8,439 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Interactive tabletops in education

    Get PDF
    Interactive tabletops are gaining increased attention from CSCL researchers. This paper analyses the relation between this technology and teaching and learning processes. At a global level, one could argue that tabletops convey a socio-constructivist flavor: they support small teams that solve problems by exploring multiple solutions. The development of tabletop applications also witnesses the growing importance of face-to-face collaboration in CSCL and acknowledges the physicality of learning. However, this global analysis is insufficient. To analyze the educational potential of tabletops in education, we present 33 points that should be taken into consideration. These points are structured on four levels: individual user-system interaction, teamwork, classroom orchestration, and socio-cultural contexts. God lies in the detail

    Students' orchestration of groupwork and the role of technology

    Get PDF

    An in-the-wild study of learning to brainstorm: Comparing cards, tabletops and wall displays in the classroom

    Full text link
    © 2016 The Author 2016. Published by Oxford University Press on behalf of The British Computer Society. Single display interactive groupware interfaces have the potential to effectively support small group work in classrooms. Our work aimed to gain understanding needed to realize that potential. First, we wanted to study how learners use these large interactive displays, compared with a more traditional method within classrooms. Second, we wanted to fill gaps in the current understanding of the effectiveness of interactive tables versus walls. Third, we wanted to do this out of the laboratory setting, in authentic classrooms, with their associated constraints. We conducted an in-the-wild study, with 51 design students, working in 14 groups, learning the brainstorming technique. Each group practiced brainstorming in three classrooms: one with vertical displays (walls); another with multi-touch tabletops; and the third with pens and index cards. The published literature suggested that tabletops would be better than the other conditions for key factors of cooperative participation, mutual awareness, maintaining interest and affective measures. Contrary to this, we found that the horizontal and vertical displays both had similar levels of benefit over the conventional method. It was only for affective measures that tabletops were better than walls. All conditions were similar for our several measures of outcome quality. We discuss the implications of our findings for designing future classrooms

    The TA Framework: Designing Real-time Teaching Augmentation for K-12 Classrooms

    Full text link
    Recently, the HCI community has seen increased interest in the design of teaching augmentation (TA): tools that extend and complement teachers' pedagogical abilities during ongoing classroom activities. Examples of TA systems are emerging across multiple disciplines, taking various forms: e.g., ambient displays, wearables, or learning analytics dashboards. However, these diverse examples have not been analyzed together to derive more fundamental insights into the design of teaching augmentation. Addressing this opportunity, we broadly synthesize existing cases to propose the TA framework. Our framework specifies a rich design space in five dimensions, to support the design and analysis of teaching augmentation. We contextualize the framework using existing designs cases, to surface underlying design trade-offs: for example, balancing actionability of presented information with teachers' needs for professional autonomy, or balancing unobtrusiveness with informativeness in the design of TA systems. Applying the TA framework, we identify opportunities for future research and design.Comment: to be published in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 17 pages, 10 figure

    Fostering Value Co-Creation in Incumbent Firms: The Case of Bosch’s IoT Ecosystem Landscape

    Get PDF
    The advent of the Internet of Things (IoT) forces incumbent firms to reshape their organizational structures toward platform ecosystems. However, prior research lacks concrete insights about how incumbent firms can foster value co-creation to become ecosystem orchestrators. In particular, it only sheds little light on the complex challenges incumbents face in designing and governing IoT platform ecosystems. In response, we present a single case study describing how the departments of Robert Bosch GmbH, a leading IoT company, overcame these challenges in three dimensions—IoT ecosystem, IoT platform, and value co-creation. We tie in our research with the existing body of literature, identify four prevailing tensions in ecosystem establishment, and provide actionable design and governance recommendations to resolve them
    corecore