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Abstract

Memory access is the major bottleneck of today's high-performance microprocessors.
This thesis provides a systematic and quantitative analysis of the performance trade-offs
of major cache (fast memory) topologies. It allows early insight into these trade-offs
because performance and costs are controlled by circuit and layout level issues which are
difficult to evaluate at initial stages in a design. The thesis establishes a common reference
frame that incorporates many implementation possibilities. Within this frame, objective
comparisons are made to observe the behavior of caches of various sizes and bandwidths.
The approach was to first optimize the speed of a building block, and then to use the block
consistently to design larger cache circuits, such as 16Kbyte and 32Kbyte single-ported,
and 8Kbyte and 16Kbyte dual-ported to achieve different optimization goals. The simula-
tion results of the circuits are collected in the R Spreadsheet. It presents the effectiveness
of the design considerations for optimizing speed, bandwidth, and area (to reduce power
consumption) to meet a variety of specifications. One result is that doubling the size of an
8Kbyte single-ported cache in the common reference frame increases the access time by
less than 10%. The results are process-independent, allowing the spreadsheet to serve as a
convenient reference for cache design and research.
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Chapter 1

Introduction
Memory access is the major bottleneck of today's high-performance microproces-

sors. In modern processors, several levels of on-chip and off-chip caches are employed to

speed up memory access. The rapidly advancing computer industry requires caches to

have shorter access times and higher bandwidths, while maintaining acceptable cache hit

ratio, to increase the performance of high-end products. The access time, bandwidth, and

hit ratio are the standard performance measurements of the cache. They directly affect the

speed of instruction-issue, data utilization rate, number of pipeline stages, clock speed,

area, cost, and power consumption of processors.

How do we compare good cache designs? How do we even define good cache

designs? Different microprocessors have different specifications and are designed with

different circuit methodologies and are fabricated by different process technologies as

well. It is difficult even to compare the cache performance of different generations of

microprocessors designed by the same company. Without objectively comparing high-per-

formance caches and studying design trade-off of them using the same reference frame,

how do we absorb and combine the best design techniques to design future high-perfor-

mance caches? Facing numerous implementation possibilities, I create a common refer-

ence frame to compare design trade-offs of optimally designed caches. The frame is

created by considering various design issues, combining current optimization techniques

and using my own optimization method.

The main goal of this thesis is to provide researchers and designers with first order

estimates of access time, area, and bandwidth trade-offs of different cache topologies,

which can assist in choosing the cache topology that best meets specifications without



heavily depending on simulation circuits. Moore's law dictates that we will design larger

and larger circuits; even simulating circuits for feasibility studies will require more signif-

icant manpower and CPU time. Figure 1 shows the design flow and typical iterative steps

taken during a processor design. The framework can reduce iterative circuit feasibility

studies and increase the efficiency of preliminary chip floor-planning. Also in top down

chip designs, architects do high-level planning and circuit designers try to meet specifica-

tions defined by architects. The thesis research starts from circuit level, taking layout and

device level issues into consideration to collect design trade-off information; then the

information is propagated from bottom up to set some architectural requirements. This

two-way vertical communication can efficiently produce optimized caches. The low-level

information also impacts the design of datapaths and floorplans of a cache's neighboring

chip components, because interconnects from output drivers of data to other parts of the

chip could contribute significant RC delays, as the technology process keeps scaling

down.

Moreover, it is important to study how the behavior of caches changes with variable

sizes and topologies for the same fabrication process. It is even more interesting to see

how this behavior changes with variable process technologies. Devices work faster, reach

saturation earlier, and become smaller as the devices' geometric parameters shrink. Inter-

connects experience increasing fringing and coupling capacitive effect as their geometric

parameters shrink. Circuits become more noise-sensitive as the voltages and interconnects

are scaled down. How does a cache's performance change when its building blocks change

their behaviors in deeper sub-micron technologies? The circuits in this thesis are designed

such that the performance ratios obtained are independent of process technologies. The

performance ratios include comparing the access time and bandwidth of caches of differ-

ent micro-architecture based on extensive realistic designs and simulations in 0.25 micron



CMOS process. The circuits are optimally tuned at transistor level. Components from the

public domain are used to avoid dependency on implementation details imposed by differ-

ent processor companies. Therefore, the results give objective comparisons among differ-

ent cache topologies. For example, each bit cell is a standard 6-transistor RAM cell which

is most widely used in the industry.

Consequently, once designers have chosen the right topology, the framework of the

thesis can help designers do cache component optimizations. It is more effective to do

local optimizations within a globally optimized structure. In addition, the thesis focuses on

analyzing and modeling first-level caches because primary caches need to be fast for any

microprocessor. Given that the access time has to be optimized, can we do better jobs in

optimizing other aspects of cache performance? I try to optimize bandwidth, area, and

power as well.

Chapter 2 discusses existing work done on cache modeling. It explains what current

cache models have achieved, how accurate they are, and what they lack. Chapter 3 intro-

duces critical high-level issues that readers need to bear in mind while reading implemen-

tation details. Chapter 4 presents the details of circuit designs. Chapter 5 presents circuit

simulation results and explains their significance. Chapter 6 is the conclusion, including

the future outlook of cache designs. The framework presented here can certainly be

expanded for higher-level on-chip or off-chip caches.



FIGURE 1. A Simplified Version of Design Flow

cache bus etc...

* 0circuit simulation

This figure is an extremely simplified version of the actual flow of chip design.

Designers can keep looping from micro-arch definition to circuit simulation and back to

definition, if the best cache topologies are not chosen correctly in the decision making

stage.



Chapter 2

Existing Work on Cache Modeling
There are publications on modeling cache access time by people in industry and

academia. Wilton and Jouppi at DEC Western Research Lab published their first cache

models in 1994 [17], then made improvements in 1996 [16]. They modeled each compo-

nent's delay in the critical path, assumed designing with 0.8 micron CMOS process, and

estimated gate delays of the critical path using Horowitz's transistor models [17]. The

transistor-level models take various input rise times and output capacitive loads into con-

sideration, which makes the analytical models more realistic than some early work done

on cache modeling. However, Horowitz's transistor models developed in 1983 might not

be adequate to model today's short channel devices. Horowitz assumed that a transistor

stack operates in linear regime and approximated on-resistance of the stack [8]. Later

Sakurai and Newton generated the "Alpha-Power Law" to model series-connected MOS-

FET circuits [14]. Sakurai proved that the delay through a transistor stack does not grow

linearly with the number of transistors in the stack, because the transistor near the output

operates in saturation regime, instead of linear regime as assumed by Horowitz. The top-

most transistor can easily enter saturation when the channel length is short. Sakurai's

model proved that Horowitz's transistor stack model to be pessimistic [13]. More recently

McFarland further developed transistor delay models by Horowitz and Sakurai [9].

McFarland used curve fitting more extensively, which involves even more mathematical

steps. All the analytical transistor models are valuable to both research and product devel-

opment. But when they are used in generating cache models like Jouppi did, the steps

involved are somewhat tedious. Wilton and Jouppi wrote a tool "Cacti" to make their mod-

els user-friendly [16]. However, as the technology process changes, adjustments need to



be made to their analytical models, in particular, Sakurai's models might be more accurate

to characterize the behavior of deep submicron devices. Also Jouppi modeled only single-

ported caches. Multiported caches have become increasingly popular, due to their micro-

architectural advantages. Furthermore, past efforts seem to have focused on obtaining

optimal partitioning of cache arrays. This thesis shows that seeking optimal partitioning is

an unnecessary, misleading, and inefficient use of design time.

One of the goals of the thesis is to compare the access time of different circuit

topologies, not the absolutely accurate delay of each cache. Certain assumptions are made

to avoid using complicated device-level analytical models to approximate cache access

time. All the existing analytical models relied on curve fitting to some extent, which

means that they must be changed as the process technology changes just like empirical

models. Simplicity is effective, robust and user-friendly. This thesis presents a spreadsheet

of access time, bandwidth, and area ratios among different cache topologies to serve as a

quick guide when selecting a particular cache topology to meet designers' needs. The data

of the spreadsheet is collected from actual circuit implementations and simulations. All

the circuits are designed and simulated in 0.25 micron process, instead of 0.8 micron used

by Jouppi.



Chapter 3

High-Level Issues
Since later chapters are dedicated to describing implementation details, this chap-

ter presents some high-level implementation issues. In today's microprocessor chip

design, neither having aggressive micro-architecture with inadequate circuit implementa-

tion nor having poor micro-architecture with fast circuits is effective in utilizing design

time and manpower. It is much more effective to optimize design of specific components,

after choosing a globally optimized structure.

How to determine a globally optimized structure is quite challenging. Different

microprocessor companies prioritize optimization features differently when designing pri-

mary caches. For instance, one primary cache design might replicate its primary cache to

double its bandwidth like DEC Alpha 21164 [5]. This introduces on-chip cache consis-

tency problems. Every time data is stored into one cache, the other primary cache must be

updated accordingly, which costs extra power. Another cache design might divide a large

cache into smaller banks to shorten array access time, but this increases interconnect

length for data to be delivered to destinations. If many loads reference to the bank that has

the longest interconnect between data output tristate buffer and destinations, the overall

latency of loading and delivering data might increase. Also, banking a large cache to

shorten access time or banking caches to increase bandwidth often involves replicating

decoders and predecoders. This kind of organization can take more area than other kinds

of cache organizations.

It consumes manpower and CPU time to design and simulate all the possible cache

topologies to analyze design trade-offs in varying cache sizes and bandwidths. The circuit

designs presented here try to globally optimize caches in speed, area, power and band-



width together as much as possible, using circuit components in the public domain. The

spreadsheet in this thesis contains a limited number of combinations but enough data to

compare the performance ratio of different globally optimized caches. The spreadsheet

contains data for 8K, 16K, & 32KByte caches which are often seen in many contemporary

designs. The next few sections present some of the high-level issues of this thesis work

which need to be noticed before diving into the details of implementation work.

3.1 Partitioning Cache Wordline and Bitline Length

Large cache line size requires buffering, which contributes to additional wordline

delay. Smaller cache line size (width of the cache) increase bitline loads (height of the

cache) which might also increase access time. This is the trade-off between cache access

time and bandwidth. As often seen in cache publications, people try or suggest finding

optimal ways to partition a cache so that the proportion of wordline length to bitline length

gives the best access time [17]. This approach is misleading and is not an efficient use of

simulation time. The bitline delay portion is really characterized by an analog circuit

because it is small signal differential amplification time, and the rest of the cache is digital.

Since analog portion of the cache cannot be pipelined, determining the geometry of a

cache should start by looking at the timing requirement first, making sure that the worst

case bitline delay does not exceed timing requirements. After determining cache height,

the wordline length is determined from the height and the size of the cache. In this work,

128 cells are attached to each pair of bit and bitbar lines, in order to generate enough small

differential signals for sense amps to detect fast. This number stays the same for all the

caches in this work, since the optimized 8kByte cache serves as the building block for

caches of larger sizes or higher bandwidths.



3.2 Determining Degree of Associativity

It is important to separate micro-architecture and circuit design trade-offs, when com-

paring access time of different circuit topologies that have same cache sizes. In this thesis,

the associativity of all the caches needs to be fixed to make objective comparisons. Way-

prediction is assumed for all cache circuits. SGI's high-end products MIPS R10000 and

R12000 both have way-prediction mechanisms [10]. Way-prediction prevents address

translation and tag array access from adding delays to data array access. In order to

achieve high hit ratio and to take advantage of way-prediction schemes, the associativity is

fixed at 4 here. This is also a circuit hack to reduce access time. Each sense amplifier can

only have a limited number of bitline pairs attached together as input to the sense amp, and

each bitline pair has to go through a column multiplexor to output line size to match bus

width. Therefore, I interleave 4 ways and use way-predication vector as column mux

select signals to

* select column with the correct way data

* eliminate a mux delay vertically down the cache

* equalize way select delay of the same bit

So now, the cache has the hit ratio of a 4-way set associative cache and delay time of a

direct-mapped cache that has the shortest access time. The circuits in this work are imple-

mented as direct-mapped caches, but they behave like associative caches as well.

3.3 Major Assumptions Made

3.3.1 Data Array Access is Critical

One major assumption made is that the critical path of all the caches is the data array

access. In modern cache designs, critical paths often include TLB (Translation Look-aside

Buffer) and tag array access to give way-select and hit / miss information. In some cases,

the clock tree datapaths for enabling sense amps is also included in the critical path.

Although the TLB outputs physical address for tag comparison, it is small and often



implemented using CAM (Content Addressable Memory) arrays or highly associative

arrays for quick virtual address translation. Tag array access is similar to data array access

with an extra delay due to comparison. But a tag array is also relatively small compared to

a data array. Therefore, the assumption is that designers should be able to design TLB and

tag array datapaths to match part of the delay of data array access and provide way select

signals early enough. For large data arrays, the arrival of hit / miss information generated

by TLBs and tag arrays becomes less critical. The data array is pipelined and needs muti-

cycles to output data. The hit/miss information needs to be available only by the end of the

last pipestage before data is used by other parts of the chip. Any other timing select signals

should also arrive early enough. Basically, designers should not let any select signals

worsen the data array latency, which sets tight timing constraints for successive pipe-

stages, this in turn, affects a processor's overall performance.

3.3.2 Begin and End of Access Time
All the access times in this thesis refer to worst case cache read times, because

loading data is more critical than storing data. Loads can really stall pipeline. Another

assumption is that data array access time starts from address bits latching for indexing data

array to output data latching. Both physically indexed, physically tagged caches and virtu-

ally indexed, physically tagged caches have micro-architecture and circuit advantages and

disadvantages. To keep micro-architecture trade-offs separate from circuit trade-offs, the

data array latency starts after address bits become available, regardless of virtual or physi-

cal address bits, which is another reason why TLB translation is not included in the critical

path. If readers prefer to use physically indexed caches, the TLB access time is added to

data array access. But if accessing TLB is the first step for all the cache circuits, including

TLB access time does not affect cache performance comparisons significantly. Therefore,

the spreadsheet of this thesis contains all the information about data array. Readers can



extract information from the spreadsheet to estimate access times of tag arrays and TLBs,

because they are all similar arrays from the circuit implementation point of view. The

assumptions made above are a means to efficiently study area, speed, and power design

trade-offs of current high-performance caches.

3.3.3 Virtually Indexed, Physically Tagged Arrays

I made some assumptions about logic control signals for the fastest array access

time. The assumptions set micro-architectural constraints which architects need to con-

sider during architecture definition and chip floor planning. This is the bottom up commu-

nication referred to in the previous section.

The building block is assumed to be a virtually indexed, physically tagged cache.

As soon as a virtual address is available, the untranslated page offset is used to index the

data portion, bypassing address translation by the TLB. For aggressive clock frequencies,

cache access often takes more than one cycle. The actual array access pipestage in this

work starts from the domino decoder to the output load. Predecoding the array index

(wordlines) contributes to part of the delay in the previous pipestage.The time that the vir-

tual address bit travels through all the interconnect to reach the predecoder and the prede-

coding time must be less or equal to the clock period minus the required setup time of the

clock, because predecoded lines must be ready before the setup time of the domino evalu-

ation clock to avoid inadvertently flipping logic. Some readers might argue that virtually

indexed, physically tagged caches have synonym problems, meaning the same virtual

address is mapped to two different physical locations. There are methods to reduce syn-

onym problems, for example, making sure the tag array does not exceed the size of a phys-

ical page.



3.3.4 Way Prediction

Way prediction is the key to make associative caches have the access time of direct-

mapped caches as indicated in section 3.2. This scheme prevents any delay of deciding

way hit from joining the critical path, and it also eliminates the way select multiplexor in

the critical path. Therefore, way prediction schemes save both array access time and area.

Some readers might wonder how the way select information can be ready so fast. To my

best knowledge, there are several ways of implementing way prediction schemes, and

architects can certainly improve them. Both MIPS RO1k and R12k implement way predic-

tion [6]. Difference-bit caches [7] and the path balancing table [12] are also usable, but

they limit the degree of associativity.

3.3.5 Control Signals

All the control / enable signals, including way prediction information, must be

ready when they are needed. Basically, no extra delay should be introduced by enable sig-

nals to the intrinsic array delay. For instance, the sense amplifier enable signal should be

ready on time. The data path of the sense amp enable signal should be designed to be

effective early enough to sense voltage differentials. Again these constraints affect logic

and datapath designs of previous pipeline stages. They require optimal cache component

arrangement, which in turn affect floor planning of neighboring FUBs (Function Unit

Blocks). The constraints are nontrivial to satisfy. This surely involves design trade-offs in

designing neighboring FUBs. But it is important to keep in mind that building the fastest

primary caches is the top priority, because they directly affect data utilization rate, which

in turn affect the flow through of pipeline stages. Readers can argue that out-of-order

instruction execution can hide cache access latency. However, out-of-order or speculative

execution is effective only when there is no data-dependency or structural hazard. It is still

essential to have fast cache array access and then use out-of-order execution to hide the



latency that takes to deliver data via bus interconnect, which has become increasingly

harder to manage as the process technology continues to scale down.

3.3.6 Neighboring FUBs

Neighboring FUBs need to be arranged to allow data to be quickly delivered to

destinations. This requirement makes floorplanning challenging, because this might

increase interconnect length for later pipestages. It is even more difficult to optimize inter-

connect delays for those microprocessors that use unified caches. A unified cache stores

both instructions and data. Since cached data and instructions are dispatched to different

locations, the shortest route to pass data might not be the optimal path for instruction pass-

ing. Applying Rent's rule to predict on-chip interconnect density during architectural plan-

ning is helpful.



Chapter 4

Implementation Details and Circuits

4.1 Introduce an Optimized Building Block

The simplest formulae, having fewest variables, are often the most powerful ones

that can capture a wide range of patterns in phenomena and behaviors of matter. For exam-

ple, Newton's F=ma is the simplest formula, yet the most powerful law that creates and

governs numerous technological disciplines, and affects many aspects of our lives.

Inspired by the simplicity and power of Newton's law, I decide to create a simple building

block, then build abstractions based on the fundamental unit to cover more cache imple-

mentation possibilities. However, the building block itself must be relatively optimized to

be meaningful in researching high-performance caches. Readers might think that having a

highly optimized building block conflicts with achieving simplicity. Fortunately, the fast-

est cache, a direct-mapped cache, is the one that has the simplest or minimum number of

logic stages in the critical path. Prior to implementing fast circuits, the crucial step is min-

imizing the number of logic stages in the critical path of accessing caches.

The critical path of accessing a direct-mapped cache begins at the address bits

latch, traverses through a predecoder, then the interconnect that has the height of the array,

a decoder, turns all the way to the last bit cell hanging off the top word line, goes all the

way down to the last bit cell hanging off of the bitlines, then goes through a column selec-

tor, a sense amplifier, then drives the output load. For associative caches, there is an addi-

tional delay introduced by the multiplexor that selects between ways. In many modern

microprocessors, primary caches are at least 2-way set associative. Associativity reduces

address conflict, but the hit ratio of a cache does not increase infinitely with the degree of

associativity. Also, without optimization, usually the higher the degree of associativity, the



slower the caches are. This is because the number of input to the way-select multiplexor is

larger, meaning more pass gates (transmission gates) are tied together which contributes

more diffusion capacitance to slow down the circuit. It does not make any sense to say that

a direct-mapped cache performs better than a two-way set associative cache, because the

former has shorter access time. This is like comparing apples with oranges. Set associative

caches have microarchitechtural advantages, while direct-mapped caches have circuit

advantages. Some microprocessors have 2-way set associative caches, while others have

more than 2-way. It is also nonsense to compare the performance among these caches,

because their hit ratios differ. The 2-way associative caches are faster, but the hit ratio is

lower. which triggers more accesses to on-chip or off-chip secondary caches, degrading

the processor's overall performance.

The building block (see Figure 4.1), which is used to analyze caches, optimizes

cache performance both in micro-architecture and circuit topology. The key to building a

high-performance cache is to achieve the hit ratio of associative caches and the access

time of direct-mapped caches. It is crucial to maintain direct-mapped cache access,

because those caches use a minimum number of logic stages needed for a functional

cache.



4.2 Circuit Topology and Specific Component Design

Figure 4.1: 8kB Single-Ported Cache
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4.2.1 Predecoder

A predecoder is used to reduce fan-ins to the decoder to speed up circuits. In the circuit

design for this thesis, 128 wordlines need to be decoded which requires 7 input address

bits (2^7=128). The predecoder groups every two address bits together to parallelize

decoding logic. Every pair of two binary bits has four possible combination outputs. In

this circuit design, the 7th address bit is all by itself; therefore there are only two possible

outputs associated with it. The worst case input capacitive loading of simulation circuits is

two binary bits generating four possible outputs using four logic gates in parallel. Each bit

of the pair is fed into four logic gates.



4.2.2 Decoder

After the predecoding stage, the predecoded wordlines see interconnect that has a

length of the array's height in the worst case delay. This interconnect is modeled during

simulation as part of output load of the predecoder and input load to the decoder. Since

two address bits predecode into four lines, each of the four is then fed into thirty-two par-

allel logic gates in the decoder, which generates 128 different wordlines. Each of the logic

gates is a 4-input nand or nor gate, depending on how many inversion logic gates address

bits go through to reach the decoder. In array designs, the use of dynamic gates should be

minimized to reduce dynamic power consumption. In this design, only the decoding stage

uses domino gates. Extra care is needed when using domino gates to prevent various noise

and charge sharing problems.

4.2.3 Wordline Loads

Wordlines that come out of decoders need to travel across the array to reach the last bit

cell in each row; therefore, when building simulation circuits, all the capacitive loads seen

by the wordlines in actual arrays must be included. Interconnect delay has become

increasingly difficult to deal with as the process technology continues to scale down. How-

ever, wordlines of arrays are quite manageable compared to bus interconnect for three rea-

sons. The first reason is that all the bit cells are closely abutted, the capacitance of

wordlines is dominated by gate capacitance of passgates in each bit cell, instead of wire

capacitance. The other reason is that wordlines are widely apart from each other due to bit

cell height, meaning not much coupling between wordlines of adjacent rows. The last rea-

son is that wordlines from adjacent rows generally do not switch to opposite polarity at the

same time, since only one wordline can be on at a time and the wordline is turned off

before its neighboring wordline is fully decoded. When adjacent wires change to opposite

polarity at the same time, the cross coupling of wires is doubled as is often seen in bus



interconnect. Therefore wordlines of arrays capacitance and resistance are scalable as pro-

cess changes.

4.2.4 Bit Cells

Each bit cell, which is the most commonly used RAM cell, has six transistors. The

transistors should be minimally sized in order to minimize the total cache area. The gates

of the two passgates inside each cell are tied to a wordline, and the drain / source of the

two passgates are connected to a pair of bit and bitbar lines respectively. The other four

transistors are two back to back inverters to latch data. Certain sizing ratios among the six

transistors must be maintained to avoid inadvertent flipping of logic.

4.2.5 Bitline Loads

Bitlines loads directly impact on the rate of detection of differential signals. Bitline

capacitive loads are mostly drain capacitance of passgates in all the cells that share the

same bitlines. Other capacitance comes from drain capacitance of write buffers, read-

select muxes, data-in and precharge devices. The bitline of one cell and bit barline from its

neighboring cell can cross couple, introducing additional delay which might be severe

enough to flip logic. Therefore, bitlines must be carefully laid out to decouple from each

other to minimize neighboring interference.

4.2.6 Precharge, Write Buffer, and Read Mux

When the array is not being read, bit and bitbar lines must all be precharged to high to

prepare for stores. Typically there is an equalizer, which is one passgate, to maintain equal

voltage of the lines. Precharge circuitry must be placed above read select mux on bitlines.

The write buffer, as the names suggests, is for storing information into bit cells. Each bit-

line (bit and bitbar) has an nfet attached to it. Write-enables control the gate of nfets, and

data is connected to the other end of nfets. When the write enable is on, data is written

onto the bitlines through the turned-on nfet. The read mux is basically designed with tran-



sistors connected in series with bitlines. Read-enables turn on the nfets, then information

on the bitlines pass through the nfets flow into sense amplifiers.

4.2.7 Sense Amplifier Precharge and Sense Amplifier

The sense amplifier precharge circuitry is the same as regular precharge, and it is nec-

essary to place it below the read mux and above the sense amplifier. It is the same as regu-

lar precharge circuitry, except it needs to be specifically placed on bitlines below the read

mux and before the sense amplifier to make sure that both bitline ends of the read mux

truly start with equipotential before sensing. The sense amplifier is really an analog differ-

ential amplifier that amplifies different voltages on bitlines and corresponding bitbar lines.

It should be turned on after a certain differential voltage level is reached, otherwise, it

could sense the wrong data due to noise interference. The sense amplifier is triggered by a

timer which can turn it on at a precise time to quickly detect and amplify signals without

making mistakes. Designers need to look at circuit simulation of bitlines and record the

time that at where the correct differential voltage occurs.

4.2.8 Output Loads Modeling

Since this thesis is intended to make a systematically quantitative analysis of cache

behavior, I try to cover as many cache topologies as possible to make data analysis realis-

tic. Modeling output loads of sense amps is crucial, because it propagates gain information

backwards which affects transistor sizing of previous logic stages. By examining various

cache topologies, I conclude that the output loads of senseamps of an array can have six

possibilities. The data that comes out of a sense amp is fed into 1) a latch; 2)a mux; 3)sev-

eral hundred micron long interconnect; 4) a tristate driver; 5)a logic gate; or 6) an inverter

to drive interconnect. I measure the capacitance of each possibility seen by data out and

use it as the worst case capacitive loads to size circuits backward.



4.3 Timing Requirements

Figure 4.2: Timing Diagram
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Figure 4.2 shows how each control signal should be turned on and off with respect

to other signals. Memory arrays are vulnerable to glitches. It is important to leave enough

margin between transitions of pullup and pulldown signals to avoid glitches and DC power

loss. For example, wordline-off and precharge-on should not transition at the same time.

Sense-amp-enable should be on after enough bitline differential is developed as

shown in Figure 4.2. The timing is determined by the sensing rate of the design and when

it is safe to sense. Turning on the sense amp too early before the adequate bitline differen-

tial is reached can output wrong data. This is because the bitlines are originally precharged

to high, and turning on the sense amp pull both bitline and bitbar line low at the same time.

With noise coupling, the polarity of the bitlines could be reversed, producing wrong data.

Turning on the sense amp too late lengthens cache access.
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The most important timing requirement is to overlap bitline precharge with sens-

ing. This is critical for satisfying multi-cache access in one clock cycle. After many trials,

I discover that it is safe to close the bitline soon after the adequate bitline differential is

developed. This allows precharging to start before data is out. DEC Alpha 21264 has sin-

gle-ported primary caches and double pump data in one clock cycle, essentially each read

can use only half of a clock cycle to finish [5]. This might not be achieved if the clock

speed is even more aggressive than Alpha's and if clock skew and jitter are severe. By

overlapping bitline precharge with data sensing in a truly physically dual-ported cache, a

read can take the clock cycle using one port, a write can also be satisfied in the same cycle

using the second port. Or, issuing two load requests during the same or adjacent clock

phase can be satisfied.

4.4 Building Abstractions

4.4.1 16kB Single-Ported Caches

Having the building block done, it is time to build abstractions on top of it. It is

interesting to see how a cache's behavior changes when its size is increased. As stated

before, having a larger cache can reduce address conflict, thereby increasing hit ratio. To

look at it from another angle, increasing the size can also increase the bandwidth of the

cache, depending on the width of the data bus.

One way of implementing the 16 kB cache using the building block is to replicate

the 8kB cache array and all the peripheral circuits, and place them symmetrically so that

the address bits can reach both predecoders at the same time. Replicating caches allows

the access time to stay the same as that of the 8kB and doubles the original bandwidth.

The trade-off is that replication introduces on-chip cache consistency management. Every

time one cache is updated, the twin copy also needs to be updated, wasting power. The



activity factor of arrays should be kept low to save power. Another trade-off is replicating

decoder and predecoder costs extra area.

The other way of implementing the 16kB using the building block is to internally

buffer wordlines (see Figure 4.3). The buffer for each wordline introduces some additional

area, but it is relatively smaller compared to having an extra set of a decoder and a prede-

coder. Buffers add a little more delay, but they can also speedup wordline for the second

8kB array. This is because the decoder fans out symmetrically in two directions, seeing

twice the wordline loads and interconnect. The buffer in a wordline sees only one set of

wordline loads and interconnect. Having two 8kB array adjacent to each other might make

the final data out travel some extra interconnect in successive pipestages, depending on

how data is dispatched with respect to the location of the arrays. With optimal sizing, the

16kB with internal buffering can still have array access done in one clock cycle.
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4.4.2 32kB Single-Ported Caches

Now the 16kB cache becomes the building block for a 32kB cache (see Figure

4.4). The replication method is recommended to make sure array access can be done in

one clock cycle.

Figure 4.4: 32kB Single-Ported Cache
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4.4.3 8kB Dual-Ported Caches

Now back to the 8kB cache, except this time each bit cell is physically dual-ported

(see Figure 4.5). The latch in each cell sees twice the diffusion capacitance. Each cell also

sees two pairs of bit and bitbar lines. These additional features inevitably increase the

original cell size. Layout designers need to especially careful place bitlines to minimize

wire coupling when both ports of the cell are being used simultaneously.

Figure 4.5: 8kB Dual-Ported Cache
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Dual-ported caches double the bandwidth of single-ported caches. If the timing rules

are strictly followed in Sec 4.3, two reads to the same cell or different cell or one read and

one write to the same cell or different cells can be done in one clock cycle. How does this

micro-architectural advantage affect circuit performance? The worst case access time is



when having two reads to the same cell because all the capacitive loads of the single-

ported cell are doubled. However, this does not mean the array access is twice as slow,

since reading bitlines is a small signal operation, only detecting bitline differential mat-

ters, instead of developing full rail to rail signals. The area increase does make wordlines

and bitlines somewhat longer. Good layout designs do not make the interconnect twice as

long as that of a single-ported cache. The interconnect within memory array is much more

manageable than bus interconnect because bit cells are so closely abutted and gate and

drain capacitance dominates over wire capacitance. Wordlines and bitlines are separated

by transistors, so cross coupling is not severe. Another difference between memory and

bus interconnect is that memory wires never have a Miller factor of 2. Current in word-

lines all move in the same direction, from the decoder to the cell. For dual-ported array, if

two adjacent cells are doing read and write respectively at the same time, each bitline sees

only one opposite transition occurring in the wire of its neighboring cells.

A dual-ported cache can also finish an array access in one clock cycle. An impor-

tant control signal requirement is that there should be two sets of enable signals for the

two ports within each cell to satisfy one load and one store in the same cell using one

clock cycle. Therefore, compared to single-ported caches, dual-ported caches take twice

the area, double bandwidth, and can also have array access done in one clock cycle with

careful sizing devices. The 8kB dual-ported cache is now the building block for a larger

dual-ported array, just like the 8kB single-ported cache

4.5 Process Independent
The circuits are designed so that the performance ratios obtained are process inde-

pendent, because all the different cache topologies use the same 8kbyte cache building

block. This means that transistor sizing of all the peripheral circuits stay the same. Single-

ported and dual-ported have different bitcell sizes which contribute to differences in



arrays' heights and widths. Decoders of dual-ported caches see a longer interconnect, but

the decoders of the single-ported caches are sized to be able to tolerate a few hundred

micron interconnect differences. Also, the interconnect within cache array is much more

manageable than bus interconnect, because wordline capacitance is dominated by gate

capacitance and bitline capacitance is dominated by diffusion capacitance because array

cells are closely abutted together. Transistor capacitances are linearly scalable with pro-

cess change. Therefore the array access time ratio among caches stay roughly the same for

new process technologies which allow the information provided by this thesis to serve as a

reference for future cache studies and designs.



Chapter 5

Results, Observations, and Analysis
The data collection part of this work involves extensive circuit design and simula-

tion work (drawing, sizing, and simulating several ten thousand MOSFET transistors) in

0.25 micron CMOS process. Table 5.1 presents design trade-offs of varying cache sizes

and bandwidths. All the data are normalized to the numerical values of the optimized fun-

damental building block 8kB single-ported cache as shown in row 1 of Table 5.1. It is

important to realize that this building block already minimizes the atomic array access

time which is always the top priority in optimizing primary caches. The following R

Spreadsheet presents data to indicate that the cache topology organizations described in

this thesis can globally optimize other design aspects at the same time.

Table 5.1: R Spreadsheet

Cache Type Speed Ratio Area Ratio Bandwidth Ratio

1 8kB Single-Ported 1 1 1

2 16kB Single-Ported 1.096 2 1 to 2
Buffered Wdline

3 32kB Single-Ported 1.096* 4 1 to 4
Replicated Buff-
ered 16kB Single-
Ported, Placed in
Symmetry

4 8kB Dual-Ported 1.119 1.93 2

5 16kB Dual-Ported 1.119* 3.86 2 to 4
Replicated 8kB DP,
Placed in Symme-
try

Note: * means that the result in the replication case is obtained by assuming the current drive
strength at the input in the previous case is maintained.



5.1 Doubling Cache Size and Minimizing Area

Doubling the 8kB cache size does not double the access time. In fact, the access time

increases by only 9.6%, if the cache is implemented using the cache type in row 2 of Table

5.1. When a 16kB cache is implemented as Figure 4.3, the extra delay is primarily intro-

duced by the wordline delay through the first 8kbyte and the delay of the wordline buffer

between it and the second array. All the other circuit delays stay the same. This 16kbyte

cache is pseudo cache banking. The cache is really split in half and has the option to be

used as a bigger cache to store information or to be used to double output data. This is why

the 16kB single-ported cache can either remain the same or double the bandwidth of the

8kB single-ported cache, depending on a designer's choice. The area of this 16kB is

roughly doubled because the buffers need to be large enough to optimize the delay of

wordlines and other control signals that travel in the same direction as the wordlines.

For smaller size caches like 16kB, I suggest using wordline buffering (buffering word-

lines between two optimized 8kB) as described above, instead of replicating caches as

seen in some microprocessor designs. Replication can achieve the same access time as the

8kB. However, power consumption doubles every time one of the two 8kB is updated, in

order to maintain cache consistency. Also, only placing the replicated cache symmetrically

as the mirror image of the original 8kB allows the access time to remain the same as that

of the 8kB. If the floor plan of neighboring FUBs only allow the two 8kB caches to be

placed adjacently, then this replication scheme increases access time in the worst case

delay. This scheme increases area more than the wordline buffering technique due to extra

routing signals to reach the second 8kB, in addition to increasing power consumption.

Buffering wordlines and Replicating caches as mentioned above are basically 2 types

of the cache banking technique. When banking large caches, the height of the cache (the

analog portion) is determined by whether reading bitlines can be done within one clock



cycle, because this analog portion of the array cannot be pipelined as mentioned in Section

3.1. Once the height is determined, then designers need to balance the width of each bank

with the total number of banks.

Number of Banks = Cache Size / Bank Size (5.1)

Bank Size= Width * Height (5.2)

Time to Read the Height of each array < 1 Clock Period of the Current Domain (5.3)

When designing large caches, the time to propagate data through the interconnect

between cache data-out and various destinations affects the arrangement of banks, which

in turn limits the total number of banks. Because of neighboring FUBs' locations, cache

banks cannot be arbitrarily placed; otherwise it causes data to travel longer routes to reach

destinations in successive pipeline stages. Having fast cache array access but traveling

much longer interconnect to reach destinations, resulting in more pipestages, can unfavor-

ably increase overall load latencies. Designers need to consider how much time margin

there is in the pipestage after accessing caches, and use Equations 5.1, 5.2, 5.3 together to

arrange cache topologies. Section 5.2 gives an example of minimizing the interconnect

delay after cache access.

5.2 Quadrupling the Cache Size or Bandwidth

Having a 32kB cache can certainly increase cache hit ratio, but by how much would

quadrupling the cache size of 8kB increase the access time? If the 32kB is arranged as

suggested here, the access time only increases by 9.6% from the access time of the 8kB as

shown in row 3 of Table 5.1. Designers should replicate the 16kB single-ported cache and

place the two identical 16kB symmetrically. And each of the 16kB should be built from

the 8kB by buffering wordlines. Again the bandwidth ratio could be two to four, depend-

ing on designers' needs. The area of this 32kB is roughly quadrupled, less than the area

needed for other kinds of topologies, because this cache organization tries to minimize the



area consumed by interconnect. On modern microprocessor chips, the area is determined

by interconnect density rather than transistor density.

5.3 Doubling Bandwidth

5.3.1 Minimizing Area and Increasing Some Access Time

In order to double cache bandwidth and minimize area, I suggest to use a dual-ported

cache as shown in row 4 of Table 5.1. The dual-ported cache has additional delay on the

bitlines because each bit cell sees at least twice the capacitive loads down the bitlines. The

access time is increased by 11.9%, compared to that of the 8kB single-ported. However,

the area is only 1.93 times that of the 8kB instead of twice, which is a substantial saving

for much larger caches. Dual-ported cache has a micro-architectural advantage. With the

timing requirement described in Section 4.4, the dual-ported cache allows back to back

loads and stores in one clock cycle, thereby doubling cache bandwidth.

5.3.1 Minimizing Access Time, Increasing Area and Power

If a designer's goal is to minimize access time and double bandwidth, the replication

method works well. The implementation is to replicate the entire 8kB single-ported cache

and place the two caches symmetrically to minimize interconnect length, so that the two

caches can output data in the same time as a single 8kbyte cache. This is true only if the

current drive strength at the input of the single 8kbyte cache is maintained at the input of

this replication topology. This makes the circuits before the cache slightly slower because

of the relatively small capacitance of the additional latch. As mentioned in Section 5.1, the

trade-off is that extra power is consumed in order to maintain cache consistency between

the two. The two caches are decoded using the exact same address bits, and the two store

the same data. Every time data is stored in one cache, the other cache must be updated too.

Writing into cache involves powering up the entire 8kB array. Also placing two caches



symmetrically affects the floor-planning of neighboring Function Unit Blocks, putting

pressure on other FUB designs because they might see longer interconnect delays.

5.4 Doubling Cache Size, Quadrupling Bandwidth without Quadrupling Area

The best way to quadruple the bandwidth of the 8kB without quadrupling the area is to

use a 16kB dual-ported cache by replicating 8kB dual-ported and place the two banks

symmetrically. The area ratio is 3.86 (see row 5 of Table 5.1) instead of 4 by replicating

the 8kB or internally banking into multiples of 8kB.

5.5 Power Issues

Lowering microprocessor power dissipation is one of the most important design issues

nowadays in order to meet customers' needs, especially for mobile computing and hand-

held products. Every chip maker continues to increase the clock speed to achieve faster

computing.

Dynamic Power Dissipated = C*VA2*F*A (5.4)

C=Capacitance (proportional to area), V=Power Supply Voltage,

F=Clock Frequency, A=Activity Factor

Equation 5.4 indicates four factors that affect dynamic power dissipation. As men-

tioned in Section 4.2.2, minimizing the use of dynamic circuits reduces dynamic power

dissipation due to high switching frequencies. Since F continues to increase, lowering V is

a popular method because the power decreases quadratically. However, V cannot be

brought lower than semiconductor device operating voltages, which leaves the options of

lowering C and A. Reducing area consumption certainly lowers C. Since the total on-chip

array area is at least 40% of the total die area, reducing array area has a noticeable effect

on lowering C. The area of each bit cell should be minimized, meaning the minimally

allowable sizes should be assigned to the six transistors of each cell as mentioned in Sec-



tion 4.2.4. For 16kB primary caches, buffering wordlines between two 8kB banks is more

desirable than replicating one 8kB cache bank as mentioned in Section 5.1. The extra set

of one decoder and one predecoder costs more area than the total area of buffers. Buffering

wordlines costs more access time than replication, but for caches of this size, buffering

does not significantly increase cache access time. Finally, lowering the activity factor of

cache arrays, that is, powering arrays down when they are not needed, also decreases

power consumption. This topic is a specific implementation detail; therefore, it is not dis-

cussed further.

5.6 A Few Cautionary Words

Before designing the circuits, I make certain assumptions already listed in Chapter 3.

The assumptions are realistic and practical for readers to consider when they try to select

the best cache topologies to meet their own specifications. I use circuit components in the

public domain to design the caches listed in the spreadsheet to allow a wide range of users

to consider and apply my design strategies. Chapter 4 describes implementation details of

the reference frame. The numerical values that I use for the array dimensions are not

magic numbers. Readers should pay more attention to the approaches. All the approaches

listed are valid for implementing both direct-mapped and associative caches. The actual

circuit designs here are really the circuit implementations of direct-mapped caches; how-

ever, I assume way-predication mechanisms are available to make the circuits behave like

associative caches (see Section 3.2 and 3.3.4). This thesis is not intended to tell readers

that the design strategies listed here are the ultimate optimization techniques for final pro-

duction circuit designs. However, this thesis provides globally optimized structures as

starting points to help users efficiently choose the right cache topologies to meet their

needs. Users can then use various circuit hacks to do local optimizations to obtain even

better speed ratio [2], [4], and [ 11]. These local optimizations are implementation details



set by individual organizations. The data in the spreadsheet is process-independent so it

can serve as a reference for future process technology designs as well.



Chapter 6

Conclusion

6.1 Summary of the Research
The primary goal of this thesis was to systematically and quantitatively analyze perfor-

mance trade-offs of major cache topologies. It is difficult to compare the performance of

different cache implementations, because they have different specifications and are

designed with different circuit and simulation methodologies. In order to make objective

comparisons, I first established a reference frame by using circuit components in the pub-

lic domain to design the frame. While designing the reference frame, I realized that I

would need to design a building block and to use it consistently in implementing caches

with different sizes and bandwidths. More importantly, the building block had to be opti-

mized in speed, so that the reference frame would be a truly effective, meaningful tool for

comparing cache performance. In the meantime, I strove to design circuitry so the results

would be process-independent. I optimized the building block to obtain the hit ratio of an

associative cache and the access time of a direct-mapped cache. After finishing the build-

ing block, I designed and simulated caches with different sizes and bandwidths, then col-

lected data for the spreadsheet.

Although the R Spreadsheet looks simple, it has high information content. It shows

how to optimize area and / or bandwidth in addition to optimizing speed. The most chal-

lenging part of the work was to efficiently and effectively organize circuit topologies:

Without depending on specific implementation details of any existing cache work, the

designs in this thesis include a variety of high-performance cache implementations along

with my own design strategies. Fortunately efficient ways were found to optimize caches

in speed, bandwidth, and area, all three, providing different cache topology choices with



similar performances. As a result of these efficient approaches, the spreadsheet represents

a variety of cache implementation schemes.

Based on the data collected from realistic cache designs and simulations of several

ten thousand transistors, the thesis describes design trade-offs and design considerations

for concurrent high-performance caches which can serve as a convenient reference for

designers during the topology definition phase. This quick reference shows how the

behavior of caches change as their sizes and bandwidths are increased. The performance

ratios presented are accurate for new process technologies because they are process-inde-

pendent. Section 5.5 points out how readers should interpret the spreadsheet.

6.2 Expansions Based on the Groundwork
This thesis focuses on optimizing data arrays of primary caches (see Section

3.3.1). The approaches can be applied to analyzing tag arrays. The main additional fea-

tures of tag arrays are comparators, and the rest of the components of tag arrays are the

same as those of data arrays. The work presented here can be extended to analyze and

design any on-chip or off-chip cache. For example, 3-D visualization is currently one of

the main forces pushing the computing industry. Graphic chips must have high-bandwidth

and fast caches. The results of this thesis can certainly be applied to designing high-speed

and high-bandwidth SRAMS for computer graphic applications.

6.3 Future Outlook of Memory Designs
Out-of-order instruction execution [3] and non-blocking caching techniques will

continue to be employed to help hide cache latency. Further explorations of way-predic-

tion schemes are needed, because they are a powerful means of reducing access time [1].

Way-predictions require fast tag array access and effective recording of tag array access

patterns. More levels of on-chip cache hierarchy can be introduced to reduce overall data



access time and cache miss penalty. However, adding more levels of cache along with

increasing bandwidth will inevitably increase total cache area, thereby die area, which in

turn, will increase fabrication cost within the same process technology. Bringing DRAM

on-chip has been a continuing effort made by industry and academia [15]. The most attrac-

tive thing about a DRAM is its high density. However, the drastically different DRAM

process technology hinders the integration of a DRAM and the rest of the chip. Also,

DRAMs have thermal tolerance different from other components of the chip. The increas-

ing demand for high cache bandwidth will trigger innovative process integration technolo-

gies to be developed probably at higher costs initially. If DRAMS are indeed brought onto

widely sold commercial chips one day, it will bring revolutionary changes to computer

architecture and chip design.
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