722 research outputs found

    Current, emerging and future technologies for sensing the environment

    Get PDF
    This paper reviews current technologies that are used for environmental monitoring, and presents emerging technologies that will dramatically improve our ability to obtain spatially distributed, real-time data about key indicators of environmental quality at specific locations. Futuristic approaches to environmental monitoring that employ fundamental breakthroughs in materials science to revolutionise the way we monitor our environment will also be considered. In particular, approaches employing biomimetic and 'adaptive'/'stimuli-responsive' materials will be highlighted, as these could play an important role in the realization of small, low power, low cost, autonomous sensing and communications platforms that could form the building blocks of the much vaunted environmental 'sensor web'

    Integrated circuit & system design for concurrent amperometric and potentiometric wireless electrochemical sensing

    Get PDF
    Complementary Metal-Oxide-Semiconductor (CMOS) biosensor platforms have steadily grown in healthcare and commerial applications. This technology has shown potential in the field of commercial wearable technology, where CMOS sensors aid the development of miniaturised sensors for an improved cost of production and response time. The possibility of utilising wireless power and data transmission techniques for CMOS also allows for the monolithic integration of the communication, power and sensing onto a single chip, which greatly simplifies the post-processing and improves the efficiency of data collection. The ability to concurrently utilise potentiometry and amperometry as an electrochemical technique is explored in this thesis. Potentiometry and amperometry are two of the most common transduction mechanisms for electrochemistry, with their own advantages and disadvantages. Concurrently applying both techniques will allow for real-time calibration of background pH and for improved accuracy of readings. To date, developing circuits for concurrently sensing potentiometry and amperometry has not been explored in the literature. This thesis investigates the possibility of utilising CMOS sensors for wireless potentiometric and amperometric electrochemical sensing. To start with, a review of potentiometry and amperometry is evaluated to understand the key factors behind their operation. A new configuration is proposed whereby the reference electrode for both electrochemistry techniques are shared. This configuration is then compared to both the original configurations to determine any differences in the sensing accuracy through a novel experiment that utilises hydrogen peroxide as a measurement analyte. The feasibility of the configuration with the shared reference electrode is proven and utilised as the basis of the electrochemical configuration for the front end circuits. A unique front-end circuit named DAPPER is developed for the shared reference electrode topology. A review of existing architectures for potentiometry and amperometry is evaluated, with a specific focus on low power consumption for wireless applications. In addition, both the electrochemical sensing outputs are mixed into a single output data channel for use with a near-field communication (NFC). This mixing technique is also further analysed in this thesis to understand the errors arising due to various factors. The system is fabricated on TSMC 180nm technology and consumes 28µW. It measures a linear input current range from 250pA - 0.1µW, and an input voltage range of 0.4V - 1V. This circuit is tested and verified for both electrical and electrochemical tests to showcase its feasibility for concurrent measurements. This thesis then provides the integration of wireless blocks into the system for wireless powering and data transmission. This is done through the design of a circuit named SPACEMAN that consists of the concurrent sensing front-end, wireless power blocks, data transmission, as well as a state machine that allows for the circuit to switch between modes: potentiometry only, amperometry only, concurrent sensing and none. The states are switched through re-booting the circuit. The core size of the electronics is 0.41mm² without the coil. The circuit’s wireless powering and data transmission is tested and verified through the use of an external transmitter and a connected printed circuit board (PCB) coil. Finally, the future direction for ongoing work to proceed towards a fully monolithic electrochemical technique is discussed through the next development of a fully integrated coil-on-CMOS system, on-chip electrodes with the electroplating and microfludics, the development of an external transmitter for powering the device and a test platform. The contributions of this thesis aim to formulate a use for wireless electrochemical sensors capable of concurrent measurements for use in wearable devices.Open Acces

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Deploying Wireless Sensor Devices in Intelligent Transportation System Applications

    Get PDF
    As future intelligent infrastructure will bring together and connect individuals, vehicles and infrastructure through wireless communications, it is critical that robust communication technologies are developed. Mobile wireless sensor networks are self-organising mobile networks where nodes exchange data without the need for an underlying infrastructure. In the road transport domain, schemes which are fully infrastructure-less and those which use a combination of fixed (infrastructure) devices and mobile devices fitted to vehicles and other moving objects are of significant interest to the ITS community as they have the potential to deliver a ‘connected environment’ where individuals, vehicles and infrastructure can co-exist and cooperate, thus delivering more knowledge about the transport environment, the state of the network and who indeed is travelling or wishes to travel. This may offer benefits in terms of real-time management, optimisation of transportation systems, intelligent design and the use of such systems for innovative road charging and possibly carbon trading schemes as well as through the CVHS (Cooperative Vehicle and Highway Systems) for safety and control applications. As the wireless sensor networks technology is still relatively new and very little is known about its real application in the transport domain. Our involvement in the transport-related projects provides us with an opportunity to carry out research and development of wireless sensor network applications in transport systems. This chapter outlines our experience in the ASTRA (ASTRA, 2005), TRACKSS (TRACKSS, 2007) and EMMA (EMMA, 2007) projects and provides an illustration of the important role that the wireless sensor technology can play in future ITS. This chapter also presents encouraging results obtained from the experiments in investigating the feasibility of utilising wireless sensor networks in vehicle and vehicle to infrastructure communication in real ITS applications

    Indoor localisation by using wireless sensor nodes

    Get PDF
    This study is devoted to investigating and developing WSN based localisation approaches with high position accuracies indoors. The study initially summarises the design and implementation of localisation systems and WSN architecture together with the characteristics of LQI and RSSI values. A fingerprint localisation approach is utilised for indoor positioning applications. A k-nearest neighbourhood algorithm (k-NN) is deployed, using Euclidean distances between the fingerprint database and the object fingerprints, to estimate unknown object positions. Weighted LQI and RSSI values are calculated and the k-NN algorithm with different weights is utilised to improve the position detection accuracy. Different weight functions are investigated with the fingerprint localisation technique. A novel weight function which produced the maximum position accuracy is determined and employed in calculations. The study covered designing and developing the centroid localisation (CL) and weighted centroid localisation (WCL) approaches by using LQI values. A reference node localisation approach is proposed. A star topology of reference nodes are to be utilized and a 3-NN algorithm is employed to determine the nearest reference nodes to the object location. The closest reference nodes are employed to each nearest reference nodes and the object locations are calculated by using the differences between the closest and nearest reference nodes. A neighbourhood weighted localisation approach is proposed between the nearest reference nodes in star topology. Weights between nearest reference nodes are calculated by using Euclidean and physical distances. The physical distances between the object and the nearest reference nodes are calculated and the trigonometric techniques are employed to derive the object coordinates. An environmentally adaptive centroid localisation approach is proposed.Weighted standard deviation (STD) techniques are employed adaptively to estimate the unknown object positions. WSNs with minimum RSSI mean values are considered as reference nodes across the sensing area. The object localisation is carried out in two phases with respect to these reference nodes. Calculated object coordinates are later translated into the universal coordinate system to determine the actual object coordinates. Virtual fingerprint localisation technique is introduced to determine the object locations by using virtual fingerprint database. A physical fingerprint database is organised in the form of virtual database by using LQI distribution functions. Virtual database elements are generated among the physical database elements with linear and exponential distribution functions between the fingerprint points. Localisation procedures are repeated with virtual database and localisation accuracies are improved compared to the basic fingerprint approach. In order to reduce the computation time and effort, segmentation of the sensing area is introduced. Static and dynamic segmentation techniques are deployed. Segments are defined by RSS ranges and the unknown object is localised in one of these segments. Fingerprint techniques are applied only in the relevant segment to find the object location. Finally, graphical user interfaces (GUI) are utilised with application program interfaces (API), in all calculations to visualise unknown object locations indoors

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    REED: Flexible rule based programming of wireless sensor networks at runtime

    Get PDF
    Wireless Sensor Networks (WSN) have emerged as an enabling technology for a variety of distributed applications. WSN middleware eases the development of these applications by providing a uniform programming environment. In this paper we present a rule based approach called REED (Rule Execution and Event Distribution) and describe how it supports flexible programming of WSNs at runtime. Indeed REED is required by the nature of its project setting to allow runtime programming. We demonstrate that by combining this runtime programmability with rules in an event, condition, action format we can support a range of paradigms, including Publish-subscribe and data aggregation algorithms. Current WSN middleware solutions have limited on-line programmability support so the applications cannot re-configure their WSNs while operational. Yet the runtime nature of the prototype requires both the distribution of rules and the events that trigger them so we also describe the rule management approach used to support the rule distribution; in particular a novel rule merging and filtering algorithm is described. The paper reports on the results gained from a REED prototype system constructed in our laboratory using Gumstix

    A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    Get PDF
    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events

    Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 6 - Development and Demonstration of a Self-Organizing Diagnostic System for Structural Health Monitoring

    Get PDF
    This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA

    Failure analysis informing intelligent asset management

    Get PDF
    With increasing demands on the UK’s power grid it has become increasingly important to reform the methods of asset management used to maintain it. The science of Prognostics and Health Management (PHM) presents interesting possibilities by allowing the online diagnosis of faults in a component and the dynamic trending of its remaining useful life (RUL). Before a PHM system can be developed an extensive failure analysis must be conducted on the asset in question to determine the mechanisms of failure and their associated data precursors that precede them. In order to gain experience in the development of prognostic systems we have conducted a study of commercial power relays, using a data capture regime that revealed precursors to relay failure. We were able to determine important failure precursors for both stuck open failures caused by contact erosion and stuck closed failures caused by material transfer and are in a position to develop a more detailed prognostic system from this base. This research when expanded and applied to a system such as the power grid, presents an opportunity for more efficient asset management when compared to maintenance based upon time to replacement or purely on condition
    corecore