6 research outputs found

    Analysis and design considerations for high performance caches

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and, Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998."January 1998."Includes bibliographical references (leaf 43).by Helen H. Ruan.B.S.M.Eng

    Software and hardware methods for memory access latency reduction on ILP processors

    Get PDF
    While microprocessors have doubled their speed every 18 months, performance improvement of memory systems has continued to lag behind. to address the speed gap between CPU and memory, a standard multi-level caching organization has been built for fast data accesses before the data have to be accessed in DRAM core. The existence of these caches in a computer system, such as L1, L2, L3, and DRAM row buffers, does not mean that data locality will be automatically exploited. The effective use of the memory hierarchy mainly depends on how data are allocated and how memory accesses are scheduled. In this dissertation, we propose several novel software and hardware techniques to effectively exploit the data locality and to significantly reduce memory access latency.;We first presented a case study at the application level that reconstructs memory-intensive programs by utilizing program-specific knowledge. The problem of bit-reversals, a set of data reordering operations extensively used in scientific computing program such as FFT, and an application with a special data access pattern that can cause severe cache conflicts, is identified in this study. We have proposed several software methods, including padding and blocking, to restructure the program to reduce those conflicts. Our methods outperform existing ones on both uniprocessor and multiprocessor systems.;The access latency to DRAM core has become increasingly long relative to CPU speed, causing memory accesses to be an execution bottleneck. In order to reduce the frequency of DRAM core accesses to effectively shorten the overall memory access latency, we have conducted three studies at this level of memory hierarchy. First, motivated by our evaluation of DRAM row buffer\u27s performance roles and our findings of the reasons of its access conflicts, we propose a simple and effective memory interleaving scheme to reduce or even eliminate row buffer conflicts. Second, we propose a fine-grain priority scheduling scheme to reorder the sequence of data accesses on multi-channel memory systems, effectively exploiting the available bus bandwidth and access concurrency. In the final part of the dissertation, we first evaluate the design of cached DRAM and its organization alternatives associated with ILP processors. We then propose a new memory hierarchy integration that uses cached DRAM to construct a very large off-chip cache. We show that this structure outperforms a standard memory system with an off-level L3 cache for memory-intensive applications.;Memory access latency has become a major performance bottleneck for memory-intensive applications. as long as DRAM technology remains its most cost-effective position for making main memory, the memory performance problem will continue to exist. The studies conducted in this dissertation attempt to address this important issue. Our proposed software and hardware schemes are effective and applicable, which can be directly used in real-world memory system designs and implementations. Our studies also provide guidance for application programmers to understand memory performance implications, and for system architects to optimize memory hierarchies

    Energy efficient cache architectures for single, multi and many core processors

    Get PDF
    With each technology generation we get more transistors per chip. Whilst processor frequencies have increased over the past few decades, memory speeds have not kept pace. Therefore, more and more transistors are devoted to on-chip caches to reduce latency to data and help achieve high performance. On-chip caches consume a significant fraction of the processor energy budget but need to deliver high performance. Therefore cache resources should be optimized to meet the requirements of the running applications. Fixed configuration caches are designed to deliver low average memory access times across a wide range of potential applications. However, this can lead to excessive energy consumption for applications that do not require the full capacity or associativity of the cache at all times. Furthermore, in systems where the clock period is constrained by the access times of level-1 caches, the clock frequency for all applications is effectively limited by the cache requirements of the most demanding phase within the most demanding application. This motivates the need for dynamic adaptation of cache configurations in order to optimize performance while minimizing energy consumption, on a per-application basis. First, this thesis proposes an energy-efficient cache architecture for a single core system, along with a run-time support framework for dynamic adaptation of cache size and associativity through the use of machine learning. The machine learning model, which is trained offline, profiles the application’s cache usage and then reconfigures the cache according to the program’s requirement. The proposed cache architecture has, on average, 18% better energy-delay product than the prior state-of-the-art cache architectures proposed in the literature. Next, this thesis proposes cooperative partitioning, an energy-efficient cache partitioning scheme for multi-core systems that share the Last Level Cache (LLC), with a core to LLC cache way ratio of 1:4. The proposed cache partitioning scheme uses small auxiliary tags to capture each core’s cache requirements, and partitions the LLC according to the individual cores cache requirement. The proposed partitioning uses a way-aligned scheme that helps in the reduction of both dynamic and static energy. This scheme, on an average offers 70% and 30% reduction in dynamic and static energy respectively, while maintaining high performance on par with state-of-the-art cache partitioning schemes. Finally, when Last Level Cache (LLC) ways are equal to or less than the number of cores present in many-core systems, cooperative partitioning cannot be used for partitioning the LLC. This thesis proposes a region aware cache partitioning scheme as an energy-efficient approach for many core systems that share the LLC, with a core to LLC way ratio of 1:2 and 1:1. The proposed partitioning, on an average offers 68% and 33% reduction in dynamic and static energy respectively, while again maintaining high performance on par with state-of-the-art LLC cache management techniques

    Multilevel tiling for non-rectangular interation spaces

    Get PDF
    La motivación principal de esta tesis es el desarrollo de nuevas técnicas de compilación dirigidas a conseguir mayor rendimiento encódigos numéricos complejos que definen es pacios de iteraciones no rectangulares. En particular, nos centramos en la trasformación de "loop tiling" (también conocida como "blocking") y nuestro propósito es mejorar la transformación de loop tiling cuando se aplica a códigos numéricos complejos. Nuestro objetivo es conseguir, a través de la transformación de loop tiling, los mismos o mejores rendimientos que las librerías numéricas proporcionadas por el fabricante que están optimizadas manualmente.En la tesis se muestra que la razón principal por la que los compiladores comerciales actuales consiguen bajos rendimiento en este tipo de aplicaciones es que no son capaces de aplicar loop tiling a nivel de registros. En su lugar, para mejorar la localidad de los datos y el ILP, los compiladores actuales usan y combinan otras transformaciones que no explotan el nivel de registros tan bien como loop tiling. Previamente no se ha considerado aplicar loop tiling a nivel de registro porque en códigos numéricos complejos no es trivial debido a la naturaleza irregular de los espacios de iteraciones. La primera contribución de esta tesis es un algoritmo general de loop tiling a nivel de registros que es aplicable a cualquier tipo de espacio de iteraciones y no sólo a los espacios rectangulares. Nuestro método incluye una heurística muy sencilla para decidir los parámetros de los cortes a nivel de registros. A primera vista parece que loop tiling a nivel de registros (a partir de ahora, register tiling) se tiene que aplicar de tal manera que el bucle que ofrece más reuso temporal de los datos no debe de ser partido. De esta manera maximizamos la reutilización de los registros y minimizamos el número total de load/stores ejecutados. Sin embargo, mostraremos que en espacios de iteraciones no rectangulares, si solamente tenemos en cuenta las direcciones del reuso y no la forma del espacio de iteraciones, los códigos pueden sufrir una degradación en rendimiento. Nuestra segunda contribución es la propuesta de una heurística muy sencilla que determina los parámetros del tiling a nivel de registros considerando no sólo el reuso temporal sino también la forma del espacio de iteraciones. Además, la heurística es suficientemente sencilla para que pueda ser implementada en un compilador comercial.Sin embargo, para conseguir rendimientos similares que códigos optimizados a mano, no es suficiente con aplicar loop tiling a nivel de registros. Con las arquitecturas de hoy en día que disponen de jerarquías de memoria complejas y múltiples procesadores, es necesario que el compilador aplique loop tiling en cuatro o más niveles (paralelismo, cache L2, cache L1 y registros) para conseguir altos rendimientos. Por lo tanto, en las arquitecturas actuales es crucial tener un algoritmo eficiente para aplicar loop tiling en varios niveles de la jerarquía de memoria (tiling multinivel). Además, como mostramos en esta tesis, la transformación de tiling multinivel siempre tendrá que incluir el nivel de registro porque este es el nivel de la jerarquía de memoria que ofrece mayor rendimiento cuando es tratado correctamente.Cuando tiling multinivel incluye el nivel de registros, es necesario que los límites de los bucles sean exactos y que no haya límites redundantes. La razón es que la complejidad y la cantidad de código que se genera con nuestra técnica de register tiling depende polinómicamente del número de límites de los bucles.Sin embargo, hasta ahora, el problema de calcular límites exactos y eliminar límites redundantes es que todas las técnicas conocidas son muy caras en términos de tiempo de compilación y, por ello, difícil de integrar en un compilador comercial. La tercera contribución de esta tesis es una nueva implementación de tiling multinivel que calcula límites exactos y es mucho menos costosa que técnicas tradicionales. Mostraremos que la complejidad de nuestra implementación es proporcional a la complejidad de aplicar una permutación de bucles en el código original (antes de aplicar loop tiling), mientras que las técnicas tradicionales tienen complejidades más altas. Además, nuestra implementación genera menos límites redundantes y permite eliminar los límites redundantes que quedan a menor coste. En conjunto, la eficiencia de nuestra implementación hace posible que pueda ser implementada dentro de un compilador comercial sin tener que preocuparse por los tiempos de compilación.La última parte de esta tesis está dedicada al estudio del rendimiento de tiling multinivel. Se muestran los efectos de tiling en los diferentes niveles de memoria y presentamos datos que comparan los beneficios de tiling a nivel de registros, tiling a nivel de cache y tiling a los dos niveles, cache y registros, simultáneamente. Finalmente, comparamos el rendimiento de códigos optimizados automáticamente con códigos optimizados manualmente (librerías numéricas que ofrecen los fabricantes) sobre dos arquitecturas diferentes (ALPHA 21164 and MIPS R10000) para concluir que actualmente la tecnología de los compiladores hace posible que códigos numéricos complejos consigan el mismo rendimiento que códigos optimizados manualmente.The main motivation of this thesis is to develop new compilation techniques that address the lack of performance of complex numerical codes consisting of loop nests defining non-rectangular iteration spaces. Specifically, we focus on the loop tiling transformation (also known as blocking) and our purpose is the improvement of the loop tiling transformation when dealing with complex numerical codes. Our goal is to achieve via the loop tiling transformation the same or better performance as hand-optimized vendor-supplied numerical libraries. We will observe that the main reason why current commercial compilers perform poorly when dealing with this type of codes is that they do not apply tiling for the register level. Instead, to enhance locality at this level and to improve ILP, they use/combine other transformations that do not exploit the register level as well as loop tiling. Tiling for the register level has not generally been considered because, in complex numerical codes, it is far from being trivial due to the irregular nature of the iteration space. Our first contribution in this thesis will be a general compiler algorithm to perform tiling at the register level that handles arbitrary iteration space shapes and not only simple rectangular shapes.Our method includes a very simple heuristic to make the tile decisions for the register level. At first sight, register tiling should be performed so that whichever loop carries the most temporal reuse is not tiled. This way, register reuse is maximized and the number of load/store instructions executed is minimized. However, we will show that, for complex loop nests, if we only consider reuse directions and do not take into account the iteration space shape, the tiled loop nest can suffer performance degradation. Our second contribution will be a proposal of a very simple heuristic to determine the tiling parameters for the register level, that considers not only temporal reuse, but also the iteration space shape. Moreover, the heuristic is simple enough to be suitable for automatic implementation by compilers.However, to be able to achieve similar performance to hand-optimized codes, it is not enough by tiling only for the register level. With today's architectures having complex memory hierarchies and multiple processors, it is quite common that the compiler has to perform tiling at four or more levels (parallelism, L2-cache, L1-cache and registers) in order to achieve high performance. Therefore, in today's architectures it is crucial to have an efficient algorithm that can perform multilevel tiling at multiple levels of the memory hierarchy. Moreover, as we will see in this thesis, multilevel tiling should always include the register level, as this is the memory hierarchy level that yields most performance when properly tiled.When multilevel tiling includes the register level, it is critical to compute exact loop bounds and to avoid the generation of redundant bounds. The reason is that the complexity and the amount of code generated by our register tiling technique both depend polynomially on the number of loop bounds. However, to date, the drawback of generating exact loop bounds and eliminating redundant bounds has been that all techniques known were extremely expensive in terms of compilation time and, thus, difficult to integrate in a production compiler. Our third contribution in this thesis will be a new implementation of multilevel tiling that computes exact loop bounds at a much lower complexity than traditional techniques. In fact, we will show that the complexity of our implementation is proportional to the complexity of performing a loop permutation in the original loop nest (before tiling), while traditional techniques have much larger complexities. Moreover, our implementation generates less redundant bounds in the multilevel tiled code and allows removing the remaining redundant bounds at a lower cost. Overall, the efficiency of our implementation makes it possible to integrate multilevel tiling including the register level in a production compiler without having to worry about compilation time.The last part of this thesis is dedicated to studying the performance of multilevel tiling. We will discuss the effects of tiling for different memory levels and present quantitative data comparing the benefits of tiling only for the register level, tiling only for the cache level and tiling for both levels simultaneously. Finally, we will compare automatically-optimized codes against hand-optimized vendor-supplied numerical libraries, on two different architectures (ALPHA 21164 and MIPS R10000), to conclude that compiler technology can make it possible for complex numerical codes to achieve the same performance as hand-optimized codes on modern microprocessors

    The difference-bit cache

    No full text
    corecore