s return type must be unit, whereas
in sequential application the annotation is checked against the input effect. The premise ξ (γa enforces
a number of soundness restrictions, e.g., that pure capabilities are not aliased. In the rule for assignment
(T-AS), the premises ensure that the referenced cell has positive reference and lock counts; in other
words, that ρ is live and locked after the evaluation of e1 and e2. The rule for the lock operator (T-LK)
checks that the annotation matches the input effect. It also checks that the cell is locked after the lock
operation and makes sure to remove one from the lock count, in the output effect. Finally, the rule for
creating new cells (T-NG) checks that the new cell is properly released (and unlocked) in the input effect,
and makes sure to initialize the new cell with capability (1,1), before the evaluation of e2 starts.

For well typed programs, the safety theorem in our system guarantees three things: memory safety
(and definite release of memory resources), race freedom (and definite release of locks), and deadlock
freedom. A full formalization for our language, containing the operational semantics and a proof sketch,
are given in the companion technical report [8].

5

Type-Based Deadlock Freedom without Lock Ordering P. Gerakios, N. Papaspyrou, and K. Sagonas

References
[1] G. Boudol. A deadlock-free semantics for shared memory concurrency. In M. Leucker and C. Morgan,

editors, Proceedings of the International Colloquium on Theoretical Aspects of Computing, volume 5684 of
LNCS, pages 140–154. Springer, 2009.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data races and
deadlocks. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 211–230, New York, NY, USA, Nov. 2002. ACM Press.

[3] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis: Pro-
ceedings of the 10th International Symposium, volume 2694 of LNCS, pages 55–72. Springer, 2003.

[4] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Comput. Surv., 3(2):67–78, 1971.
[5] C. Flanagan and M. Abadi. Object types against races. In J. C. M. Baeten and S. Mauw, editors, Concurrency

Theory: Proceedings of the 10th International Conference, volume 1664 of LNCS, pages 288–303. Springer,
1999.

[6] P. Gerakios, N. Papaspyrou, and K. Sagonas. A concurrent language with a uniform treatment of regions and
locks. In A. R. Beresford and S. Gay, editors, PLACES 2009, volume 17 of EPTCS, pages 79–93, 2010.

[7] P. Gerakios, N. Papaspyrou, and K. Sagonas. Race-free and memory-safe multithreading: Design and imple-
mentation in Cyclone. In Proceedings of the ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, pages 15–26, New York, NY, USA, 2010. ACM Press.

[8] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type system for unstructured locking that guarantees deadlock
freedom without imposing a lock ordering. Technical report, National Technical University of Athens, 2010.

[9] N. Kobayashi. A new type system for deadlock-free processes. In C. Baier and H. Hermanns, editors,
CONCUR 2006, volume 4137 of LNCS, pages 233–247. Springer, 2006.

[10] K. Suenaga. Type-based deadlock-freedom verification for non-block-structured lock primitives and mutable
references. In G. Ramalingam, editor, Asian Symposium on Programming Languages and Systems, volume
5356 of LNCS, pages 155–170. Springer, 2008.

[11] V. Vasconcelos, F. Martin, and T. Cogumbreiro. Type inference for deadlock detection in a multithreaded
polymorphic typed assembly language. In A. R. Beresford and S. Gay, editors, PLACES 2009, volume 17 of
EPTCS, pages 95–109, 2010.

6

Distributed Dynamic Condition Response Structures
Thomas Hildebrandt Raghava Rao Mukkamala

{hilde,rao}@itu.dk
IT University of Copenhagen

Programming, Logic and Semantics Group
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

Abstract

We present distributed dynamic condition response structures as a declarative process model in-
spired by the workflow language employed by our industrial partner and conservatively generalizing
labelled event structures. The model adds to event structures the possibility to 1) finitely specify re-
peated, possibly infinite behavior, 2) finitely specify fine-grained acceptance conditions for (possibly
infinite) runs based on the notion of responses and 3) distribute events via roles. We give a graph-
ical notation inspired by related work by van der Aalst et al and formalize the execution semantics
as a labelled transition system. Exploration of the relationship between dynamic condition response
structures and traditional models for concurrency, application to more complex scenarios, and further
extensions of the model is left to future work.

1 Introduction

A key difference between declarative and imperative process languages is that the control flow for the
first kind is defined implicitly as a set of constraints or rules, and for the latter is defined explicitly, e.g.
as a flow diagram or a sequence of state changing commands.

There is a long tradition for using declarative logic based languages to schedule transactions in the
database community. Several authors have noted that it could be an advantage to also use a declara-
tive approach to specify workflow and business processes [4, 8, 9, 5, 1]. An important motivation for
considering a declarative approach is to achieve more flexible process descriptions [11]. The increased
flexibility is obtained in two ways: Firstly, imperative descriptions tend to over-constrain the control flow,
since one does not think of all possible ways of fulfilling the intended constraints. Secondly, adding a
new constraint to an imperative process description may require that the process code is completely
rewritten, while the declarative approach just requires the extra constraint to be added.

As a simple example, consider a hospital workflow with a single rule stating that the doctor must
sign after having added a prescription of medicine to the patient record. A naive imperative process
description may instruct the doctor first to prescribe medicine and then sign it. In this way the possibility
of adding several prescriptions before or after signing is lost, even if it is perfectly legal according to the
declaratively given rule. With respect to the second type of flexibility, consider adding the rule that a
nurse should give the prescribed medicine to the patient, but it is not allowed before the patient record
has been signed. For the simple imperative solution, one may be led to just adding a command in the end
of the program instructing the nurse to give the medicine. Perhaps we remember to insert a loop to allow
that the nurse give the medicine repeatedly. But the nurse should be allowed to give medicine as soon as
the first signature is put and the doctor should also be allowed to add new prescriptions after or even at
the same time as the nurse gives the medicine. So, the most flexible imperative description should in fact
spawn a new thread for the nurse after the first signature has been given. One may argue that the rules are
too lax in this setting, i.e. that one would need stricter rules to govern the medication. However, besides
the fact that this example is indeed extracted from a real-life study of paper-based oncology workflow at
danish hospitals [6, 7], the main point is that this is an example of how workflows in general often are
intended to be lax and flexible, not this workflow in particular.

1

Distributed DCR Structures Hildebrandt and Mukkamala

A drawback of the declarative approach however, is that the implicit definition of the control flow
makes the flow less easy to perceive for the user or compute by the execution engine. At each state, one
has to solve the set of constraints to figure out what are the next possible events. It becomes even worse
if you are not only interested in knowing the immediate next event, but also want to get an overview of
the complete run of the process.

This motivates researching the problem of finding an expressive declarative process model language
that can be easily visualized by the end user, allows an effective run-time scheduling and can be mapped
easily to a state based model if an overview of the flow graph is needed. In this paper, we propose a
new such declarative process model language called dynamic condition response structures. The model
is inspired by the declarative process matrix model language [6, 7] used by our industrial partner and
(labelled) prime event structures [12]. Indeed, it is formally a conservative generalization and strict
extension of both event structures and the core primitives of the process matrix model language.

An (labelled, prime) event structure in some sense can be regarded as a minimal, declarative model
for concurrent processes. It consists of a set of events, a causality (partial order) relation between events
stating which events are caused by the previous events (or dually, which events must have preceded the
execution of an event), a conflict relation stating which events can not happen in the same execution and
finally a labeling function describing the observable action name of each event.

To be used as an execution language for workflow or concurrent (multi-processor) systems several
aspects are missing however. In this paper we consider three of these aspects: Firstly, we need some
compact, still declarative, way to model repeated, possibly infinite behavior. In an event structure each
event can only be executed once. Secondly, it must be possible to specify that only some of the partial (or
infinite) computations are acceptable. Event structures have no notion of acceptance condition. Finally,
we need to be able to describe a distribution of events on agents/persons/processors.

To address these aspects, we propose a number ways to generalize event structures. Firstly, we allow
each event to happen many times and replace the symmetric conflict relation by an asymmetric relation
which dynamically determines which events are included in or excluded from the structure. Secondly,
the causality relation is split in two relations (not necessarily partial orders): A condition relation stating
which events must have happened before an event and a response relation stating which events must
happen after (as a response to) an event. We can then define runs to be acceptable if no response event
from some point in the execution is executable continuously without ever being executed. This relates
to the elegant definition of fair runs in true concurrency models investigated in [2]. Finally, we define
distribution by adding a set of roles assigned to persons/processors and actions.

Being based on essentially only four relations between events, the model can be simply visualized as
a directed graph with events (labelled by activities and roles) as nodes and four different kinds of arrows.
We found that our condition and response relations were two of the core LTL templates used in [11] and
thus decided to base our graphical notation on the one suggested in [11].

We also provide a relatively simple mapping to the state based model of labelled transition systems,
which formalizes the semantics. We show how run-time scheduling for workflows with finite runs can
easily be supported by identifying accepting states in the labelled transition system This gives a finite
state automaton that reflects the run-time scheduling of the process matrix model used by our industrial
partner. We leave the treatment of infinite runs for future work.

The main advantage of the dynamic condition response structures compared to the related work based
on Event logics, Concurrent transactional logic and temporal logics such as LTL explored in [10, 11, 4, 3]
is that the latter logics are more general and thus, we claim, more complex to visualize and understand
by people not trained in logic.

2

Distributed DCR Structures Hildebrandt and Mukkamala

2 Distributed Dynamic Condition Response Structures

Let us first recall the definition of a prime event structure and configurations of such [12].

Definition 1. A labeled prime event structure (ES) over an alphabet Act is a 4-tuple (E,≤,#, l) where

(i) E is a (possibly infinite) set of events

(ii) ≤ ⊆ E×E is the causality relation between events which is partial order

(iii) # ⊆ E×E is a binary conflict relation between events which is irreflexive and symmetric

(iv) l : E → Act is the labeling function mapping events to actions

Action names a ∈ Act represent the actions the system might perform, an event e ∈ E labelled with
a represents occurrence of action a during the possible run of the system. The causality relation e ≤ e′

means that event e is a prerequisite for the event e′ and the conflict relation e#e′ implies that events e and
e′ both can not happen in the same run, more precisely one excludes the occurrence of the other. The
causality and conflict relations satisfy the conditions that e#e′ ≤ e′′ =⇒ e#e′′ and {e′ | e′ ≤ e} is finite
for any e ∈ E. A configuration c is a set of events such that,

(i) conflict-free: ∀e,e′ ∈ c.¬e#e′

(ii) downwards-closed: ∀e ∈ c,e′ ∈ E.e′ ≤ e =⇒ e′ ∈ c

We define a run of a labelled event structure to be a sequence of labelled events (e0, l(e0)),(e1, l(e1)), . . .
such that {e | e≤ e0} = /0 and for all i≥ 0.∪0≤ j≤i {e j} is a configuration.

As an intermediate step towards dynamic condition response structures we generalize prime event
structures to (prime) condition response event structures by replacing the causality relation with two
relations: the condition and the response relation, as described in the introduction.

Definition 2. A labeled condition response event structure (CRES) over an alphabet Act is a tuple
(E,≤C,≤R,#, l) where

(i) E is a (possibly infinite) set of events

(ii) ≤C ⊆ E×E is the condition relation between events which is partial order

(iii) ≤R ⊆ E×E is the response relation between events, satisfying that≤=≤C ∪ ≤R is a partial order

(iv) # ⊆ E×E is a binary conflict relation between events which is irreflexive and symmetric

(v) l : E → Act is the labeling function mapping events to actions

The condition relation imposes a precedence relation between events. For example, if two events are
related by the condition relation e≤C e′, then event e must have happened before event e′ can happen. As
for the causality relation in prime event structures we require that e#e′ ≤ e′′ =⇒ e#e′′ and {e′ | e′ ≤ e}
is finite for any e ∈ E. We define configurations and runs as for prime event structures, except that a
configuration of a CRES is only required to be downwards closed with respect to the condition relation.
That is, a configuration c of a CRES is a set of events such that,

(i) conflict-free: ∀e,e′ ∈ c.¬e#e′

(ii) downwards-closed: ∀e ∈ c,e′ ∈ E.e′ ≤C e =⇒ e′ ∈ c

3

Distributed DCR Structures Hildebrandt and Mukkamala

The response relation is in some sense dual to the condition relation and allows for defining an
acceptance condition for runs: We define a run (e0, l(e0)),(e1, l(e1)), . . . to be accepting if ∀i ≥ 0.ei ≤R
e =⇒ ∃ j ≥ 0.(e#e j ∨ (i < j∧ e = e j). In words, any pending response event must eventually happen or
be in conflict.

If one as it is usually the case consider any run of a prime event structure to be accepting, a prime
event structure can trivially be regarded as a condition response event structure with empty response
relation. This provides an embedding of prime event structures into condition response event structures
which preserves configurations and runs.

Proposition 1. The labelled prime event structure (E,≤,#, l,Act) has the same runs as the accepting
runs of the CRES structure (E,Act,≤C,≤R,#,l,Act) where ≤C=≤, ≤R= /0

We now go on to generalize the model to allow events to be executed several times. This also leads to
a relaxation of the constraints on the condition and response relations and changing the conflict relation
to a dynamic exclusion and inclusion of events.

Definition 3. A dynamic condition response structure (DCR) is a tuple D = (E,Act,→•,•→,±, l)
where

(i) E is the set of events

(ii) Act is the set of actions

(iii) →•⊆ E× E is the condition relation

(iv) •→⊆ E× E is the response relation

(v) ± : E×E→ {+,%,∗} is the dynamic inclusion/exclusion relation.

(vi) l : E→ Act is a labelling function mapping events to actions.

The condition and response relations in DCR are the same as corresponding relations from CRES,
except that they are not constrained in any way. In DCR, we have used a slightly different symbols for
condition and response relations in order to be consistent with the graphical notation of DCR model.
The dynamic inclusion/exclusion relation allows events to be included and excluded dynamically in the
process. We will use the notation e→+ e

′ for ±(e,e′) = + and similarly write e→% e
′ for ±(e,e′) = %.

The relation e→+ e
′ expresses that, whenever event e happens, it will include e

′ in the process. On the
other hand, e→% e

′ expresses that when e happens it will exclude e
′ from the process.

We make the execution semantics precise below by giving a mapping to a labelled transition system
with an acceptance condition on runs defined as described in the introduction.

A CRES can be represented as a DCR by making every event excluding itself and encoding the
conflict relation by making any two conflicting events mutually exclude each other.

For example, consider a CRES with two conflicting events e,e′ as shown in figure 1(a). This CRES
can be represented as a DCR using the exclude relation as shown in the figure 1(b). The mutual exclude
relation on events e,e′ will ensure that, only one of the events can happen and similarly self exclude
relation on the events will enforce that any event can happen only once.

Finally, we define distributed dynamic condition response structures by adding roles and principals.

Definition 4. A distributed dynamic condition response structure(DDCR) is a tuple

(E,Act,→•,•→,±, l,R,P,as)

where (E,Act,→•,•→,±, l) is a dynamic condition response structure, R is a set of roles, P is a set
of principals (e.g. persons/processors/agents) and as ⊆ (P∪Act)×R is the role assignment relation to
executors and actions.

4

Distributed DCR Structures Hildebrandt and Mukkamala

(a) # relation in CRES (b) Encoding of # in DCR
Figure 1: Conflict relation in graphical notation

For a distributed DCR, the role assignment relation indicates the roles of principals and which roles
gives permission to executed which actions. As an example, if PeterasDoctor and SignasDoctor (for
Peter ∈ P and Doctor ∈ R, then Peter can do the Sign action having the role as Doctor.

(a) Prescribe Medicine Example (b) Prescribe Medicine Example With Check
Figure 2: DCRS example in graphical notation

Now, figure 2(a) shows the small example workflow from the introduction graphically. It contains
three events uniquely labelled (and thus identified) by the actions: prescribe medicine (the doctor
calculates and writes the dose for the medicine), sign (the doctor certifies the correctness of the calcu-
lations) and give medicine (the nurse administers medicine to patient). The events are also labelled by
the assigned roles (D for Doctor and N for Nurse).

The arrow •→• between prescribe medicine and sign indicates that the two events are related by
both the condition relation and the response relation. The condition relation means that the prescribe
medicine event must happen at least once before the sign event. The response relation enforces that, if
the prescribe medicine event happen, subsequently at some point the sign event must happen for the
flow to be accepted. Similarly, the response relation between prescribe medicine and give medicine
enforces that, if the prescribe medicine event happen, subsequently at some point the give medicine
event must happen for the flow to be accepted. Finally, the condition relation between sign and give
medicine enforces that the signature event must have happened before the medicine can be given. Note
the nurse can give medicine many times, and that the doctor can at any point chose to prescribe new
medicine and sign again. (This will not block the nurse from continue to give medicine. The interpreta-
tion is that the nurse may have to keep giving medicine according to the previous prescription).

The dynamic inclusion and exclusion of events is illustrated by an extension to the scenario (also
taken from the real case study): If the nurse distrusts the prescription by the doctor, it should be possible
to indicate it, and this action should force either a new prescription followed by a new signature or just a
new signature. As long the new signature has not been added, medicine must not be given to the patient.

This scenario can be modeled as shown in Figure 2(b), where one more action don’t trust is added.
Now, the nurse have a choice to indicate distrust of prescription and thereby avoid give medicine until

5

Distributed DCR Structures Hildebrandt and Mukkamala

the doctor re-execute sign action. Executing the don’t trust action will exclude give medicine and
makes the sign as pending response. So the only way to execute give medicine action is to re-execute
sign action which will then include give medicine. Here the doctor may choose to re-do prescribe
medicine followed by sign actions (new prescription) or simply re-do sign.

We now define the semantics of distributed DCRs by giving a map to a labelled transition system
and define the set of accepting runs. The states of the transition semantics will be triples (E, I,R) where
E ⊆ E represents the set of happened events, I ⊆ E represents the set of currently included events, and R
represents the set of pending responses.

Definition 5. For a distributed DCR D = (E,Act,→•,•→,±, l,R,P,as) we define the corresponding
labelled transition systems T (D) to be the tuple (S,(/0,E, /0),→⊆ S×Act×S) where S = P(E)×P(E)×
P(E) is the set of states, (/0,E, /0) ∈ S is the initial state, →⊆ S× (P×Act×R)× S is the transition
relation given by

(E, I,R)
(e,(p,a,r))−−−−−→ (E ∪{e}, I′,R′) where

(i) e ∈ I, l(e) = a, pasr, and aasr

(ii) {e′ ∈ I | e′ →• e}⊆ E

(iii) I′ = (I∪{e′ | ±(e,e′) = +})\{e′ | ±(e,e′) = %}

(iv) R′ = (R\{e})∪{e′ | e •→ e′}

We define the runs (e0,(p0,a0,r0)),(e1,(p1,a1,r1)), . . . of the transition system to be the sequences of

labels of a sequence of transitions (Ei, Ii,Ri)
(ei,(pi,ai,ri))−−−−−−−→ (Ei+1, Ii+1,Ri+1) from the initial state. We define

such a run to be accepting if ∀i≥ 0.e∈ Ri+1 =⇒ ∃ j.i < j∧(e = e j∨e 0∈ I j). In words, a run is accepting
if no pending response event from one point in the run is continuously included without happening.

The first item in the above definition expresses that, only events e that are currently included, can be
executed, and to give the label (p,a,r) the label of the event must be a, p must be assigned to the role r,
which must be assigned to a. The second item requires that all condition events to e which are currently
included should have been executed previously. The third and fourth items are the updates to the sets of
included events and pending responses respectively.

If one only want to consider finite runs, which is sometimes the case in the workflow community, the
acceptance condition degenerates to requiring that no pending response is included at the end of the run.
This corresponds to defining all states where R∩ I = /0 to be accepting states and define the accepting
runs to be those ending in an accepting state. If infinite runs are also of interest (as e.g. for reactive
systems and the LTL logic) the acceptance criteria can be captured by a mapping to a Büchi-automaton.
The construction is not straightforward and we leave it for future work to study it in detail.

(We define the transition system, runs and acceptance condition for a non-distributed DCR as for a
distributed DCR except there are no principals and roles.)

We can then state the result that the representation of CRES as DCR exemplified in figure 1(b)
provides an embedding preserving accepting runs.

Proposition 2. The condition response event structure (E,≤C,≤R,#, l,Act) has the same accepting runs
as the accepting runs of the DCR structure (E,Act,→•,•→,±,l) where →•=≤C, •→=≤R, ∀e,e′ ∈ E.±
(e,e′) = % if e = e′ or e#e′ and otherwise ±(e,e′) = ∗.

6

Distributed DCR Structures Hildebrandt and Mukkamala

3 Conclusion and Future Work

We presented a declarative process model derived as a sequence of relatively simple generalizations of
labelled event structures inspired by the workflow language employed by our industrial partner. The
first generalization is to split the causality relation of event structures into two dual relations, a condition
relation →• such that {e′ | e′ →• e} is the set of events required to have happened before the event e
can happen and a response relation •→, such that {e′ | e •→ e′} is the set of events that must happen
(or be in conflict) after the event e has happened. The final extension allows to finitely specify repeated,
possibly infinite behavior and acceptance conditions for runs by allowing multiple execution, and dy-
namic inclusion and exclusion of events and allows for distribution of events via roles. We presented a
graphical notation inspired by related work by van der Aalst et al, and gave a mapping to labelled tran-
sition systems with an acceptance condition on runs based on the response relation. We remarked that
if one only considers finite runs, the acceptance condition can be captured by defining a set of accepting
states in the labelled transition system and defining a run to be accepting if it ends in an accepting state.
Moreover, we remarked that for infinite runs the accepting condition can be captured by a mapping to
a Büchi-automaton, but leave the detailed study of this construction to future work. Also, future work
will consider a more detailed comparison between dynamic condition response structures and existing
models for concurrency, including the relation to the work in [2]. We also plan to study more complex
scenarios and workflow patterns, other acceptance conditions, distributed scheduling, and extensions of
the model, notably with time, nested sub structures, soft constraints, and compensation/exceptions.

Acknowlegments

This research is supported by the Trustworthy Pervasive Healthcare Services (TrustCare) project. Danish
Research Agency, Grant # 2106-07-0019 (www.TrustCare.eu).

References

[1] Christoph Bussler and Stefan Jablonski. Implementing agent coordination for workflow management systems
using active database systems. In Research Issues in Data Engineering, 1994. Active Database Systems.
Proceedings Fourth International Workshop on, pages 53–59, Feb 1994.

[2] Allan Cheng. Petri nets, traces, and local model checking. In Proceedings of AMAST, pages 322–337, 1995.
[3] Nihan Kesim Cicekli and Ilyas Cicekli. Formalizing the specification and execution of workflows using the

event calculus. Information Sciences, 176(15):2227 – 2267, 2006.
[4] Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan, and I.V. Ramakrishnan. Logic based modeling and

analysis of workflows. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 1–3. ACM Press, 1998.

[5] Alvaro A. A. Fernandes, M. Howard Williams, and Norman W. Paton. A logic-based integration of active
and deductive databases. New Gen. Comput., 15(2):205–244, 1997.

[6] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. From paper based clinical practice
guidelines to declarative workflow management. In Proceedings of 2nd International Workshop on Process-
oriented information systems in health- care (ProHealth 08), pages 336–347, Milan, Italy, September 2008.

[7] Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth. The resultmaker online consultant:
From declarative workflow management in practice to LTL. In Proceeding of 1st International Workshop on
Dynamic and Declarative Business Processes, 2008, pages 36–43, 2008.

[8] Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework for scheduling workflows under
resource allocation constraints. In In VLDB, pages 694–705, 2002.

7

Distributed DCR Structures Hildebrandt and Mukkamala

[9] Munindar P. Singh, Greg Meredith, Christine Tomlinson, and Paul C. Attie. An event algebra for specifying
and scheduling workflows. In Proceedings of the 4th International Conference on Database Systems for
Advanced Applications (DASFAA), pages 53–60. World Scientific Press, 1995.

[10] Wil M. P. van der Aalst and Maja Pesic. A declarative approach for flexible business processes management.
In Proceedings of Workshop on Dynamic Process Management (DPM 2006), volume 4103 of LNCS, pages
169–180. Springer Verlag, 2006.

[11] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Balancing between
flexibility and support. Computer Science - R&D, 23(2):99–113, 2009.

[12] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors,
Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

8

Session Type Inference in Haskell
Keigo Imai Shoji Yuen Kiyoshi Agusa

Graduate School of Information Science, Nagoya University, Japan
imai@nagoya-u.jp, yuen@is.nagoya-u.ac.jp, agusa@is.nagoya-u.ac.jp

1 Introduction

In order to efficiently develop reliable communicating distributed software, designing communication
protocols between components is one of the key issues to ensure correct behavior of the software.
Session-type systems[4][11][3][10] provide static checking of communication protocols. These systems
enforce communication descriptions to conform to certain protocols. Incorporating session types in pro-
gramming languages eases the communication centric programming in that session typed components
are guaranteed to behave correctly by their types.

We show an implementation of binary session types equipped with a session type inference in
Haskell.1 One of our contributions is the treatment of multiple channels annotated less than the existing
implementations[7][8][9]. This makes the session types easier to work with.

Our technique for embedding session types in Haskell is to maintain an extra type environment for
session types using type-level programming. However, there is yet a problem of how accessors, i.e.,
names, of a type environment should be generated and compared in the type-level. To resolve this
problem, we introduced a canonical indexing of names by natural numbers, as in the de Bruijn notation.
Providing access to a type environment by natural numbers enabled us to implement the current library
without the bookkeeping operations[8] nor manual construction of session types[9].

Our implementation also supports network programming based on TCP. We show an example of
a SMTP client based on our implementation. The reader is assumed to have a basic knowledge of
programming in Haskell.

1.1 Related work

Neubauer and Thiemann[7] implemented session types on a single communication channel in Haskell.
Their implementation avoids aliasing by prohibiting explicit use of a channel.

Pucella and Tov[8] have shown a general technique to encode session types in languages like Haskell,
ML, and C#. They provide communications with multiple channels. To track the identity of a channel on
type-level, fresh universally quantified type variables are assigned to each channel. Since type checker
in those languages does not support type level operations on such type variables, their implementation
requires inserting bookkeeping operations like swap and dig on type environments in source code.

The implementation proposed by Sackman and Eisenbach[9] supports full functionality of session
types. However, their library requires a manual construction of session types. There are trade-offs
between such a manual handling and annotated type-inference approach in that while type-inference
reduces unneeded annotations, explicit annotation with a rich set of syntax increases readability and
expressiveness of types. We will discuss this aspect in the later section.

The difference of our implementation from the previous work is summarized in the following table.

1A working implementation, full-sessions , which can be compiled by the Glasgow Haskell Compiler 6.10.2 or higher
is available at: http://hackage.haskell.org/package/full-sessions/. Typing cabal install full-sessions in
a shell will install full-sessions in your environment.

1

Session Type Inference in Haskell Imai, Yuen, and Agusa

channel annotation portablepassing
Neubauer et al.[7] no auto no
Pucella et al.[8] yes in a limited context2 stack based channel handling yes
Sackman[9] yes manual construction of session types no
Our implementation yes auto no

2 Session-type inferencer on Haskell

We first introduce concurrency primitives and session types in our implementation. Then we present a
few techniques to embed session types in Haskell as in [7] and [8]. Finally we show the session type
reconstruction for multiple channels based on de Bruijn levels.

2.1 Concurrency primitives and session types in full-sessions

Our implementation, full-sessions , provides primitives for starting a new thread, generating a chan-
nel, and communicating values and channels synchronously through it. They are summarized in the Table
1. For readability, we use the ixdo notation[8], which provides a syntactic sugar to write programs in an
imperative style. All the primitives return a session of type Session. They can be composed sequentially
by the notation s1 ; s2, or be composed in parallel using the primitive fork which starts a new thread.
Session types in our implementation are summarized in the Table 2. These types are inferred at compile
time for each channel according to the typing rules in the session-type system[4].

Syntax Meaning
Channel Creation c ← new Create a new channel and bind it to c

Value Output send c e Output an expression e on c
Value Input x ← recv c Input a value on c and bind it to x

Selection seli c (i ∈ {1,2}) Output a label i on c
Offering offer c p1 p2 Input a label i on c, then continue pi

Session Delegation sendS c c′ Output a channel c′ on c
Session Reception c′ ← recvS c Input a channel on c and bind it to c′

Fork fork p Create a new thread and run with the session p
Calling Haskell I/O io m Execute Haskell’s IO action m

Recursion of a session recur1 f c Recursive call of a session (f c) where c is a channel

Recursive use of a channel unwind c Unwind a recursive session type
Rec n u into u[Var n $→ Rec n u] on c

Table 1: Primitives in the full-sessions library

2.2 Session type inference for a single channel

2.2.1 A single-threaded participant

Let us begin with a case of single channel in a single-threaded participant. In such a case a session type
advances as a session proceeds. For example a type Send Int End advances to End when a channel of
that type is used to send an integer. To track such an advance of a session type, we assign a pair of session

2Since in our implementation, terms are represented in a de Bruijn form, channel are free from renaming. Thus, any form
of channel passing is allowed whereas in [8] the scope of a channel has to be fixed.

2

Session Type Inference in Haskell Imai, Yuen, and Agusa

Session Types Meaning
Send v u Output a value of type v then u
Recv v u Input a value of type v then u
Select u1 u2 Internal choice between u1 and u2
Offer u1 u2 External choice between u1 and u2
Throw u1 u2 Output a channel which has a session u1 then u2
Catch u2 u2 Input a channel which has a session u1 then u2
End The channel cannot be used any more
Bot The channel is already owned by two communicating processes
Rec n u Recursive session which binds occurrences of (Var n) in u
Var n Occurrence of a recursion variable

Table 2: Session Types in the full-sessions library

types, called a pre-type and a post-type, to each occurrence of a channel. A pre-type denotes the session
type before a session starts. Similarly, a post-type is the session type after a session ends.

In many cases post-types act as a placeholder, which allows concatenation of two session types.
For example, consider one of the simplest sessions, send c True. The pre-type of the channel c in this
session is Send Bool u and the post-type of it is u, where u is a type variable. This means that an another
session which uses the channel c can be further concatenated after this session.

The concatenation of two session types are done by unification. In a concatenation s1;s2 of two
sessions, the post-types of channels in s1 is unified with the pre-types of ones in s2. The pre-types of
channels in the concatenated session s1;s2 is same as the ones in s1. The post-types of channels in s1;s2

is the ones of s2. Accordingly, (send c True; send c "abc") has (Send Bool (Send String u2)) as
the pre-type and u2 as the post-type on the channel c, where u2 is a type variable distinct from u.

For a more complex example, the code below describes a simple calculator server.

server c = ixdo x ← recv c; y ← recv c; offer c (send c (x+y::Int)) (send c (x<y))

The server firstly receives two values of type Int and a branch label (here the label is either 1 or 2),
then sends an answer either of type Int or of Bool according to the label.

The pre/post-type of the channel c in the server can be inferred by the GHC’s typechecker via aux-
iliary function channeltype1. By showing the type of (channeltype1 server) using GHC’s interactive
environment, users will obtain the following response:

prompt> :t channeltype1 server
channeltype1 server :: (Recv Int (Recv Int (Offer (Send Int a) (Send Bool a))), a)

2.2.2 Duality of two session types

The fork primitive requires the duality between pre-types of two sessions. Here we explain it by using
the previous example of a calculator server. Firstly, a client of the server would be like this:

client c = ixdo send c 123; send c 456; sel2 c; ans ← recv c;
io (putStrLn (if ans then "Lesser" else "Greater or Equal"))

The pre-/post-type of c in client is (Send Int (Send Int (Select u1 (Recv Bool u))) and u, re-
spectively. By putting server and client in parallel by fork, and by generating a channel by new, we
obtain the code below:

calc c = ixdo fork (server c); client c;
startCalc = ixdo c ← new; calc c

3

Session Type Inference in Haskell Imai, Yuen, and Agusa

The above code typechecks because the two usages of c in client and server are dual. The resulting
pre-type is Bot, as the session-type algebra of [4] implies. The post-type is End since fork requires the
usage of channels in the given session to be ended. 3 Here we confirm it:

prompt> :t channeltype1 calc
channeltype1 calc :: (Bot, End)

A session can be run by the function runS. Typing runS startCalc will produce the result “Lesser”
on the console. The following is the result of the execution using the interpreter:

prompt> runS (channeltype1 calc)
Lesser

2.3 Tracking sessions with multiple channels by De Bruijn indexing

To track usages of multiple channels in type-level, a natural number of de Bruijn level is assigned to each
channel. De Bruijn level represents the nesting depth of a variable binder. For example, in a λ -calculus
term λx.λy.x the level of the variable x is 0 whereas y is 1. Figure 1 shows the de Bruijn level indexing
of a session. In the figure, the de Bruijn level of a variable is denoted by a superscript at the binding
position. Note that we need to count on only channels, hence each variable c,d,e and f have an index
but x does not.

ixdo c ! new; d ! new;

 fork (ixdo e !catch c; ...)

 x ! recv d;

 f ! catch d;

 ...

n n+1

n+2

n+2

Figure 1: De Bruijn level indexing in a session

De Bruijn levels are assigned to the type of channels. A channel has the type of the form Channel
t n where n is a de Bruijn level of the channel and t is a ”type-tag”[6]. We do not explain the type-
tag, since it is out of scope of our paper. Natural numbers are represented by combinations of the two
types representing peano-numerals Z and S n where each of them denotes 0 and n + 1 respectively. For
example, a channel which has de Bruijn level 2 has type Channel t (S (S Z)). Each number points to a
certain position of a type environment.

Session types of multiple channels are recorded in extra type environments. We need two type en-
vironments for pre-types and post-types. Hereafter we call them pre-environment and post-environment,
respectively.

Such an environment is represented by a list of session types, and its elements are accessed by
specifying the number of de Bruijn level. Figure 2 is an example of a session send c "abc"; send
d True and its pre-/post-environment. Assuming that c and d have (Haskell-) type Channel t Z and
Channel t (S Z) respectively, the pre- and post-environment of the session is inferred as shown in the
figure. c and d has pre-type Send String u1 and Send Bool u2, and post-types of them are u1 and u2,

3Such discipline can also be observed in session-type systems equipped with a thread-spawning construct. the ”ended”
condition of Spawn rule in [2].

4

Session Type Inference in Haskell Imai, Yuen, and Agusa

respectively. Note that the figure also depicts the session-types in an intermediate step after send c
"abc". In that state, c has type u1 and d has type Send Bool u2.

send c "abc";

send d True;

1st element

ixdo

(Assuming that c :: Channel t Z and d :: Channel t (S Z))

a session (Haskell term) Inferred Session Types (Type-level lists)

0th element

Send String u1 Send Bool u2

u1 Send Bool u2

u1 u2

pre-
environment

post-
environment

Figure 2: Tracking session types by numbers

The type of a session has the form of Session t ss tt a. The pre-/post-environments are at the position
of ss and tt respectively. The parameter a is the type of a value returned by a session, and t is a type-tag.

The pre-/post-environments ss and tt are actually represented by type-level lists[5]. A type-level list
is either ss :> u or Nil, where ss is another type-level list and u is a session type, and Nil is a empty list.
Note that the type constructor :> is left-associative, for example ss:>a:>b is interpreted as (ss:>a):>b.
Also note that the type environment is counted from left to right order. For example, the 0-th element of
Nil:>a:>b:>c is a.

Provided that the type of c is Channel t Z and the type of d is Channel t (S Z), a session of the
previous example (send c "abc"; send d True) has type Session t (Nil:>Send String u1:> Send
Bool u2) (Nil:>u1:>u2) ().

In general, the de Bruijn levels can be a non-constant value, like n+1, n+2 and so on. For example,
if the length of a session-type environment ss is n, and the type of c and d is Channel t n and Channel t
(S n) respectively, a session (send c 1; send d True) has type Session t (ss:>Send Int u1:> Send
Bool u2) (ss:>u1:>u2) (). Constraints for the length of a session-type environment is represented in
the type-level by the type-class SList ss n, which represents that the length of ss is n. Observe that
the existence of the placeholder ss in each of session-type environments. This makes possible to han-
dle arbitrary numbers of channels by concatenation of sessions which introduce new channels, which
involves unification between the post-environment of the earlier session and the pre-environment of the
later session.

When a new channel is introduced, post-environments are extended to store the session type of the
introduced channel. The primitive new and catch involve such a mechanism. new has pre-environment ss
and post-environment ss:>Bot. At the same time new returns a channel of type Channel t n, where n is
equal to the length of ss and points to the leftmost position of the post-environment, namely Bot. Hence
the index of a generated name is assured to be fresh.

Figure 3 shows the pre-/post-environments of a session (c ← new; fork (send c True)). The
post-environment has an extra entry for the newly created channel. The post-type of the newly created
channel is dual of Send Bool End, which is required to communicate with the forked session.

Similarly, catch c has the pre-/post-environment ss and tt:>u′, where n-th element of ss is Catch u′

u and that of tt is u. Figure 4 shows such use of catch and the inferred session types.

5

Session Type Inference in Haskell Imai, Yuen, and Agusa

c ! new;

fork (send c True);

ixdo

a session (Haskell term) Inferred Session Types (Type-level lists)

Bot

Recv Bool End

...

...

...

ss

ss Recv Bool End:>

pre-
environment

post-
environment

Figure 3: Extension of a type environment by new operation

Catch (Send Bool End) u1
d ! catch c;

send d True;

a session (Haskell term) Inferred Session Types (Type-level lists)

u1

u1

...

...

...

pre-environment

Send Bool End

End

ixdo

post-environment

Figure 4: Extension of a type environment by catch operation

2.4 Comparison of existing Haskell implementations of session types

Our encoding based on de Bruijn indexing reduces most of annotations which are required in the other
works. We show that by giving a few examples of sessions.

Stack-based implementation The implementation by Pucella and Tov[8] applies a stack of session
types as the representation of a type-environment. Communication primitives can only access the top of
the stack, hence explicit manipulation of stack is required. The combinator dig and swap is provided for
such purpose. The swap combinator swaps the top two channels on the stack. On the other hand, dig
combinator converts a given session to operate on a deeper channel stack. Provided that the session type
for c and d is on the top of the stack in this order, the code below is equivalent to (send c "abc"; send
d True):

ixdo send c "abc"; swap; send d True

or

ixdo send c "abc"; dig (send d True)

As a number of channels increases, more stack operations will be required. In [8] a few approaches to
this problem are discussed, however the problem had been left open, and our number-based approach is
not covered.

Manual construction of session types The implementation by Sackman and Eisenbach[9] provides
a very rich set of communication primitives, at a cost of manual construction of session types. There

6

Session Type Inference in Haskell Imai, Yuen, and Agusa

are two communication media, channels and Pids. We show the simplest case of communication via
Pid. The example below passes an integer 10 to the other thread and terminates. It is equivalent to runS
(ixdo c <- new; fork (send c 10); recv c).

(s, a) = makeSessionType (
newLabel ~>>= λa →
a ◦= send (undefined :: Int) ~>> end

~>> sreturn a)

p = run s a (ssend 10) srecv

Here makeSessionType returns a collection of session types s and its fragment a. In the argument of
makeSessionType the construction of a session type is described procedurally. Again, as a number of
threads with different protocol increases, the more construction of session types will be required. The
case of channel-based communication is similar.

3 An example SMTP client

We show the network functionality of the full-sessions by the example of a SMTP client with mul-
tiple channels. A single-channel version of SMTP client with session types has its origin from [7].

Table 3 shows additional primitives for network communication. To model network protocols, the
type-based branching, seliN and offerN, is provided in addition to the previous label-based branching.
Note that the seliN does nothing, but we need them to infer the session types for type-based selections.

Syntax Meaning
Connect to a service c ← connectNw s Connect to a service s and bind a session channel to c
Type-based offering offerN c p1 p2 Offer two receiving session p1 and p2 on c

Selection annotation seliN c (i ∈ {1,2}) Determine which branch of Select u1 u2 will be
selected on c

Table 3: Additional primitives for network programming

Here we show our implementation of SMTP client in the simplest form. Firstly, the types for SMTP
commands and replies are defined as follows:

-- Types for SMTP commands.
newtype EHLO = EHLO String
newtype MAIL = MAIL String
newtype RCPT = RCPT String
data DATA = DATA
data QUIT = QUIT
newtype MailBody = MailBody [String]

-- Types for SMTP server replies (200 OK, 500 error and 354 start mail input)
newtype R2yz = R2yz String; newtype R5yz = R5yz String; newtype R354 = R354 String

To deal with the stream-based communication of TCP, either a parser or a printer for each type of com-
municated values must be prepared. Provided such functions exist, the SMTP client is described as
follows:

-- auxiliary functions
send_receive_200 c mes = ixdo send c mes; (R2yz _) ← recv c; ireturn ()
send_receive_354 c mes = ixdo send c mes; (R354 _) ← recv c; ireturn ()

7

Session Type Inference in Haskell Imai, Yuen, and Agusa

sendMail c d = ixdo -- the body of our SMTP client
(R2yz _) ← recv c -- receive 220
send_receive_200 c (EHLO "mydomain") -- send EHLO, then receive 250
unwind0 c; sel1N c -- (annotation) branch to send ’MAIL FROM’
from ← recv d -- (1) input the sender’s address on d
send_receive_200 c (MAIL from) -- send ’MAIL FROM’, then receive 250
unwind1 c; sel1N c -- (annotation) branch to send ’RCPT TO’
to ← recv d -- (2) input the recipient’s address on d
send c (RCPT to) -- send ’RCPT TO’
offerN c (ixdo -- branch the session according to the reply
(R2yz _) ← recv c -- if 250 OK is offered
sel1 d; mail ← recv d -- (3) input the content of the mail on d
unwind1 c; sel2N c -- (annotation) branch to send ’DATA’
send_receive_354 c DATA -- send ’DATA’ and receive 354
send_receive_200 c (MailBody mail) -- send the content of the mail
unwind0 c; sel2N c -- (annotation) branch to send ’QUIT’
send c QUIT; close c -- send ’QUIT’ and close the connection
) (ixdo
(R5yz errmsg) ← recv c; -- if 500 ERROR is offered
sel2 d; send d errmsg; -- (4) output the error message on d
send c QUIT; close c) -- send ’QUIT’ and close the connection

close d

The sendMail takes two channels c and d as its parameters. The former is used to communicate with the
SMTP server while latter is used to prepare necessary information for sending a mail. By checking the
type of typecheck2 sendMail, the following type is answered by GHC:

typecheck2 sendMail :: (SList ss l, IsEnded ss b1) ⇒ Session t
(ss :> Recv R2yz (Send EHLO (Recv R2yz (Rec Z (SelectN

(Send MAIL (Recv R2yz (Rec (S Z) (SelectN
(Send RCPT (OfferN (Recv R2yz (Var (S Z))) (Recv R5yz (Send QUIT Close))))
(Send DATA (Recv R354 (Send MailBody (Recv R2yz (Var Z)))))))))

(Send QUIT Close)))))
:> Recv String (Recv String (Select (Recv [String] Close) (Send [String] Close))))

(ss :> End :> End) ()

The SMTP protocol is successfully represented in the pre-type of c. A server that have the dual of this
type can communicate with this client.

Observe that the two channels are used with no annotation. On the other hand, the implementation
of [8] requires the swap operation before and after the each occurrence of d, namely at (1), (2), (3) and
(4), and if we add more channels, more complicated bookkeeping operations will be required.

4 Discussion

Here we discuss a few aspects of session type implementation.

Trade-offs between type inference and manual construction of session types As we have shown in
Section 2.4, annotations required by our implementation is not more than any of the other implementa-
tions. However, there seems to be a few advantages in [9] in a few points. (1) Recursion of a session
type is treated more naturally in [9]. By using term-level operation for constructing session types, [9]
offers more readable formulation of recursion via labels. As you can observe in the SMTP example of

8

Session Type Inference in Haskell Imai, Yuen, and Agusa

the previous section, recursion on a session type require a few of not so intuitive annotations unwindi on
the term-level to represent a recursive protocol. (2) Manual construction of session types in term-level
offers chance of subtyping. It is difficult to allow subtyping of session types in the parallel composition,
because of our bijective encoding of duality to extract more information in a parallel composition of a
session.

Readability of type error messages If the duality check of two session types fails, the type error
would be reported. For example, by replacing the occurrence of an integer 456 in Section 2.2.2 with a
string "456", the following error is obtained :4

examples/calc.hs:<xx>:0:
Couldn’t match expected type ‘[Char]’ against inferred type ‘Int’
Expected type: tt’ :> Send [Char] a
Inferred type: tt’ :> Send Int (Select (Recv Int End) (Recv Bool End))

When generalising the type(s) for ‘plus’

The error reports that the inferred pre-type of client is not compatible with the expected one. The
position <xx> of the reported error is not at send c "456" itself, but at the position where the dual of the
session type is calculated, namely the occurrence of the fork. Thus, this error message directly shows
which session types are not compatible. Even the type-level hackery we depend tends to produce large
type signatures, the type error itself can be concisely represented.

5 Concluding remarks

This paper showed a Haskell implementation of session types equipped with a session-type inference.
Our implementation improves the other existing implementations of session types in that our session
type inference requires no manual bookkeeping as in [8].

The treatment of binders is the key issue in the technology for embedding an language into another,
as stated in [1]. In our implementation, we have taken separated approach for term-level computation and
type-level (compile-time) computation. In term-level, the fresh channels are represented by λ -abstraction
(the technique usually called Higher order abstract syntax), which utilizes the power of variable-bindings
in the host language Haskell. In type-level, de Bruijn levels which are encoded in channel types to
compare of names, which considerably automates session-type inference.

Our technique using de Bruijn level can be applied to other substructural type systems for the π-
calculus, such as linear type systems. However, since the present technique depends on a rich type-level
programming functionality of Haskell, it is not easy to export this scheme to the other programming
languages.

Acknowledgments This work was partially supported by the Grant-in-Aid (Scientific Research (B)
20300009 and Scientific Research(C) 19500026) from the Ministry of Education, Culture, Sports, Sci-
ence, and Technology of Japan.

References
[1] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter Sewell,

Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic. Mechanized Metatheory

4Here, [Char] is a type synonym of String.

9

Session Type Inference in Haskell Imai, Yuen, and Agusa

for the Masses: The POPLMARK Challenge. In Theorem Proving in Higher Order Logics, volume 3603 of
Lecture Notes in Computer Science, pages 50–65. Springer-Verlag, 2005.

[2] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asynchronous Session Types and
Progress for Object Oriented Languages. In Formal Methods for Open Object-Based Distributed Systems,
volume 4468 of Lecture Notes in Computer Science, pages 1–31. Springer-Verlag, 2007.

[3] Simon Gay and Malcolm Hole. Subtyping for Session Types in the Pi Calculus. Acta Informatica, 42(2):191–
225, November 2005.

[4] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and Type Discipline for Struc-
tured Communication-Based Programming. In ESOP ’98: Proceedings of the 7th European Symposium on
Programming, volume 1381 of Lecture Notes in Computer Science, pages 122–138. Springer-Verlag, 1998.

[5] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly Typed Heterogeneous Collections. In Haskell
’04: Proceedings of the ACM SIGPLAN workshop on Haskell, pages 96–107. ACM Press, 2004.

[6] Oleg Kiselyov and Chung C. Shan. Lightweight monadic regions. In Haskell ’08: Proceedings of the first
ACM SIGPLAN symposium on Haskell, pages 1–12, New York, NY, USA, 2008. ACM.

[7] Matthias Neubauer and Peter Thiemann. An Implementation of Session Types. In PADL’04 : Practical As-
pects of Declarative Languages, volume 3057 of Lecture Notes in Computer Science, pages 56–70. Springer-
Verlag, 2004.

[8] Riccardo Pucella and Jesse A. Tov. Haskell Session Types with (Almost) No Class. In Haskell ’08: Proceed-
ings of the first ACM SIGPLAN symposium on Haskell, pages 25–36. ACM Press, 2008.

[9] Matthew Sackman and Susan Eisenbach. Session Types in Haskell: Updating Message Passing for the 21st
Century. Technical report, Imperial College London, June 2008. Available at http://pubs.doc.ic.ac.uk/session-
types-in-haskell/.

[10] Vasco T. Vasconcelos, Simon J. Gay, and Antonio Ravara. Type checking a multithreaded functional language
with session types. Theoretical Computer Science, 368(1-2):64–87, December 2006.

[11] Nobuko Yoshida and Vasco T. Vasconcelos. Language Primitives and Type Discipline for Structured
Communication-Based Programming Revisited: Two Systems for Higher-Order Session Communication.
In SecReT 2006: Proceedings of the First International Workshop on Security and Rewriting Techniques,
volume 171 of Electronic Notes in Theoretical Computer Science, pages 73–93. Elsevier Science Publishers
B. V., 2007.

10

A Modular Toolkit for Theories of Distributed Interactions
Julien Lange

University of Leicester, UK
jl250@le.ac.uk

Emilio Tuosto
University of Leicester, UK

et52@le.ac.uk

Abstract

We discuss the design principles of an architecture for a toolkit which will implement the the-
ories of distributed interactions. The main design principles of our architecture are flexibility and
modularity. In fact, the toolkit is inspired by the existing theories of distributed interactions recently
introduced by several authors. Our main goal is to provide an easily extensible workbench to encom-
pass current algorithms and incorporate future developments of the theory of distributed interactions.

1 Introduction

With the emergence of distributed systems, communication has become one of the most important el-
ements of today’s programming practice. Nowadays, distributed applications typically build up from
(existing) components that (sometimes dynamically) are glued together to form more complex pieces
of software. It is hence natural to model such applications as units of computation interacting through
suitable communication models. An intricacy of communication-centred applications is that interactions
are distributed. Here, the acceptation of distribution has to be taken in a very general sense since interac-
tions are physically and logically distributed; as a matter of fact, components may run remotely and, for
instance, components may belong to different administrative domains.

In order to ensure predictable behaviours of communication-centred applications, it is necessary that
software development is based on solid methodologies. Besides the theoretical results that guarantee the
interesting properties of software, it is also desirable to provide practitioners with a set of tools to support
them in addressing the most common problems (e.g. avoiding synchronisation bugs).

Session types (ST) stand out as an effective mathematical foundation for designing/analysing dis-
tributed interactions. For instance, dyadic ST [7] have been proposed as a structuring method and a
formal basis for verification of distributed interactions of two participants (e.g., in client-server architec-
tures). Dyadic ST has been recently generalised to multiparty sessions [5, 6, 8] where sessions have more
than two participants and in [6] dynamic sessions have been considered. On top of multiparty sessions,
in [3] a theory of design-by-contract for distributed interactions has been introduced. Basically, ST are
extended with assertions acting as pre-/post-conditions or invariants of interactions.

The aim of this paper is to describe the design principles for the architectures of a modular toolkit
which puts in practice the theories of distributed interactions based on ST. Arguably, most of the research
around ST has been mainly devoted to give a precise description of verification and validation frame-
works. In fact, only very few and ad-hoc implementations have been developed (e.g., [9, 10, 11, 12]).

We aim to develop a toolkit that accommodates a few main requirements. Firstly, the toolkit has to
provide a workbench for theoretical studies so to permit (i) to experiment with potentially more realistic
examples and (ii) to possibly combine several of these methodologies. Secondly, our toolkit has to be
easily extensible so to allow researchers to explore new directions as the theory of distributed interactions
develops. Finally, albeit being a prototype for research, our toolkit has to shape the basic implementations
that can be used in more realistic frameworks for the development of communication-centric software.
Synopsis § 2 gives background information and a motivating example. § 3 gives more details on the
design principles of our toolkit and its architecture. § 4 highlights the main advantages of our modular
approach. § 5 concludes and highlights our future plans.

1

A Modular Toolkit for Theories of Distributed Interactions J. Lange, E. Tuosto

2 Background and motivating example

We briefly describe the distinguished aspects common to several theories of distributed interactions.
The key ingredients of the theories of distributed interactions based on ST are as follows [7].

Sessions are sets of structured interactions which correspond, for instance, to a complex communication
protocol (from the communication initialisation to the termination). The basic idea is that a com-
putation consists of several concurrent sessions that involve some participants. A main concern is
that participants acting in different sessions do not interfere. For instance, a desirable property to
enforce is that a message sent in a session from A and meant for B is not received by a participant
C of (another) session.

Interaction primitives basically include communication mechanisms à-la π-calculus that deal with
sessions as first-class values. Another kind of interaction primitives often present features a se-
lect/branch mechanism which resembles a simplified form of method invocation. For instance,
communication interaction and select/branch in the global calculus [8] notation are

A→ B : k〈sort〉 and A→ B : k{li : Gi}i∈J

In the former, participant A sends a message of type sort to B on the channel k; in the latter A
selects one of the labels li (sending it on k) and, correspondingly, B executes its i-th branch Gi.

Communication primitives typically permit delegation, namely the fact that sessions can be ex-
changed so to allow a process to delegate another process to continue the computation.

Typing disciplines guarantee properties of computations. For example, in dyadic ST [7] the duality
principle guarantees that, in a session, the actions of a participant have to be complemented by
the other participant (or its delegate). Among the properties checked by type systems, progression
and some form of correctness properties are paramount. For instance, in [3] a well-typed system
is guaranteed to respect the contract specified by its assertions and, once projected, the program is
guaranteed to be free from “communication-errors”.

Type systems are sometime subject to well-formedness conditions. For instance, global types in [8]
have to be linear in order to be projected to local types.

We illustrate some theoretical aspects with an example adapted from [8] to the global assertions
in [3]. The following is a global assertion (cf. [3]) specifying a protocol1 with two buyers (B1 and B2)
and a seller (S). The buyers B1 and B2 want to purchase a book from S by combining their money.

G = B1 → S : s〈t : string〉.!assert t %= ””" (1)
S → B1 : b1〈q : int〉.!assert q > 0" (2)
B1 → B2 : b2〈c : int〉.!assert 0 < c≤ q" (3)
B2 → S : s{ok!" : D,quit!" : end} (4)

Interactions (1÷4) are decorated with assertions !assert φ" stating a condition φ on the variables of the
protocol (!" abbreviates !assert true"). In (1), B1 and S interact (through s) and exchange the book title;
B1 (resp. S) guarantees (resp. relies on) the title is (resp. being) a non-empty string. In (2), S gives B1
a quote q; !assert q > 0" constraints the price to a positive value. In (3), B1 tells B2 its non-negligible
contribution c to the purchase (as B1 guarantees !assert 0 < c≤ q"). In the last step, B2 may refuse

1For the sake of this extended abstract, global assertions may be thought of as global types decorated with formulae of a
(decidable) logic.

2

A Modular Toolkit for Theories of Distributed Interactions J. Lange, E. Tuosto

(selecting label quit) or accept2 the deal (selecting label ok); in the former case the protocol just finishes
otherwise it continues as:

D = B2 → S : s〈a : string〉!assert a %= ””".S → B2 : b2〈d : date〉!"

namely B2 and S exchange delivery address and date.
Linearity is a (typically decidable) property ensuring that communications on a common channel are

ordered temporally. Linear types can be projected so to obtain the local types of each participant. Simi-
larly, global assertions have to be well-asserted, namely the assertions have to guarantee satisfiability in
a decidable logic. The projections of our example are:

pB1 = s!〈t : string〉 !assert t %= ””";
b1?〈q : int〉 !assert q > 0";
b2!〈c:int〉 !assert q > 0∧0 < c≤ q"

pB2 = b2?〈c:int〉 !assert ∃q : int|0 < c≤ q";
s⊕{ok !" : s!〈a : string〉 !assert a %= ””";

b2?〈d : date〉 !",
quit !" : end}

pS = s?〈string〉 !assert t %= ””";
b1!〈q : int〉 !assert q > 0";
s&{ok !" : s?〈a : string〉 !assert a %= ””";b2!〈d : date〉 !",quit !" : end}

Finally, a type-checking algorithm can be used to check the type of a program. For instance,

cB1 = a[2,3](s,b1,b2). // Session initialization

s!〈‘‘The art of computer programming’’〉; // Send title to Seller

b1?(quote); // Receive quote from Seller

b2!〈quote/2〉 // Send contribution to Buyer2

can be proved to have type pB1.

3 An architecture for a toolkit

3.1 Objectives

The objective of this work is to describe the architecture of a modular toolkit realising algorithms as
those described in § 2. The toolkit we want to realise has to support the following development method-
ology (see [1] for a concrete realisation). A team of software architects specifies a global description
of the distributed interactions which specifies the intended behaviour of the whole system. The global
description is checked and projected onto each participant. Then, each part of the system is developed
(possibly independently) by a group of programmers. Finally, the pieces of programs are checked, val-
idated, and possibly monitored during the execution. This methodology is supported by the theories
drafted in § 2 whereby (1) global descriptions are given by a global assertions, (2) projections yield the
parts of the systems to be realised, and (3) compliance of code with the specification is obtained by
typing systems (to be matched against the projection). It is therefore possible to statically verify prop-
erties of designs/implementations and to automatically generate monitors that control the execution in
untrusted environments. Our main driver is that the architecture has to easily allow our toolkit to be
adapted to change in the theories; for instance, it has to consistently integrate the two (equivalent) pro-
jection algorithms described in [3], or be parametric wrt the logic used in the assertion predicates. Note
that our approach distinguishes itself from other works such as [9, 10, 11, 12] by focusing on the tools
accompanying the theories and not on the integration of ST in a programming language.

2For simplicity, it is not specified how B2 takes the decision; this can easily be done with suitable assertions on c and q.

3

A Modular Toolkit for Theories of Distributed Interactions J. Lange, E. Tuosto

Figure 1: Implementation high-level architecture.

3.2 Architecture

Figure 1 gives a high-level view of the implementation architecture. The toolset has two main inputs.
On the one hand, the global description of the interactions, on the other hand the program code of each
component (i.e. participant) of the system, written in a π-calculus-like language (e.g., Scribble [2]).
Two streams originate from the two inputs. In Stream 1 (top of Figure 1), global descriptions are parsed,
checked then projected on each participant. Stream 2 (bottom of Figure 1) takes the code of the programs
which is then parsed, typed and validated.

We give a walkthrough of both streams to illustrate the main components of the toolkit. Taking a
global description, such as G in § 2, a parser constructs an abstract tree of the distributed interactions,
while interacting with the user in case there are syntax errors in the description. The checking mod-
ule applies a series of algorithms (see (1) in Figure 1) on the tree to check that some properties are
guaranteed. At least, the following algorithms will be executed: one-time unfolding (unfolding the re-
cursive calls one time is necessary before checking for linearity), linearity (ensuring there is no races
on the communication channels), well-assertedness (ensuring that the assertions respect the constraints
of history-sensitivity, locality and temporal-satisfiability). Each algorithm must tell the user in case the
description does not satisfy the properties, and accordingly, stop the execution of the process. If the
global description is “valid”, the projections (like pB1, pB2, and pS in § 2) can be calculated. This will
be done according to the map defined in [3, §4] which is based on the one in [8, §4.2] with predicates (an
implementation of the former shall be able to run the latter, with empty predicates).

In Stream 2, a program code (such as cB1 in § 2) is parsed to check for syntax errors and build
an abstract tree, similarly to the first stream. Then, the tree is given as input to a “validator” which
types the processes, validates their assertions, and checks their compatibility (see (2) in Figure 1). The
typing module will be able to type a piece of code written in a π-calculus-like language, according to
a parameterisable set of typing rules. This will ease the adaptation of the toolkit to support possible
extensions of the theory. As in the first stream, each step of the stream will interact with the user in case
errors are detected.

Once both streams have been executed successfully, both outputs can be, e.g., compared, and should
be compatible since the inputs have passed all the checks. In addition, monitors generated in Stream 1
can be integrated in the code originally input in Stream 2.

An implementation of the toolkit in Haskell is ongoing. Haskell has been chosen because a func-
tional language will keep the implementation close to the underlying theories and is more suitable for a

4

A Modular Toolkit for Theories of Distributed Interactions J. Lange, E. Tuosto

large class of algorithm in the toolkit (e.g., the typing and projection algorithms can be straightforwardly
implemented by exploiting the pattern matching featured by Haskell). Moreover, Haskell provides a con-
venient means to build a modular architecture; in fact, each component of Figure 1 will be implemented
in a different module and polymorphic typing allows to re-use different functions in many different
contexts (for instance, to realise the parametricity of the toolkit wrt the assertion logic). Also, stable
parsing tools for Haskell are available (e.g. Happy and Alex, which are conveniently combined in BNF
Converter3 [4]).

4 On featuring modularity

In this section we argue on how modularity is featured in our implemantation. We mainly envisage four
possible degree of modularity:

1. Notation. All inputs and outputs of the implementation (e.g. global assertions, projections, etc.)
are encoded in Haskell data types which specify an abstract syntax of the supported languages.
This allows to possibly support other notations than the ones originally supported. Notably, the im-
plementation exhibits four data structures to/from which other languages can be translated: global
assertions, end-point assertions (projections), π-calculus-like language (participants implementa-
tion), assertion logic.

2. Languages. An important requirement of our modular approach, is that it has to feature the pa-
rameterisation of the implementation with respect to the languages used to describe the distributed
interations and the associated type systems. For instance, the theory described in [3] abstracts from
the actual logical language used to express asserted interactions. Notably, depending on the the
chosen language, ad-hoc optimisations can be applied (see 3 below).

3. Algorithms. As stated before, the tool will consist of several algorithms than can be used in a mod-
ular way (i.e. the user will be able to choose which algorithms s/he needs). For instance, several
algorithms can be used in [3, §3.3] to check well-assertedness of assertions; in fact, depending on
the adopted logic several formulae manipulation could be applied. Notably, the well-assertedness
notion defined in [3] could be replaced by equivalent ones which exploit optimizations on logical
formulae. In this way, one could use the close-to-theory algorithms in theoretical experimentation
on simple scenario, while more efficient algorithms could be used when considering realistic cases.

4. Theory. As the toolkit is developed in a functional language, it allows the theory to be straight-
forwardly mapped into the programming language. This means that, most of the time, when one
wants to change a rule or a definition this can be done by changing only a few lines of code. We il-
lustrate this with an example. The definition of the dependency relations ([8, §3.3]) is translated as
showed in Figure 2. In the conclusions of [8], the authors comment the adaptation of the theory to
support synchrony. Following their idea, this could be done by taking into account output-output
dependencies between different names and adding a new dependency from output to input. In
our implementation this change could be implemented simply by a few modifications of the code
in Figure 2. In particular, we would relax the condition k1 /= k2 in OO and add a new dep OI
function for output-input dependencies, similar to the other rules.

3BNF Converter generates the (Haskell) skeleton of a parser from a BNF grammar.

5

A Modular Toolkit for Theories of Distributed Interactions J. Lange, E. Tuosto

II n1 < n2 and dep ii :: Prefix -> Prefix -> Bool
ni = pi → p : ki (i=1,2) dep ii (Prefix p1 p k1) (Prefix p2 q k2)

| k1 /= k2 = (q == p)
dep ii = False

IO n1 < n2, dep io :: Prefix -> Prefix -> Bool
n1 = p1 → p : k1 and dep io (Prefix p1 p k1) (Prefix q p2 k2)
n2 = p→ p2 : k2 | k1 /= k2 = (q == p)

dep io = False
OO n1 < n2, dep oo :: Prefix -> Prefix -> Bool

ni = p→ pi : ki (i=1,2) dep oo (Prefix p p1 k1) (Prefix p2 q k2)
| k1 /= k2 = (q == p)
dep oo = False

where each dep ** p1 p2 assumes that p1 < p2.

Figure 2: Dependency relations implementation.

5 Conclusions

We have described the architecture of a toolkit for distributed interactions currently under development.
The distinguished design principles of the architecture are flexibility and modularity to meet the changes
in the theories underlying the toolkit.

The toolkit aims to support a development methodology of communication-centric software based on
formal theories of distributed interactions. It is worth mentioning that a similar methodology has recently
been adopted in the SAVARA project [1] where global and local model are used in the development
process to validate requirements against implementations. Noteworthy, SAVARA combines state of the
art design techniques with ST and provides an open environment where tools based on formal theories
can be integrated. It is our intention to integrate (part of) our toolkit in SAVARA. In particular, our toolkit
could be used to project the choreography model onto individual services. Namely, SAVARA uses WS-
CDL4 to represent the choreography model, from which it can generates WS-BPEL5 implementations of
indivual services and BPMN6 diagrams that may be used to guide the implementation. We believe the
integration of our tool in SAVARA is feasible and would require the following three main components.
Firstly, a mapping from WS-CDL to our Global Assertions. This should be quite straightforward as the
Global Types were designed with WS-CDL in mind. However, the support for assertions may require
more work as it would require to extend WS-CDL with pre-/post-conditions on messages. Secondly,
we need to translate the projections output by our tool to BPEL, BPMN and/or another language, such
as the ones used in SAVARA to design/implement services. Finally, we need means to type check the
conformance of services against a choreography. This means that we need a tool which translates the
(partly) implemented services to a language compliant with (the abstract syntax of) our π-calculus-like
language. Technically, these three mappings should be relatively easy to implement as it amounts to
transform an XML tree to Haskell data types (and vice-versa). However, careful attention is needed
when including the assertions in the notations supported by SAVARA.

Another interesting implementation perspective would be to integrate the algorithms featured by our
toolkit in a full-fledged programming language (e.g. Java, similarly to [9]). For example, we conjecture
that global assertions could be implemented in two phases. Firstly, a language-independent part could
take care of the verification and validation tools which guarantee the good behaviour of programs (i.e.

4W3C Web Service Choreography Description Language.
5Web Services Business Process Execution Language.
6Business Process Modeling Notation.

6

A Modular Toolkit for Theories of Distributed Interactions J. Lange, E. Tuosto

the implementation of the toolkit described here). Secondly, a language-dependent part could extend
a programming language by developing an API which implements the communication primitives (ses-
sion initialisation, value passing, branching/selection and delegation); while a translator to an abstract
language (such as the π-calculus-like language we use) links the API to our toolkit (see faded boxes in
Figure 1).

References
[1] SAVARA and the ”testable architecture” methodology. http://www.jboss.org/savara.
[2] Scribble. http://sourceforge.net/apps/trac/pi4scribble/wiki.
[3] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-contract for dis-

tributed multiparty interactions. http://www.cs.le.ac.uk/people/lb148/assertedtypes.html.
[4] Björn Bringert, Markus Forsberg, and Aarne Ranta. BNF Converter. http://www.cs.chalmers.se/Cs/

Research/Language-technology/BNFC/.
[5] Roberto Bruni, Ivan Lanese, Hernán Melgratti, and Emilio Tuosto. Multiparty sessions in SOC. In Doug

Lea and Gianluigi Zavattaro, editors, COORDINATION’08, volume 5052 of LNCS, pages 67–82. Springer
Verlag, 2008.

[6] Luı́s Caires and Hugo Torres Vieira. Conversation types. In ESOP’09, pages 285–300, Berlin, Heidelberg,
2009. Springer-Verlag.

[7] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline for struc-
tured communication-based programming. In In ESOP’98, volume 1381 of LNCS, pages 122–138. Springer-
Verlag.

[8] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In POPL’08,
pages 273–284, New York, NY, USA, 2008. ACM.

[9] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming in java. ECOOP,
Springer LNCS, 5142:2008.

[10] Matthias Neubauer and Peter Thiemann. An implementation of session types. In In PADL, volume 3057 of
LNCS, pages 56–70. Springer, 2004.

[11] Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Haskell ’08: Proceedings
of the first ACM SIGPLAN symposium on Haskell, pages 25–36, New York, NY, USA, 2008. ACM.

[12] Matthew Sackman and Susan Eisenbach. Session Types in Haskell: Updating Message Passing for the 21st
Century. Technical report, June 2008.

7

Inference of Conversation Types for
Distributed Multiparty Systems

Luı́sa Lourenço Luı́s Caires

CITI e Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, Portugal

Abstract

The Conversation Calculus is a model for distributed communication-centric systems based on
the notion of conversation, a generalisation of binary sessions for multi-party interactions over a
single shared communication channel. As sessions are disciplined by session types, conversations
are disciplined by conversation types, an extension of session types for the conversation interaction
model, developed in previous work. Given the fairly rich structure of the underlying type structure,
it may not be immediately clear from the proposed type system how types may be inferred for a
system, given partial annotations. In this paper, we propose a solution to the conversation type
inference problem, proving soundness, completeness and decidability of our algorithm.

1 Introduction

In recent years, there has been an increasing interest in the study and analysis of multiparty service-
based system. Several process calculi were designed to model and reason about these systems, namely
[5] (based on previous work [4]), and [1]. On top of such models, type systems have been proposed for
studying the local and global behavioural correctness of participants in a service-based system. Although
type inference for session types has been considered in several works [6, 7], when considering conversa-
tion types, given the fairly rich structure of the underlying type structure, and the heavy dependence on
a behavioural merge relation, it may not be immediately clear how types may be inferred for a system,
given partial annotations.

In this work we present a type inference algorithm for a form of conversation types and show decid-
ability, soundness, and completeness results. Our solution uses standard techniques based on constraint
solving (unification). The most challenging aspects of our proposal is the formulation of the particu-
lar constraint language used and its combination with the type rules, which has benefited from a direct
representation of sequential composition at the level of types.

In section 2 we make a brief introduction to the CC followed by a small example using our language.
Section 3, presents our type inference algorithm, an example of its execution, and the correctness re-
sults we have obtained. We discuss in section 4 how we can accommodate (iso)recursive types in our
type inference algorithm and show that our correctness results are preserved. Finally, we outline some
concluding remarks and future work in section 5.

2 Conversation Calculus

The Conversation Calculus (CC) was first introduced in [8] and later refined in [1] and consists in an
extension of the π-calculus to allow multiparty conversations (interactions between two or more partners)
through a conversation access operator n◂ [P] (P is a process in the context of the conversation n) and
context-sensitive communication operators, ld!(n) and ld?(n) for output and input, respectively, in either
the current conversation context (↓) or the enclosing conversation context (↑). The syntax is presented in

1

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

P, Q ∶ ∶= 0 | P | Q | (νn)P | rec X.P
| X | n ◂[P] | ∑i∈I αi.Pi

d ∶ ∶= ↑ ∣ ↓
α ∶ ∶= ld!(n) | ld?(n) | this(x)

Figure 1: Conversation Calculus Syntax

Figure 2: Weather Forecast Message Sequence Chart

Figure 1. We have been developing a concrete distributed language based on CC, which has motivated
this work, in this paper we will use sometimes the syntax of our language rather than the formal calculus.

We illustrate our language’s syntax through a simple services’ use case scenario: a weather forecast
service and its client. Upon invocation, the service awaits for the client’s location through label location.
Then, from the received location, it will ask the nearest weather station to join the on-going conversation
(established by the client when invoking the service via invoke) and request the desired weather report.
The weather station service will, in turn, generate a weather report and send it directly to the client via
label report. Notice that the weather station service is capable to communicate directly to the client
because it was invoked through the join primitive by one of the participants of the conversation, thus
is able to join the invoker’s conversation instead of creating a new conversation with him. So we have
a conversation involving three participants in which one of them dynamically joins. Figure 2 describes
the message sequence of our example while Figure 3 shows the code on each participant’s site. The
message sequence gives a global view of the protocol that every conversation generated by invoking this
particular service must comply to (a choreography). Thus, each participant of the conversation must
comply with its part of the protocol. Conversation types have been introduced with the aim of statically
enforcing correctness of global protocol compliance, given types describing the behaviour of the several
participants and of the whole system, for example, n ∶ [s](B) states that site n has a service s whose
behaviour is described by behavioural type B.

3 Type Inference

In this section, we will present our type inference algorithm for conversation types and the results ob-
tained, namely we show that it is sound, complete and decidable. Our conversation type system, based
on the system of [1], uses judgments of the form Γ ⊢ P ∶ T where Γ is a set of type declarations, P is the
program to be typed and T is a type. In general Γ contains types for remote services, declared in pro-
gram P using the remoteType primitive, and a declaration of the form this ∶ B that describes the current
conversation’s behaviour B. We show the typing rules for the communication centric fragment of our
language in Figure 4. We briefly explain some of the key typing rules. In rule (INVOKE), to typecheck a
service invocation we must verify if the body of the invocation has a dual behaviour with the invoked
service’s behaviour. Then the service invocation is well-typed under the conversation that has the invo-
cation’s upper behaviour localised, loc(↑ B), i.e. all the message types in the invocation’s behaviour that
have a up direction correspond to the behaviour of a conversation that invokes the service. In rule (SEND),

2

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

remoteType WeatherStation: [weatherReport](getReport?(String);report!(String))
site WeatherSite {

def forecastWeather as {
val loc = receive(location);
join weatherReport in

http://localhost:8000/WeatherStation as { send(getReport); }
}

};;

site WeatherStation {
def weatherReport as {

receive(getReport);
send(report, generatedReport);

}
};;

invoke forecastWeather in http://localhost:8000/WeatherSite as {
send(location, my location);
val my weather report = receive(report);
println my weather report

};;

Figure 3: Code for WeatherSite, WeatherStation, and Client.

we say a send typechecks under the conversation with message type l!(β) if the value sent has type β .
The type inference algorithm takes as input a program P, a set of remote types declarations (in a

typing environment Γ), an initially empty set of constraints on types R, and an initially empty set of
apartness restrictions A. The algorithm outputs the type of program P, the typing environment Γ′ where
we can typecheck program P, and a set of constraints R′ that respects the set of apartness restrictions A′

typecheck(P, Γ, R, A) = (T, Γ′, R′, A′)
The algorithm consists of the following steps. First, it transverses the abstract syntax tree, applying

typing rules backward if possible. Whenever a type needs to be inferred, a constraint is generated and
added to the set R. Finally, the system of equations, represented by all constraints of R is manipulated
by applying transformation rules until the system is either in solved form, or type inference fails. Dur-
ing constraint solving, matching labels may need to be synchronised (for e.g., when we have a merge
constraint on two dual labels). To ensure linearised usage, we have introduced a new kind of constraint
(checked on each transformation step) to state that a label cannot occur in a given type. We denote this
as an apartness restriction l#B (added to the apartness set A), with l being the label that can not occur in
type B. As expected, if at any moment a step can not be executed the algorithm aborts since the program
must be ill-typed.

The unification algorithm receives as input a constraint set R whose constraints represent a system
of equations, and a set of apartness restrictions A. After solving all the constraints in R, the algorithm
outputs a set of constraints R′ (in particular, a substitution) respecting the set of apartness restrictions A′

solve(R, A) = (R′, A′)
The constraints generated by the type inference algorithm have the form < E,E ′ > according to the

3

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

Γ, this ∶ B1 ⊢ P1 . . . Γ, this ∶ Bn ⊢ Pn (PAR)
Γ, this ∶ B1# . . .#Bn ⊢ P1|| . . .|| Pn

Γ, this ∶ B1 ⊢ P1 Γ, this ∶ B2 ⊢ P2 (SEQ)
Γ, this ∶ B1;B2 ⊢ P1;P2

Γ, this ∶ B, n ∶ [s](B1) ⊢ P
(JOIN)

Γ, this ∶ B1#B, n ∶ [s](B1) ⊢ join s in n as { P }
(RECV)

Γ, this ∶ l?(β) ⊢ receive(l):β

Γ, this ∶ B ⊢ P
(DEF)

Γ, this ∶ [s](↓ B); loc(↑ B) ⊢ def s as { P }
Γ ⊢ E ∶ β

(SEND)
Γ, this ∶ l!(β) ⊢ send(l,E)

Γ, this ∶ B, n ∶ [s](B1) ⊢ P B1 = ↓ B
(INVOKE)

Γ, this ∶ loc(↑ B), n ∶ [s](B1) ⊢ invoke s in n as { P }
Γ, this ∶ B ⊢ P

(SITE)
Γ, n ∶ B ⊢ site n {P}

Γ, this ∶ B1 ⊢ E ∶ β Γ, this ∶ B2, x ∶ β ⊢ P
(LET)

Γ, this ∶ B1;B2 ⊢ let x = E in { P }

Γ, this ∶ B1 ⊢ P1 . . . Γ, this ∶ Bn ⊢ Pn (SELECT)
Γ, this ∶&{l1 ∶ B1; . . . ; ln ∶ Bn} ⊢ select { l1: P1; . . .; ln: Pn}

i f li = l j then Bi = B j i, j ∈ {1, . . . , n} m <= n (SWITCH)
Γ ⊢ E1 ∶ Bool . . . Γ ⊢ En ∶ Bool Γ, this ∶ B1 ⊢ P1 . . . Γ, this ∶ Bn ⊢ Pn Γ, this ∶ Bd ⊢ Pd

Γ, this ∶ ⊕{l1 ∶ B1; . . . ; lm ∶ Bm} ⊢ switch { case (E1)do l1: P1;. . .; case (En)do ln: Pn; default do li: Pd}

Figure 4: Some Typing Rules of our Type System.

syntax presented in Figure 5b. We have standard constraints like < x,T >, stating that a type variable x
has type T (either behavioural type B or a basic type β). In the unification algorithm, these are treated
using the standard transformation rules for variable elimination and type equality [3], a solvable system
terminates in a system in solved form, that corresponds to a substitution.

A distinguishing aspect of our constraint structure is a merge constraint on types of the form <
x,#(B,B′) >, that constrains type variable x to be a “composition” of behavioural types B and B′ (this op-
eration is defined by a merge relation, see [1]). Merge constraints are necessary to approximate the type
of a parallel composition, rule (PAR) in Figure 4, (where synchronisation can happen) or when we invoke
a service via the join primitive, rule (JOIN) in Figure 4, (since we merge the behaviours of the invoked
service with the client’s). Thus we need to be able to represent the merge of all behaviour in the com-
position such that casual ordering is kept and interleaves are avoided unless there is a synchronisation:
this way, the most general (less serialised) behaviour is computed. Merge constraints are solved using a
set of transformation rules that represent the merge relation on behavioural types. We now present the
transformation rules.

Definition 3.1 (Non Interference). We say two behavioural types, Bi and B j, do not interfere with each
other, denoted as Bi#B j, if Bi has no label that can synchronise with some label in Bj, and conversely.

4

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

C ∶ ∶= [s](B)
B ∶ ∶= B1 ∣ B2 ∣ 0 ∣ B1;B2 ∣ M∣ rec X .B ∣ X∣ ⊕{l1 ∶ B1; . . . ; ln ∶ Bn}∣ &{l1 ∶ B1; . . . ; ln ∶ Bn}
M ∶ ∶= l pd(β)
β ∶ ∶= Int ∣ Bool ∣ String ∣ Array(β)

∣ β B$→ β ′ ∣ Re f (β) ∣Unit
p ∶ ∶= ! ∣ ? ∣ τ
d ∶ ∶= ↑ ∣ ↓

(a) Syntax of Types

E ∶ ∶= B ∣ β ∣ #(E,E ′) ∣ x
(b) Syntax of constraints on types

Figure 5: Syntax of Types and Constraints

Definition 3.2 (Transformations Rules). Let R denote a system of equations, t a term, A an apartness
constraint set, and T a type. We define the transformations rules, R&⇒A R′ (if R does not violate any
apartness constraint in A, then we can transform to a system R′ that also complies with A), as follows:

Trivial: {< t,t′ >}∪R&⇒A
triv R

where t ≡ t′

Variable Elimination:

{< x,T >}∪R&⇒A
elem {< x,T >}∪R[T /x]

such that x ∉Var(T)
Merge Trivial: {< x,#(B) >}∪R&⇒A

merge trivial {< x,B >}∪R

Merge Inact: {< x,#(B1, . . . ,Bi−1,0,Bi+1, . . . ,Bn) >}∪R&⇒A
merge inact

{< x,#(B1, . . . ,Bi−1,Bi+1, . . . ,Bn) >}∪R

Merge Parallel: {< x,#(B, . . . ,B1∣B2, . . . ,B′) >}∪R&⇒A
merge par

{< x,#(B, . . . ,B1,B2, . . . ,B) >}∪R

Merge Sync:

{< x,#(B1, . . . ,Bi; l pd
1;B′i, . . . , B j; l pd

2;B′j, . . . ,Bn) >}∪R&⇒A
merge sync

5

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

{< x,(Bi ∣ B j); lτd ;y >}∪{< y,#(B1, . . . ,B′i, . . . ,B′j, . . . ,Bn) >}∪σ(R)
where p1 is the opposite polarity of p2, A = A∪{l#y}, and Bi#B j and for all Bk, Bi#Bk and B j#Bk with
k ∈ {1, . . . ,n} and k /= i /= j, and σ = [(Bi ∣ B j);lτd ;y/x].

Merge Choice Sync:

{< x,#(B1, . . . ,Bi;C;B′i, . . . , B j;D;B′j, . . . ,Bn) >}∪R&⇒A
merge sync2{< x,(Bi ∣ B j);⊕{l1 ∶ y1, . . . , ln ∶ yn};y >}∪

{< y,#(B1, . . . ,B′i, . . . ,B′j, . . . ,Bn) >}∪
{< y1,#(Bc1,B′c1) >}∪ . . .∪{< yn,#(Bcn,B′cn) >}∪σ(R)

where C =&{l1 ∶ Bc1, . . . , ln ∶ Bcn} and D =⊕{l1 ∶ B′c1, . . . , ln ∶ B′cn}, and Bi#B j and for all Bk, Bi#Bk and
B j#Bk with k ∈ {1, . . . ,n} and k /= i /= j, and σ = [(Bi ∣ B j);⊕{l1∶y1,...,ln∶yn};y/x].

We will now explain one of the rules that represent our merge relation, namely the Merge Sync
rule. This rule is applied when a synchronisation is possible between the types the terms represent. Its
application ensures that when we synchronise a label then the preceding type on each side, Bi and B j,
must not interfere with each other, Bi#B j and thus can be safely composed into a parallel composition
of types, Bi∣B j. A new equation is generated to merge the remaining types of the merge along with the
remainder of both sides’ types, B′i and B′j. Since labels must be used linearly, we impose an apartness
restriction, l#y, stating that the synchronised label, l, can not occur in the new equation, y. Lastly, we
eliminate the solved variable x in the remaining constraints in R by applying the substitution σ to R.

The unification algorithm is confluent. This implies that our type inference algorithm is deterministic
since the application of typing rules is syntax driven, and also due to the non-interference conditions on
the merge relation mentioned above. The solution returned is represented as a mapping on variables to
types, i.e. as a substitution for the variables of the system. The type inference algorithm then succeeds
if such a solution exists. Furthermore, our algorithm always determines the most general type since we
serialise the composition of two types only when there is a synchronisation between them, thus keeping
them as general as possible by composing into a parallel composition of types.

We illustrate the application of our algorithm to the code of the weather forecast service’s site in
Figure 3.

As input we have

P = code of weather forecast’s site as shown in Figure 3
Γ = { WeatherStation:[weatherReport](getReport?(String);report!(String)) }
R = A = ∅

So typecheck(P, Γ, R, A) takes the following steps:

1. Inductively, applies type inference rules;
2. When typechecking the join primitive, a type variable x is created as well as a constraint to rep-

resent the merge of the primitive’s body’s behaviour with the behaviour of the invoked service,
<x, #(getReport!(String), getReport?(String);report!(String))> that is added to R;

3. The constraint is solved upon the typecheck of the site primitive and the algorithm terminates.

The algorithm outputs (Γ ∪WeatherSite:[weatherForecast](location?(z);B), R, A′) where B is the
type obtained by the unification algorithm (function solve) when solving the constraint on x, and A′ the
resulting apartness set.

In step 3 the unification algorithm is called with the following input:

6

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

R = { <x, #(getReport!(String), getReport?(String);report!(String))> }
A = ∅

So solve(R, A) takes the following steps:

<x, #(getReport!(String), getReport?(String);report!(String))>&⇒A
merge sync

<x, getReportτ(String);y> ∪ <y, #(∅, report!(String))>&⇒A′
merge inact

with A′ = { getReport#y}

<x, getReportτ(String);y> ∪ <y, #(report!(String))>&⇒A′
merge trivial

<x, getReportτ(String);y> ∪ <y, report!(String)>

We then obtain B = getReportτ(String);report!(String), R = { <x, getReportτ(String);y>, <y, re−
port!(String)> }, and A′ = { getReport#y }.

For a negative case, suppose that we make use of label getReport instead of the label report to
transmit the requested report. This would violate the condition of labels being used linearly because
then, at one point, we would have two receivers for the empty message sent by the forecastWeather
service. This type of errors are detected by the algorithm when solving the constraints. In our example,
the unification algorithm would instead solve variable y with type getReport!(String) which would
violate the apartness restriction getReport#y and therefore the unification algorithm would abort. Thus
typechecked programs always comply with linear usage of labels inside conversations.

We denote a substitution application as the application of a constraint set to a typing environment,
R(Γ), and define it as being the substitution of all occurrences of a type variable in the input environment
with its corresponding type if, and only if, the constraint associated with the type variable is solved in R.

We conclude by presenting the main results for the type inference algorithm which are the decidabil-
ity, soundness and completeness of the algorithm. The first states that if a program P can be typechecked
by the typechecking algorithm, then there is a type derivation for any type instance of the generated
inferred type.

Theorem 3.3 (Soundness of Typechecking Algorithm). Let P be a program, Γ,Γ′ type environments , T
a type, A a set of apartness constraints, and R a constraint set.

Assume typecheck(P,Γ,∅,∅) = (T,Γ′,R, A). Then R(Γ′) ⊢ P ∶ R(T) and there is a substitution θ
such that θ(R(Γ′)) ⊢ P ∶ θ(R(T))

The second results states that no typing is lost; if a program P is typable then the type-checking
algorithm terminates with a typing, of which the given typing is an instance.

Theorem 3.4 (Completeness of Typechecking Algorithm). Let P be a program, Γ a typing context, Γ′ a
typing context containing only type declarations of remote services, and T a type

Assume Γ ⊢ P ∶ T. Then typecheck(P,Γ′,∅,∅) = (T′,Γ′′,R′,A′) and there is a substitution θ such
that θ(R′(T′)) = T and θ(R′(Γ′′)) = Γ and θ(R′(Γ′)) ⊆ Γ

Decidability follows from the termination proof, which depends essentially on the termination of the
unification algorithm, in turn based on standard well-founded orderings. In particular, we define a pair< m,n > such that n is the number of variables unsolved in R and m the sum of the sizes of each term
in R, then the lexicographic order of such pairs is a well-founded relation. We then prove that every

7

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

Γ, this ∶ B;X ⊢ P
Γ, this ∶ rec X .B;X ⊢ rec X.P

(a) Rec rule

Γ, this ∶ X ⊢ X
(b) Var rule

Figure 6: Typing Rules for Recursive Behaviour Constructions.

transformation sequence terminates since each transformation results in a system where the pair <m,n >
is smaller under the lexicographic ordering.

4 Recursive Types

We have mainly focused on the finite part of conversation types, in this section we discuss how a simple
system of iso-recursive is to be accommodated using standard techniques for unifying recursive equa-
tions on our constraint’s language. Although we expect that general equi-recursive types may be also
accommodated along the lines of [2], when dealing with recursive definitions in our language (such as a
recursive functions), we don’t focus on that issue in this paper. Instead, we develop here a simple solu-
tion, based on the simple interpretation of recursive types. Regarding recursive behaviour’s constructions
like CC’s rec X.P (Figure 6), these would not introduce a recursive equation and therefore their treatment
in our theory consists in adding two transformation rules to merge two recursive behavioural types, and
to merge two recursive variables, respectively:

{< x,#(B1, . . . ,Bi;rec X .B;B′i, . . . , B j;rec X .B′;B′j, . . . ,Bn) >}∪R&⇒A
merge rec

{< x,(Bi ∣ B j);rec X .y >}∪{< y,#(B1, . . . ,B;B′i, . . . , B′;B′j, . . . ,Bn) >}∪σ(R)
where Bi#B j and for all Bk, Bi#Bk and B j#Bk with k ∈ {1, . . . ,n} and k /= i /= j, and
σ = [(Bi ∣ B j);rec X .y/x].

{< x,#(B1, . . . ,Bi;X ;B′i, . . . , B j;X ′;B′j, . . . ,Bn) >}∪R&⇒A
merge recvar

{< x,(Bi ∣ B j);X ;y >}∪{< y,#(B1, . . . ,B′i, . . . ,B′j, . . . ,Bn) >}∪σ(R)
where Bi#B j and for all Bk, Bi#Bk and B j#Bk with k ∈ {1, . . . ,n} and k /= i /= j, and σ = [(Bi ∣ B j);X ;y/x].

We illustrate the application of these new rules on our previous example with a minor change, Figure
7. Notice that the while construction can be perceived as CC’s rec X.P construction. In this case, in step
3 of the typechecking procedure, the unification algorithm is called with the following input:

R = { <x, #(rec X.getReport!(String);X, rec X.getReport?(String);X;report!(String))> }
A = ∅

So solve(R, A) takes the following steps:

<x, #(rec X.getReport!(String);X, rec X.getReport?(String);X;report!(String))>&⇒A
merge rec

<x, rec X.y> ∪ <y, #(getReport!(String);X, getReport?(String);X;report!(String))>

8

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

remoteType WeatherStation: [weatherReport](rec X.getReport?(String);X;report!(String))
site WeatherSite {

def forecastWeather as {
val loc = receive(location);
join weatherReport in

http://localhost:8000/WeatherStation as {
while(cond) do

send(getReport);
}

}
};;

Figure 7: Weather Forecast Site Code Revisited.

&⇒A
merge sync

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z, #(X, X;report!(String))>
&⇒A′

merge recvar
with A′ = { getReport#z}

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z, X;w> ∪ <w, #(∅, report!(String))>
&⇒A′

merge inact

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z, X;w> ∪ <w, #(report!(String))>
&⇒A′

merge trivial

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z,X;w> ∪ <w, report!(String)>

We then obtain B = rec X.getReportτ(String);X;report!(String), A′ = { getReport#z }, and
R = { <x, rec X.y>, <y, getReportτ(String);z>, <z, X;w>, <w, report!(String)> }.

Our basic results are not affected by our treatment of recursion. Namely, decidability is preserved
since the new transformation rules preserves the well-founded ordering defined for the non-recursive
case.

5 Concluding Remarks

We have presented a type inference algorithm for conversation types and proved it to be decidable, sound
and complete. Our contributions essentially focus on the finite aspects, which are already challeng-
ing, due to the parallel-sequential behavioural algebra embedded in conversation types, and the need of
coping with the behavioural merge of behaviours originating in multiple interaction partners, including
dynamic conversation join and leave. We also showed how to accommodate recursive behaviour’s con-
structions in our type inference algorithm and proved that our results are still preserved. For future work
we wish to devise a subtyping algorithm for conversation types, and more general solution for handling
recursion.

9

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

Acknowledgements. We thank Hugo Vieira and the anonymous referees for his insightful comments
and suggestions regarding this paper. This work was supported by a grant from EU Project SENSORIA,
and CMU-Portugal INTERFACES, funded by FCT/MCTES and ICTI.

References
[1] Luı́s Caires and Hugo Torres Vieira. Conversation types. In Giuseppe Castagna, editor, Programming Lan-

guages and Systems, 18th European Symposium on Programming, ESOP 2009. Proceedings, volume 5502 of
Lecture Notes in Computer Science, pages 285–300. Springer, 2009.

[2] Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comput. Sci., 25:95–169, 1983.
[3] Jean H. Gallier and Wayne Snyder. Complete sets of transformations for general e-unification. Theor. Comput.

Sci., 67(2&3):203–260, 1989.
[4] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and type discipline

for structured communication-based programming. In Chris Hankin, editor, Programming Languages and
Systems - ESOP’98, 7th European Symposium on Programming, Proceedings, volume 1381 of Lecture Notes
in Computer Science, pages 122–138. Springer, 1998.

[5] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In George C.
Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, pages 273–284. ACM, 2008.

[6] Leonardo Gaetano Mezzina. How to infer finite session types in a calculus of services and sessions. In
Doug Lea anzd Gianluigi Zavattaro, editor, Coordination Models and Languages, 10th International Con-
ference, COORDINATION 2008. Proceedings, volume 5052 of Lecture Notes in Computer Science, pages
216–231. Springer, 2008.

[7] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially commutative
asynchronous sessions. In Giuseppe Castagna, editor, Programming Languages and Systems, 18th European
Symposium on Programming, ESOP 2009. Proceedings, volume 5502 of Lecture Notes in Computer Science,
pages 316–332. Springer, 2009.

[8] Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. The conversation calculus: A model of service-
oriented computation. In Sophia Drossopoulou, editor, Programming Languages and Systems, 17th European
Symposium on Programming, ESOP 2008. Proceedings, volume 4960 of Lecture Notes in Computer Science,
pages 269–283. Springer, 2008.

10

An Investigation on Types for X10 Clocks
Francisco Martins

LaSIGE & University of Lisbon, Portugal
fmartins@di.fc.ul.pt

Vasco T. Vasconcelos
LaSIGE & University of Lisbon, Portugal

vv@di.fc.ul.pt
Tiago Cogumbreiro

LaSIGE & University of Lisbon, Portugal
cogumbreiro@di.fc.ul.pt

Abstract

The X10 language provides the notion of clocks as a means of coordinating concurrent programs.
In order to better understand the concept we study a type system for a stripped down version of X10.
The main expected result is a progress property for typable programs. The study will open, we hope,
doors to a more flexible utilisation of the clocks constructs in the X10 language.

Introduction New high-level concurrency primitives are needed more than ever, now that multicore
machines lay on our desks and laps. One such primitive is clocks, a generalization of barriers, as present
in the X10 programming language [1]. Clocks allow multiple concurrent activities to synchronise at a
sequence of points in time.

Even though the language specification [3] provides a clear, plain English, description of the intended
semantics (and properties) of the language, and a formalization of the semantics [4] allows to prove a
deadlock freedom theorem, we decided to investigate a simpler setting in which similar results could be
obtained. The aim is not only to obtain a progress property for typable programs based on simple type
system, but also to hopefully provide for clock-safe extensions of the X10 language itself.

Towards this end, we have stripped X10 from most of its features, ending up with a simple concurrent
language equipped with the full functionality of X10 clocks, which we call “X10 restricted to clocks,”
X10 |clocks for short. For this language we have devised a simple operational semantics with thread (or
activity as called in X10) local and global views of (heap allocated) clocks. We have also crafted a simple
type system, based on singleton types, drawing expertise from previous work on low-level programming
languages [7]. The type system enjoys subject-reduction. Typable programs are exempt from the clock
related errors, as reported in the specification of the language [3]. We conjecture that typable programs
enjoy a progress property.

There seems to be no formal account of clocks in the X10 language available on the literature.
Saraswat and Jagadeesan study a bisimulation for X10 allowing to establish that programs do not dead-
lock, under certain conditions [4]. Lee and Palsberg present a core language for X10 suited to study the
async-finish problem [2].

In summary, the contributions of this work are a) a simple operational semantics for clocks that
allows to better understand the concept, b) a simple type systems allowing to prove safety and progress
properties (alternative to the constraint-based system [4]), and c) the promise of a more flexible utilization
of the clock constructs. The rest of this abstract presents the syntax, operational semantics, type system
and main results of the language, and future work, in this order.

Syntax X10 is a modern language built from the ground up to handle future parallel systems: from
multicore machines to cluster configurations [3]. Object-oriented and type-safe, X10 boasts support for
concurrency, parallelism, and distribution. Of particular interest to us, the language provides a clock
construct for synchronising multiple concurrent activities to wait for each other at certain points in time
(or phases).

1

X10 clocks Martins, Vasconcelos, and Cogumbreiro

e ::= Expressions
v value

| async!e e fork
| make new clock
| drop e drop
| resume e resume
| next next
| wait wait
| clocked e clocked
| let x = e in e let
| if e then e else e conditional
| . . .

v ::= Values
x variable/clock

| true | false boolean
| () unit

V ::= {c1 : i1, . . . ,cn : in} Clocks local view
a ::= 〈V,e〉 Activity
A ::= {l1 : a1, . . . , ln : an} Activities

R,S ::= {l1, . . . , ln} Sets of activities
h ::= 〈i,R,S〉 Clock values

H ::= {c1 : h1, . . . ,cn : hn} Heaps
S ::= 〈H;A〉 States

E ::= Contexts
[] | resume E | drop E | async (!vE!e) e | clocked E | let x = E in e | if E then e else e

Figure 1: Syntax of X10 |clocks

We present a subset of the X10 language restricted to clocks, X10 |clocks, generated by the grammar
in Figure 1, and relying on the following base sets: natural numbers ranged over by i, variables (also
used for clock identifiers and heap addresses) ranged over by c or x, and activity identifiers ranged over
by l.

Activities can create an arbitrary number of clocks with expression make and communicate them to
spawned activities. There are only two forms for activities to be registered with clocks: (a) upon activity
creation (async!e e) the new activity becomes registered with clock sequence!e, and (b) when creating a
clock the activity is automatically registered with the new clock. Expression drop de-registers an activity
from a clock. Activities are disallowed to manipulate clocks they are not registered with.

Clocks can be thought of as data structures holding a natural number representing its global phase,
initially set to zero. A clock can be advanced to its next phase, which amounts to increment its global
phase when every registered activity has quiesced; an activity is quiescent on a clock after performing
a resume on that clock. An activity resumes all clocks it is registered with by executing next and
suspends itself until these clocks become ready to advance to the next phase. Expressions clocked
and wait are only available to the run-time syntax. wait describes an activity that has performed a next
operation and awaits other activities; clocked describes the activity resulting from an async operation.

The state of a X10 |clocks program consists of a heap H and a set of indexed activities A. The heap
stores clock values that contain a natural number i representing its global phase, a set R describing the
registered activities, and another set S for the resumed activities. Each activity a is composed of the
(registered) clocks local view V and the expression e under execution. The clocks local view V is a map
from clock references to natural numbers describing the local phase. The global phase for a given clock,
stored in the heap, is at most one phase ahead of each local view.

Operational Semantics Reduction rules for X10 |clocks are presented in Figure 2. We focus on the
semantics for clocks and activities and omit rules regarding control-flow, since they are fairly standard.

Reduction is defined for states via rules R-ASYNC and R-ACTIVITY. This last rule is a context rule

2

X10 clocks Martins, Vasconcelos, and Cogumbreiro

H(c) = 〈p,R,S〉 V (c) = p′ S′ = if l ∈ S then S∪{l′} else S l′ is fresh
〈H;A{l : 〈V,E [async c e]〉}〉 →l 〈H{c : 〈p,R∪{l′},S′〉};A{l : 〈V,E [()]〉}{l′ : 〈{c : p′},clocked e〉}〉

(R-ASYNC)
H;V ;e→l H ′;V ′;e′

〈H;A{l : 〈V,E [e]〉}〉 →l 〈H ′;A{l : 〈V ′,E [e′]〉}〉 (R-ACTIVITY)

c is fresh
H;V ;make→l H{c : 〈0,{l}, /0〉};V{c : 0};c

(R-MAKE)

H(c) = 〈p,R,S〉 V (c) = p′ S′ = if p = p′ then S∪{l} else S
H;V ; resume c→l H{c : 〈p,R,S′〉};V ;()

(R-RESUME)

C is the set {c |V (c) = p,H(c) = 〈p,R,S〉}
H;V ;next→l H{c : 〈p,R,S∪{l}〉}c∈C;V ;wait

(R-NEXT)

C1 is the set {c |V (c) = p,H(c) = 〈p,R,R〉}
C2 is the set {c |V (c) = p,H(c) = 〈p+1, , 〉} C1∪C2 = domV

H;V ;wait→l H{c : 〈p+1,R, /0〉}c∈C1 ;{c : V (c)+1}c∈V ;()
(R-WAIT)

H(c) = 〈p,R,S〉 c ∈ domV
H;V ;drop c→l H{c : 〈p,R\{l},S\{l}〉};V \{c};()

(R-DROP)

H(c) = 〈p,R,S〉 ∀c ∈ domV
H;V ;clocked v→l H{c : 〈p,R\{l},S\{l}〉}c∈domV ; /0;v

(R-CLOCKED)

Figure 2: Reduction rules (clock related only)

for expressions; derivations of a reduction step are immediately preceded by one of the subsequent rules
in the figure (from rule R-MAKE onward).

When creating a new activity (rule R-ASYNC) the programmer specifies the clock c on which the new
activity is to be registered with.1 The newly created activity identifier l′ is added to the set of registered
activities in clock c (in the heap), and a new activity is added to the set of activities. This new activity is
composed of a clock view of clock c and of a clocked e expression that is responsible for making sure
all registered clocks are dropped before e terminates. The new activity inherits clock c local view from
activity l (c : p′), as well as the quiescence property of l with respect to c, i.e., if l is quiescent on clock c
so is l′ (S′ = if l ∈ S then S∪{l′} else S).

Expression make creates a new clock in the heap with phase 0, with l as the only registered activity,
and with no resumed activities, 〈0,{l}, /0〉. The activity creating the clock gains access to it though a
local clock view {c : 0} stored in the activity’s clock local view V . Rule R-RESUME asserts that when
the l-th activity issues a resume c, we record its index in the set of resumed activities R if the clock
local phase is in sync with the clock global phase (p = p′); otherwise, the effect of the expression is
discarded (p (= p′), since the clock has already advance to the next phase. Expression next resumes
all clocks held by the current activity and evaluates into wait (rule R-NEXT), which in turn blocks the
activity until all clocks have been resumed (C1) or have already advance their phases (C2) (rule R-WAIT).
Notice that when activities are waiting on a clock c, the clock can be in one of three states: (a) there are
non-quiescent activities on the clock and c is neither a member of C1 nor of C2; (b) all registered activities
are quiescent on the clock, and so c is a member of C1; (c) the clock has advanced to the next phase thus
becoming member of C2. When an activity advances a clock global phase, it stops being a member of set

1For the sake of simplicity we define the operational semantics and the type system for async expressions on a single clock
only; the extension to sequences of clocks of arbitrary length should be straightforward.

3

X10 clocks Martins, Vasconcelos, and Cogumbreiro

〈 ;A{l : 〈V,E [async c e]〉}〉 if c (∈ domV (E-ASYNC-NO-CLOCK)
〈 ;A{l : 〈V,E [resume c]〉}〉 if c (∈ domV (E-RESUME-NO-CLOCK)

〈 ;A{l : 〈V,E [drop c]〉}〉 if c (∈ domV (E-DROP-NO-CLOCK)

Figure 3: Run-time errors

τ ::= bool | unit | clock(α)

Figure 4: Syntax of types

C1 and becomes a member of set C2 for the remaining activities waiting on that clock. Since rule R-WAIT
only updates the clock phase of those belonging to C1 (H{c : 〈p+1,R, /0〉}c∈C1) it ensures that the global
clock state is updated only once. With expression drop c, the l-th activity cedes its control over clock c
(rule R-DROP): we remove c from the clock views V , and remove activity identifier l from the set of
registered activities Q and from the set of resumed activities R. Two consequences of dropping a clock c:
a) activities waiting on clock c are no longer blocked because of this activity; b) when executing a next
expression, this activity no longer waits on clock c. Expression clocked drops all registered clocks after
its body becomes a value (rule R-CLOCKED).

Run-time errors are described in Figure 3 and are consistent with some of the conditions that raise
exception ClockUseException, as discussed in the X10 language specification report [3]. During
an async operation, an activity cannot transmit clocks that is not registered with (rule E-ASYNC-NO-
CLOCK). Similarly activities can only perform resume or drop operations on clocks they are registered
with (rules E-RESUME-NO-CLOCK and E-DROP-NO-CLOCK). In particular, it constitutes an error if an
activity drops a clock twice or if it resumes a clock after dropping it.

Our semantics represents clocks in the heap as triples 〈p,R,S〉 relying on two sets for recording the
registered activities R and the quiesced activities S on a clock. Implementing operations that work with
sets is costly; for instance Rule R-WAIT needs to compute sets C1 and C2, by checking if sets R and S are
equal, and then verify if C1∪C2 = domV . Should we make a real life implementation of the proposed
semantics, set operations would have a significant impact on performance. We sketch a much faster
approach that chooses to represent clocks as triples 〈p,r,s〉 accounting the clock phase, as before, but
taking r and s as the cardinal numbers of sets R and S. With this representation we lose information
about the identification of activities registered with a clock and, in particular, we cannot determine if an
activity has already resumed in the current phase (vide Rules R-ASYNC and R-RESUME). To overcome
this problem we need to enrich the clock local view with an indicator of whether an activity has resumed
in the current phase. Thus, a clock local view becomes a pair 〈p,b〉 containing the current clock phase p
(as before) and the resume boolean indicator b, describing when the activity has resumed. With this
information it is straightforward to adapt rules R-ASYNC, R-MAKE, R-RESUME, R-WAIT, R-DROP, and
R-CLOCKED. For instance, rule R-RESUME only updates the clock global view (s← s+1) whenever its
local view indicator is false. Also, Rule R-WAIT needs to set r to zero when advancing the clock global
phase, and to clear the indicator b upon advancing the clock local phase. Checking that all activities
registered with a clock have quiesced amounts to compare two integer numbers (r = s), instead of two
sets R and S as before. The main reasons for not adopting the semantics just sketched are that the chosen
semantics needs fewer rules and is easier to read and understand.

4

X10 clocks Martins, Vasconcelos, and Cogumbreiro

R,α * clock(α)
τ (= clock()

R * τ
(T-WF-CLOCK, T-WF)

R * τ
Γ,x : τ;R;S * x : (τ;R;S)

Γ;R;S * () : (unit;R;S) (T-VAR, T-UNIT)

α is fresh
Γ;R;S *make : (clock(α);R ∪{α};S)

(T-MAKE)

Γ;R;S * next : (unit;R;R) Γ;R;S * wait : (unit;R; /0) (T-NEXT,T-WAIT)
Γ;R;S * e : (clock(α);R ′;S ′) α ∈R ′

Γ;R;S * resume e : (unit;R ′;S ′ ∪{α})
Γ;R;S * e : (clock(α);R ′;S ′) α ∈R ′

Γ;R;S * drop e : (unit;R ′ \{α};S ′ \{α})
(T-RESUME, T-DROP)

Γ;R;S * e : (clock(α);R ′;S ′) S ′′ = if α ∈S ′ then {α} else /0 Γ;{α};S ′′ * e′ :
Γ;R;S * async e e′ : (unit;R ′;S ′)

Γ;R;S * e : (τ; ;)
Γ;R;S * clocked e : (τ; /0; /0)

(T-ASYNC, T-CLOCKED)

Figure 5: Typing rules for expressions (clock related only)

{c1, . . . ,cn}⊆ domΓ
Γ * {c1 : i1, . . . ,cn : in}

(T-VIEW)

Γ * a1 . . . Γ * an

Γ * {l1 : a1, . . . , ln : an}
Γ *V Γ;{α |c ∈ domV,Γ(c) = clock(α)}; /0 * e :

Γ * 〈V,e〉
(T-ACT-SET, T-ACT)

{c1, . . . ,cn}⊆ domΓ Γ;A * h1 . . . Γ;A * hn

Γ;A * {c1 : h1, . . . ,cn : hn}
S ⊆ R⊆A

Γ;A * 〈p,R,S〉 (T-HEAP, T-CLOCK)

Γ;domA * H Γ * A
Γ * 〈H;A〉 (T-STATE)

Figure 6: Typing rules for states and activities

Type System For types we rely on an additional base set of singleton types ranged over by α . The
syntax of types is depicted in Figure 4 and it includes types for values, bool and unit, and the type for
clocks, clock(α). We assign a different type (singleton type α) to each clock in order to track clock
usage throughout the program.

The type system for X10 |clocks is defined in Figures 5 and 6. A typing Γ is a map from variables to
types. We write domΓ for the domain of Γ. When x (∈ domΓ we write Γ,x : τ for the typing Γ′ such that
domΓ′ = domΓ∪{x}, Γ′(x) = τ , and Γ′(y) = Γ(y) for y (= x. The type system also uses sets of singleton
types, ranged over by R (for registered clocks) and S (for resumed clocks).

For typing expressions we use a type and effect system (Figure 5) that records the changes made
to the set of registered clocks (either by creating or dropping clocks) and to the set of resumed clocks
(using resume and next) of an expression. Typing judgements are of the form Γ;R;S * e : (τ;R ′;S ′)
meaning that expression e is well typed assuming the types for the free variables in Γ, the registered
clocks in R, and the resumed clocks in S . The type of the expression is a triple recording its type τ ,
the changes made to the set of clocks the expression is registered with (R ′) and to the set of clocks it has

5

X10 clocks Martins, Vasconcelos, and Cogumbreiro

resumed (S ′).
Most typing rules are straightforward. When creating a clock (rule T-MAKE) we associate a new

singleton type α with the clock and include it in the registered clock set of the activity (R ∪ {α}).
Expression next resumes all clocks the activity is registered with (notice that set of resumed clocks is R),
while expression wait clears the set of resumed clocks. Rule T-RESUME states that an activity may only
resume a clock α that is in the set of registered clocks R. A drop e expression removes clock e from the
set of registered clocks R, thus the clock cannot be passed to new activities, be the target of a resume
expression, or be dropped again via rule T-DROP. Rule T-ASYNC asserts that when an activity spawns
another activity registered on a clock, the quiescent property is preserved by propagating the information
about the registered clock α (S ′′ = if α ∈S ′ then {α} else /0). A clocked expression clocked e has the
type of expression e, but drops all clocks expression e is registered with (rule T-CLOCKED).

The typing rules for states and activities (Figure 6) are straightforward.

Examples Our first example concerns clock aliasing. The report on X10 [3] read until recently “All
clock variables are implicitly final. The initializer for a local variable declaration of type Clock must be
a new clock expression. Thus X10 does not permit aliasing of clocks.” Clearly a type system with linear
control like the one we present allows to relieve such a restriction. The following example is not typable
in X10.

let x = make in
let y = x in
async y (resume x)

In our case the code is typable, assigning the same singleton type clock(α) to both x and y.
Our second example deals with the so called live clock condition. Apart from the errors in Figure 3,

X10 identifies another source of problems, prohibiting an activity to transmit, during an async operation,
a clock that has been resumed. Our operational semantics allows the forked activity to inherit the “status”
(resumed/not resumed) of the parent activity. The following example is not typable in X10.

let x = make in
resume x;
async x (next)

In our case the code is typable and the type system still guarantees progress. See discussion at the end of
the paper on the incorporation of a finish construct.

Our last example deals with resuming after resuming, a pattern accepted in X10. Would one like to
consider the following code an error (and this seems to be the case with phasers [6]),

let x = make in
resume x;
resume x

we can easily add another error situation,

〈H{c : 〈 , ,S〉};A{l : 〈V,E [resume c]〉}〉 if l ∈ S

to go with a more stringent reduction rule (notice the new precondition l (∈ S)

H(c) = 〈p,R,S〉 V (c) = p l (∈ S
H;V ; resume c→l H{c : 〈p,R,S∪{l}〉};V ;()

6

X10 clocks Martins, Vasconcelos, and Cogumbreiro

and the corresponding typing rule (notice the new precondition α (∈S ′).

Γ;R;S * e : (clock(α);R ′;S ′) α ∈R ′ α (∈S ′

Γ;R;S * resume e : (unit;R ′;S ′ ∪{α})

Main results The results of the paper are typing preservation and type safety for typable programs
(predicate err,−→ is defined in Figure 3). The proof for the first result follows by induction on the derivation
tree of the sequent and uses a standard substitution lemma. Type safety follows by assuming the state
typable and reaching a contradiction.

Theorem 1 (Subject reduction). If Γ * S and S → S′, then Γ * S′.

Theorem 2 (Type Safety). If Γ * S, then S err!,−→.

We anticipate a progress property for typable processes. Typability ensures that processes do not get
stuck when dropping a clock that is not in its clock set anymore (rule R-CLOCKED), or when otherwise
trying to access a clock that it not allocated in the heap. The remaining case is wait where the activity
waits for set C1 (the set of resumed clocks the activity is registered with) to grow until becoming (together
with C2—the set of clocks that have already advance their phase) the clock set of the activity. And this
is bound to happen for both next and drop in each activity both implicitly resume all clocks.

Further work Apart from studying the progress property, we intend to investigate other language
constructs. For instance, the primitive finish e converts global termination of expression e into local
termination, waiting for activities spawned in e to locally terminate. We need further investigation on
X10 finish primitive in order to present an elegant operational semantics for the construct, together
with typing rules that could (hopefully) relax the syntactic restrictions imposed by either X10 (live lock
condition) and its phasers extension (immediate enclosing finish) on what concerns the interplay between
finish and async constructs.

The language report also reads “X10 does not contain a register statement that would allow an activity
to discover a clock in a data structure and register itself on it”; we would like to study type-safe extensions
to the language that might alleviate this restriction in controlled situations.

Phasers are a coordination construct that unifies collective and point-to-point synchronisations with
performance results competitive to existing barrier implementations [6]. Phasers can be seen as an ex-
tension over clocks that allow for more fine-grained control over synchronisation modes. Phaser ac-
cumulators are reduction constructs for dynamic parallelism that integrate with phasers [5]. Although
further investigation is needed, we believe our work can be extended to accommodate phasers and phaser
accumulators, specially with regards to the operational similarities between clocks and phasers.

References
[1] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,

Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform cluster computing.
In Proceedings of OOPSLA’05, pages 519–538. ACM, 2005.

[2] Jonathan K. Lee and Jens Palsberg. Featherweight X10: a core calculus for async-finish parallelism. In
Proceedings of PPoPP’10, pages 25–36. ACM, 2010.

[3] Vijay Saraswat. Report on the programming language X10, version 2.01. Technical report, IBM Research,
2010.

[4] Vijay Saraswat and Radha Jagadeesan. Concurrent clustered programming. In Proceedings of CONCUR’05,
volume 3653 of LNCS, pages 353–367. Springer-Verlag, 2005.

7

X10 clocks Martins, Vasconcelos, and Cogumbreiro

[5] J. Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phaser accumulators: A new reduction
construct for dynamic parallelism. In IPDPS’09: Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, pages 1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[6] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers: a unified deadlock-free
construct for collective and point-to-point synchronization. In ICS’08: Proceedings of the 22nd annual inter-
national conference on Supercomputing, pages 277–288, New York, NY, USA, 2008. ACM.

[7] Vasco T. Vasconcelos, Francisco Martins, and Tiago Cogumbreiro. Type inference for deadlock detection in a
multithreaded typed assembly language. In Post-proceedings of PLACES’09, EPTCS, 2010.

8

Author Index

Agusa, Kiyoshi . 43
Alves, Nuno . 1

Caires, Luis . 60
Campos, Joana .9
Carbone, Marco 16
Cogumbreiro, Tiago 70

DeniÃlou, Pierre-Malo 1
Donaldson, Alastair 24

Gerakios, Prodromos 29

Hildebrandt, Thomas 16, 35
Hu, Raymond . 1

Imai, Keigo . 43

Kroening, Daniel 24

LÃpez, Hugo A.16
Lange, Julien . 53
LourenÃo, LuÃsa 60

Martins, Francisco 70
Mukkamala, Raghava Rao35

Papaspyrou, Nikolaos 29

Ruemmer, Philipp24

Sagonas, Konstantinos 29

Tuosto, Emilio . 53

Vasconcelos, Vasco 70
Vasconcelos, Vasco T. 9

Yoshida, Nobuko 1
Yuen, Shoji . 43

